
Introduction to Coq
Part 3: Some libraries

Yves Bertot

September 2023

1 / 28

General recursion

▶ Need to go beyond structural recursion

▶ Preserve guarantees of termination, but free from structure
constraints

▶ In essence, separate the proof of termination from the
algorithm description

2 / 28

Fueled recursion

▶ The easy trick: count the number of recursive calls
▶ Use an extra natural number argument
▶ Return a default value upon exhaustion

▶ Easy to program, but inconvenient
▶ Need to figure out how much fuel is enough
▶ Any gross over-estimate of fuel slows down the code

▶ Fuel also clutters the proofs
▶ Need to prove that the case of fuel exhaustion is never reached
▶ Tantamounts to proving that the intended algorithm was

terminating

3 / 28

Example fuel argument

Fixpoint fact_fuel (x : Z) (fuel : nat) :=

match fuel with

| 0 => 0

| S p => if x <=? 0 then x * fact_fuel (x - 1) p

end

Definition Zfact (x : Z) := fact_fuel x (S (Z.to_nat x)).

4 / 28

Principled separation of termination proofs

▶ A generic notion of well-founded relations

▶ Show that recursive calls follow such a well-founded relation

▶ Proofs can be moved away from algorithmic content

▶ Minimal clutter to ensure important tests are remembered

5 / 28

The Equations plugin

From Equations Require Import Equations.

Require Import Wellfounded.

#[local]

Instance zltwf x :

WellFounded (fun n m => x <= n < m) := (Z.lt_wf x).

Equations Zfact’(x : Z) : Z

by wf x (fun n m => 0 <= n < m) :=

Zfact’ x with (Z_le_dec x 0) := {

| left _ => 1

| right xnle0 => x * Zfact’ (x - 1)

}.

Next Obligation.

lia.

Qed.

6 / 28

Comments on Equations

▶ Oriented towards frequent use of dependent types

▶ For instance, use of Z le dec of type:
forall x y : Z, {x <= y}+{~ x <= y}

▶ Rely on an inductive with two constructors, where the first
one contains a proof of x ≤ y

▶ This proof must be constructed at definition time

▶ The proof is provided at use time and can be used in proofs

7 / 28

Generic use of boolean test capture

Definition inspect {A} (a : A) : {b | a = b} :=

exist _ a eq_refl.

Notation "x ’eqn:’ p" := (exist _ x p)

(only parsing, at level 20).

Equations Zfact2 (x : Z) : Z

by wf x (fun n m => 0 <= n < m) :=

Zfact2 x with inspect (x <=? 0) := {

| true eqn: xle0 => 1

| false eqn: xnotle0 => x * Zfact2 (x - 1)

}.

Next Obligation.

lia.

Qed.

8 / 28

Advantage of the second approach

▶ The boolean algorithm can be programmed as usual
▶ Theorems are required to interpret the result

▶ In the example lia has the knowledge that
x <=? 0 = false means 0 < x

9 / 28

Using functions defined by Equations

▶ Reliance on proofs makes that computation is rarely possible

▶ In proofs: Equations provides lemma to be used for writing

▶ In computations: No computation inside Coq, but extraction
makes it possible to generate OCaml code that performs the
same

10 / 28

Example usage in proofs

Check (Zfact’_equation_1

: forall x : Z, Zfact’ x =

Zfact’_unfold_clause_1 x (Z_le_dec x 0)).

Check (Zfact’_unfold_clause_1 =

fun (x : Z) (refine : {x <= 0} + {~ x <= 0}) =>

if refine then 1 else x * Zfact’ (x - 1)

: forall x : Z, {x <= 0} + {~ x <= 0} -> Z).

Lemma Zfact2_main (x : Z) :

Zfact2 x = if x <=? 0 then 1 else x * Zfact2 (x - 1).

Proof.

rewrite Zfact2_equation_1; simpl.

destruct (x <=? 0); auto.

Qed.

11 / 28

Example extraction

Extraction Zfact2.

let rec zfact2 x =

match inspect (Z.leb x Z0) with

| True -> Zpos XH

| False -> Z.mul x (let y = Z.sub x (Zpos XH) in

zfact2 y)

12 / 28

Real Numbers

13 / 28

Examples using real numbers

▶ In type theory, only pure lambda-calculus and inductive types
have computation constant

▶ Reasoning modulo axioms is possible, but the axioms come
without computation constant

▶ Justifying the existence of classical real numbers relies on two
axioms

▶ As a result, we can reason about real number computations,
but not perform them in the same way

14 / 28

Example : computation with the number PI

Require Import Reals Lra.

Compute PI.

(* R1 + R1 * (let (x, _) := PI_2_aux in x) *)

Print PI.

(* PI = 2 * PI2 *)

Check PI_2_aux.

(* PI_2_aux :

{z | R | 7 / 8 <= z <= 7 / 4 /\ - cos z = 0} *)

Lemma example_formula_with_pi_and_sin : 1 + sin PI = 1.

Proof.

assert (tmp := sin_PI).

lra.

Qed.
15 / 28

How do I compute as with a pocket calculator

▶ Pocket calculator return approximations
▶ With minimal guarantees

▶ The quality degrades with the number of operations involved
▶ Hard to track by users
▶ Not satisfactory for proofs

▶ A proof approach relies on proving equalities or comparisons
▶ The previous example was an equality
▶ Equalities between real numbers and rational numbers are rare
▶ Comparisons are often good enough
▶ Even better: intervals

16 / 28

Mathematical Components

17 / 28

The Mathematical Components Library

▶ Library initiated by G. Gonthier in the proof of the 4 color
theorem

▶ Extended for the proof of the odd-order theorem

▶ Comes with its own tactic language

▶ Contents covering finite types, group theory, finite dimension
linear algebra, elementary number theory, ponymials, etc.

▶ A principle use of boolean predicates and reflexion

18 / 28

A hierarchy of structures

▶ Common theorems should be written (and proved) only once
▶ There should be a mechanism to inherit theorems for types

that respect the right structure
▶ Type classes
▶ Canonical structures

19 / 28

Example canonical structure

Require Import Arith ZArith List Bool.

Structure eqtype :=

{ sort : Type; eq_op : sort -> sort -> bool;

eq_prop : forall x y, eq_op x y = true <-> x = y}.

Definition count (T : eqtype) (v : sort T):

list (sort T) -> nat :=

fold_right

(fun x r => if eq_op T x v then 1 + r else r) 0.

Fail Check count _ 2 (2 :: 4 :: 5 :: 2 :: nil).

Canonical nat_eqtype := Build_eqtype nat Nat.eqb Nat.eqb_eq.

Check count _ 2 (2 :: 4 :: 5 :: 2 :: nil).

20 / 28

Example continued

Fail Check count _ 2%Z (2 :: 4 :: 5 :: 2 :: nil)%Z.

Canonical Z_eqtype := Build_eqtype Z Z.eqb Z.eqb_eq.

Check count _ 2%Z (2 :: 4 :: 5 :: 2 :: nil)%Z.

21 / 28

Characteristic of Mathematical Components

▶ Exploit proof irrelevance where it can be proved
▶ Types with decidable equality
▶ Finite types, etc

▶ Proposes its own set of tactics
▶ Intensive use of rewriting, unfolding
▶ Make it easy to exploit changes of point of view

22 / 28

Example

23 / 28

Example with matrices

▶ Computing the determinant of a matrix

24 / 28

Mathematical idea


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


▶ The determinant is (−1)n+1

▶ the proof relies on expansion on the first column

25 / 28

Defining the matrix

Definition rotmx n : ’M[K]_n :=

\matrix_(i < n, j < n) (((i.+1 %% n) == j)%N)%:R.

▶ i and j are bound in the \matrix notation

▶ i and j are bounded natural numbers

▶ Coerced silently into natural numbers for the modulo
operation %%

▶ comparison with j is at natural number level

▶ The boolean is silently coerced to 1 or 0
▶ Then coerced explicitly into the field K using the %:R notation

▶ The latter will be silent in the future

26 / 28

Demo on a fixed dimension

▶ computing the determinant for the matrix of size 2

▶ Use of expand det col giving a natural number to choose
the column

▶ Use of mxE to view a matrix as a function of the two indices

▶ Use of big ord recr to remove elements of the sum one by
one

▶ Use of theorems for ring structures, inherited by the field K

▶ Use of \= to cleanup computations and notations

27 / 28

Demo on an arbirary dimension

▶ No use of induction

▶ After expandin on the first column, use a theorem that
distinguishes a given term of the sum

▶ Use of a generic lemma for a big iteration on the neutral
element

▶ Need to show that all terms are 0

▶ use the fact that a bounded integer is smaller than the bound

▶ Need to show that the last cofactor is a multiple of the
identity matrix

▶ Computation on a submatrix, reasoning on index shifts

28 / 28

