16

* Proof by Reflection

Proof by reflection is a characteristic feature of proving in type theory. There
is a programming language embedded inside the logical language and it can
be used to describe decision procedures or systematic reasoning methods. We
already know that programming in Cogq is a costly task and this approach is
only worth the effort because the proof process is made much more efficient. In
some cases, dozens of rewrite operations can be replaced with a few theorem
applications and a convertibility test of the Calculus of Inductive Construc-
tions. Since the computations of this programming language do not appear in
the proof terms, we obtain proofs that are smaller and often quicker to check.

In this chapter, we describe the general principle and give three simple
examples that involve proofs that numbers are prime and equalities between
algebraic expressions.

16.1 General Presentation

Proof by reflection is already visible in the proofs that we performed in earlier
chapters to reason about functions in C'og. To handle these functions, we often
rely on term reductions: 8d¢-reduction for simple functions and :-reduction
for recursive functions.

Let us have a second look at a simple proof, the proof that natural number
addition is associative:

Theorem plus_assoc : Vx y z:nat, x+(y+z) = xty+z.
Proof.
intros x y z; elim x.

Here, the proof by induction in the elim tactic produces two goals. The first
one has the following shape:

0+(y+z) = 0+y+z

434 16 * Proof by Reflection

We usually call auto or trivial to solve this goal, but with a closer look, we
see that these tactics actually perform the following operation:

exact (refl_equal (y+z)).

This is surprising, since neither the left-hand side nor the right-hand side of
the equation is the term “y+z.” However, both terms are convertible to this
expression. To check this proof step, the Coq system must perform a small
computation, leading to the replacement of all instances of “0+m” with m,
as is expressed in the definition of plus. This operation is performed twice,
once in the left-hand side for “m = y+z” and once in the right-hand side for
m =y, but this is invisible to the user.

This example shows that simplifying formulas plays a significant role in
the proof process, since we can replace reasoning steps with a few computa-
tion steps. Here the reasoning steps are elementary but the aim of proof by
reflection is to replace complex combinations of reasoning steps with compu-
tation. In fact, we use reduction to execute decision procedures. In proofs by
reflection, we describe explicitly inside the logical language the computations
that are normally performed by automatic proof tools. We naturally have to
prove that these computations do represent the reasoning steps they are sup-
posed to represent, but like the typing process, these proofs need to be done
only once. The proof tools we obtain do not have to build a new proof for
each piece of input data.

There are two large classes of problems where this kind of proof technique
is useful. In the first class, we consider a predicate C:T—Prop where T is a
data type and we have a function f:T—bool such that the following theorem
holds:

f_correct : Vx:T, f x = true — C x.

If £ is defined in such a way that we can reduce “f t” to true for a large class
of expressions ¢, then the following proof can be used as a proof of “C ¢

f_correct t (refl_equal true):C ¢t

Except for the occurrence of ¢ in the first argument of f_correct, the size
of this proof does not depend on t. In practice, this kind of tactic applies
only if ¢ is a term without variables, in other words if ¢ is built only with the
constructors of inductive types. In the next section, we give an example of this
class of problems with the verification that a given number is prime and we
obtain a tactic that is much quicker than the tactic described in Sect. 7.6.2.1.

The second class of problems where computation can help is the class of
algebraic proofs such as proofs relying on rewriting modulo the associativity
or the commutativity of some operators. For these proofs, we again consider
a type T and we exhibit an “abstract” type A, with two functions i : A—T
and f: A—A. The function ¢ is an interpretation function that we can use to
associate terms in the concrete type T' with abstract terms. The function f
reasons on the abstract terms. The reflection process relies on a theorem that

16.2 Direct Computation Proofs 435

expresses that the function f does not change the value of the interpreted
term:

f_ident : Vx:A, i (f x)=1 x

Thus, to prove that two terms ¢; and ts are equal in 7', we only need to show
that they are the images of two terms a1 and as in A such that “f a1=f as.”
We give an example of this kind of algebraic reasoning by reflection in the third
section of this chapter where we study proofs of equality based on associativity.
We then show an elaboration of this method to study proofs of equality based
on associativity and commutativity.

16.2 Direct Computation Proofs

The functions used in proof by reflection are particular: it is important that
BdCi-reductions as performed by the tactics simpl, lazy, cbv, or compute are
enough to transform the expression into an appropriate form. In practice, all
the functions have to be programmed in a structural recursive way, sometimes
by relying on the technique of bounded recursion described in Sect. 15.1.

Complexity matters. The functions are executed in the proof system, using
the internal reduction mechanisms, whose efficiency compares poorly with the
efficiency of conventionally compiled programming languages. For algorithms
that will be used extensively, it is worth investing in the development and the
formal proof of efficient algorithms.

For instance, we are interested in the Cog proof that a reasonably sized
natural number is prime:' we need to show that this number cannot be divided
by a large collection of other numbers. Divisions by successive subtractions
are rather inefficient and it is better to convert natural numbers to integers,
which use a binary representation, before performing all divisibility tests.

Computing Remainders

The Cogq library provides a function for Euclidean division in the module Zdiv:
Require Export Zdiv.

The division function is called Zdiv_eucl and has type Z—Z—Zx*Z. This is a
weak specification, but the companion theorem gives more suitable informa-
tion:

Z div_mod :¥a b:Z, (b > 0)%Z —

let (q, v) := Zdiv_eucl a b in

a = (b¥*q+r)BZ N (0< 1 < b)%Z
The module Zdiv also provides a function Zmod that only returns the second
element of the pair.

! This example was suggested by M. Oostdijk and H. Geuvers.

436 16 * Proof by Reflection
Setting Up Reflexion

We need a first theorem that relates the existence of a divisor with remainders
using integer division. We do not detail the proof here and only rely on this
property as an axiom:

Axiom verif_divide
Vm p:nat, 0 <m — 0 < p —
(3q:nat, m = g*p) —(Z_of _nat m mod Z_of_nat p = 0)%Z.

Our intention is to check that a number is prime by verifying that the division
using every number smaller than it produces a non-zero remainder. Here is a
justification that only smaller numbers need to be checked, also accepted as
an axiom:

Axiom divisor_smaller :
Vm p:nat, 0 <m — Vqg:nat, m = g¥p — q < m.

We can write a function that tests the result of division for all smaller numbers.

Fixpoint check_range (v:Z) (r:nat) (sr:Z){struct r} : bool :=
match r with
0 = true
| s r =
match (v mod sr)Z with
20 = false
| _ = check_range v r’ (Zpred sr)
end
end.

Definition check_primality (m:nat) :=
check_range (Z_of_nat n)(pred (pred n))(Z_of_nat (pred n)).

We can test this function on a few values:

Eval compute in (check_primality 2333).
= true : bool

Eval compute in (check_primality 2330).
= false : bool

It looks simpler to write this function with only two arguments, as in the
following definition, but this function redoes the conversion of the divisor at
every step.

Fixpoint check_range’ (v:Z) (r:nat){struct r} : bool :=
match r with
0 = true | 1 = true
| Sr’ =

16.2 Direct Computation Proofs 437

match (v mod Z_of_nat r)J%Z with
| 0%Z = false
| _ = check_range’ v r’
end
end.

Definition check_primality’ (n:nat) :=
check_range’ (Zpos (P_of_succ_nat (pred n))) (pred (pred n)).

This variant is much slower. Each call to the function inject_nat has a
linear cost in the number being represented. In the function check_range this
computation is avoided and replaced by a subtraction on a binary number
at each step. This subtraction has a linear cost in the size of the binary
representation, but this binary representation only has a logarithmic size.
The cost is much lower. It is often convenient to test the complexity and
the validity of the function before starting to prove that it is correct; here a
few experiments were enough to establish that the function check_range was
better than the function check_range’.

We can now prove the theorems that show that our functions are correct.
We use two results, which we take as axioms here, but which should be proved
in a regular development:

Axiom check_range_correct :
V (v:Z) (r:nat) (rz:Z),
(0 <whZ —
Z_of_nat (S r) = rz —
check_range v r rz = true —
~(Jk:nat, k < Sr Ak #1A
(dq:nat, Zabs_nat v = g*k)).

Axiom check_correct
Vp:nat, 0 < p — check_primality p = true —
~(Jk:nat, k # 1 Ak # p A (dq:nat, p = gqxk)).

Proving that an arbitrary number is prime can now be done with a simple
tactic, as in the following example:

Theorem prime_2333 :

~(Jk:nat, k # 1 A k # 2333 A (Jq:nat, 2333 = g*k)).
Time apply check_correct; auto with arith.

Proof completed.

Finished transaction in 132. secs (131.01u,0.62s)

Time Qed.

Finished transaction in 59. secs (56.79u,0.4s)

This proof takes a few minutes (adding up the time for building and checking
the proof term), while the naive procedure described in Sect. 7.6.2.1 was

438 16 * Proof by Reflection

unable to cope with a number this size. There are various simple ways to
improve our development. The first is to test only odd divisors and use pattern
matching to check that the number is not even; the second is to limit tests to
numbers that are smaller than the square root (the module ZArith provides
a square computation function called Zsqrt).

Oostdijk developed an even more elaborate tactic [20] based on a lemma
by Pocklington, which can cope with numbers that are written with several
dozens of digits in decimal representation.

Exercise 16.1 ** Prove the lemmas verif_divide, divisor_smaller,
check_range_correct, and check_correct.

Exercise 16.2 ** Show that when a number n is the product of two numbers
p and q, then one of these numbers is smaller than the square root of n. Use
this lemma to justify a method by reflection that only verifies odd divisors
smaller than the square root.

16.3 ** Proof by Algebraic Computation

Reduction can be used to compute on other things than just numbers. In
this section, we study examples where we compute symbolically on algebraic
objects.

16.3.1 Proofs Modulo Associativity

As an illustrative example, we study proofs that two expressions of type nat
are equal when these proofs only involve associativity of addition. We call
them proofs of equality modulo associativity.

The expressions of type nat that we consider are binary trees, where the
nodes are not labeled and represent the plus function, while the leaves are
labeled by values that represent arbitrary arithmetic expressions. Intuitively,
proofs of equality modulo associativity are done by forgetting the parentheses
associated to all additions on the two sides of the equation and then verifying
that the same expressions appear on both sides in the same order. Thus, it is
obvious that the expressions

e+ ((y+2)+w) and (z+y)+(z+w)

are equal.
Without using reflection, this kind of proof can be done with a one-line
combined tactic, as in the following example:

Theorem reflection_test :
Vx y z t u:nat, x+(y+z+(t+u)) = x+y+(z+(t+u)).
Proof.

16.3 ** Proof by Algebraic Computation 439

intros; repeat rewrite plus_assoc; auto.
Qed.

The tactic used in this example is independent of the terms in the equality,
but the proof it builds increases as the expressions do because of the repeat
tactical. In practice, this means that the time taken by this tactic increases
quickly with the size of the expressions. The time taken by the Qed command
also increases badly.

Forgetting the parentheses related to additions in an expression is the
same thing as rewriting with the associativity theorem until all additions are
pushed on the right-hand side of other additions. Graphically, this corresponds
to transforming a tree with the form

into a tree with the form

We want to describe a function that transforms, for instance, the expression
x4+ ((y + 2) + w) into + (y + (2 + w)), but this function cannot be defined
using a pattern matching construct where the function plus plays a special
role, because plus is not a constructor of the type nat and it is meaningless
to ask whether any x could be the result of an addition. The type nat is not
suited for this purpose, but we can define our function as a function working
on an abstract type of binary trees that we define with the following command:

Inductive bin : Set := node : bin—bin—bin | leaf : nat—bin.

We can first define a function that reorganizes a tree to the right, where the
tree that must appear in the rightmost position is given as an argument, and
then give a function that simply performs the whole processing;:

Fixpoint flatten_aux (t fin:bin){struct t} : bin :=
match t with
| node t1 t2 = flatten_aux t1 (flatten_aux t2 fin)
| x = node x fin
end.

440 16 * Proof by Reflection

Fixpoint flatten (t:bin) : bin :=
match t with
| node t1 t2 = flatten_aux tl1 (flatten t2)
| x = x
end.

This function can be tested directly in Cog to check that it really produces
trees where no addition has another addition as its first argument:

Eval compute in
(flatten
(node (leaf 1) (node (node (leaf 2)(leaf 3)) (leaf 4)))).

= node (leaf 1) (node (leaf 2) (node (leaf 3) (leaf 4))) : bin

The next step is to show how binary trees represent expressions of type nat,
with the help of an interpretation function:

Fixpoint bin_nat (t:bin) : nat :=
match t with
| node t1 t2 = bin_nat tl + bin_nat t2
| leaf n = n
end.

This interpretation function clearly states that the operator node represents
additions. Here is a test of this function:

Eval lazy beta iota delta [bin_nat] in

(bin_nat
(node (leaf 1) (node (node (leaf 2) (leaf 3)) (leaf 4)))).
= 1+(2+8+4) : nat

The main theorem is that changing the shape of the tree does not change
the value being represented. We start with a lemma concerning the auxiliary
function flatten_aux. Intuitively, it should represent an addition:

Theorem flatten_aux_valid :
¥Vt t’:bin, bin_nat t + bin_nat t’ = bin_nat (flatten_aux t t’).

The proof of this lemma follows the structure of the function flatten_aux,
but we do not detail it here. Nevertheless, it is important to know that the
theorem of associativity of addition plays a role in this proof. This lemma is
used for the next theorem, which concerns the main function flatten:

Theorem flatten_valid : Vt:bin, bin_nat t = bin_nat (flatten t).

We can obtain a corollary where flatten_valid is applied on both sides of
an equation:

16.3 ** Proof by Algebraic Computation 441

Theorem flatten_valid_2 :
¥Vt t’:bin, bin_nat (flatten t) = bin_nat (flatten t’)—
bin_nat t = bin_nat t’.

Proof.
intros; rewrite (flatten_valid t); rewrite (flatten_valid t’);
auto.

Qed.

We now have all the ingredients to perform a proof that = + ((y + z) +w) and
(x +y) + (2 + w) are equal modulo associativity:

Theorem reflection_test’
Vx y z t unat, x+(y+z+(t+u))=x+y+(z+(t+u)).
Proof.
intros.
change
(bin_nat
(node (leaf x)
(node (node (leaf y) (leaf z))
(node (leaf t)(leaf u)))) =
bin_nat
(node (node (leaf x)(leaf y))
(node (leaf z) (node (leaf t)(leaf u))))).
apply flatten_valid_2; auto.
Qed.

This proof involves only two theorems: flatten_valid_2 and the reflexivity
of equality. Nevertheless, there is a tedious step, where the user must give the
change tactic’s argument by hand. This step can also be automated with the
help of the Ltac language described in Sect. 7.6:

Ltac model v :=
match v with
| (?X1 + ?7X2) =
let rl := model X1 with r2 := model X2 in
constr: (node ri1 r2)
| ?X1 = constr: (leaf X1)
end.

Ltac assoc_eq_nat :=
match goal with
| [I- (?X1 = 7X2 :>nat)] =
let terml := model X1 with term2 := model X2 in
(change (bin_nat terml = bin_nat term2);
apply flatten_valid_2;
lazy beta iota zeta delta [flatten flatten_aux bin_nat];
auto)

442 16 * Proof by Reflection

end.

The function model needs to construct a term that is obtained by applying
a function of the Gallina language to an expression of the Gallina language
and this application should not be confused with the application of the Ltac
language. To make the distinction clear, the Cog system imposes that we mark
this application with a prefix constr: (this means a term of the Calculus of
Constructions).

The tactic assoc_eq_nat summarizes in a single keyword the whole col-
lection of steps to prove the equation using this method. Here is a sample
session:

Theorem reflection_test’’

Vx y z t uinat, x+(ytz+(t+u)) = x+y+(z+(t+u)).
Proof.

intros; assoc_eq_nat.
Qed.

We advise the reader to test this tactic on a larger collection of cases.

Exercise 16.3 Prove the theorems flatten_auz_valid, flatten_valid, and
flatten_valid_2.

16.3.2 Making the Type and the Operator More Generic

The technique described in the previous section should be reusable in all cases
where a binary operation is associative. For natural numbers, it should also
apply for multiplication, but for other types, we should also be able to use it for
addition and multiplication of integers, real numbers, rational numbers, and
so on. We now describe how to make our tactic more general, by abstracting
over both the type and the operator. We use the section mechanism as it is
provided in Cog:

Section assoc_eq.

We can describe the various elements that should vary for different uses of the
tactic. We must have a data type (a type in the Set sort), a binary operation
in this type, and a theorem expressing that this operation is associative:

Variables (A : Set)(f : A—A—A)
(assoc : Vxyz:A, £fx (fyz)=1f({(xy) 2z).

We now must build a function mapping terms of type bin to terms of type
A. Here we have to be careful because the leaves of the type bin are labeled
with values of type nat rather than values of type A. We could change the
bin structure to be polymorphic so that leaves do contain values of type A,
but we prefer to keep using labels of type nat and to add a list of values of
type A as an argument to the interpretation function. This choice later turns

16.3 ** Proof by Algebraic Computation 443

out to be useful to handle commutativity. To interpret natural numbers with
respect to a list of values, we need a function nth with three arguments: a
natural number, a list of terms of the type A, and a default value of the type
A that is used to interpret natural numbers that are larger than the length
of the list. This function nth is actually provided in the Cogq library (module
List). The interpretation function that we present now is still closely related
to the function bin_nat:

Fixpoint bin_A (1:1ist A)(def:A) (t:bin){struct t} : A :=
match t with
| node t1 t2 = f (bin_A 1 def t1) (bin_A 1 def t2)
| leaf n = nth n 1 def
end.

The validity theorems must also be transposed. We only give their state-
ments and do not detail the proofs:

Theorem flatten_aux_valid_A :

V (1:1ist A) (def:A) (t t’:bin),

f (bin_A 1 def t)(bin_A 1 def t’) =
bin_A 1 def (flatten_aux t t’).

Theorem flatten_valid_A :
V (1:1ist A) (def:A) (t:bin),
bin_A 1 def t = bin_A 1 def (flatten t).

Theorem flatten_valid_A_2 :

V(t t’:bin) (1:1ist A) (def:A),
bin_A 1 def (flatten t) = bin_A 1 def (flatten t’)—
bin_A 1 def t = bin_A 1 def t°’.

We can now close the section and obtain generic theorems:

End assoc_eq.
Check flatten_valid_A_2.
flatten_wvalid_ A_ 2:

Y (A:Set)(f:A—A—A),

VzyzA fz(fyz)=f(fzy) 2)—

Y (t t7:bin)(l:list A)(def:A),

bin. A A fldef (flatten t) = bin_ A A f 1 def (flatten t’)—
bin A Afldeft=>bin AAfldeft’

The meta-functions needed for the generic tactic are more complex, because
we have to build a list of terms and to verify when a term is already present
in this list. The function term_list simply traverses a term and collects the
leaves of the binary trees whose nodes are the operation we study. The function
compute_rank takes one of these leaves and finds the position it has in the list
(making a deliberate mistake if the leaf cannot be found in the list, something

444 16 * Proof by Reflection

that should never happen). The function model_aux takes a list of leaves 1,
the studied operator, and a concrete term v and finds the abstract term of
the type bin that is the inverse image of v by the interpretation function
“bin_A 1.” The function model_A and the tactic assoc_eq combine all the
auxiliary functions in the same way as before:

Ltac term_list £ 1 v :=
match v with
| (£ 7X1 7X2) =
let 11 := term_list f 1 X2 in term_list f 11 X1
| ?X1 = constr:(cons X1 1)
end.

Ltac compute_rank 1 n v :=

match 1 with

| (cons 7X1 7X2) =
let tl := constr:X2 in
match constr: (X1 = v) with
| (?X1 = ?X1) = n
| _ = compute_rank tl (S n) v
end

end.

Ltac model_aux 1 f v :=
match v with
| (f 7X1 7X2) =
let rl := model_aux 1 f X1 with r2 := model_aux 1 f X2 in
constr: (node r1 r2)
| ?X1 = let n := compute_rank 1 O X1 in constr:(leaf n)
| _ = constr:(leaf 0)
end.

Ltac model_A A f def v :=
let 1 := term_list f (nil (A:=A)) v in
let t := model_aux 1 f v in
constr:(bin_A A f 1 def t).

Ltac assoc_eq A f assoc_thm :=
match goal with
| [|- (Geq A ?7X1 7X2)] =
let terml := model_A A f X1 X1
with term2 := model_A A f X1 X2 in
(change (terml = term2);
apply flatten_valid_A_2 with (1 := assoc_thm); auto)
end.

16.3 ** Proof by Algebraic Computation 445

The tactic assoc_eq can be used in the same way as the tactic assoc_eq_nat
but we have to indicate which type, which binary operation, and which as-
sociativity theorem are used. Here is an example with integer multiplication:

Theorem reflection_test3 :

Vxy ztuZ, (xx(y*z*x(t*u)) = x*xy*(z*x(t*u)))iZ.
Proof.

intros; assoc_eq Z Zmult Zmult_assoc.
Qed.

Exercise 16.4 Using the hypothesis f_assoc, prove the three theorems
flatten_auz_valid_4, flatten_valid_4, and flatten_valid_4_2.

Exercise 16.5 Adapt the tactic to the case where the binary operation has a
neutral element, like zero for addition. It should be able to prove equalities of
the form “(z+0)+(y+(2+0))=x+(y+(2+0)).”

16.3.3 *** Commutativity: Sorting Variables

When storing data in a list, as we did in the previous section, one establishes
an order between values. This order is arbitrary, but it can be useful. An
example is the case where we wish to prove equalities modulo associativity and
commutativity. In this case, we not only want to reshape the expression, but
also want to put all leaves in the same order, so that expressions that appear
on both sides also appear in the same position. The development we present
is directly inspired by the development of the tactic field by D. Delahaye
and M. Mayero.

We still work with only one binary operation with algebraic properties and
we use the same data type bin to model the expressions. Our approach first
reshapes the tree so that all left-hand-side terms of additions are leaves. Thus,
the tree actually looks like a list. The next step is simply to sort this list with
respect to the order provided by the list storage.

The procedure we provide relies on insertion sort. We need a function that
can compare two leaves with respect to the numbers in these leaves. We use
the following simple structural recursive function that really reduces to true
or false whenever its arguments are non-variable natural numbers.

Fixpoint nat_le_bool (n m:nat){struct m} : bool :=
match n, m with
| 0, _ = true
| S _, 0 = false
| Sn, Sm = nat_le_bool nm
end.

446 16 * Proof by Reflection

When sorting, we need to insert leaves in the trees representing lists that
are already sorted. In the following insertion function the leaf is actually
represented by a natural number, the value that should be in the leaf. In
this insertion function, we consider that the tree must be “well-formed” in the
sense that its left-hand side should be a leaf. If the tree is not well-formed, the
leaf is inserted as a new first left subtree, without checking that the insertion
appears in the right place. The base case is also particular, because there is
no representation for an empty list.

Fixpoint insert_bin (n:nat) (t:bin){struct t} : bin :=
match t with
| leaf m = match nat_le_bool n m with
| true = node (leaf n) (leaf m)
| false = node (leaf m) (leaf n)
end
| node (leaf m) t’ =
match nat_le_bool n m with
| true = node (leaf n) t
| false = node (leaf m) (insert_bin n t’)
end
| t = node (leaf n) t
end.

With this insertion function, we can now build a sorting function:

Fixpoint sort_bin (t:bin) : bin :=
match t with
| node (leaf n) t’ = insert_bin n (sort_bin t’)
lt =1t
end.

We have to prove that this sorting function does not change the value of the
expression represented by the tree. This proof relies on the assumptions that
the function is associative and commutative.

Section commut_eq.

Variables (A : Set)(f : A—A—A).

Hypothesis comm : Vx y:A, f x y = f y x.

Hypothesis assoc : Vx y z:A, £ x (fy2z) =1 (f xy) z.

We can reuse the functions flatten_aux, flatten, bin_A, and the theorem
flatten_valid_A_2 (see Exercice 16.3). We have to prove that the sorting
operation preserves the interpretation. A first lemma considers the insertion
operation, which can also be interpreted as the binary operation being con-
sidered:

Theorem insert_is_f
V (1:1ist A) (def:A) (n:nat) (t:bin),
bin_A 1 def (insert_bin n t) = f (nth n 1 def)(bin_A 1 def t).

16.4 Conclusion 447

With this theorem, it is easy to prove the right theorem for sorting:

Theorem sort_eq : V (1:1ist A)(def:A)(t:bin),
bin_A 1 def (sort_bin t) = bin_A 1 def t.

As in the previous section, we also describe a theorem that applies the sorting
operation on both sides of an equality:

Theorem sort_eq_2 :

V (1l:1list A) (def:A) (t1 t2:bin),
bin_A 1 def (sort_bin t1) = bin_A 1 def (sort_bin t2)—
bin_A 1 def t1 = bin_A 1 def t2.

The section can now be closed. This makes the theorems more general.
End commut_eq.

The tactic that uses these theorems has the same structure as the tactic
for associativity described in the previous section. Note that the theorem
sort_eq_2 is applied after the theorem flatten_valid_A_2 so that the func-
tion sort_bin is only used on “well-formed” trees (the left-hand-side subterms
of bin trees always are leaves).

Ltac comm_eq A f assoc_thm comm_thm :=
match goal with
I [1- (?X1 = 7X2 :>A)] =
let 1 := term_list f (nil (A:=A)) X1 in
let terml := model_aux 1 f X1
with term2 := model_aux 1 f X2 in
(change (bin_A A f 1 X1 terml = bin_ A A f 1 X1 term2);
apply flatten_valid_A_2 with (1 := assoc_thm);
apply sort_eq_2 with (1 := comm_thm) (2 := assoc_thm);
auto)
end.

Here is an example where this tactic is used:

Theorem reflection_test4d : Vx y z:Z, (x+(y+z) = (z+x)+y)iZ.
Proof.

intros x y z. comm_eq Z Zplus Zplus_assoc Zplus_comm.
Qed.

Exercise 16.6 Prove insert_is_f, sort_eq, and sort_eq_2.

16.4 Conclusion

The Coq libraries provide other more elaborate examples. The tactics ring
and field are based on this technique and we advise prospective tactic de-
velopers to study these tactics and use them as inspiration.

448 16 * Proof by Reflection

In reflection tactics, efficiency considerations are important, because these
tactics are executed inside the Coq logical engine, which is slower than con-
ventional programming languages. For a tactic that is used intensively, it is
worth the effort to use more efficient sorting algorithms than insertion sort
and more efficient storage than lists. For instance, we could store data in bi-
nary trees, using numbers of type positive to denote positions. This kind of
storage also provides an order on positions and the fetching operation is more
efficient than looking up in a list structure.

Exercise 16.7 ** Using the notion of permutations defined in Exercise 8.4
page 216 and the counting function defined in Fxercise 9.5 page 256, show
that if a list is a permutation of another list, then any natural number occurs
as many times in both lists.

Build a specialized reflection tactic “NoPerm” that solves goals of the form
“~perm 1 I'” by finding an element of the first list that does not occur the
same number of times in both lists.

