
14

** Foundations of Inductive Types

14.1 Formation Rules

There is a lot of freedom in inductive definitions. A type may be a constant
whose type is one of the sorts in the system, it may also be a function, this
function may have a dependent type, and some of its arguments may be
parameters. The constructors may be constants or functions, possibly with a
dependent type, their arguments may or may not be in the inductive type,
and these arguments may themselves be functions. In this section, we want to
study the limits of this freedom.

14.1.1 The Inductive Type

Defining an inductive type adds to the context a new constant or function
whose final type is one of the sorts Set, Prop, or Type.

When the constant or function describing the inductive type takes one
or more arguments, we have to distinguish the parametric arguments from
the regular arguments. The parametric arguments are the ones that appear
between parentheses before the colon character, “:”.

If an inductive type definition has a parameter, this parameter’s scope
extends over the whole inductive definition. This parameter can appear in the
the type arguments that come after, in the type’s type, and in the constructors’
type. For instance, the definition of polymorphic lists, as given in the module
List of the Coq library (see Sect. 6.4.1), has a parameter A:

Set Implicit Arguments.

Inductive list (A:Set) : Set :=

nil : list A

| cons : A → list A → list A.

Implicit Arguments nil [A].

378 14 ** Foundations of Inductive Types

The parameter declaration (A:Set) introduces the type A that can be reused
in the type descriptions for the two constructors nil and cons. Actually, the
declared type for these constructors is not exactly the type they have after
the declaration. For instance, if we check the type of nil we get the following
answer (we need to prefix the function name with @ to overrule the implicit
argument declaration):

Check (@nil).

@nil : ∀A:Set, list A

In practice, the type of each constructor is the type given in the inductive
definition, prefixed with the parameters of the inductive types.

When using parametric arguments, one must respect a stability constraint:
the parameters must be reused exactly as in the parameter declaration wherever
the inductive type occurs inside the inductive definition. In the example of
polymorphic lists, this imposes that list is always applied to A in the second
and third lines of the definition. When the constraint is not fulfilled, the Coq
system complains with an explicit error message. Here is an example:

Inductive T (A:Set) : Set := c : ∀ B:Set, B → T B.

Error: The 1st argument of ‘‘T’’ must be ‘‘A’’ in ‘‘ ∀B:Set, B → T B’’

When an inductive type takes arguments that should change between uses
inside the inductive definition, the arguments must appear in the type dec-
laration outside the parameter declaration. This is shown in the definition of
fixed-height trees from Sect. 6.5.2, with the definition of htree:

Inductive htree (A:Set) : nat→Set :=

hleaf : A → htree A 0

| hnode : ∀ n:nat, A → htree A n → htree A n → htree A (S n).

Here the type htree takes two arguments: the first is a parameter and the
second is a regular argument. The constraint that the parameter is reused
without change is satisfied and the regular argument takes three different
values in the four places where the inductive type occurs.

In the two examples above, the parameter is a type, but this is not neces-
sary. We can define inductive types where parameters are plain data, as we saw
in the inductive definition of equality (Sect. 8.2.6) or in strong specifications
for functions (Sects. 6.5.1 and 9.4.2).

It seems that it is always possible to build an inductive type without
parameters from an inductive type with parameters by “downgrading” the
parameters to regular arguments. This operation is rarely interesting, because
the induction principles are simpler when using parameters. For instance, here
is an alternative definition of polymorphic lists:

Inductive list’ : Type→Type :=

nil’ : ∀ A:Type, list’ A

| cons’ : ∀ A:Type, A → list’ A → list’ A.

14.1 Formation Rules 379

This definition has the following induction principle:

Check list’_ind.

list’_ind
: ∀P:∀T:Type, list’ T → Prop,

(∀A:Type, P A (nil’ A))→
(∀ (A:Type)(a:A)(l:list’ A), P A l → P A (cons’ A a l))→
∀ (T:Type)(l:list’ T), P T l

This induction principle is more complex because it quantifies over a de-
pendently typed predicate with two arguments instead of quantifying over a
property with one argument.

14.1.2 The Constructors

14.1.2.1 Head Type Constraints

The constructors of an inductive type T are functions whose final type must
be T (when the type is constant) or an application of T to arguments (when
T is a function). This constraint is easy to recognize syntactically; the type
has the following form:

t1→t2→· · ·→tl→ T a1 . . . ak (14.1)

The expression “T a1 . . . ak” must be well-formed, in the sense that it must
be well-typed and it must fulfill the constraints for parametric arguments.
Moreover, the type T cannot appear among the arguments a1 . . . ak, even if
the typing rules could allow it. For instance, the following definition is rejected:

Inductive T : Set→Set := c : (T (T nat)).

Error: Non strictly positive occurrence of ‘‘T’’ in ‘‘T (T nat)’’

14.1.2.2 Positivity Constraints

The type description in 14.1 may lead the reader to believe that the con-
structor type has to be a non-dependent type. Of course not. Nevertheless,
there is a constraint on the expressions t1, . . . , tl. Each of these terms may
be a constant or a function and the inductive type may only appear inside
the final type of this function. If ti is the type of a constant then ti can have
the form “g (T b1,1 . . . b1,k) · · · (T bl,1 . . . bl,k),” provided the expressions bi,j
also satisfy the typing rules, and T does not occur in these expressions or in
g. If ti is the type of a function, this type can have the form

t′1→ . . .→t′m→ g (T b1,1 . . . b1,k) · · · (T bl,1 . . . bl,k)

but the type T cannot occur in the expressions t′1 . . . t′m or in the expressions
bi,j . These constraints are called the strict positivity constraints.

For instance, the following inductive definition is well-formed. It general-
izes the notion of infinitely branching trees given in Sect. 6.3.5.2:

380 14 ** Foundations of Inductive Types

Inductive inf_branch_tree (A:Set) : Set :=

inf_leaf : inf_branch_tree A

| inf_node : A →(nat → inf_branch_tree A)→ inf_branch_tree A.

The first constructor has a constant type and satisfies the conditions about
using the inductive type in the final type and about parameter arguments.
The type of second constructor expresses that there are two arguments and
this type is well-formed from the point of view of the typing rules. The first
argument of the second constructor does not involve the inductive type but
the parameter; the second argument is a function, whose final type is the
inductive type applied to the parameter. The argument type for this function
is another type, so there is no problem.

On the other hand, the following definition is a simple example that vio-
lates the positivity rule:

Inductive T : Set := l : (T→T)→T.

Error: Non strictly positive occurrence of ‘‘T’’ in ‘‘(T→T)→T’’

A more precise description of the formation rules for inductive types is given in
the Coq system documentation and in the article [69], but we can already try
to understand what is wrong with this definition. If this type T was accepted,
we would also be allowed to define the following functions:

Definition t_delta : T :=

(l fun t:T ⇒ match t with (l f) ⇒ f t end).

Definition t_omega: T :=

match t_delta with l f ⇒ (f t_delta) end.

The expression t_omega could be reduced by ι-reduction to the following
expression:

(fun t:T ⇒ match t with l f ⇒ f t end t_delta)

and after β-reduction:

match t_delta with l f ⇒ f t_delta end

We would have yet another expression that can be ι-reduced but this expres-
sion is the same as the initial expression and the process could go on for ever.
Allowing this kind of inductive construction would mean losing the property
that reductions always terminate and it would no longer be decidable to check
whether a given term has a given type. This example shows that inductive
types with non-strictly positive occurrences are a danger to the type-checking
algorithm. Another example shows that they even endanger the consistency of
the system, by making it possible to construct a proof of False. If the induc-
tive type T were accepted, we would be able to define the following function:

Definition depth : T→nat :=

fun t:T ⇒ match t with l f ⇒ S (depth (f t)) end.

14.1 Formation Rules 381

With one ι-reduction we would obtain the following equality:

depth (l (fun t:T ⇒ t)) =

S (depth ((fun t:T ⇒ t) (l (fun t:T ⇒ t))))

and with one more β-reduction we would obtain:

(depth (l (fun t:T ⇒ t)) = (S (depth (l (fun t:T ⇒ t))).

This is contradictory to the theorem n_Sn:

n_Sn : ∀n:nat, n ̸= S n

14.1.2.3 Universe Constraints

An inductive definition actually contains several terms that are types. One of
these terms is the type of the type being defined the others are the type of
the constructors. Each of these type terms also has a type, and the inductive
definition is only well-formed if the type of all these type expressions is the
same up to convertibility.

For instance, the type of natural numbers is declared as type nat of the
sort Set. The first constructor is O of type nat, and nat has the type Set.
The second constructor is S of type nat→nat, and nat→nat has the type
Set, thanks to the first line of the table triplets. The type of nat and the
types of the constructors coincide: we do have a well-formed definition.

This universe constraint plays a more active role when considering types
where a constructor contains a universal quantification over a sort. These types
are especially useful when we want to consider mathematical structures that
are parameterized with respect to a carrier set, like the following definition of
a group:

Record group : Type :=

{A : Type;

op : A→A→A;

sym : A→A;

e : A;

e_neutral_left : ∀ x:A, op e x = x;

sym_op : ∀ x:A, op (sym x) x = e;

op_assoc : ∀ x y z:A, op (op x y) z = op x (op y z);

op_comm : ∀ x y:A, op x y = op y x}.

This record type is an inductive type with a constructor named Build_group.

Check Build_group.

Build_group : ∀ (A:Type)(op:A→A→A)...

The type of the carrier A is Type. As we have seen in Sect. 2.5.2, this type
actually hides a type Type(i) for some i and the whole type for the constructor
necessarily has the type Type(j) for some index j that has to be greater than

382 14 ** Foundations of Inductive Types

i. Therefore, the type of group actually hides an index that has to be higher
than 0. Using the type convertibility described in Sect. 2.5.2 we can make sure
that the type of the constructor’s type is equal to the type of the inductive
type.

We can change our definition of group to insist that the type of A should
be Set (thus making our description less general), but we cannot specify that
the type of the whole group structure should be Set, because the constructor
type necessarily belongs to a universe that is higher in the hierarchy than Set.

In previous versions of Coq , the typing rules of Fig. 4.4 were designed in
such a way that the sort Set was impredicative and the definition of a group
structure in this sort was possible. Still, other restrictions had to be enforced
to ensure the consistency of the system and there was a distinction between
strong and weak elimination. Strong elimination was usable to obtain values
in the type Type, while weak elimination was usable to obtain regular values
(like numbers, boolean values, and so on). Strong elimination was not allowed
on types of the sort Set that had constructors with a quantification over a sort
(these were called large constructors). As a consequence, a group structure in
the sort Set was still difficult to use because the access function that returned
the carrier type could not be defined.

14.1.3 Building the Induction Principle

This section is reserved for the curious reader and can be overlooked for prac-
tical purposes. Induction principles are tools to prove that some properties
hold for all the elements of a given inductive type. For this reason, all induc-
tion principles have a header containing universal quantifications, finishing
with a quantification over some predicate P ranging over the elements of the
inductive type. Then come a collection of implications whose premises we call
the principal premises. At the end there is an epilogue, which always asserts
that the predicate P holds for all the elements of the inductive type. We first
describe the header and the epilogue, before coming back to the principal
premises.

In the rest of this section, we consider that we are studying the induction
principle for an inductive type T .

Generating the Header

If T is a dependent type (a function) it actually represents a family of inductive
types indexed by the expressions that appear as arguments of T , among which
the parameters play special a role.

Inductive definitions with parameters are built like inductive definitions
without parameters that are constructed in a context where the parameters
are fixed. The definition is later generalized to a context where the parameter
is free to change. This step of generalizing the definition involves inserting
universal quantification in the types of all the elements of the definition: the

14.1 Formation Rules 383

type itself, the constructors, and the induction principle. For instance, the
induction principle for polymorphic lists (see Sect. 6.4.1) and the induction
principle for fixed-height trees (see Sect. 6.5.2) both start with a universal
quantification over an element A of the sort Set:

∀ A:Set, ...

For the arguments of T that are not parameters, we have to make sure that
the predicate we want to prove over all elements can follow the variations of
these arguments. We need to express explicitly that this predicate can depend
on these arguments. Thus, it receives not one argument but k + 1, where k
is the number of non-parametric arguments of the inductive T . For instance,
the type of natural numbers is a constant type, therefore the predicate is a
one-argument predicate, the element of type nat that is supposed to satisfy
the property. Here is the header, with no quantification over parameters, and
quantification over a oneargument predicate:

∀ P:nat→Prop, ...

For the induction principle over polymorphic lists, there is one parameter,
but the type does not depend on other arguments. Here is the header, with
one quantification over a parameter and another quantification over a one
argument predicate:

∀ (A:Set)(P:list A → Prop), ...

For the induction principle over fixed-height trees, there is one parameter and
the type depends on an extra argument, which is an integer. Here is the header,
with one universal quantification over a parameter and another quantification
over a two-argument predicate, an integer n and a tree of type “htree A n”:

∀ (A:Set)(P:∀ n:nat, htree A n → Prop), ...

As we see, when the type is dependent, the predicate over which the header
quantifies also has a dependent type.

Generating the Epilogue

After the header and the principal premises comes the conclusion of the in-
duction principle. This conclusion simply states that the predicate is satisfied
by all elements of the inductive type, actually all elements of all members
of the indexed family of types. There is no quantification over the paramet-
ric arguments, because the whole induction principle is in the scope of such
a quantification, but there is a quantification over all possible values of the
dependent arguments, then a quantification over all elements of the indexed
type, and the predicate is applied to all the arguments of the dependent type
and this element. For instance, the induction principle for polymorphic lists
has the following epilogue:

...∀ l:list A, P l.

384 14 ** Foundations of Inductive Types

For fixed-height trees, the epilogue takes the following shape, due to the pres-
ence of a non-parametric argument:

...∀ n:nat, ∀ t:htree A n, P n t

Generating the Principal Premises

Intuitively, the principal premises are given to make sure that the predicate has
been verified for all possible uses of the constructors. Moreover, the inductive
part of the principle is that we can suppose that the predicate already holds
for the subterms in the inductive type when proving that it holds for a whole
term. Thus, the principal premises will contain a universal quantification for
all possible arguments of the constructor with an extra induction hypothesis
for every argument whose type is the inductive type T .

When one of the arguments is a function, as in the type Z_fbtree of
Sect. 6.3.5.1, it is enough to quantify over such a function, but when the
function’s final type is the inductive type T , the subterms to consider for the
induction hypotheses are all the possible images of this function.

The principal premise finishes with an application of the predicate P to
the constructor being considered, itself applied to all the arguments, first the
parameters of the inductive definition, then the arguments that are universally
quantified in the premise, excluding the induction hypotheses. For instance,
the principal premise for the January constructor of the type month (see
Sect. 6.1.1) does not contain any quantification, because the constructor is a
constant:

P January

For the nil constructor of the list type, the parameter naturally appears,
but there is no quantification:

P nil

For the bicycle constructor of the vehicle type (see Sect. 6.1.6), the only
argument is not in the inductive type and there is only one universal quan-
tification:

∀ n:nat, P (bicycle n)

For the S constructor of the nat type, the only argument is in the inductive
type, so there is one universal quantification over n:nat and one induction
hypothesis “P n”:

∀ n:nat, P n → P (S n)

For the Z_bnode constructor of type Z_btree (see Sect. 6.3.4), the first argu-
ment is not in the inductive type, but the other two are. The principal premise
has three universal quantifications and two induction hypotheses:

14.1 Formation Rules 385

∀ z:Z, ∀ t0:Z_btree, P t0 →
∀ t1:Z_btree, P t1 → P (Z_bnode z t0 t1)

For the Z_fnode constructor of the Z_fbtree type, the first argument is not in
the inductive type and the second one is a function whose final type is in the
inductive type. There are two universal quantifications over these arguments
and one induction hypothesis that is universally quantified over all possible
arguments of the constructor’s function argument:

∀ (z:Z)(f:bool→Z_fbtree), (∀ x:bool, P (f x))→ P (Z_fnode z f)

When considering a dependent inductive type, induction hypotheses must be
adapted to the right arguments for the whole premise to be well-typed. For
instance, the hnode constructor of the htree type (see Sect. 6.5.2) takes five
arguments: the first one is a parameter, the second and third ones are not in
the inductive type, and the last two are, with a different value for a dependent
argument. The principal premise contains universal quantifications for the four
elements that are not parameters; for the two arguments in the inductive type,
the dependent argument is adjusted as in the constructor definition and the
same adjustment is done for the predicate P in the induction hypotheses:

∀ (n:nat)(x:A)(t:htree A n), P n t →
∀ t’:htree A n, P n t’ → P (S n)(hnode A n x t t’)

The header, the principal premises, and the epilogue are grouped together to
obtain the type of the induction principles.

14.1.4 Typing Recursors

Recursively defined functions over an inductive type may have a dependent
type. For each inductive type of the sort Set, the Coq system actually gen-
erates a recursive function with a dependent type, whose name is obtained
by concatenating the suffix _rec to the type name. For instance, the function
nat_rec is provided for the type of natural numbers:

nat_rec:∀ P:nat→Set, P 0 →(∀ n:nat, P n → P (S n))→
∀ n:nat, P n

This function may be used to define recursive functions instead of the
Fixpoint command or the fix construct. We call this function the recur-
sor associated with an inductive type. The curious reader may wonder what
the relation is between this recursor and the Fixpoint command. The answer
is that the recursor is defined using the Fixpoint command, but we will show
progressively how this recursor is an evolution from simple notions of recur-
sors. We will then show the relation between the recursor and the induction
principle of an inductive type.

386 14 ** Foundations of Inductive Types

Non-dependent Recursion

Most often, recursive functions over natural numbers have the following shape:
Fixpoint f (x:nat) : A :=

match x with

0 ⇒ exp1
| S p ⇒ exp2
end.

We have willingly left A, exp1, and exp2 unknown in this declaration, to
indicate that these are the elements that change from one function to an-
other. Nevertheless, exp1 and exp2 both have to be well-typed and of type
A. For exp2 the situation is slightly more complicated, because the pattern
“S p ⇒...” is a binding construct and the variable p may be used inside
exp2. Moreover, the structural recursion conditions also make it possible to
use the value (f p) inside exp2.1 All this can be expressed by saying that the
previous declaration scheme is practically equivalent to the following one:
Fixpoint f (x:nat) : A :=

match x with

O ⇒ exp1
| S p ⇒ exp′2 p (f p)

end.

Here, A, exp1, and exp′2 must be closed expressions where f cannot occur and
they must have the following types:

A : Set exp1 : A exp′2 : nat→A→A

In practice, most simple recursive functions are defined by A, exp1, and exp′2,
so that they could actually be described using a function nat_simple_rec

that has the following dependent type:

nat_simple_rec:∀ A:Set, A →(nat→A→A)→nat→A

Actually, this function nat_simple_rec can be defined in Coq using the fol-
lowing command:

Fixpoint nat_simple_rec (A:Set)(exp1:A)(exp2:nat→A→A)(x:nat)

{struct x} : A :=

match x with

| O ⇒ exp1

| S p ⇒ exp2 p (nat_simple_rec A exp1 exp2 p)

end.

The set of functions that can be described using nat_simple_rec contains all
primitive recursive functions in the sense of Dedekind [34]. But because A may
also be a function type, this set also contains functions that are not primitive
1 It is actually mandatory that at least one recursive call appears in the whole

function definition.

14.1 Formation Rules 387

recursive, as was announced by Hilbert [49] and shown by Ackermann [1] (see
Sect. 4.3.3.2). From the point of view of the Calculus of Inductive Construc-
tions, we cannot use the function nat_simple_rec to define all interesting
functions, because the dependently typed functions are missing.

Dependent Pattern Matching

For dependently typed functions, the target type is not given by a simple
element of the Set sort, but by a function associating a type with every
element of the domain.

If we want to build a dependently typed function, the pattern matching
construct naturally plays a role, because we can associate different compu-
tations to different values only by using this construct. We are led to build
pattern matching constructs where the expressions given in each case have a
different type. This makes type synthesis too difficult for the automatic type-
checker and we have to help it by providing the function that describes the
type variation. For instance, we can consider the type of boolean values and
define a function that maps true to 0 (of type nat) and false to true (of
type bool). We first have to describe the function that maps each element of
bool to the output type:

Definition example_codomain (b:bool) : Set :=

match b with true ⇒ nat | false ⇒ bool end.

The second step is to build a dependent pattern matching construct that uses
this function to control how the various branches are typed:

Definition example_dep_function (b:bool) : example_codomain b :=

match b as x return example_codomain x with

| true ⇒ 0

| false ⇒ true

end.

The user must provide a typing indication, giving a variable after the keyword
“as” and an expression after the keyword “return,” which may depend on
the variable. The type of this variable is the type of the expression that is the
object of the pattern matching construct.

If a pattern matching rule has the form

pattern ⇒ exp

and the typing indication has the form “as x return t,” then the expression
exp must have the type t{x/pattern}.

An alternative approach to explaining dependent pattern matching is to
associate a function F with the fragment “as x return t,” with the following
value:

fun x ⇒ t

388 14 ** Foundations of Inductive Types

From this point of view, we say that the expression exp in the pattern match-
ing rule must have the type “F pattern.”

When the expression that is the object of the pattern matching construct
has a dependent type, the function F cannot be a function with only one
argument, because the dependent arguments for the type are required. The
user must then indicate in which instance of the dependent type each pattern
is considered, using the following form, where the parametric arguments of
the inductive type must be replaced by jokers “_”:

as x in type_name _ _ c d return t

When the filtered expression has the type “type_name A B c d,” the func-
tion F has the following shape:

fun c d ⇒ fun x:type_name A B c d ⇒ t

As we did in the previous section for simple recursion, we can represent
the dependent pattern matching simply with a dependently typed function
bool_case that takes as argument the function F:bool→Set and the two
expressions of type “F true” and “F false.” This function bool_case has
the following type:

bool_case:∀ F:bool→Set, F true → F false → ∀ x:bool, F x

It can actually be defined in Coq with the following command:

Definition bool_case

(F:bool→Set)(v1:F true)(v2:F false)(x:bool) :=

match x return F x with true ⇒ v1 | false ⇒ v2 end.

The same kind of function can be constructed for case-by-case computation
on natural numbers. The function has the following type:

nat_case:∀ F:nat→Set, F 0 →(∀ m:nat, F (S m))→∀ n:nat, F n

This function can be defined with the following command:

Definition nat_case

(F:nat→Set)(exp1:F 0)(exp2:∀ p:nat, F (S p))(n:nat) :=

match n as x return F x with

| O ⇒ exp1

| S p ⇒ exp2 p

end.

Dependently Typed Recursors

We can now combine dependent pattern matching and recursion to find the
form of the most general recursor associated with an inductive type. The
first argument of this recursor must be a function f mapping elements of the
inductive type to elements of the sort Set.

14.1 Formation Rules 389

Then, for every constructor, we have to provide an expression whose type
is built from the arguments of this constructor. If the constructor is c and
the arguments are a1 : t1, . . . , ak : tk then the expression can use the values
ai and the values corresponding to recursive calls on those ai that have the
inductive type. The expression associated with a constructor must then have
the type “∀(b1 : t′1) · · · (bl : t′l), c bi1 . . . bik ” where l is k plus the number of
indices i such that ti contains an instance of the inductive type being studied.
Each of the arguments ai is associated with the arguments bji in the following
manner:

• j1 = 1 and t′1 = t1.
• If ti does not contain an instance of the inductive type being studied, then

ji+1 = ji + 1 and t′ji = ti.
• If ti is an instance of the inductive type being studied, then ji+1 = ji +2,

t′ji = ti, and tji+1 = (f bji).
• If ti is a function type ∀(c1 : τ1) · · · (cm : τm), τ where τ is an instance of

the inductive type, then ji+1 = ji + 2, tji = ti, and

tji+1 = ∀(c1 : τ1) · · · (cm : τm), f (bji c1 · · · cm)

To illustrate this process, we study how the recursor for the type of the natural
numbers is built. This recursor starts by taking an argument of type f :
nat→Set. Then, there are two values. The first one must have type “f 0,”
since “0” is a constant. For the second constructor there is only one argument,
say a1 of the type nat, and therefore we have an argument b1 of the type nat

and an argument b2 of the type “f b1.” The whole expression has the following
type:

∀ (b1:nat)(b2:(f b1)), f (S b1).

With a different choice of bound variable names and taking into account the
non-dependent products, this can also be written

∀ n:nat, f n → f (S n).

Putting together all the elements of this recursor, we get the following type:

nat_rec :

∀ f:nat→Set, f 0 →(∀ n:nat, f n → f (S n))→ ∀ n:nat, f n.

This recursor is automatically built when the inductive type is defined. This
construction is equivalent to the following definition:

Fixpoint nat_rec (f:nat→Set)(exp1:f 0)

(exp2:∀ p:nat, f p → f (S p))(n:nat){struct n} : f n :=

match n as x return f x with

| O ⇒ exp1

| S p ⇒ exp2 p (nat_rec f exp1 exp2 p)

end.

390 14 ** Foundations of Inductive Types

We see that this function basically has the same structure as the simple recur-
sor described at the start of this section. It can be used instead of the Fixpoint
command to define most recursive functions. For instance, the function that
multiplies a natural number by 2 can be described in the following manner:

Definition mult2’ :=

nat_rec (fun n:nat ⇒ nat) 0 (fun p v:nat ⇒ S (S v)).

On the other hand, it is difficult to define multiple step recursive functions,
like the function div2 (see Sect. 9.3.1).

The functions nat_rec and nat_ind practically have the same type, except
that Set is replaced by Prop in the recursor type. This is another instance of
the Curry–Howard isomorphism between programs and proofs. The induction
principle is actually constructed in exactly the same way as the recursor and
is a function that constructs a proof of “P n” by a recursive computation on
n. This function could have been described in the following manner:

Fixpoint nat_ind (P:nat→Prop)(exp1:P 0)

(exp2:∀ p:nat, P p → P (S p))(n:nat){struct n} : P n :=

match n as x return P x with

| O ⇒ exp1

| S p ⇒ exp2 p (nat_ind P exp1 exp2 p)

end.

As a second example, we can study how the recursor for binary trees with
integer labels is constructed (see Sect. 6.3.4). Here again, the recursor takes
as first argument a function of the type f_btree→Set, then the expressions
for each constructor. For the first constructor, a constant, the value must have
the type “f Z_leaf.” For the second constructor, there are three arguments,
which we can name a1 : Z, a2 : Z_btree, a3 : Z_btree. We work progressively
on these arguments in the following manner:

1. j1 = 1 and b1 must have the type Z.
2. j2 = 2 and b2 must have the type Z_btree.
3. Since Z_btree is the inductive type being studied, j3 = 4 and b3 must

have the type (f b2).
4. b4 must have type Z_btree.
5. Since Z_btree is the inductive type being studied, there must be an ar-

gument b5 with the type (f b4).

The type of the expression for this constructor has the following shape:

∀ (b1:Z)(b2:Z_btree)(b3:f b2)

(b4:Z_btree)(b5:f b4), f (Z_bnode b1 b2 b4)

With a different choice of bound variable names and taking into account the
non-dependent products, this can also be written

∀ (z:Z)(t1:Z_btree), f t1 →
∀ t2:Z_btree, f t2 → f (Z_bnode z t1 t2)

14.1 Formation Rules 391

Putting together all the elements of this recursor we get the following type:

Z_btree_rec :

∀ f:Z_btree→Set,

f Z_leaf →
(∀ (n:Z)(t1:Z_btree), f t1 →

∀ t2:Z_btree, f t2 → f (Z_bnode n t1 t2))→
∀ t:Z_btree, f t.

The definition of a recursor with this type is obtained with the following
command:

Fixpoint Z_btree_rec (f:Z_btree→Set)(exp1:f Z_leaf)

(exp2:∀ (n:Z)(t1:Z_btree), f t1 →
∀ t2:Z_btree, f t2 → f (Z_bnode n t1 t2))

(t:Z_btree){struct t} : f t :=

match t as x return f x with

| Z_leaf ⇒ exp1

| Z_bnode n t1 t2 ⇒
exp2 n t1 (Z_btree_rec f exp1 exp2 t1) t2

(Z_btree_rec f exp1 exp2 t2)

end.

Here again, this recursor has practically the same type as the induction princi-
ple and we can see the induction principle as a function to build proofs about
trees using a recursive computation on these trees.

As a third example, we consider the type of functional binary trees de-
scribed in Sect. 6.3.5.1. Here is the second constructor:

Z_fnode:Z→(bool→Z_fbtree)→Z_fbtree

We know that t1 = Z and t2 = bool→Z_fbtree. Here are the steps to con-
struct the expression associated with this constructor:

1. j1 = 1 and t′1 = Z.
2. j2 = 2 and t′2 = bool→Z_fbtree.
3. Since t2 has Z_fbtree as head type there must be a type

t′3 = ∀ c1:bool,f (b2 c1)

The type of the expression for this constructor has the following shape:

∀ (b1:Z)(b2:bool→Z_fbtree)(b3:∀ c1:bool, f (b2 c1)),

f (Z_fnode b1 b2)

With a different choice of bound variable names and taking into account the
non-dependent products, this can also be written

∀ (z:Z)(g:bool→Z_fbtree), (∀ b:bool, f (g b))→ f (Z_fnode z g)

392 14 ** Foundations of Inductive Types

We still have not described how the recursors are built for inductive dependent
types. The curious reader should refer to Paulin-Mohring’s work on this matter
[69, 70].

Exercise 14.1 Describe natural number addition using nat_rec instead of
the command Fixpoint.

Exercise 14.2 * Redefine the induction principle Z_btree_ind using the fix

construct.

14.1.5 Induction Principles for Predicates

The induction principle that is generated by default for inductive predicates
(inductive types of the Prop sort) is different from the induction principle that
is generated for the “twin” inductive type that has the same definitions and
constructors but is in the Set sort. Actually, the induction principle for types
of the sort Prop is simplified to express proof irrelevance.

In this section, we describe the differences between maximal induction
principles and simplified induction principles. The maximal induction prin-
ciple is the one obtained through the technique given in Sect. 14.1.3. The
simplified induction principle is the one that is constructed by default for
types of the sort Prop.

Inductive types of the sort Prop usually are dependent. When considering
an inductive type with n arguments, the maximal induction principle contains
a universal quantification over a predicate with n+1 arguments, the argument
of rank n+ 1 is in the type being considered, and the n other arguments are
necessary to make a well-typed term. For the minimal induction principle, a
predicate with only n arguments is used. The argument of rank n+1 is simply
dropped.

The minimal induction principle is obtained by instantiating the maximal
principle for a predicate with n + 1 arguments that forgets the last one and
refers to another predicate with n arguments.

For instance, the maximal induction principle for the inductive predicate
le should have the following type:

∀ (n:nat)(P:∀n0:nat, n ≤ n0 → Prop),
P n (le_n n)→(∀ (m:nat)(l:n ≤ m), P m l → P (S m)(le_S n m l))→
∀ (n0:nat)(l:n ≤ n0), P n0 l

Instantiating this type for the predicate “fun (m:nat) (_:n≤m) ⇒ (P m)”
gives the type that we are accustomed to see for le. We can check this with
the help of the Coq system:

Eval compute in

(∀ (n:nat)(P:nat→Prop),

(fun (n’:nat)(P:∀ m:nat, n’ ≤ m → Prop) ⇒

14.1 Formation Rules 393

P n’ (le_n n’)→
(∀ (m:nat)(h:n’ ≤ m), P m h → P (S m)(le_S n’ m h))→
∀ (m:nat)(h:n’ ≤ m), P m h) n

(fun (m:nat)(_:n ≤ m) ⇒ P m)).

= ∀ (n:nat)(P:nat→Prop),
P n →(∀m:nat, n ≤ m → P m → P (S m))→
∀m:nat, n ≤ m → P m

: Prop

The maximal induction principle can always be obtained using the Fixpoint

command. Here is an example for the predicate even (this predicate is defined
in Sect. 8.1). This proof is a structurally recursive function whose principal
argument is a proof that some number is even.

Fixpoint even_ind_max (P:∀ n:nat, even n → Prop)

(exp1:P 0 O_even)

(exp2:∀ (n:nat)(t:even n),

P n t → P (S (S n))(plus_2_even n t))(n:nat)(t:even n)

{struct t} : P n t :=

match t as x0 in (even x) return P x x0 with

| O_even ⇒ exp1

| plus_2_even p t’ ⇒
exp2 p t’ (even_ind_max P exp1 exp2 p t’)

end.

The simplified induction principle can also be obtained with a Fixpoint com-
mand. Here again, the induction principle is a function whose principal argu-
ment is the proof of an inductive predicate:

Fixpoint even_ind’ (P:nat→Prop)(exp1:P 0)

(exp2:∀ n:nat, even n → P n → P (S (S n)))(n:nat)(t:even n)

{struct t} : P n :=

match t in (even x) return P x with

| O_even ⇒ exp1

| plus_2_even p t’ ⇒ exp2 p t’ (even_ind’ P exp1 exp2 p t’)

end.

As we see in this definition, the typing information added to the dependent
pattern matching construct does contain an as part. This corresponds to the
fact that P has only one argument instead of two. The simplified induction
principle for the predicate clos_trans on relations (see Sect. 8.1.1) can also
be reconstructed with the following definition:

Fixpoint clos_trans_ind’ (A:Set)(R P:A→A→Prop)

(exp1:∀ x y:A, R x y → P x y)

(exp2:∀ x y z:A,

clos_trans A R x y →
P x y → clos_trans A R y z → P y z → P x z)(x y:A)

394 14 ** Foundations of Inductive Types

(p:clos_trans A R x y){struct p} : P x y :=

match p in (clos_trans _ _ x x0) return P x x0 with

| t_step x’ y’ h ⇒ exp1 x’ y’ h

| t_trans x’ y’ z’ h1 h2 ⇒
exp2 x’ y’ z’ h1 (clos_trans_ind’ A R P exp1 exp2 x’ y’ h1)

h2 (clos_trans_ind’ A R P exp1 exp2 y’ z’ h2)

end.

Exercise 14.3 ** Manually build the induction principle for the sorted pred-
icate from Sect. 8.1.

14.1.6 The Scheme Command

In the Coq system, the simplified induction principle is automatically gener-
ated for inductive types of the sort Prop and the maximal induction principle
is automatically generated for the other inductive type definitions. To obtain
a maximal induction principle for an inductive type in the Prop sort, it is
possible to perform a manual construction as we did for even_ind_max, but it
is also possible to use a special command, called Scheme. Here is an example
of use:

Scheme even_ind_max := Induction for even Sort Prop.

The keyword Induction means that a maximal induction principle is re-
quested. This keyword can be replaced with the keyword Minimality to obtain
a simplified induction principle.

We can also produce simple recursors with the Scheme command. For
instance, the simple recursor nat_simple_rec described in Sect. 14.1.4 can
be obtained with the following command:

Scheme nat_simple_rec := Minimality for nat Sort Set.

Exercise 14.4 * Redo the proof of the theorem le_2_n_pred from Sect. 9.2.4
using the maximal induction principle for le.

14.2 *** Pattern Matching and Recursion on Proofs

With one notable exception, the formation rules for pattern matching pre-
clude that a term of the sort Type or Set can be obtained through a pattern
matching construct of expressions of the sort Prop. This restriction ensures
proof irrelevance. This is necessary to ensure that the extraction process is a
safe way to produce code.

14.2 *** Pattern Matching and Recursion on Proofs 395

14.2.1 Restrictions on Pattern Matching

When building a function of the type “∀x:A, P x → T x” where “P x” has
sort Prop and “T x” has the sort Set, the restriction makes it difficult to build
a function that is recursive over the proof of “P x.” A common solution is to
perform a proof by induction on x, to determine the value in each case, and
to use inversions on “P x” to obtain the needed arguments for recursive calls.
For instance, consider a strongly specified function for subtracting natural
numbers:

Definition rich_minus (n m:nat) := {x : nat | x+m = n}.

Definition le_rich_minus : ∀ m n:nat, n ≤ m → rich_minus m n.

This definition cannot be obtained using a direct elimination of the hypothesis
n≤m, but we can use a proof by induction over arguments of type nat.

induction m.

intros n Hle; exists 0.

...
Hle : n ≤ 0
============================

0+n = 0

This goal statement is in sort Prop and pattern matching on hypothesis Hle

is not restricted. Pattern matching actually occurs in the inversion tactic.
It returns a single trivial goal:

inversion Hle; trivial.

The proof continues with the step case:

intros n; case n.

intros Hle; exists (S m).

...
IHm : ∀n:nat, n ≤ m → rich_minus m n
n : nat
Hle : 0 ≤ S m
============================

S m + 0 = S m

Here again, the goal statement is in the sort Prop and we can build a proof
without any restriction.

auto with arith.

intros n’ Hle.

...
IHm : ∀n:nat, n ≤ m → rich_minus m n
n : nat
n’ : nat

396 14 ** Foundations of Inductive Types

Hle : S n’ ≤ S m
============================

rich_minus (S m)(S n’)

At this point, the goal statement and the hypothesis IHm are both in the sort
Set and we can reason by cases on the instantiation of the hypothesis for n’.

elim (IHm n’).

intros r Heq.

exists r.

rewrite <- Heq; auto with arith.

Now, the goal statement is in the sort Prop and pattern matching on the
hypothesis Hle is possible. We can use the inversion tactic and conclude:

inversion Hle; auto with arith.

Defined.

Exercise 14.5 ** We consider the inductive property on polymorphic lists “u
is a prefix of v”:

Set Implicit Arguments.

Inductive lfactor (A:Set) : list A → list A → Prop :=

lf1 : ∀ u:list A, lfactor nil u

| lf2 : ∀ (a:A)(u v:list A),

lfactor u v → lfactor (cons a u)(cons a v).

Build a function realizing the following specification:

∀ (A:Set)(u v:list A), lfactor u v → {w : list A | v = app u w}

14.2.2 Relaxing the Restrictions

The main exception to the rule that pattern matching cannot be done on
proofs when aiming for data of the type Type or the sort Set occurs when
the inductive type has only one constructor and this constructor only takes
arguments whose type has type Prop. Intuitively, pattern matching on this
kind of property is acceptable because no data of sort Type or Set can be
obtained in this manner. When a definition is parametric, only the regular ar-
guments are constrained to inhabit a type of sort Prop. The relaxed condition
for pattern matching on an inductive type of sort Prop is used extensively for
equality. It is remarkable that this kind of pattern matching directly provides
the possibility of representing rewriting. Equality is described by the following
inductive definition:

Inductive eq (A:Type)(x:A) : A→Prop :=

refl_equal : eq A x x.

14.2 *** Pattern Matching and Recursion on Proofs 397

If we forget about the parametric arguments, the constructor refl_equal is
a constant and pattern matching is allowed for all elements of this type to
obtain elements of type Type and Set. The constants provided in the Coq
libraries could have been obtained using the following definitions:

Definition eq_rect (A:Type)(x:A)(P:A→Type)(f:P x)(y:A)(e:x = y)

: P y := match e in (_ = x) return P x with

| refl_equal ⇒ f

end.

Definition eq_rec (A:Type)(x:A)(P:A→Set) :

P x → ∀ y:A, x = y → P y := eq_rect A x P.

Implicit Arguments eq_rec [A].

Here the definition of eq_rec relies on the convertibility between Set and
Type presented in Sect. 2.5.2.

The function eq_rec is mainly useful for dependent types. If we need to
construct data of the type “P x,” we know that x=y holds, and we have a
value a of the type ”P y,” then the value a can be returned after we have
shown that its type can be rewritten in “P x.” For instance, let us consider
a type A, a function A_eq_dec that decides the equality of two expressions, a
dependent type B:A→Set, a function “f:∀ x:A, B x,” and two values a of the
type A and v of the type “B a.” We want to define the function that coincides
with f everywhere but in a, where the result is v. This function can be defined
in the following manner:

Section update_def.

Variables (A : Set)(A_eq_dec : ∀ x y:A, {x = y}+{x ̸= y}).

Variables (B : A→Set)(a : A)(v : B a)(f : ∀ x:A, B x).

Definition update (x:A) : B x :=

match A_eq_dec a x with

| left h ⇒ eq_rec a B v x h

| right h’ ⇒ f x

end.

End update_def.

Reasoning about the function eq_rec is difficult because we reach the limits of
the expressive power of inductive types. To solve this difficulty, the Coq system
provides an extra axiom eq_rec_eq (in the module Eqdep) that expresses the
intuitive meaning of eq_rec. Its result is the same as its input.

eq_rec_eq

:∀ (U:Type)(Q:U→Set)(p:U)(x:Q p)(h:p = p),

x = eq_rec p Q x p h

398 14 ** Foundations of Inductive Types

Exercise 14.6 ** Show that the update function satisfies the following propo-
sition:

update_eq

:∀ (A:Set)(eq_dec:∀ x y:A, {x = y}+{x ̸= y})

(B:A→Set)(a:A)(v:B a)(f:∀ x:A, B x),

update A eq_dec B a v f a = v.

14.2.3 Recursion

In spite of the restriction on pattern matching, it is possible to define recursive
functions with a result in the Set sort and a principal argument in the Prop

sort. The principal argument can then only be used to ensure the termination
of the algorithm, but not to control the choices that decide which value is
returned.

The best known example of recursion over an inductive predicate for a
result in the Set sort is provided by well-founded induction that relies on an
inductive notion of accessibility or adjoint [2, 52]. This notion of accessibility
is described by the following inductive definition:

Inductive Acc (A:Set)(R:A→A→Prop) : A→Prop :=

Acc_intro : ∀ x:A, (∀ y:A, R y x → Acc R y)→ Acc R x.

If R is an arbitrary relation, we say that a sequence ai(i ∈ N) is R-decreasing
if “R ai+1 ai” holds for every index i. If Φ is the predicate “does not belong
to an infinite R-decreasing sequence,” the following property holds:

∀x.(∀y.R y x → Φ y) ↔ Φ x

Intuitively, if x belonged to an infinite R-decreasing sequence, the successor
of y in that sequence would also belong to an infinite R-decreasing chain. In
this sense, the accessibility predicates gives a good constructive description
of the elements that do not belong to infinite decreasing chains. We can use
this to express that function computations do not involve infinite sequences
of recursive calls.

When hx is a proof that some element x is accessible and y is the prede-
cessor of x for the relation R, as expressed by a proof hr of the type “R y x”,
we can easily build a proof that y is accessible by pattern matching. This new
proof is structurally smaller than hx. The theorem Acc_inv given in the Coq
library performs this proof:

Print Acc_inv.

Acc_inv =
fun (A:Set)(R:A→A→Prop)(x:A)(H:Acc R x) ⇒

match H in (Acc _ a) return (∀ y:A, R y a → Acc R y) with
| Acc_intro x0 H0 ⇒ H0
end

14.2 *** Pattern Matching and Recursion on Proofs 399

: ∀ (A:Set)(R:A→A→Prop)(x:A),
Acc R x → ∀ y:A, R y x → Acc R y

Arguments A, R, x are implicit
Argument scopes are [type_scope _ _ _ _ _]

The pattern matching construct found in this definition is not restricted be-
cause the result is in the Prop sort.

The proof “Acc_inv A R x H y Hr” is structurally smaller than H, so it
can be used as an argument in a recursive call for a function whose principal
argument is H, even though the result is the sort Set. This is used in the
following definition:

Fixpoint Acc_iter (A:Set)(R:A→A→Prop)(P:A→Set)

(f:∀ x:A, (∀ y:A, R y x → P y)→ P x)(x:A)(H:Acc R x)

{struct H} : P x :=

f x (fun (y:A)(Hr:R y x) ⇒ Acc_iter P f (Acc_inv H y Hr)).

This function contains a recursive call, but apparently no pattern matching
construct. Actually, the pattern matching construct is inside the Acc_inv

function that is used only to provide the principal argument for the recursive
call. This works only because Acc_inv is defined in a transparent manner
and Coq is able to check that the recursive call follows the constraints of
structural recursion. We obtain a function that is recursive over a proposition
of the Prop sort and that outputs regular data whose type is in the Set sort.

This is used to define well-founded recursive functions. A relation on a type
A is called noetherian if all elements of A are accessible. Every noetherian re-
lation is also well-founded, in the sense that there is no element of A belonging
to an infinite decreasing chain. By abusive notation, the Coq libraries use the
term well_founded to denote noetherian relations. In classical logic the two
notions are equivalent (see Exercise 15.7).

Print well_founded.

well_founded =
fun (A:Set)(R:A→A→Prop) ⇒ ∀ a:A, Acc R a

: ∀A:Set, (A→A→Prop)→Prop
Argument A is implicit
Argument scopes are [type_scope _]

When a relation is well-founded, we can define recursive functions where the
relation is used to control which recursive calls are correct. This is expressed
with a function well_founded_induction that is defined approximately as
follows:

Definition well_founded_induction (A:Set)(R:A→A→Prop)

(H:well_founded R)(P:A→Set)

(f:∀ x:A, (∀ y:A, R y x → P y)→ P x)(x:A) : P x :=

Acc_iter P f (H x).

400 14 ** Foundations of Inductive Types

The definitions of Acc_iter and well_founded_induction given in the Coq
library may be different, but the ones we give here are correct and have the
same type. The use of well_founded_induction is described in more detail
in Sect. 15.2.

The scheme used in well-founded recursion to define a recursive function
over a proposition to obtain a result in the sort Set can be reproduced with
other inductive predicates, as long as we take care to isolate the pattern
matching constructs in subterms in the Prop sort, as we did here for the
transparent theorem Acc_inv. We give a detailed example in Sect. 15.4.

14.3 Mutually Inductive Types

It is possible to define mutual inductive types, where at least two inductive
types refer to each other.

14.3.1 Trees and Forests

A typical example of a mutual inductive type provides trees where nodes can
have an arbitrary but always finite number of branches. This can be expressed
with a type where each node carries a list of trees, which we call a forest.

Inductive ntree (A:Set) : Set :=

nnode : A → nforest A → ntree A

with nforest (A:Set) : Set :=

nnil : nforest A | ncons : ntree A → nforest A → nforest A.

In this definition the type ntree uses the type nforest and the type nforest
uses the type ntree. In this sense, the two types are mutually inductive.

To compute and reason on these mutually inductive types, the Coq system
also provides a means to construct mutually structural recursive functions. For
instance, the function that counts the number of nodes in a tree can be written
in the following manner:

Open Scope Z_scope.

Fixpoint count (A:Set)(t:ntree A){struct t} : Z :=

match t with

| nnode a l ⇒ 1 + count_list A l

end

with count_list (A:Set)(l:nforest A){struct l} : Z :=

match l with

| nnil ⇒ 0

| ncons t tl ⇒ count A t + count_list A tl

end.

14.3 Mutually Inductive Types 401

An unfortunate characteristic of mutual inductive types is that the Coq
system generates induction principles that do not cover the mutual structure
of these types:

ntree_ind :

∀ (A:Set)(P:ntree A → Prop),

(∀ (a:A)(l:nforest A), P (nnode A a l))→
∀ t:ntree A, P t.

This induction principle does not take into account the fact that the list that
appears as a component of the nnode terms can contain subterms of the same
type. As a result, this induction principle is practically useless. The induction
principle that is associated with the type nforest is also excessively simplified
and often unpractical.

Better induction principles can be obtained by using the Scheme command
(already introduced in Sect. 14.1.6):

Scheme ntree_ind2 :=

Induction for ntree Sort Prop

with nforest_ind2 :=

Induction for nforest Sort Prop.

This command actually generates two induction principles that are named
as indicated in the command (here ntree_ind2 and nforest_ind2). We can
have a closer look at the first one:

ntree_ind2
: ∀ (A:Set)(P:ntree A → Prop)(P0:nforest A → Prop),

(∀ (a:A)(n:nforest A), P0 n → P (nnode A a n))→
P0 (nnil A)→
(∀n:ntree A,

P n → ∀n0:nforest A, P0 n0 → P0 (ncons A n n0))→
∀n:ntree A, P n

This induction principle quantifies over two predicates: P is used for the type
ntree and P0 is used for the type nforest. There are three principal premises
corresponding to the three constructors of the two types. Finally, the epilogue
expresses that the predicate P holds for all trees of the type ntree. The in-
duction principle for the type nforest has the same shape, only the epilogue
differs. We present later a proof using this induction principle.

Mutually inductive types can also be propositions. For instance, we can
construct the inductive predicates occurs and occurs_forest to express that
a given element occurs in a tree:

Inductive occurs (A:Set)(a:A) : ntree A → Prop :=

occurs_root : ∀ l, occurs A a (nnode A a l)

| occurs_branches :

∀ b l, occurs_forest A a l → occurs A a (nnode A b l)

402 14 ** Foundations of Inductive Types

with occurs_forest (A:Set)(a:A) : nforest A → Prop :=

occurs_head :

∀ t tl, occurs A a t → occurs_forest A a (ncons A t tl)

| occurs_tail :

∀ t tl,

occurs_forest A a tl → occurs_forest A a (ncons A t tl).

Here again, the induction principles that are generated by default are usually
too weak and it is useful to generate the right ones with the Scheme command.

14.3.2 Proofs by Mutual Induction

In this section, we consider a small theorem about trees of the type ntree.
This theorem expresses properties about two functions that compute the sum
of values labeling a tree of the type ntree and a list of trees of the type
nforest.

Fixpoint n_sum_values (t:ntree Z) : Z :=

match t with

| nnode z l ⇒ z + n_sum_values_l l

end

with n_sum_values_l (l:nforest Z) : Z :=

match l with

| nnil ⇒ 0

| ncons t tl ⇒ n_sum_values t + n_sum_values_l tl

end.

Our theorem expresses that the sum of all the values in a tree is greater than
the number of nodes in this tree, when all the values are greater than 1.

Theorem greater_values_sum :

∀ t:ntree Z,

(∀ x:Z, occurs Z x t → 1 ≤ x)→ count Z t ≤ n_sum_values t.

We want to prove this statement by induction over the tree t. Since this vari-
able is in the type “ntree Z,” with only one constructor that has no child of
type “ntree Z,” this proof by induction gives only an unsolvable goal if we
use the default induction principle ntree_ind. On the other hand, the induc-
tion proof works well if we use the principle of mutual induction ntree_ind2

that we obtained through the Scheme command. Using this principle requires
special care, because we need to express how the variable P0 is instantiated.

Proof.

intros t; elim t using ntree_ind2 with

(P0 := fun l:nforest Z ⇒
(∀ x:Z, occurs_forest Z x l → 1 ≤ x)→
count_list Z l ≤ n_sum_values_l l).

14.3 Mutually Inductive Types 403

The value given to P0 is the “twin” proposition of the proposition in the goal
statement. We simply replace occurrences of ntree with nforest, count with
count_list, and so on. The induction step generates three goals. The first
one is more readable after we have introduced the hypotheses and simplified
the goal statement. We use the lazy tactic rather than simpl because we
do not want the addition operation to be reduced as this would lead to an
unreadable goal.

intros z l Hl Hocc; lazy beta iota delta -[Zplus Zle];

fold count_list n_sum_values_l.

...
t : ntree Z
z : Z
l : nforest Z
Hl : (∀ x:Z, occurs_forest Z x l → 1 ≤ x)→

count_list Z l ≤ n_sum_values_l l
Hocc : ∀ x:Z, occurs Z x (nnode Z z l)→ 1 ≤ x
============================

1 + count_list Z l ≤ z + n_sum_values_l l

Here we need a theorem that decomposes the comparison between two sums
into a comparison between terms in the sum. The SearchPattern command
finds a good one:

SearchPattern (_ + _ ≤ _ + _).

...
Zplus_le_compat: ∀n m p q:Z, n ≤ m → p ≤ q → n+p ≤ m+q

This theorem has the right form to be used with apply and decomposes the
goal into two subgoals that are easily proved with the hypothesis Hocc and the
constructors of the inductive predicate occurs. In the second goal generated
by the induction step, we have to check that the property is satisfied for empty
tree lists. This goal is solved automatically. The next goal is a goal concerning
empty lists of tree. It uses the predicate P0 that we provided for the elim

tactic.

auto with *.

...
t : ntree Z
============================

(∀ x:Z, occurs_forest Z x (nnil Z)→ 1 ≤ x)→
count_list Z (nnil Z) ≤ n_sum_values_l (nnil Z)

auto with zarith.

The next goal is the last goal generated by the induction step and cor-
responds to a step case on a list of trees, with the possibility of using an
induction hypothesis for the first tree of the list and an induction hypothesis

404 14 ** Foundations of Inductive Types

for the tail of the list. This goal is more readable after we have introduced the
variables and hypotheses in the context and simplified the goal with respect
to the two functions count_list and n_sum_values_l:

intros t1 Hrec1 tl Hrec2 Hocc;

lazy beta iota delta -[Zplus Zle];

fold count count_list n_sum_values n_sum_values_l.

...
Hrec1 : (∀ x:Z, occurs Z x t1 → 1 ≤ x)→

count Z t1 ≤ n_sum_values t1
tl : nforest Z
Hrec2 : (∀ x:Z, occurs_forest Z x tl → 1 ≤ x)→

count_list Z tl ≤ n_sum_values_l tl
Hocc : ∀ x:Z, occurs_forest Z x (ncons Z t1 tl)→ 1 ≤ x
============================

count Z t1 + count_list Z tl ≤ n_sum_values t1 + n_sum_values_l tl

Here again, the proof is easy to complete using the theorem Zle_plus_plus

and the constructors for occurs and occurs_forest.

14.3.3 *** Trees and Tree Lists

A problem with the inductive types ntree and nforest is that the type
nforest is only the type of lists specialized to contain trees. All functions that
were already defined for lists need to be defined again for this new type and
their properties need to be proved once more. This can be avoided by defining
an inductive type of trees that simply relies on the type of polymorphic lists,
with the following inductive definition:

Inductive ltree (A:Set) : Set :=

lnode : A → list (ltree A)→ ltree A.

This command is accepted by Coq , but the induction principle constructed
by default is useless. It overlooks the fact that the list included in an lnode

term may contain subterms that deserve an induction hypothesis.

Check ltree_ind.

ltree_ind
: ∀ (A:Set)(P:ltree A → Prop),

(∀ (a:A)(l:list (ltree A)), P (lnode A a l))→
∀ l:ltree A, P l

For this kind of type, we can define a better adapted induction principle, but
the Scheme command does not solve our problem. We have to build the induc-
tion principle by hand with the Fixpoint command as we did in Sect. 14.1.4.
We use a nested fix construct. Nesting the fix construct inside the Fixpoint
command ensures that the recursive calls really occur on structurally smaller
terms for both recursions.

14.3 Mutually Inductive Types 405

Section correct_ltree_ind.

Variables

(A : Set)(P : ltree A → Prop)(Q : list (ltree A)→ Prop).

Hypotheses

(H : ∀ (a:A)(l:list (ltree A)), Q l → P (lnode A a l))

(H0 : Q nil)

(H1 : ∀ t:ltree A, P t →
∀ l:list (ltree A), Q l → Q (cons t l)).

Fixpoint ltree_ind2 (t:ltree A) : P t :=

match t as x return P x with

| lnode a l ⇒
H a l

(((fix l_ind (l’:list (ltree A)) : Q l’ :=

match l’ as x return Q x with

| nil ⇒ H0

| cons t1 tl ⇒ H1 t1 (ltree_ind2 t1) tl (l_ind tl)

end)) l)

end.

End correct_ltree_ind.

In this term, we call the “internal fixpoint” the expression

fix l_ind ... end.

The variable l is recognized as a structural subterm of t; the variable l’ is
also a structural subterm of t because it is a structural subterm of l through
the application of the internal fixpoint. The variable t1 is a structural sub-
term of l’ and by transitivity it is also a structural subterm of l and t. Thus,
applying ltree_ind2 to t1 is correct. This technique for building a suitable
induction principle for this data structure is also applicable for writing recur-
sive functions over trees of the type ltree.

While the Scheme command is used to provide simultaneously the induc-
tion principles for trees and forests, we need to construct manually another
induction principle for tree lists, this time by nesting an anonymous struc-
turally recursive function over trees inside a structurally recursive function
over lists of trees.

Exercise 14.7 ** Build the induction principle list_ltree_ind2 that is
suitable to reason by induction over lists of trees.

Exercise 14.8 Define the function

lcount:∀ A:Set, ltree A → nat

that counts the number of nodes in a tree of type ltree.

406 14 ** Foundations of Inductive Types

Exercise 14.9 **Define the functions ltree_to_ntree and ntree_to_ltree

that translate trees from one type to the other and respects the structure, and
prove that these functions are inverses of each other.

