
Verifying programs and proofs

part V. More data-structures

Yves Bertot

March 2025

1 Motivating introduction

Until now, we have mostly studied proofs about lists. Data-structures can become more varied
than that and different data-structures will make it possible to have better algorithmic complexity.
We will illustrate this by looking more precisely at two kinds of data structures: binary trees (with
an algorithm for list sorting) and positive numbers (with an algorithm for addition).

2 Tree data-structures

Lists are nice data-structures for our proof work. They are easy to understand and their shape is
reminiscent of arrays, which are used pervasively in conventional programming languages. So if
our task was solely to reason about conventional programs, these lists would be useful. However,
sometimes we need to program efficient algorithms and in this case lists are unsatisfactory.

The average cost of fetching a piece of data in a list is proportional to the length of that list.
When using a binary tree instead of a list, or a data-structure with branching nodes, we can have
more efficiency, because fetching a data in a tree (if we know where to look) can have a cost which
is logarithmic in the number of elements stored in the tree.

Moreover, research in algorithmics shows that there are benefits in using divide-and-conquer
approaches to solve problems, often making that some problems that had a high complexity end
up with a much lower complexity, for instance replacing a cost in n2 by a cost in n× lnn. We will
illustrate this with two implementations of sorting algorithms.

2.1 A binary tree data structure

Examples in this file should be tested in a session of the proof assistant where the following first
lines have been executed:

Require Import ZArith List Bool Lia.

Open scope Z_scope.

We first have to define a datatype for binary trees.

Inductive bin :=

L (x : Z) | N (t1 t2 : bin).

So binary trees are either elementary (and in this case, they contain an integer value), or they have
two parts that are themselves trees. Note that a binary tree always contains at least one integer
element (on the other hand, lists were allowed to contain no element). This definition actually
introduces many objects.

• the type itself bin

1

• the functions L and N, with the following types:

– L : Z -> bin

– N : bin -> bin -> bin

• An induction principle bin ind, which we will study more in detail in a later section.

This is a monomorphic definition of a datatype, in the sense that the values stored in the tree
are constrained to be integers. It is possible to make a definition of a polymorophic definition,
where the type of stored data is in an arbitrary type (as is the case for the type of lists).

When a new inductive type is defined, this gives us the possibility to program with the Fixpoint
and the match ...with ...end constructs, in the same manner as we did with lists.

For the pattern-matching construct, it can be used on trees by placing values of type bin

between the keywords match and with. Then each pattern-matching rule can make use of the
constructors.

Here is an example, it is a simple function that returns an optional integer, which is the single
value stored in the tree if this tree has the form L, and None otherwise.

Definition leaf_value (t : bin) :=

match t with

L x => Some x

| N t1 t2 => None

end.

Recursive programming is also possible with binary trees, but this time recursive calls are
allowed both on the first sub-component and the second sub-component of a tree of the shape N.
For instance, here is a function that computes the size of a binary tree, that is, the number of
occurrences of the L constructor in that tree. If the tree has the shape L, the answer should be
1, if the tree has shape N, the result should be sum of the sizes of the two subtrees, each being
computed by a recursive call.

Fixpoint Zb (t : bin) : Z :=

match t with

| L _ => 1

| N t1 t2 => Zb t1 + Zb t2

end.

Both lists and binary trees are meant as ways to store collections of data, Lists may contain
no data, but the type bin must always contain at least one piece of data. Given an integer x and
a list l, a function that constructs a tree containing the same elements as the list x :: l can be
defined as follows. The first function is recursive with respect to a tree argument of type bin, it
calls it self recursively on the second subtree. The second function is recursive on a list argument.

Fixpoint insert_one_element (x : Z) (t : bin) :=

match t with

| L y => N (L y) (L x)

| N t1 t2 => N (insert_one_element x t2) t1

end.

Fixpoint list_to_bin (x : Z) (l : list Z) :=

match l with

| nil => L x

| y :: tl => insert_one_element x (list_to_bin y tl)

end.

You can test this function by writing the following command:

2

Compute list_to_bin 0 (1 :: 2 :: 3 :: nil).

The reader may be wondering why the function insert one element shuffles the subtrees around
(the first subtree in the pattern is the second subtree in the result). This choice guarantees that
two successive insertions of elements on a tree will add the new elements in both trees. As a result,
the function list to bin produces balanced trees.

We can also define a function that constructs a list with all elements of a binary tree. We
choose to write a function that adds all the elements of the tree to a list.

Fixpoint bin_to_list (l : list Z) (t : bin) : Z :=

match t with

| L y => y :: l

| N t1 t2 => bin_to_list (bin_to_list l t2) t1

end.

2.2 Proving properties about recursive functions on trees

When we want to prove properties about recursive function on trees, we can use the same technique
as for recursive functions on lists.

An example of statement that we may want to prove is that transforming a tree into a list does
not loose or add any elements. For this we give ourselves two counting functions, one that counts
the number of occurrences in a tree and one that counts the number of occurrences of a number
in a list.

Fixpoint count_in_bin (x : Z) (t : bin) : Z :=

match t with

L y => if x =? y then 1 else 0

| N t1 t2 => count_in_bin x t1 + count_in_bin t2

end.

Fixpoint count_in_list (x : Z) (l : list Z) : Z :=

nil => 0

| y :: tl => (if x =? y then 1 else 0) + count_in_list x tl

end.

Now we would like to prove that adding all elements of a tree in a list preserves the number of
occurrences of all numbers.

Lemma bin_to_list_preservers_counts (l : list Z) (t : bin) (x : Z) :

count_in_list x (bin_to_list l t) =

count_in_list x l + count_in_bin x t.

Proof.

When we do a proof by induction on a tree, the induction tactic makes it possible for us to
assume that the property we want to prove is already satisfied for the subtrees. This is expressed
by the following induction principle:

bin_ind : forall P : bin -> Prop,

(forall x : Z, P (L x)) ->

(forall t1 : bin, P t1 -> forall t2 : bin, P t2 -> P(N t1 t2)) ->

forall b : bin, P b

It is instructive to compare this induction principle with the one that is provided for lists, which
we can see by typing the command Check list ind. Both theorems have two cases (one for each
constructor), for the :: case (in the list induction theorem) there is one induction hypothesis for
the sublist, and for the N case (in the binary tree theorem), there are two induction hypotheses.

Because the bin to list function has recursive calls where the list argument changes, we will
perform a proof by induction where the statement that is proved by induction should universally
quantified on l. This is made possible by the tactic revert.

3

revert l.

t : bin

x : Z

=============

forall l : list Z, couint_in_list (bin_to_list l t) =

count_in_list x l + count_in_bin t

When we do the proof by induction, two goals are generated, one for each constructor. We antic-
ipate the names that will be given to the sub-components, and when sub-components are binary
trees, to the corresponding induction hypotheses. The L constructor has one sub-component, an
integer that we choose to name y, the N constructor has two sub-components, t1 and t2, and for
each of them there are induction hypotheses, which we choose to name Ih1 and Ih2.

induction t as [y | t1 Ih1 t2 Ih2].

In the two generated goals, the statement that we have to prove is universally quantified over a
list. In the first generated goal, the statement is about proving the property when the tree is L y.
In the second generated goal, the statement is about proving the property when the tree is N t1

t2.

y, x : Z

============

forall l : list Z, count_in_list x (bin_to_list l (L y)) =

count_in_list x l + count_in_bin x (L y)

We will fix the list l by using intros. The statement will become much simpler if we ask the proof
system to replace the expressions concernint count in list, count in bin, and bin to list by
their symbolically computed values. We can ask for this to happen using the cbn tactic.

intros l.

cbn [count_in_list count_in_bin bin_to_list].

===============

(if x =? y then 1 else 0) + count_in_list x l =

count_in_list x l + (if x =? y then 1

else 0)

We see the same expression if x =? y then 1 else 0 appear on both sides, but looking pre-
cisely, we see that the two statements are just adding the same logical expression, in a different
order. This statement can be completed using the ring tactic. After executing that tactic, we
can view the other goal created by the induction step: the one concerning the N t1 t2 value. We
see that we have two induction hypotheses:

t1, t2 : bin

x : Z

Ih1 : forall l : list Z, count_in_list x (bin_to_list l t1) =

count_in_list x l + count_in_bin x t1

Ih2 : forall l : list Z, count_in_list x (bin_to_list l t2) =

count_in_list x l + count_in_bin x t2

===================

forall l : list Z,

count_in_list x (bin_to_list l (N t1 t2)) =

count_in_list x l + count_in_bin x (N t1 t2)

4

Here again, we need to fix a list for the proof of the universally quantified argument and to ask
for the simplification of all computations concerning the recursive functions. This is done in the
following way:

intros l.

cbn [count_in_list count_in_bin bin_to_list].

t1, t2 : bin

x : Z

Ih1 : forall l : list Z, count_in_list x (bin_to_list l t1) =

count_in_list x l + count_in_bin x t1

Ih2 : forall l : list Z, count_in_list x (bin_to_list l t2) =

count_in_list x l + count_in_bin x t2

l : list Z

====================

count_in_list x (bin_to_list (bin_to_list l t2) t1) =

count_in_list x l + (count_in_bin x t1 + count_in_bin x t2)

We see that we can rewrite with the first induction hypothesis, since count in list x (bin to list

...t1) appears in the left-hand side of the goal, and the dots can be replaced by bin to list l

t2).

rewrite Ih1.

===================

count_in_list x (bin_to_list l t2) + count_in_bin x t1 =

count_in_list x l + (count_in_bin x t1 + count_in_bin x t2)

The proof can then be finished by rewriting with the second hypothesis and using the ring tactic
to prove the remaining equality between sums of three terms in a different order.

rewrite Ih2.

ring.

Qed.

2.3 Insertion sort

In this section, we give a few examples of sorting functions. The main objective is to show that
using binary tree data-structures can help make algorithms more efficient. However, for lack of
space, we shall not prove these algorithms correct.

Here is an implementation of sorting lists containing integers.

Fixpoint insert (a : Z) (l : list Z) :=

match l with

nil => a::nil

| b::tl => if Zle_bool a b then a::b::tl else b::insert a tl

end.

Fixpoint sort (l : list Z) :=

match l with nil => nil | a::tl => insert a (sort tl) end.

To prove the correctness of this function we could try to prove two facts: sorting does not lose
any data, and the result list is really sorted. Here is how we can express these two facts.

Fixpoint sorted (l : list Z) :=

match l with

a :: (b :: tl) as l’ =>

5

if Zle_bool a b then sorted l’ else false

| _ => true

end.

Lemma sort_perm : forall x l, count_in_list x l = count_in_list x (sort l).

Admitted.

Lemma sort_sorted : forall l, sorted (sort l) = true.

Admitted.

You are invited to perform these proofs as an exercise.
This insertion sort algorithm is not too bad on lists that are almost sorted, but it has a bad

complexity on average. Let’s look at the worst case, which happens when the input is sorted in
the reverse order.

For instance, let review the computations performed when sorting the list 4::3::2::1::nil.
The algorithm first sorts 3::2::1::nil, and for that it sorts 2::1::nil, which requires one
comparison and produces 1::2::nil, then it inserts 3 in this list, so that 3 is compared with
1 and then with 2. This makes two comparisons and produces the list 1::2::3::nil. Then it
inserts 4 into this list and this requires 3 comparisons to place the number 4 at the end of the
result. Extrapolating this to a list of length n we see that the number of comparisons needed
would be

n∑
i=1

(i− 1) =
n(n− 1)

2

In practice, on my computer sorting a one-thousand-element-list takes 0.4 seconds, and sorting a
two-thousand-element-list takes 2 seconds.

2.4 Merge sort

When sorting a large list of numbers, it is more convenient to decompose the list in two lists
of approximately the same length, sort the two sub-lists and then merge these two sorted lists.
During the merging phase, we can make sure that the number of required comparisons remains
small. Such an algorithm can be programmed in Coq using the following code.

Fixpoint merge_aux (a : Z) (l’ : list Z)

(f : list Z -> list Z) (l : list Z) :=

match l with

| b :: tl =>

if Zle_bool a b then a :: f l else b :: merge_aux a l’ f tl

| nil => a :: l’

end.

Fixpoint merge (l1 : list Z) : list Z -> list Z:=

match l1 with

| a :: l1’ =>

merge_aux a l1’ (merge l1’)

| nil => fun l2 => l2

end.

This piece of code uses an advanced trick as it relies on a higher-order function (a function that
takes another function as argument). The function merge aux inserts in the output all the elements
of the second list that are smaller than a. When all these elements have been exhausted, it inserts
the first element given as input and calls the other function, which is responsible for merging the
rest of the first list with any list.

6

We can then devise an algorithm that takes as input a binary tree and produces a list that
contains all the values in this tree. For each binary node in the tree, we combine the lists obtained
for the sub-trees using the merge function. This guarantees that the final result is sorted.

To sort a list, it is thus enough to build a binary tree that contains all the values in this list, and
then to map this tree to a sorted list. To take advantage of the efficiency of the divide-and-conquer
strategy, we must make sure that the intermediate tree is balanced, in the sense that all branches
have approximately the same length. a clever way to achieve this is given by the following two
functions.

Fixpoint bin_sort (t : bin) :=

match t with

| L a => a :: nil

| N t1 t2 => merge (bin_sort t1) (bin_sort t2)

end.

Definition merge_sort l :=

match l with

| nil => nil

| a::tl => bin_sort (list_to_bin a tl)

end.

In practice, it takes 0.02 seconds to sort a list of one thousand elements using this function and
0.04 seconds for a list of two thousand elements.

Proofs of correctness for this code are more complex. For instance, here is a complete proof
that the merge function produces a sorted list. We prove the property by nesting two proofs by
induction, which is not surprising since there are two recursive functions in the algorithm. It is
remarkable that we again have to prove a strong statement: we prove not only that the merge
function produces a sorted list, but also that the first element of the result is either the first
element of the first argument or the first element of the second argument.

I provide this proof to show that it is feasible, but you can assume the results in what follows.
This is a proof about lists.

Definition head_constraint (l1 l2 l : list Z) :=

(exists l1’, exists l2’, exists l’, exists a, exists b, exists c,

l1 = a::l1’ /\ l2 = b::l2’ /\ l = c::l’ /\

(c = a \/ c = b)) \/

(l1 = nil /\ exists l2’, exists l’, exists b, l2 = b::l2’ /\ l = b::l’) \/

(l2 = nil /\ exists l1’, exists l’, exists a, l1 = a::l1’ /\ l = a::l’) \/

(l1 = nil /\ l2 = nil /\ l = nil).

Lemma merge_sorted :

forall l1 l2, sorted l1 = true -> sorted l2 = true ->

sorted (merge l1 l2) = true /\

head_constraint l1 l2 (merge l1 l2).

induction l1; intros l2.

intros sn sl2;split;[exact sl2 |].

destruct l2 as [| b l2’].

right; right; right; repeat split; reflexivity.

right; left;split;[reflexivity | exists l2’; exists l2’; exists b].

split; reflexivity.

induction l2 as [| b l2 IHl2].

intros sal1 _; split.

assumption.

right; right; left; split;[reflexivity |].

exists l1; exists l1; exists a; split; reflexivity.

intros sal1 sbl2.

change (merge (a::l1) (b::l2)) with

7

(if Zle_bool a b then a::merge l1 (b::l2) else b::merge (a::l1) l2).

case_eq (a <=? b)%Z.

intros cab; split.

destruct l1 as [| a’ l1].

simpl merge.

change ((if (a <=? b)%Z then sorted (b::l2) else false) = true).

rewrite cab; assumption.

assert (int: sorted (a’::l1) = true).

simpl in sal1; destruct (a <=? a’)%Z;[exact sal1 | discriminate].

apply (IHl1 (b::l2)) in int.

destruct int as [int1 int2].

case_eq (merge (a’::l1) (b::l2)).

intros q; rewrite q in int2.

destruct int2 as [t2 | [t2 | [t2 | t2]]].

destruct t2 as [abs1 [abs2 [abs3 [abs4 [abs5 [abs6 [_ [_ [abs9 _]]]]]]]]].

discriminate.

destruct t2 as [abs _]; discriminate.

destruct t2 as [abs _]; discriminate.

destruct t2 as [abs _]; discriminate.

intros r l’ qm.

change ((if (a <=? r)%Z then sorted (r :: l’) else false) = true).

destruct int2 as [t2 | [t2 | [t2 | t2]]];

try (destruct t2 as [abs _]; discriminate).

destruct t2 as [l1’ [l2’ [l’’ [u [v [w [q1 [q2 [qm’ [H | H]]]]]]]]]].

rewrite <- qm, int1.

rewrite qm in qm’; injection qm’;

injection q1; injection q2; intros; subst.

simpl in sal1; destruct (a <=? u)%Z; reflexivity || discriminate.

rewrite qm in qm’; injection qm’; injection q1; injection q2.

intros; subst; rewrite <- qm, int1, cab; reflexivity.

assumption.

left.

exists l1; exists l2; exists (merge l1 (b :: l2)); exists a; exists b.

exists a.

repeat split; left; reflexivity.

intros cab.

assert (cab’ : (b <=? a = true)%Z).

apply Zle_imp_le_bool; rewrite Z.leb_nle in cab; omega.

assert (sl2 : sorted l2 = true).

destruct l2 as [| b’ l2].

reflexivity.

simpl in sbl2; destruct (b <=? b’)%Z; assumption || discriminate.

destruct (IHl2 sal1 sl2) as [int1 int2].

destruct l2 as [| b’ l2].

split;[| left; exists l1; exists nil; exists (merge (a::l1) nil); exists a;

exists b; exists b; repeat split; right; reflexivity].

destruct int2 as [t2 | [t2 | [t2 | t2]]];

try (destruct t2 as [abs _]; discriminate).

destruct t2 as [ab1 [ab2 [ab3 [ab4 [ab5 [ab6 [_ [ab _]]]]]]]]; discriminate.

destruct t2 as [_ [l1’ [l’’ [u [q qm]]]]].

rewrite qm in int1 |- *.

change ((if (b <=? u)%Z then sorted (u::l’’) else false) = true).

injection q; intros; subst.

rewrite cab’, int1; reflexivity.

destruct int2 as [t2 | [t2 | [t2 | t2]]];

try (destruct t2 as [abs _]; discriminate).

destruct t2 as [l1’ [l2’ [l’ [u [v [w [q [q’ [qm [H | H]]]]]]]]]].

injection q; injection q’; intros; subst.

8

rewrite qm in *.

split;[| left; exists l1’; exists (v::l2’); exists (u::l’);

exists u; exists b; exists b; repeat split; right; reflexivity].

change ((if (b <=? u)%Z then sorted (u::l’) else false) = true).

rewrite cab’; assumption.

injection q; injection q’; intros; subst.

rewrite qm in *.

split;[| left; exists l1’; exists (v::l2’); exists (v::l’);

exists u; exists b; exists b; repeat split; right; reflexivity].

change ((if (b <=?v)%Z then sorted (v :: l’) else false) = true).

simpl in sbl2; destruct (b <=? v)%Z; assumption || discriminate.

Qed.

Using the result about merge, we can now prove the correctness of the bin sort procedure. This
is a proof by induction on binary trees, so there are two cases and the recursive case relies on two
induction hypotheses.

Lemma bin_sort_sorted : forall t, sorted (bin_sort t) = true.

Proof.

induction t.

2 subgoals, subgoal 1 (ID 1478)

x : Z

============================

sorted (bin_sort (L x)) = true

subgoal 2 (ID 1483) is:

sorted (bin_sort (N t1 t2)) = true

The base case is quite easy. When the input tree is a leaf, the output of bin sort is a one-element
list, and the sorted function always returns true for this kind of lists. The tactic reflexivity

solves this cases easily.

reflexivity.

cbn [sorted merge bin_sort]..

t1 : bin

t2 : bin

IHt1 : sorted (bin_sort t1) = true

IHt2 : sorted (bin_sort t2) = true

============================

sorted (merge (bin_sort t1) (bin_sort t2)) = true

The statement we want to prove is the first part of the conjunction proved by merge sorted. We
use assert to specialize the theorem accordingly. Note that we use the two induction hypotheses
to satisfy the requirements of merge sorted.

assert (tmp := merge_sorted (bin_sort t1) (bin_sort t2) IHt1 IHt2).

destruct tmp as [tmp’ _]; assumption.

Qed.

We can now conclude that the function msort correctly produces a list that is sorted. Note that
the fact insl produces a balanced tree does not play a role in the proof. Even if insl produced an
unbalanced tree, the result would be correct, but in that case the computation would be slower.
The kind of bug that leads to a slower result is not captured by our approach.

Lemma merge_sort_sorted : forall l, sorted (merge_sort l) = true.

Proof.

9

intros [| a l].

reflexivity.

unfold merge_sort; apply bin_sort_sorted.

Qed.

For a more complete correctness proof, we should also show that all the elements of the input list
appear in the output list. This is left as an exercise.

3 Recursion on positive numbers

3.1 Restrictions on programming

Positive numbers are represented by a datatype with three constructors. The constructor named
xH is used to represent 1, the constructor named xO is used to represent the function that maps
any x to 2x, and the constructor named xI is used to represent the function that maps any x to
2x+ 1.

Require Import ZArith Arith.

Print positive.

Inductive positive : Set :=

xI : positive -> positive

| xO : positive -> positive

| xH : positive

For instance, xO (xI (xO xH)) represents the number 10. We can check this by the following
command:

Check xO (xI (xO xH)).

10%positive : positive

When writing recursive algorithms on this data-structure, we can only have recursive calls on the
sub-components of the xO and xI constructors. When looking at the represented numbers, this
means that recursive calls are only allowed on the half (rounded down) of the initial argument of
the function.

When designing algorithms, we need to take this into account. We can illustrate this for the
conversion functions between types nat and positive (respecting the number being represented)
and the operation of adding two numbers.

3.2 From positive numbers to natural numbers

To compute the natural number corresponding to a positive number, we can just write the inter-
pretation using the constants 2 and 1, addition, and multiplication. Each case naturally relies on
recursive calls with the expected argument.

Fixpoint pos_to_nat (x : positive) : nat :=

match x with

xH => 1

| xO p => 2 * pos_to_nat p

| xI p => S (2 * pos_to_nat p)

end.

10

3.3 The function that adds one to a positive numbers

We now have to decompose the description of functions into three cases. For the function that
just adds one goes along the following lines:

1. For the base case: if the input is 1 (represented by xH), the output must be 2 (represented
by xO xH),

2. For the case where the input is even with half xp, the output must be the odd number with
the same half. In other words, if the input is xO p then the output is xI p,

3. For the case where the input is odd with half xp, the output must be even. But we have
(2 × xp + 1) + 1 = 2 × (xp + 1), so we need to compute the result of adding 1 to xp and
then multiply by 2 using the constructor xO. In other words, if the input is xI p then the
output is xO (add1 p); assuming that add1 is the function that we are defining. All this is
described in the following definition:

Fixpoint add1 (x : positive) : positive :=

match x with

xH => xO xH

| xO p => xI p

| xI p => xO (add1 p)

end.

3.4 Adding two positive numbers

When adding two numbers, we use the same algorithm as the one we learn at school to add
numbers written in base 10, except that here is the base is 2 and we don’t need to know addition
tables. On the other hand, addition may involve a carry at anytime. So we will use a three
argument function, the third argument being a boolean value indicating whther there is a carry
or not. The algorithm involves a case analysis with the two arguments and with the carry, so in
the end there are 18 = 3× 3× 2 cases.

Let’s first look at the case where there is no carry.

1. If one of the arguments is 1, then we can use the add1 function,

2. If the two numeric inputs are odd, then there is a carry in the recursive call, the computation
goes along the line

(2x+ 1) + (2y + 1) = 2(x+ y + 1)

3. If the two numeric inputs are even, then there is no carry in the recursive call. The compu-
tation goes along the line

2x+ 2y = 2(x+ y)

4. If only one of the inputs is odd, then the result is odd and there is no carry in the result

(2x+ 1) + 2y = 2(x+ y) + 1

Now let’s look at the case where there is a carry.

1. If the two numeric inputs are 1, then the result is 3,

2. Otherwise, if one of the arguments is 1, then we can use the add1 function, but on the half
of the other argument:

(2x) + 1 + 1 = 2(x+ 1)

(2x+ 1) + 1 + 1 = 2(x+ 1) + 1

11

3. If the two numeric inputs are odd, then there is a carry in the recursive call, the computation
goes along the line

(2x+ 1) + (2y + 1) + 1 = 2(x+ y + 1) + 1

4. If the two numeric inputs are even, then there is no carry in the recursive call. The compu-
tation goes along the line

2x+ 2y + 1 = 2(x+ y) + 1

5. If only one of the inputs is odd, then the result is even and there is a carry in the recursive
call

(2x+ 1) + 2y + 1 = 2(x+ y + 1)

We can now condense all of this reasoning in the algorithm

Fixpoint pos_add (x y : positive) (c : bool) : positive :=

match x, y, c with

xI x’, xI y’, false => xO (pos_add x’ y’ true)

| xO x’, xI y’, false => xI (pos_add x’ y’ false)

| xI x’, xO y’, false => xI (pos_add x’ y’ false)

| xO x’, xO y’, false => xO (pos_add x’ y’ false)

| xH, y, false => add1 y

| x, xH, false => add1 x

| xI x’, xI y’, true => xI (pos_add x’ y’ true)

| xO x’, xI y’, true => xO (pos_add x’ y’ true)

| xI x’, xO y’, true => xO (pos_add x’ y’ true)

| xO x’, xO y’, true => xI (pos_add x’ y’ false)

| xH, xH, true => xI xH

| xH, xI y, true => xI (add1 y)

| xH, xO y, true => xO (add1 y)

| xI x, xH, true => xI (add1 x)

| xO x, xH, true => xO (add1 x)

end.

3.5 Proving the correctness

We will first prove the correctness of the add1 function. We use the map from positive numbers
to natural numbers to express correctness. As usual, we only show that a function is correct by
showing that it is consistent with other functions.

Lemma add1_correct : forall x, pos_to_nat (add1 x) = S (pos_to_nat x).

Proof.

This proof is done by induction on the positive number. Because the inductive type has three
cases, the proof also has three cases.

induction x.

3 subgoals

x : positive

IHx : pos_to_nat (add1 x) = S (pos_to_nat x)

============================

pos_to_nat (add1 x~1) = S (pos_to_nat x~1)

subgoal 2 is:

pos_to_nat (add1 x~0) = S (pos_to_nat x~0)

12

subgoal 3 is:

pos_to_nat (add1 1) = S (pos_to_nat 1)

The notations x~1, x~0, and 1 respectively stand for xI x, xO x, and xH.
For the first case, we can force the computation of the recursive function as follows, this makes

the term in the induction hypothesis appear:

simpl.

...

============================

pos_to_nat (add1 x) + (pos_to_nat (add1 x) + 0) =

S (S (pos_to_nat x + (pos_to_nat x + 0)))

rewrite IHx; ring.

After rewriting with the induction hypothesis, we obtain an equality that is easily solved by the
ring tactic.

Then the second case appears. In this case forcing the computation returns a simple equality.

...

============================

pos_to_nat (add1 x~0) = S (pos_to_nat x~0)

simpl.

...

============================

S (pos_to_nat x + (pos_to_nat x + 0)) =

S (pos_to_nat x + (pos_to_nat x + 0))

reflexivity.

The third case is also easily solved using reflexivity.

reflexivity.

Qed.

When proving the correctness of addition, it is clever to use the regularity of the function to treat
many cases at a time. we perform a proof by induction on the first argument, by cases on the
second and third arguments. This develops all 18 cases in one shot. Then, a few of this cases are
directly solved by computing on the equality between numbers using the ring tactic.

Lemma pos_add_correct :

forall x y c, pos_to_nat (pos_add x y c) =

pos_to_nat x + pos_to_nat y + if c then 1 else 0.

Proof.

induction x as [x’ | x’ |]; intros [y’ | y’ |] [|]; simpl; try ring.

In this combined tactic the notation intros [y’ | y’ |] is a shorthand for intros y; destruct

y as [y’ | y’ |].
This leaves only 14 goals, so 4 goals have been solved automatically by ring. We see that

some of these goals mention add1, so it should be useful to also try rewriting with the correctness
statement for that function. Let’s restart the proof with the following combined tactic.

induction x as [x’ | x’ |]; intros [y’ | y’ |] [|];

simpl; try rewrite add1_correct; try ring.

This leaves only 8 goals, so we managed to solve 6 extra goals systematically. The next idea is
to use the induction hypothesis, when it exists. Let’s retart the proof again with the following
combined tactic.

induction x as [x’ | x’ |]; intros [y’ | y’ |] [|];

simpl; try rewrite add1_correct; try rewrite IHx’; try ring.

13

This solves the goal.

Qed.

Note that the proof would not work as well if we add performed intros x y c; induction x as
a first step. This yields weaker induction hypotheses and it turns out that they are too weak for
the problem we have to solve.

4 Exercises

1. Write a function count in tree that counts the number of occurrences of a given integer in
a binary tree.

2. Use the function count in tree from the previous exercise to state and prove that the inst
function increases the number of occurrences for its integer argument in the tree.

3. As a follow-up to the previous exercise, prove that insl preserves the number of occurrences
from a list to a tree,

4. As a follow-up to the previous exercise, prove that merge adds the number of occurrences
for two lists, and final conclude that mergesort preserves the number of occurrences of the
list it sorts.

5. Consider the function

Require Export ZArith List.

Open Scope Z_scope.

Definition myrand (x : Z) := Z.modulo (x * 3853) 4919.

Write a recursive function to produce lists of integers of a given length and of the form:

5::myrand 5:: myrand(myrand 5) :: myrand(myrand(myrand 5))::...

Prove that the list has the required length. Produce a list of length 1000, and then sort it
using one of our sorting functions. What is the longest list you can sort with each algorithm
in less than 5 seconds?

6. The sequence of Fibonnacci numbers is defined recursively by:

f0 = 0 f1 = 1 fn+2 = fn+1 + fn

This definition can be implemented directly in a Coq function. What is the highest element
that you can compute in less than 10 seconds? (hint: define a function that is recursive on
natural numbers, but the fibancci numbers themselves should be in type Z). An alternative
approach to computing Fibonacci numbers relies on matrices.[

0 1
1 1

]n
×
[

0
1

]
=

[
fn

fn+1

]
Moreover the power of a matrix can be computed efficiently by using a divide-and-conquer
approach that is associated to the positive type of natural numbers (note that in each
equation, Ap should only be computed once):

A2p = Ap ×Ap A2p+1 = Ap ×Ap ×A

Use this as the main structure for an algorithm, and then prove it correct. Test that you
can compute much larger Fibonacci numbers using this approach.

14

7. Expressions in a program using variables, integer constants, additions, multiplications, and
subtractions can be represented by the following datatype:

Require Import String.

Inductive exp :=

Var (name : string)

| Const (x : Z)

| Adde (e1 e2 : exp)

| Mule (e1 e2 : exp)

| sube (e1 e2 : exp).

To evaluate such an expression, one needs to know what is the environment, in other terms,
the value associated to each variable. We will represent such an environment by a list of
pairs associating string (names) to integers (values). The first question of this series is to
write a program that evaluates expressions in a given environment (one shall assume that all
variable names occuring in the expression occur in the environment; it will be fair to return
an arbitrary value when a variable does not occur in the expression).

8. Instead of using an environment with precise values, we want to compute with values known
only as intervals: write a program that computes the value of an expression when the
variables are only known by intervals (the result of the evaluation should be an interval).
Write a statement that proves the consistence of this program with the program from the
previous question, and prove it correct.

15

