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1 Motivating introduction

While the motivation of the proof system is to avoid bugs in functional programs, it is amazing
that this system does not provide any advance tool to step through the execution of programs.
On the other hand, it provides ways to express logical relations between various pieces of data.
For instance, we can express logically the relation that should exist between a function output and
its input, in a way that is independent from the actual algorithm implemented in the function. If
we think about a division function (as we learn it in school), there is a simple relation between
the divided number x, the divisor y, the computed quotient q, and the computed remainder r:

x=y*q+r /\N0<=r<y

In English, this relation states that x is equal to the sum of the product of y and q and r and
that r is between 0 and y. This relation should be satisfied by the pair of numbers returned
by a division algorithms, but this can only be satisfied if we avoid dividing by 0. So the logical
statement expressing that division is implemented correctly should both express this expected
outcome and this restriction on the inputs.

In this course, we will concentrate on the language used to express relations between pieces of
data.

We will learn how to write logical formulas that represent correctly what we want to express
and how to prove these formulas. This may be difficult for readers that have little acquaintances
with logic, but we should try to learn by practice. We know that we understand it when we start
being able to write concise formulas that we can prove, thus getting lemmas, and when we can
use these lemmas to prove other formulas, thus getting new theorems.

2 Writing logical formulas

2.1 Prerequisites

To run the examples that follow with the Coq system, we need to place ourselves in the right
context. This is done by telling the proof system to load predefined libraries for integers, lists,
boolean values.

Require Import ZArith List Bool.

Open Scope Z_scope.

For the exercises, the author of these notes also prepared some sets of predefined functions
which can be loaded in this manner. If you use the docker image ybertot/course2025, then you
only have to type the following command inside Coq to get access to these predefined functions.

From YBCourse2025 Require Import predefined_functions.



2.2 Predicates

In this section, we will consider a new type, the type of propositions and ways to build atomic
objects in this type. The simplest way to assert a proposition is to say that some value is equal
to another. Here two examples:

Check 3 = 2 + 1.
3=2+1: Prop

Check 3 = 4.
3 =4 : Prop

An equality is well-formed when the left-hand-side and the right-hand-side have the same type.

Note that you can always write a logical proposition, as long as it is well-formed, even if this
proposition is false (here 3 = 4 is a well-formed logical proposition, even if it is false). The true
and false propositions are not distinguished by the fact that they can be written, but by the fact
that they can be proved.

When it comes to numbers, the Coq system also provides us with other predicates that corre-
spond to comparisons : 3 <= 4, 3 i 4, and the symmetric relations. To verify algorithms about
cryptography, it may also be useful to know when a number is prime, for instance.

In this course, we will define new predicates by simply inventing new functions of one or two
arguments that return a value that is then compared to another value. For instance, we can say
that a number is even if that number modulo 2 is equal to 0.

Definition even (x : Z) := x mod 2 = 0.

Check 3 mod 2 =7 0 : bool.
3 mod 2 =7 0 : bool

Check even 3.
even 3 : Prop

We see here that there is a distinction between boolean values and propositions. In practice,
boolean values are meant to be the result of tests that can be checked by a program, and these
tests can be used in other program. On the other hand, propositions may represent statements
that no algorithm can verify in one run. Boolean values can be produced and tested in programs.
Logical proposition do not belong inside programs, at least for our lessons.

2.3 Examples with lists

Lists manipulations are a nice source of exercises for recursive programming and verifying algo-
rithms. We will exercise a small collection of functions.

1. The function Zlength is a function designed for this lesson. It takes as input a list of
elements in an arbitrary type and returns the length of this list in type Z.

Fixpoint Zlength {A : Type}(1 : list A) : Z :=
match 1 with
| nil => 0
| _ :: tl => 1 + Zlength tl
end.

2. The predicate In is already provided in the List library. It takes two arguments, an element
2 in any type and a list [ of elements of that type and it holds when x appears among the
elements of that list.



3. The function Znth is a function designed specifically for this lesson. It takes as input a list
of elements in an arbitrary type and an integer n, and it returns the element at position n
in that list, starting count at 0. However, there may be reasons for this to fail, because n is
negative or larger than the size of the list, no value can be found in the list.

Fixpoint Znth {A : Type}(1 : list A) (n : Z) : option A :=
match 1 with
| nil => None

| a :: t1 =>
if n =7 0 then Some a else Znth tl1 (n - 1)
end.

4. The function app is already provided in the List library. It takes two lists and returns the
concatenation of these two lists. There is an infix notation that is also predefined for this
function, so that app 11 12 is also written 11 ++ 12. This notation is right associative, so
that 11 ++ (12 ++ 13) means 11 ++ 12 ++ 13.

5. The function rev is already provided in the List library. It takes as input alist aj::aq - - - 2y
and returns the list a,::a,—1 -+ - a1 nil.
2.4 Logical connectives

There are four simple connectives implies, and, or, not. These connectives are given with notations
that make it possible to write logical formulas in a short and readable way.

e Implication is noted ->.

e Conjunction (and) is noted /\.

e Disjunction (or) is noted \/.

e Negation is noted ~.

e Equivalence is noted <->. In fact A <-> Bis a defined as A -> B /\ B -> A.
For instance, we can write the following proposition concerning the function Znth.

Check “(Znth (1 :: 2 :: nil) 1 = Nome) ->
0 <= 1 < Zlength (1 :: 2 :: nil).
“(Znth (1 :: 2 :: nil) 0 = None) ->
0 <= 1 < Zlength (1 :: 2 :: nil) : Prop

It happens that this proposition is provable, as we shall see later.

2.5 Quantifications

We can also write formulas that give properties about a whole type. There are two main con-
nectives for this. The first one, forall, describes universal quantification. In other words, this
is used to express that every element of a type satisfies some property. The second one, exists,
describes existential quantification. This is used to express that at least one element of the type
satisfies some property. For instance, one can write the following proposition.

Check forall {A : Type} 1 x, Znth 1 x -> 0 <= x < Zlength 1.

It happens that this proposition can be proved, as we shall see later. Here, the example chosen as
illustration is true and can be proved. In a sense, this means that we can prove that the Znth and
the Zlength function are consistent with the explanations in plain language. However, we cannot
write a test that guarantees this property, because such a test would have to cover all possible
lists with elements in all possible types and with all possible lengths.

nil



2.6 Playing with logical formulas

To progress further you should be able to write simple logical formulas that carry the meaning of
some of your knowledge about real life, programs, or mathematical facts.

In general, if you write A -=> B and you mean this formula to be true, it is not necessary that
A is always true: you only want to express that B is true in all cases where A is true, but A may
sometimes be false and in those cases, B can also be false. On the other hand, if you write A /\
B and you mean this formula to be true, then A should always be true.

Here is a sentence: in a non-empty list of integers, there is always a number that is smaller
than all the others.

The first part of the sentence expresses that we want to discuss about any list of integers that
is non-empty. We shall naturally have a universal quantification over a type, but the types we
know do not make it possible to express that we want to look at non-empty lists. Therefore, we
will proceed in two states: first we take all possible lists of integers, and then we qualify the list
we discuss using an implication. We start writing our formula in this way.

forall 1 : list Z, ~ (1 = nil) -> ...

We can now think about the formula we want to put in the dotted part of the formula. There
sentence we want to translate says there is always a number. This part of the sentence is going to
be translated using the following.

exists x,

Now, we need to express that this number satisfies two properties. First, we want to express that
the chosen number is in the list, and second we want to express that the chosen number is smaller
than all the others.

To express that the number is in the list, we use the predefined predicate In, so we write In
x 1.

To express that the number is smaller than any other element of the list, we want to discuss
about every element in the list, so we want again to write a universal quantification, restricted to
all elements of the list.

forall y, Iny 1 -> ...

Then we want to say that x is smaller than y. Here we have to be careful if we want to state a
formula that is actually provable. The natural language sentence says that is smaller than all the
others. Resolving pronouns in this sentence, that would be represented by x and all the others
would be represented by y. But to express that x is smaller than y, we should avoid writing x <
y, because x actually be equal to y, because y can be taken among all the elements of the list. We
should rather use x <= y.

So to finish the translation of this natural language sentence into a logical formula, we obtain
the following text:

forall 1 : list Z, “(1 = nil) ->
exists x, In x 1 /\ forall y, Iny 1 -> x <=y

There are quite a few common mistakes that one makes when writing such a formula. One of the
first mistakes is to get the parentheses in the wrong place. For better readability, we tend to lower
the number of parentheses we use, but it may worth the effort to write too many parentheses at
the first try and check with the computer that the formula can be written with parentheses.

The second common mistake that people make often is to use an /\ operator in place of
an -> operator. The rule of thumb is as follows: as an immediate subterm of an existential
quantification, it is more frequent to have an /\ operator, and at an immediate subterm of a
universal quantification, it is more frequent to have an -> operator.

If we consider the following formula:



forall 1 : list Z, ~(1 = nil) ->
exists x, Inx 1 -> forall y, Iny 1 -> x <=y

It is easy to prove that formula by taking as witness any number that is not in the list. the
implication In x 1 -> forall y, In y 1 -> x <= y is easy to prove, because the left hand
side of the implication is false. So this mistaken formula does not mean that we found an element
that is smaller than all elements of the list.

In the end, we know that a logical formula is right when we are certain we can prove it and
when we can use it in other proofs.

To prove the formula we used in this section, we need to exhibit a function that computes the
minimum element of a list, and then to show that this element satisfies the required property.
With what you already know about programming with list and testing numbers for comparison,
you can alsready define such a function.

3 Performing simple proofs

To perform a proof, we state the proposition we want to prove, then we decompose the proposition
into simpler propositions, until they can be solved. The commands used to decompose propositions
are called tactics. To learn how to use the tactics, it is handy to classify them according to the
connectives and according to whether the connectives appears in something we want to prove or
in something we already know.

3.1 Stating a logical formula to prove
It is better to show that in an example.

Lemma ex1 : 2 =3 -> 3 = 2.
Proof.

The keyword is Lemma: we will use it every time we want to start a new proof. Then comes a
unique name, which we choose, ex1. Then comes a colon “:”. Then comes a logical formula (here
an implication between two equalities). We finish the command with a period. The next line
Proof. is mostly useless, but we will keep the habit of writing it as it can be used as a marker to

make the proof script more readable.

3.2 Known facts and facts to prove

At any time during a proof, the Coq system displays goals, which describe what we have to prove.
Each goals has two parts, the first part is a context of temporary known facts. The second part is
a conclusion, a fact that needs to be proved. A simple case of proof is when the fact we want to
prove is present among the known facts. In this case, it suffices to use the basic tactic assumption
to solve the goal. If we do that, the Coq system displays the next unsolved goal, or says that the
proof is complete.

There are a few other easy cases that are recognized by the proof system, the command to
solve these easy cases is called easy. For beginners, it is sometimes puzzling, because it often fails
to prove facts that seem obvious to us, while it may solve questions that require a little thinking
on our side (especially when the fact requires some computation).

3.3 Finishing a proof

When there are no more subgoals to solve, the system says that the proof is complete, but we still
have an operation to do: we must instruct the system to record the completed proof in memory.
This is done by typing in the command Qed.



3.4 Handling connectives
3.4.1 implication

When a goal’s conclusion is an implication, we can make it simpler by applying the tactic intros
H. This produces a new goal with an extra element in the context, which corresponds to the
proposition that was initially in the left hand side of the implication.

intros H’.
H: A
H> : 2 =3
3 =2

The name used as argument to the intros tactic is used to name the new fact in the context.
To use an hypothesis that contains an implication, we use the tactic apply. Here is an example.

H:A->2=1£f3

This works only if the left hand side of the hypothesis H corresponds exactly with the conclusion.
The conclusion is replaced by the left-hand side of the arrow. If there are several arrows in the
hypothesis, then several goals are produced. For instance, if the hypothesis had been A -> B ->
2 = 3, then we would have had two new goals, one with A and the other with B.

3.4.2 Conjunction

When a goal’s conclusion is a conjunction, we can make it simpler by applying the tactic split.
This produces two new goals whose statements are the parts of the conjunction.

H1 : A ->B

C/\D
split.

H1 : A ->B

C

Subgoal 2 is:
D

When we want to use an hypothesis that is a conjunction, we often need to decompose this
conjunction to extract its parts as new hypotheses. This is done with the destruct command.

H:A/\B

A



destruct H as [H1 H2].

H1 : A
H2 : B
A

3.4.3 Disjunction

When a goal’s conclusion is a disjunction, we can make it simpler by applying one of the tactics
left and right. This produces a new goal with only the chosen part of the goal.

H1 : A -> B

B\/2=3
left.

H1 A ->B

B

Of course, we have to be careful and choose the tactic that will really lead us to a new goal that
is provable (in this example, choosing right looks silly).

When we want to use an hypothesis that is a disjunction, we often need to decompose this
conjunction to extract its parts as new hypotheses. But this produces two goals, because if we
have to cover the two cases:

H:A\/B

B\/ A
destruct H as [H1 | H2].
H1 : A

B \/ A

Subgoal 2 is:
B\/ A

The second goal contains an hypothesis named H2 (as stated in the destruct tactic) with B as
the statement.

3.4.4 Negation

When a goal’s conclusion is a negation, we can make it simpler by applying the tactic intros H.

Hl : A ->B
~ A
intros H.
H1 : A ->B
H: A
False

When proving “not A”, the idea is to show that assuming A would lead to a contradiction.
When we want to use an hypothesis that is a negation, we apply a tactic called case H. This
replaces the current conclusion by the negated formula.



case H.
H: " A

A

We should do this exactly when we know that we will be able to prove A more easily that proving
C.

3.5 Quantifiers
3.5.1 Universal quantification

When trying to prove a universally quantified formula, we often use the tactic intros x, where
x is a name chosen to fix the value on which we want to reason. The idea is that if we want to
prove a formula for all members of a type, we should simply prove that this formula holds for a
single arbitrary one, which we choose to name x. Because x is taken arbitrarily, everything we
prove about it is universal.

Here is an example:

forall A:Prop, A -> A
intros A.
A : Prop

A ->A

This proof can be finished by typing intros H. and then assumption.

We shall see in another lesson that some universally quantified formulas can be proved by more
advanced means, like induction.

If one wants to use an hypothesis that starts with a universal quantification, one should most
of the time use the tactic apply. Here is an example:

H : forall x: Z, P x -> Q x

Q3
apply H.
H : forall x: Z, Px > Q x

P 3

Note that the Coq system found an instance of the universally quantified formula that corresponds
to @ 3, then it applied the same behavior as for implication.

3.5.2 Existential quantification

When trying to prove an existentially quantified formula, we have to provide a candidate value
that satisfies the required predicate. The tactic is called exists (with the same spelling as the
logical connective). Here is an example.

exists x, 2 *x x = 6
exists 3.

2 % 3 =6



As aresult, we simply have to prove that the provided value (here 3) satisfies the required predicate.

When trying to use an hypothesis that starts with an existential quantification, we actually
want to decompose the information in this quantification, so that we obtain a new context that
really contains a value satisfying the property of interest. Here is an example:

H : exists x : Z, Znth 1 x = Some v.

¢
destruct H as [w Pw].
w o Z
Pw : Znth 1 w = Some Vv

C

In the goal before the destruct tactic, there is no integer that satisfies the property. In the goal
after the tactic, there is an integer called w and we know that w satisfies the property, so we can
use it for various purposes.

3.6 Predicates
3.6.1 Equality

When we want to prove an equality, the simplest approach is when the two members of the equality
are equal (even modulo computation). Here is an example.

2=3-1
reflexivity.
No more subgoals.

This tactic can also be used if the computation uses functions that we have defined ourselves, like
Znth.
If we want to use an hypothesis that contains equalities, we can use the rewrite tactic.

H: 3=2
2 =3
rewrite H.
H:3=2
2 =2

The tactic rewrite can also be used if the equality is wrapped inside a universal quantification.
In that case, it finds the first relevant instantiation of the universally quantified variable before
performing the replacement.

H : forall x : Z, £ (f x) g (x + x)

g (2 +2)
rewrite <- H.
H : forall x : Z, £ (f x) =g (x + x)

]
[za}

f (f2) =E

Note also, that the <- modifier makes it possible to use the equality in a different direction.



4 Un exemple de preuve

Lemma distr_or_comm_1 :
forall abec, a\/ (b/\c) > @\ b))/ (a\ c).
intros a b ¢ h.
destruct h as [ha | hconj].
split.
left.
exact ha.
left.
exact ha.
destruct hconj as [hb hc].
split.
right.
exact hb.
right.
exact hc.
Qed.

5 Exercises

1. Write a predicate multiple of type Z -> Z -> Prop, so that multiple a b expresses that
a is a multiple of b (in other words, there exists a number k such that a = k * b).

2. Write a formula using integers that expresses that when n is a multiple of 2 then n * n is
also a multiple of 2.

3. Write a formula using integers that expresses that when a number n is a multiple of some k,
then n * n is a multiple of k (you don’t have to prove it yet).

4. define a predicate odd of type Z -> Prop that characterize odd numbers like 3, 5, 37.

5. Assuming there exists a type T used to represent integers and a function T_to_Z of type T
-> Z, which maps any element of T to the element of Z that it represents, and assuming that
tadd is a function of type T => T -> T, how do you express that tadd represents addition?
Beware that several elements of T may represent the same element of Z.

6. Write the script that proves the following formula

forall P Q : Z -> Prop,
forall x y : Z, (forall z, Pz ->Q 2z) >x=y -> P x —>
Px/\Qy

7. Write the script that proves the following formula
forall AB C : Prop, (A /\B) \/ C->A\/C
8. Write the script that proves the following formula

forall P : Z -> Prop, (forall x, P x) ->
exists y : Z, Py /Ny =0

9. Write the script that proves that when n is a multiple of k, then n * n is also a multiple of
k. You will need a theorem to reason about associativity of multiplication between integers.
Use Search (_ * _ * _). to find such a theorem.

10. Write the script that proves that when n is odd, then n * n is also odd. Again, use Search
to find relevant theorem.
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6

More information

Vous pouvez utiliser le livre [1] (disponible en frangais sur internet) et le manuel de référence [4].
11 existe aussi un tutoriel en frangais par un autre professeur [7]. Il y aussi des tutoriels en anglais
[5, 3.
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