Introduction to Coq
 Part 3: Some libraries

Yves Bertot

September 2023

General recursion

- Need to go beyond structural recursion
- Preserve guarantees of termination, but free from structure constraints
- In essence, separate the proof of termination from the algorithm description

Fueled recursion

- The easy trick: count the number of recursive calls
- Use an extra natural number argument
- Return a default value upon exhaustion
- Easy to program, but inconvenient
- Need to figure out how much fuel is enough
- Any gross over-estimate of fuel slows down the code
- Fuel also clutters the proofs
- Need to prove that the case of fuel exhaustion is never reached
- Tantamounts to proving that the intended algorithm was terminating

Example fuel argument

Fixpoint fact_fuel (x : Z) (fuel : nat) := match fuel with
| 0 => 0
| S p => if $x<=$? 0 then x * fact_fuel ($\mathrm{x}-1$) p end

Definition Zfact (x : Z) := fact_fuel x (S (Z.to_nat x)).

Principled separation of termination proofs

- A generic notion of well-founded relations
- Show that recursive calls follow such a well-founded relation
- Proofs can be moved away from algorithmic content
- Minimal clutter to ensure important tests are remembered

The Equations plugin

From Equations Require Import Equations.
Require Import Wellfounded.
\#[local]
Instance zltwf x :
WellFounded (fun $n m=x<=n<m$) := (Z.lt_wf x).

Equations Zfact'(x : Z) : Z
by wf x (fun $n m=0<=n<m$) :=
Zfact' x with (Z_le_dec x 0) := \{
| left _ => 1
| right xnle0 => x * Zfact' ($\mathrm{x}-1$)
\}.
Next Obligation.
lia.
Qed.

Comments on Equations

- Oriented towards frequent use of dependent types
- For instance, use of Z_le_dec of type:
forall $\mathrm{x} y$: $\mathrm{Z},\{\mathrm{x}<=\mathrm{y}\}+\{\sim \mathrm{x}<=\mathrm{y}\}$
- Rely on an inductive with two constructors, where the first one contains a proof of $\mathrm{x} \leq \mathrm{y}$
- This proof must be constructed at definition time
- The proof is provided at use time and can be used in proofs

Generic use of boolean test capture

```
Definition inspect \{A\} (a : A) : \{b | a = b\} :=
exist _ a eq_refl.
```

Notation "x 'eqn:' p" := (exist _ x p)
(only parsing, at level 20).

Equations Zfact2 (x : Z) : Z
by wf x (fun $n \mathrm{~m}=>0<=\mathrm{n}<\mathrm{m}$) := Zfact2 x with inspect ($\mathrm{x}<=$? 0) : $=$ \{ | true eqn: xle0 => 1
| false eqn: xnotle0 $=>$ x $*$ Zfact2 ($\mathrm{x}-1$)
\}.

Next Obligation.
lia.
Qed.

Advantage of the second approach

- The boolean algorithm can be programmed as usual
- Theorems are required to interpret the result
- In the example lia has the knowledge that $\mathrm{x}<=$? $0=$ false means $0<\mathrm{x}$

Using functions defined by Equations

- Reliance on proofs makes that computation is rarely possible
- In proofs: Equations provides lemma to be used for writing
- In computations: No computation inside Coq, but extraction makes it possible to generate OCaml code that performs the same

Example usage in proofs

Check (Zfact'_equation_1
: forall x : Z, Zfact' x =
Zfact'_unfold_clause_1 x (Z_le_dec x 0)).

Check (Zfact'_unfold_clause_1 = fun (x : Z) (refine : $\{x<=0\}+\{\sim x<=0\}$) $=>$
if refine then 1 else $x *$ Zfact' ($x-1$)

$$
\text { : forall } \mathrm{x}: \mathrm{Z},\{\mathrm{x}<=0\}+\{\sim \mathrm{x}<=0\}->\mathrm{Z}) \text {. }
$$

Lemma Zfact2_main (x : Z) :

$$
\text { Zfact2 } \mathrm{x}=\text { if } \mathrm{x}<=? 0 \text { then } 1 \text { else } \mathrm{x} * \text { Zfact2 }(\mathrm{x}-1) .
$$

Proof.
rewrite Zfact2_equation_1; simpl. destruct (x <=? 0) ; auto.
Qed.

Example extraction

Extraction Zfact2.
let rec zfact2 x = match inspect (Z.leb x ZO) with
| True -> Zpos XH
| False -> Z.mul x (let $y=Z$.sub $x(Z p o s X H)$ in zfact2 y)

Real Numbers

Examples using real numbers

- In type theory, only pure lambda-calculus and inductive types have computation constant
- Reasoning modulo axioms is possible, but the axioms come without computation constant
- Justifying the existence of classical real numbers relies on two axioms
- As a result, we can reason about real number computations, but not perform them in the same way

Example : computation with the number PI

Require Import Reals Lra.

Compute PI.
(* R1 + R1 * (let (x, Z) := PI_2_aux in x$) ~ *)$
Print PI.
(* PI $=2 *$ PI2 *)

Check PI_2_aux.
(* PI_2_aux :

$$
\{\mathrm{z}|\mathrm{R}| 7 / 8<=\mathrm{z}<=7 / 4 / \backslash-\cos \mathrm{z}=0\} *)
$$

Lemma example_formula_with_pi_and_sin : $1+\sin \mathrm{PI}=1$. Proof.
assert (tmp := sin_PI).
lra.
Qed.

How do I compute as with a pocket calculator

- Pocket calculator return approximations
- With minimal guarantees
- The quality degrades with the number of operations involved
- Hard to track by users
- Not satisfactory for proofs
- A proof approach relies on proving equalities or comparisons
- The previous example was an equality
- Equalities between real numbers and rational numbers are rare
- Comparisons are often good enough
- Even better: intervals

Mathematical Components

The Mathematical Components Library

- Library initiated by G. Gonthier in the proof of the 4 color theorem
- Extended for the proof of the odd-order theorem
- Comes with its own tactic language
- Contents covering finite types, group theory, finite dimension linear algebra, elementary number theory, ponymials, etc.
- A principle use of boolean predicates and reflexion

A hierarchy of structures

- Common theorems should be written (and proved) only once
- There should be a mechanism to inherit theorems for types that respect the right structure
- Type classes
- Canonical structures

Example canonical structure

Require Import Arith ZArith List Bool.
Structure eqtype :=
\{ sort : Type; eq_op : sort -> sort -> bool;
eq_prop : forall x y, eq_op $x y=t r u e ~<->~ x ~=~ y\} . ~$
Definition count (T : eqtype) (v : sort T):
list (sort T) -> nat :=
fold_right
(fun x r $=>$ if eq_op $T \mathrm{x}$ v then $1+\mathrm{r}$ else r) 0 .
Fail Check count _ 2 (2 :: 4 :: 5 :: 2 :: nil).
Canonical nat_eqtype := Build_eqtype nat Nat.eqb Nat.eqb_ec
Check count _ 2 (2 :: 4 :: 5 :: 2 :: nil).

Example continued

Fail Check count _ 2\% (2 :: 4 :: 5 :: 2 :: nil) $\%$ Z.
Canonical Z_eqtype := Build_eqtype Z Z.eqb Z.eqb_eq.
Check count _ 2\% Z (2 :: 4 :: 5 :: 2 :: nil) $\%$ Z.

Characteristic of Mathematical Components

- Exploit proof irrelevance where it can be proved
- Types with decidable equality
- Finite types, etc
- Proposes its own set of tactics
- Intensive use of rewriting, unfolding
- Make it easy to exploit changes of point of view

Example

Example with matrices

- Computing the determinant of a matrix

Mathematical idea

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

- The determinant is $(-1)^{n+1}$
- the proof relies on expansion on the first column

Defining the matrix

Definition rotmx n : 'M [K]_n :=
\matrix_(i<n, $<$ n) $(((i .+1 \% \% n)==j) \% N) \%: R$.

- i and j are bound in the \matrix notation
- i and j are bounded natural numbers
- Coerced silently into natural numbers for the modulo operation \%\%
- comparison with j is at natural number level
- The boolean is silently coerced to 1 or 0
- Then coerced explicitly into the field K using the $\%$: R notation
- The latter will be silent in the future

Demo on a fixed dimension

- computing the determinant for the matrix of size 2
- Use of expand_det_col giving a natural number to choose the column
- Use of mxE to view a matrix as a function of the two indices
- Use of big_ord_recr to remove elements of the sum one by one
- Use of theorems for ring structures, inherited by the field K
- Use of $\backslash=$ to cleanup computations and notations

Demo on an arbirary dimension

- No use of induction
- After expandin on the first column, use a theorem that distinguishes a given term of the sum
- Use of a generic lemma for a big iteration on the neutral element
- Need to show that all terms are 0
- use the fact that a bounded integer is smaller than the bound
- Need to show that the last cofactor is a multiple of the identity matrix
- Computation on a submatrix, reasoning on index shifts

