
Verifying programs and proofs

Part I. describe algorithms

Yves Bertot

January 2018

1 Motivating introduction

Starting in the 1940s, it was understood that one could use Computers to do
math. People who don’t know much about mathematics usually think that
the purpose of mathematics is to compute and obviously computers can help
compute. But there is more in math than just computing, there is also reasoning.

Reasoning follows rules, the rules of logic. If you want to convince somebody,
you need to follow these rules, otherwise the other side can always claim that
they don’t trust you. The rules must be quite dumb, so that nobody can reject
them, however stubborn they are. The rules are so dumb, that actually a
computer can check that they are applied correctly.

If Alice needs to check that Paul works well, it is very difficult for Alice if
what Paul has to do is long and boring, with only dumb rules to check. But
a computer can help, if it can recognize whether the rules are applied or not,
because a computer never gets tired.

This is the game: reduce mathematics to something dumb, so that a com-
puter can check it, and then rely on the computer.

Programming and software engineering can benefit from this, too. To make
sure that a program does what it is meant to do, we need to check all cases.
We can try to do it with massive testing, but testing can only catch mistakes
somehow at random. On the other hand, we can reason about what program
do and verify that they behave correctly in all possible cases.

The only limit to this approach is that we use a simplified model of what
programs do and what they are supposed to do. Most of the time, the model is
different from the real life. So, even if we prove that the program does what we
want, there remains possibilities for errors: the errors that cannot be described
by the model. In spite of this, there is always a benefit: you understand your
program better if you made the effort of giving a more abstract description.

This approach raises a lot of interest in the industry, especially for companies
that are very vulnerable to software or hardware bugs. For instance, Intel lost
billions of dollars because the algorithm for division that they engraved in the
Pentium (circa 1998) was faulty. They now hire specialists in computer-based
proof (like the author of [5]). Aeronautics companies more and more replace

1

physical objects (cables and rods) by networks and software in the command sys-
tem of planes, but they have to convince certifying authorities that the software
is as safe as or safer than the physical devices they replace: they are interested
in hiring software engineers that know how to guarantee the correctness of their
software. In France, the agency for research on nuclear energy also invests a lot
of efforts on these approaches.

There are several approaches to verifying the quality of software. Some
approaches concentrate on programming languages that are closer to widespread
langages like C or Java. Other rely on programming languages that are easier
to reason about in an efficient fashion. We will use the latter approach and the
language we consider is called a functional programming language.

2 Starting the Coq system

To work with Coq, you can start with three commands. The first, called coqc

is used like a compiler; the second, called coqtop was initially meant to work
in a terminal window: you type in commands and it prints out answers; the
third one, called coqide, is an interactive development environment: it keeps
a window where all your commands are recorded and other windows where the
most recent results from the tool are displayed. You are advised to use coqide,
but I will be using an alternative approach, based on a text editor called Emacs

and a specialized mode (called Proof General) that encapsulates coqtop and
provides approximately the same features as coqide.

When using coqide, you must be aware that the commands you type are
only processed if you explicitely require processing to happen, either by clicking
on an arrow in the top row of the window or by typing in the appropriate
combination of special characters. The tool tries to keeps a precise account of
what you have done and how the state of the system has been modified, so
that you are not allowed to modify a command that is recorded as “processed”
(processed commands appear on different background). To modify a processed
command, you first need to ask the tool to “unprocess” it. This is also possible
using one of the arrows in the top row of the window.

These notes will describe only a subset of the features provided by the tool.
If you want to know more, or if something is not clear, you should look at the
following pointer:

http://coq.inria.fr

3 First steps with the programming language

The Coq system contains a programming language that is very simple but also
quite unconventional.

For start, it is interesting to require that the system loads objects that have
already been defined. In our first experiments, we will use boolean values,
natural numbers, and lists. So, we should start with the following command:

2

Require Import Arith List Bool NPeano.

Natural numbers are already unconventional for people trained to use comput-
ers: they are all positive.

In a programming language, you need to be able to define new things, you
need to be able to test data and to take decision based on the test results,
and you need to be able to repeat operations. This is what we will see in the
following examples.

To define new things, you use the keyword Definition.

Definition four := 4.

Definition polynom1 (x:nat) := x * x + 3 * x + 1.

Types play an important role in Coq programming: most things have a type.
For instance, by default the numbers 0, 1, 2, . . . have type nat. When you write
a function, like the polynom1 function above, you usually give the type of the
expected arguments. This is similar to conventional programming languages.

At any time you can use a command to verify if some formula is well formed.
This command is called Check.

Check polynom1 (polynom1 (polynom1 (polynom1 (polynom1 4)))).

This command performs no computation. It only checks that you apply func-
tions to arguments of the right type.

To evaluate a value, you can use a command called Compute.

Compute polynom1 (polynom1 4).

With the kind of number representation used in our first steps, computation is
very slow and consumes a lot of memory and you should not try to compute the
big nesting of terms that was use for the Check command. But there are other
advantages, which we will see when reasoning about our programs.

In this programing language, we can also buid functions without naming
them. Such functions only exist during the time we consider them.

Check (fun x => x * x, fun x => x * polynom1 x).

We can also define things locally, so that they are forgotten after the com-
mand where they are supposed to be used. The construct is called let.

Check let x := 3 * 4 in x * x * x.

You can also verify that a command will fail. For instance, we know that x

is no longer defined after the previous command and we can verify that.

Fail Check x.

The command has indeed failed with message:

=> Error: The reference x was not found in the current environment.

3

3.1 Simple data structures and pattern-matching

In these first steps we will only use 5 different families of datatypes.

3.1.1 Natural numbers

The first datatype will be the datatype of natural numbers called nat. Defining
a datatype relies on giving all possible cases in this type. For natural numbers,
the definition says that there are only two cases: a natural number is either the
number 0 or the successor of another natural number. The internal name for
the number 0 is written O (upper-case o). The internal name for the other case
is written S. This S can actually be used like a function that takes as argument
a natural number.

The notations with digits, like 13, 5, 8, are only notations. They are provided
by the Coq system to display data in a more understandable way, but the data
that is really manipulated internally is really of the form S (S (S (S (S O))))

for 5. You can experiment with this as in the following commands:

Check (S O).

1 : nat

This datatype is not oriented towards computer efficiency, but towards math-
ematical ease of reasoning. In modern mathematics, its takes three digits to
write the number 100, and 4 digits to write the number 1000. But with the nat

datatype, its takes approximately 2 memory chunks to represent the number 1
and 11 memory chunks to represent the number 10. This is inefficient, and this
is the reason why it is not advise to compute large numbers with this datatype.

The datatype of natural numbers comes with a few pre-defined functions
and fairly usual notations. For instance, we can compute the addition of two
numbers:

Compute 3 + 7.

= 10 : nat

There are also two functions for comparing natural numbers, with notation
<=? and =?, the first computes whether the first number is less than or equal to
the second number, the second computes whether the two numbers are equal.
The result is a boolean value of type bool that we describe more in details later.

Compute 7 <=? 3.

= false : bool

Note that the notation for comparing two numbers in a program is particular,
with the question mark attached to the end. We shall later use a different
notation for a different kind of comparison between numbers, which cannot be
used inside programs.

4

3.1.2 Lists

The second family of datatypes that we will consider is the family of lists. It
is very similar to the arrays that we are accustomed to use in conventional
programming language. The common feature is that lists also have to contain
elements that are all of the same type. The difference is that you don’t have to
choose in advance the size of a list.

Like for natural numbers, there are only two cases in lists: a list is either
an empty list, with the internal name nil or it is compound object with two
sub-components, with the internal name cons. The first component is the first
element of the list, the second component is another list that contains all the
other elements of the list.

The internal name cons is almost never used. Instead we use a notation with
“::”. So we can build a list with three elements as in the following command,
but the answer of the computer uses the notation.

Check cons 3 (cons 2 (cons 1 nil)).

3 :: 2 :: 1 :: nil

: list nat

Note that the type of the thing considered above is list nat. So when we
consider a list, the system always tries to know what the type of elements
is. We can also construct more complex data, for instance lists of lists. The
following shows how to construct a list with two elements, which are both lists
of natural numbers. This could be used to represent a bi-dimensional array of
2×2 elements.

Check cons (cons 2 (cons 1 nil)) (cons (cons 3 (cons 2 nil)) nil).

(2 :: 1 :: nil) :: (3 :: 2 :: nil) :: nil

: list (list nat)

3.1.3 pairs

Lists can be used to group several things in one new thing, but they all have
to be of the same type. If you want to group several things together that are
from different types, you will use another datatype, called the type of pairs. For
instance, if you want to group together a number and a list of numbers, you will
just write as follows:

Check (3, 2::1::nil).

(3, 2::1::nil) : nat * list nat

There is only one case in this datatype of pairs.

3.1.4 boolean values

In programming we often use a datatype that has only two elements, called
true and false. This datatype is called bool. The following command checks
that true really exists.

Check true.

5

3.1.5 optional values

Sometimes, we will need to write a program that either returns exactly one
value or returns an exceptional condition. For instance, one may want to have
a function that takes as input a natural number and returns its predecessor if
it exists. So this function would map 2 to 1 and 1 to 0. But for the input 0,
we want to express that there is no number that fits. So we may choose that
this function returns an element of the datatype option nat. This datatype
has two cases, where the first case is called Some and it has a subcomponent
which is the thing we want to return. The second case is called None and it has
no subcomponent. So, for instance, to build an element of option nat we can
write the following expression:

Check Some 3.

Some 3 : option nat

3.2 Observing, testing, and making decisions

If you manipulate an object in one of the datatypes, you may need to know in
which case you are for the datatypes, and what are the subcomponents. To do
this, you use a construct called “pattern matching”.

The first simple example is when the datatype has only one case. Assume p

is a pair, you can write the following:

match p with

(a, b) => ...

end

inside the expression hidden in the dots, you are allowed to use a to refer to the
first component of p and b to refer to the second component.

For lists, it is a little more complex, because your program has to be ready
to handle all possible cases in the datatype. so you need to say what to do if p
is in the cons case (noted with “::”) and what to do if p is in the nil case.

match p with

a::v => ...

| nil => ...

end

So this construct tests whether p is empty or not, takes a decision accordingly
and executes the piece of code that corresponds, using the variables a and v to
observe the subcomponents.

If we use the pattern-matching construct on a boolean value, we do not
observe subcomponents but we still take decisions. This construct behaves
exactly like an if-then-else. This is illustrated by the notations of the Coq
system.

Check match 3 <=? 7 with true => 1 | false => 2 end.

if 3 <=? 7 then 1 else 2

: nat

6

We can illustrate the behavior of the pattern-matching construct using the
Compute command. The first command computes the comparison between two
natural numbers and then takes a decision depending on the result. The second
command observes a list and returns its first element. Note that the case where
the list would be empty also needs to be covered in the match construct. This
makes programming safer.

Compute match 3 <=? 7 with true => 1 | false => 2 end.

= 1 : nat

Compute match 3::2::1::nil with nil => 0 | a::v => a end.

= 3 : nat

Compute match (3, true) with

(a, b) => match b with false => 4 | true => 2 end

end.

= 2 : nat

3.3 Defining and applying functions

We can obtain functions in two ways. Either functions were defined earlier and
a name was given to them (by using Definition or let) or we build a function
to use it directly. To apply a function to an argument we simply write this
function on the left of the argument. All four of the following commands are
correct.

Check polynom1 1.

polynom1 1 : nat

Check (fun x => x * x) 3.

(fun x => x * x) 3 : nat

Check (fun x => (fun y => x + y)) 3.

(fun x => (fun y => x + y)) 3 : nat -> nat

Check (fun x => (fun y => x + y)) 3 4.

In the last but one command, we see that the expression is a function, so it can
be applied again to another number by writing it on the left of that number.
This is what we do in the last command. Note that there is no need to use more
parentheses.

3.4 Repeating computation

For repeating computation, the programming language of Coq is even more
unconventional. The important aspect is that Coq refuses to let you define
functions that may loop forever. Repetition is only allowed using recursion, and

7

recursion is only allowed when the function’s main argument gets smaller. In
our first steps with the Coq system, we will only consider recursive functions
that take numbers and lists as arguments.

Here is a simple example of a function with recursion. This function takes
as input a list of natural numbers and adds all the elements in the list.

Fixpoint slnat (l : list nat) :=

match l with nil => 0 | a::tl => a + slnat tl end.

Compute slnat (1 :: 3 :: 4 :: nil).

= 8 : nat

First, note that the keyword for this definition is Fixpoint. You have to use this
keyword if you want to define a function that has a repetitive behavior. Second,
note that the function relies on a pattern matching construct to decide on what
to do. In the case where the input list is empty, the computation terminates
and return 0. In the case where the input list contains a first number a and a
smaller list tl, the computation of a recursive call of slnat is required on this
smaller list. This will give a result to which a will be added. So, we explicitely
have that the recursive call is done on a smaller list.

Recursive calls do not need to be done on direct subcomponents of the initial
input. For instance, the following function is accepted:

Fixpoint teo (l : list nat) :=

match l with

nil => nil

| a::nil => a::nil

| a::b::tl => a::teo tl

end.

Compute teo (1 :: 3 :: 4 :: nil).

= 1 :: 4 :: nil : list nat

The function teo takes every other element of the input lists. In the case where
the input list has the shape a::b::tl, the recursive call is performed on the list
tl which is visibly a subcomponent.

For recursive function that have an natural number as argument, the same
structure appears. The recursive function must rely on pattern-matching to test
whether the argument is 0 or not, and a recursive call is possible only when the
argument is in the S case. When the recursive call is possible, it must be on the
subcomponent (or one of its subcomponents). Here is an example, where the
recursive function builds the list of natural numbers smaller than the input.

Fixpoint lsn (n : nat) :=

match n with

0 => nil

| S p => p :: lsn p

end.

8

Compute lsn 4.

= 3 :: 2 :: 1 :: 0 :: nil

: list nat

We see in this example that pattern-matching provides a handy way to compute
the predecessor of a number.

We can also define functions with several arguments, but the verification
about recursive calls on smaller values must rely only on one of the argument
positions. The following example describes an addition function.

Fixpoint add (n m : nat) :=

match m with 0 => n | S p => add (S n) p end.

In this function, the second argument decreases at each recursive call. If we ask
for the computation of add 3 2, then the first recursive call requires that we
compute add (S 3) 1 and this is written add 4 1. The second recursive call
requires that we compute add 5 0. In this last computation, the first branch
of the pattern-matching construct is performed and the result is 5.

4 Transforming a complex algorithm into a func-
tional program

One of the difficulties of programming in functional programming languages is to
find ways to transform repetitive processes into recursive functions. We will try
to illustrate this using an algorithm that most of us know, because we learned
it in elementary school: the division algorithm. let’s replay this algorithm on
two examples: dividing 3845 by 17 and dividing 1645 by 17.

3845 17 1645 17

Usually, we start by pushing the number 17 to the end of the dividends 3845
and 1645: because 17 only has two digits, we take the last two digits of the
dividends, 38 for 3845 and 16 for 1645 and then we find the largest number a
such (a× 17 is smaller than or equal to 38 or 16. In the first case with a1 = 2
because 2 × 17 = 34 <= 38 < 3 × 17 = 51, in the second case we find a0 = 0.
Then we compute the remainder by removing a × 17 the considered number.
In the first case we have 38 − 2 × 17 = 4, in the second case we keep 16. We
write a1 or a2 on the right part of our division figure as the beginning of our
quotient: so the quotient start with 2 in the first case and with 0 in the second
case (often, we don’t bother writing this 0).

3845 17 1645 17

4 2 16

9

The next step is to consider the number obtained by taking the first digit
that was not yet considered in the dividend and stick it to the right of the
remainder. In our examples, the first digit is 4 and we stick it to the right of
4, which was the remainder in the first case, to obtain 44, and to the left of 16,
which was the remainder in the second case, to obtain 164.

3845 17 1645 17

44 2 164

Now, we start repeating the same operations: we want to find the largest b
such that b×17 is smaller than or equal to 44 in the first case and smaller than or
equal to 164 in the second case. We obtain b1 = 2 in the first case and b2 = 9 in
the second case, and the new remainders are 10 and 164−9×17 = 164−153 = 11
in the second case. The quotient becomes 22 in the first case and 9 in the second
case.

3845 17 1645 17

44 22 164 9
10 11

Then we repeat the same steps again and by taking again the first digit that
was not yet considered in the dividend and add it to the left of the remainder.
So, we take 5 and stick it to 10 to obtain 105 in the first case, and to 11 to
obtain 115 in the second case.

3845 17 1645 17

44 22 164 9
105 115

Division by 17 yields a digit that is 6 in both cases, so the new quotient is
226 in the first case, with a remainder of 3, and 96 in the second case, with a
remainder of 13.

3845 17 1645 17

44 226 164 96
105 115

3 13

We can check that the result is correct by computing the following equations:

226 × 17 + 3 = 3845 96 × 17 + 3 = 1645.

Now, let’s work on representing this algorithm in the Coq system. This
algorithm works with numbers as if they were sequences of digits, so we will use
lists of digits to represent the numbers. In this algorithm, we add digits to the
right (for instance, we stick 4 to the right of 16 to obtain 164) but in a list, we
add elements to the left, so we will use the convention of representing a number
by a list of digits where the digits come in reverse order. To represent the digits,
we will simply use natural numbers. So for instance, the number 239 will be
represented by the list (9::3::2::nil).

10

To understand how to represent the algorithm recursively, we need to look
at one of the last repetitions of the algorithm. What is happening there, for
instance when dividing 3845 by 17, we look specifically at 5, and we use the
remainder of dividing 384 by 17, which is 10, and the quotient of that division,
which is 22. So we can say: We take the list (a::l) (where a is 5 in the
example and l is (4::8::3::nil)) and we divide l by the divisor (let’s call it
d), thus obtaining a quotient q and a remainder r. So in our presentation of the
algorithm we will write something like that:

match input with

a::l => let (q, r) := divide l d in

The next step is to stick the number 5 to 10, so with our variables, we stick a on
the left of r, which brings us to consider the list a::r and to perform a “small
division” on this list: we know that this small division will return only one digit,
that is a number smaller than 9, which will be represented as a natural number.
So, for now, we assume that there exists another function to perform the small
division, which returns just the required number. Let’s call this small division
function small divide, we want to compute the following expression:

let n := small_divide (a::r) d in

Thus we give the name n to the result of the small division. Now we want
to use this name n in two ways. First we want to stick n to the left of the
previous quotient q to obtain the new quotient, second we want to remove n *

d from (a::r) to obtain the new remainder (in the example, this corresponds
to computing 105 − 6 × 17 = 3. For this task, we assume we have two function
subtract and multiply that act on lists of digits to represent the arithmetic
operations. So we complete the work by writing the value that is returned:

(n::q, subtract (a::r) (multiply (n::nil) d))

In all, the recursive case of the algorithm is written as:

match input with

a::l => let (q, r) := divide l d in

let n := small_divide (a::r) d in

(n::q, subtract (a::r) (multiply (n::nil) d))

Now, we have to consider the other case for the dividend. This other case is
when the number is represented by the empty list. What number is represented
by the empty list? Actually, it is 0. So if the list is empty, we want to divide 0
by a given divisor d, the obvious result is the quotient 0 and the remainder 0,
so we can simply return the following value, where nil is used to represent 0 in
the remainder part of the result.

(0, nil)

In the end, the whole division algorithm is described as follows:

11

Fixpoint divide (input d : list nat) : list nat * list nat :=

match input with

a :: l => let (q, r) := divide l d in

let n := small_divide (a::r) d in

(n::q, subtract (a::r) (multiply (n::nil) d))

| nil => (nil, nil)

end.

Note that this recursive function has a recusive call on l as first argument, which
is a sub-component of input as decribed by the pattern-matching construct.

It remains to describe the functions that are being used in the algorithm.
Let’s look at small divide. We know we want to find a number that is smaller
than 10, so we can perform a little exhaustive search to find the correct one,
starting at 10. This can be written as follows:

Fixpoint small_div (k : nat) l q :=

match k with

| S k’ => if l_le (n_l_mul k q) l then k else small_div k’ l q

| _ => 0

end.

Definition small_divide l q := small_divide_aux 9 l q.

Again, we have to define a new auxiliary function, less than, which checks
whether the number represented by a list of digits is strictly smaller than an-
other. Here is an example implementation:

Fixpoint is_zero (l : list nat) :=

match l with a :: tl => (a =? 0) && is_zero tl | nil => true end.

Fixpoint eq_number (l1 l2 : list nat) :=

match l1, l2 with

| a::t1, b::t2 => (a =? b) && eq_number t1 t2

| _, _ => is_zero l1 && is_zero l2

end.

Fixpoint less_than (l1 l2 : list nat) :=

match l1, l2 with

| a :: tl1, b :: tl2 =>

if eq_number tl1 tl2 then a <=? b else less_than tl1 tl2

| _, b :: tl2 => true

| _, _ => is_zero l1

end.

5 Exercises

1. Define a function that takes as input a list of numbers and returns the
product of these numbers,

12

2. Define a function that takes a list of numbers and returns true if and only
if this list contains the number 0.

3. Define a function that takes as input two numbers and returns true if and
only if these two numbers are the same natural number (such a function
already exists in the Coq libraries (function beq nat, but how would you
define such a function), using only pattern-matching and recursion.

4. Define a function that takes a number n and a number a as input and
returns a list of numbers containing n elements that are all a.

5. Define a function that takes a number n and a number a and returns the
list of n elements a ::a+ 1:: · · · ::a+ n:: nil.

6. Define a function that takes as input a natural number and returns an
element of option nat containing the predecessor if it exists or None if
the input is 0.

7. Define a function that takes as input a list of numbers and returns the
length of this list. — Adde (e1 e2 : exp)

8. Can you write a function values that takes as input a function f of type
nat -> nat, an initial value a of type nat and a count n of type nat and
produces the list

a :: f a :: f (f a) :: ...

9. To every natural number, we can associate the list of its digits from right
to left. For instance, 239 should be associated to the list 9::3::2::nil.
We also consider that 0 can be mapped to nil. If l is such a list, we
can consider the successor of a list of digits. For instance, the successor
of 9::3::2::nil is 0::4::2. Define the algorithm on lists of natural
numbers that computes the successor of that list.

10. Assuming that lsuc is the function defined at the previous exercise, define
the function nat digits that maps every natural number to the corre-
sponding list of digits (naive solutions are welcome, as long as they run).

11. In the same context as the previous two exercises, define a function value

that maps every list of digits to the natural number it represents. Thus,
value (9::3::2::nil) should compute to 239.

12. In the same context as the previous exercises, define a function licit that
tells whether a list of integers corresponds to the digits of natural number:
no digit should be larger than 9. For instance, licit (9::3::2::0::nil)

should compute to true and licit (239::nil) should compute to false.

13. In the same context as the previous exercises, define functions to add
two lists of digits so that the result represents the sum of the numbers

13

represented by the lists of digits. In other words addl (7::2::nil)

(5::3::nil) should return 2::6::nil (Hint: you should implement the
algorithm you learned in elementary school for adding numbers).

14. In the same context as the previous exercises, define a function for multi-
plying a list by a small natural number (by successive additions) and then
a function mull for multiplying two lists of digits.

6 An example of a complex program

The following program computes 10 digits of π. It uses data-types and functions
that have not been given above, but it could be redone as an exercise using
the lists of digits from exercises 9 to 14, and adding algorithms for addition,
multiplication, and division of numbers (as in section 4), as we learn them in
school. Note that the function (atanV n x) is used to compute the following
mathematical formula

n∑
i=0

(−1)n

(2n+ 1) × x2n+1
=

1

x
− 1

3

1

x3
+

1

5

1

x5
+ · · ·

From mathematics, we know that this provides good approximations of atan(1
x),

then π is approximated by a formula known as Machin’s formula:

π = 4 ×
(

4 × atan(
1

5
) − atan(

1

239
)

)
We obtain a rational number that is good approximation of π, to get the first
10 digits, we multiply the numerator by 1010 and divide by the denominator
and take the integer part.

Require Import QArith.

Open Scope Q_scope.

Fixpoint atanx n (acc : Q) s p (y x : Z) :=

match n with O => acc

| S n’ => atanx n’ (acc + (s#p) * /(y#1)) (-s)%Z

(p + 2)%positive (y * x ^ 2) x

end.

Definition atanV n x := atanx n (/(x#1)) (-1) 3 (x ^ 3) x.

Definition PI_approx :=

Qred ((4#1) * ((4#1) * atanV 7 5 - atanV 1 239)).

Time Compute

match PI_approx with (a#b) => Zdiv (10 ^ 11 * a) (Zpos b) end.

14

7 More information

You can use the book [1] (available in French on internet, otherwise you should
find English versions at the library) and the reference manual [4]. There is also
a tutorial in French [8]. There are also tutorials on the web [6, 3].

References

[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development, Coq’Art:the Calculus of Inductive Constructions. Springer-
Verlag, 2004.

[2] B. Pierce et al. Software Foundations http://www.cis.upenn.edu/

~bcpierce/sf/

[3] Y. Bertot Coq in a Hurry Archive ouverte “cours en ligne”, 2008. http:

//cel.archives-ouvertes.fr/inria-00001173

[4] The Coq development team. The Coq proof Assistant Reference Manual,
Ecole Polytechnique, INRIA, Université de Paris-Sud, 2004. http://coq.

inria.fr/doc/main.html

[5] John Harrison, Handbook of Practical Logic and Automated Reasoning’
Cambridge University Press, 2009 http://www.cl.cam.ac.uk/~jrh13/

atp/

[6] G. Huet, G. Kahn, C. Paulin-Mohring, The Coq proof Assistant, A Tutorial,
Ecole Polytechnique, INRIA, Université de Paris-Sud, 2004. http://coq.

inria.fr/V8.1/tutorial.html

[7] E. Giménez, P. Castéran, A Tutorial on Recursive Types in Coq, INRIA,
Université de Bordeaux, 2006. http://www.labri.fr/Perso/~casteran/
RecTutorial.pdf.gz

[8] A. Miquel, Petit guide de survie en Coq, Université de Paris VII. http:

//www.pps.jussieu.fr/~miquel/enseignement/mpri/guide.html

15

