
Introduction to Coq
Part 1: the calculus of inductive constructions

and inductive types

Yves Bertot

September 2023

1 / 32

A tutorial about Coq

Objectives of Coq session

▶ Write mathematical statements

▶ Mark some of these statements as “proved”

▶ Record the proofs for later analysis

▶ Perform some guaranteed computations

2 / 32

Bare metal and library extensions

▶ User interfaces: jscoq, coq-lsp, vscoq, coqide, emacs
▶ Follow download instructions from https://coq.inria.fr
▶ In a hurry, use https://coq.vercel.app/
▶ For a clean sheet,

https://coq.vercel.app/scratchpad.html

▶ The most basic commands
▶ Check : just verify that a formula is well formed
▶ Compute : force the computation

▶ Working with knowledge that has already been formalized:
loading libraries
▶ Loading elementary arithmetic Require Import Arith.
▶ More advanced arithmetic Require Import ZArith.
▶ Some datastructures Require Import List

3 / 32

https://coq.inria.fr
https://coq.vercel.app/
https://coq.vercel.app/scratchpad.html

Bare Coq

▶ Expressions are made of functions applied to arguments
▶ Variables receive their value a function application, forever

▶ There is no assignment construct that can change the value of
a variable

▶ Anonymous functions can be written by the user for
immediate use

▶ A point of syntax: parenthesis are not used to represent
function application

▶ Some predefined functions have an infix syntax

4 / 32

Function usage

Check Nat.add 3 5. (* the result shows predefined notation. *)

Check (fun x => 3 + x). (* temporary use of x *)

Check (fun x => 3 + x) 5. (* at execution x receives 5 *)

Compute (fun x => 3 + x) 5.

Fail Check x. (* x only exists inside the scope of the function *)

Note the syntax to write a function applied to two arguments
Parentheses are not needed to represent function application

5 / 32

Function types

▶ The command Check not only verifies that an expression is
correctly written, it also give its type

▶ A function with two arguments of type nat returning a value
of type nat has the following type

nat -> nat -> nat

▶ The arrow -> is not associative, but implicit parenthesis are as
follows:

nat -> (nat -> nat)

6 / 32

Sorts and Families of types

▶ Some types can a number parameter
▶ The type of vectors of a given size
▶ The type of numbers under a given bound

▶ These types are represented by functions whose output is in a
type of types

▶ Three types of types are given Set, Type, and Prop
▶ Types of types are called sort

▶ For instance nat has type Set

▶ A type of vectors could have type Type -> nat -> Type

▶ A type of bounded numbers could have type nat -> Set

7 / 32

Dependent types

▶ Let’s assume the existence of a type vector : Type ->

nat -> Type

▶ What would be the type of a function that takes as input a
natural number n and returns a vector of zeros, of length n?

▶ mk0vector : forall n : nat, vector nat n

▶ If the zeros are taken in an existing field type K, the type
would be:
mk0vector’ : forall n : nat, vector K n

▶ ∀ is often used instead of forall, theoretical lecture also calls
this a product type, using Π as notation

8 / 32

Dependent types

▶ Let’s assume the existence of a type vector : Type ->

nat -> Type

▶ What would be the type of a function that takes as input a
natural number n and returns a vector of zeros, of length n?

▶ mk0vector : forall n : nat, vector nat n

▶ If the zeros are taken in an existing field type K, the type
would be:
mk0vector’ : forall n : nat, vector K n

▶ ∀ is often used instead of forall, theoretical lecture also calls
this a product type, using Π as notation

8 / 32

The logic of dependent types

▶ A universally quantified theorem is a function that yields baby
theorems for every inputs

▶ If T1 is the theorem that says that every natural number can
be decomposed uniquely into a product of prime numbers,
then T1 24 is a theorem that says that 24 can be
decomposed . . .

▶ In this way, forall can really be read as a logical universal
quantification

▶ This relies on the fact that the theorem statement is
understood as a type

▶ The sort Prop is especially dedicated to types that are used to
denote mathematical statements

9 / 32

Inductive Types

▶ New types can be defined by providing constructors and
deducing a destructor by a minimality argument

▶ Running example a set of three elements

Inductive mod3 : Type := Zero | One | Two.

Check Zero.

Definition mod3_to_nat (x : mod3) : nat :=

match x with Zero => 0 | One => 1 | Two => 2 end.

Definition mod3_succ (x : mod3) : mod3 :=

match x with Zero => One | One => Two | Two => Zero end.

▶ The minimality principle is in the match construct

▶ Only required closes are Zero, One, and Two

10 / 32

Proofs, the bare metal way

Definition le_2_2 : 2 <= 2 := le_n 2.

Definition le_1_2 : 1 <= 2 := le_S 1 1 (le_n 1).

Definition le_0_2 : 0 <= 2 := le_S 0 1 (le_S 0 0 (le_n 0)).

Definition mod3_to_nat_le_2 (x : mod3) :

mod3_to_nat x <= 2 :=

match x with

| Zero => le_0_2

| One => le_1_2

| Two => le_2_2

end.

11 / 32

The elimination principle, for proofs

▶ Proving that a property holds for all elements of an inductive
type

▶ One only needs to check that property for every constructor
▶ The minimality principle that I mentioned before

Definition mod3_cases (P : mod3 -> Prop) (x : mod3)

(h0 : P Zero) (h1 : P One) (h2 : P Two) : P x :=

match x with

| Zero => h0

| One => h1

| Two => h2

end.

12 / 32

Inductive types with recursion

▶ Each constructor may be a function

▶ Arguments of the function may belong to the type being
defined

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

Check cons nat 3 (cons nat 2 (cons nat 1 (nil nat))).

13 / 32

structural recursion

▶ elements of inductive types with recursion can contain
arbitrary large amounts of information

▶ Recursive programming can handle all this data in
computations

▶ The command to define a recursive function is called
Fixpoint

▶ Restricted recursion by comparison with conventional
functional programming

▶ Guaranteed termination achieved through a syntactic criterion

▶ Recursive calls only allowed on subterms obtained by
pattern-matching

▶ The generic reasoning principle (akin to mod3 cases) is an
induction principle (with induction hypothesis)

14 / 32

Example recursive programming with lists

Fixpoint fold_right (A B : Type)

(f : A -> B -> B)(v : B)(l : list A) : B :=

match l with

| nil _ => v

| cons _ x tl => f x (fold_right A B f v tl)

end.

Compute fold_right nat nat Nat.add 0

(cons nat 3 (cons nat 2 (cons nat 1 (nil nat)))).

15 / 32

Matters of productivity and efficiency

▶ The predefined package of lists is more practical to use than
the type shown in these slides

▶ Notations and implicit arguments make it possible to avoid
writing obvious arguments

▶ Lists are linear representations of data collections, with an
access cost that is linear with respect to the amount of stored
data
▶ conventional programming languages like OCaml provide quasi

constant access
▶ Other data-structures, like binary search trees or tries, provide

much faster access

▶ Numbers have the same variability in efficiency
▶ Binary structures are used to represent integers
▶ Addition, multiplication, division are natural to program

structurally
▶ Other functions require inventiveness

16 / 32

For the record: factorial function with binary numbers

Require Import ZArith.

Fixpoint fact’ (p : positive) (offset : Z) : Z :=

match p with

| xH => (offset + 1)%Z

| xO p => fact’ p offset * (fact’ p (offset + (Zpos p)))

| xI p => (2 * (Zpos p) + 1 + offset) *

fact’ p offset * fact’ p (offset + (Zpos p))

end.

Definition Zfact (x : Z) : Z :=

match x with | Zpos p => fact’ p 0 | _ => 1%Z end.

Compute Zfact 50.

Computing large factorials will fail in the web-browser, but other
instances of Coq will have no problems

17 / 32

dependent families of inductive types

▶ The type list already presented is actually a family of
inductive types

▶ The parameter may be a piece of data, and the type may be
empty or inhabited depending on the parameter

▶ The simplest example: identity

Inductive eq (A : Type) (x : A) : A -> Prop :=

eq_refl : eq A x x.

▶ This is how equality is represented in Coq
▶ The generic reasoning principle (like mod3 above) has an

important meaning
▶ if eq A x y holds, then every property that holds for x also

holds for y

18 / 32

Pervasive use of inductive families of types for logic

▶ Logical connectives such as conjunction, disjunction, Truth,
and Falsehood are described as inductive types or type families

▶ Existential quantification also

▶ Equality also

▶ constructors give introduction rules, reasoning principles
(based on pattern-matching) give elimination rules

▶ In proofs, this will be made apparent by the use of a single
proof command for several behaviors

19 / 32

Existing data structures

▶ Natural numbers, type nat, interpretation by default of
arithmetic notations, more functions available after:
Require Import Arith.

▶ integers, type Z, based on a binary encoding, available after:
Require Import ZArith.

arithmetic notations can aim to this type after a simple
command

▶ rational numbers, type Q, available after:
Require Import QArith.

▶ Lists, type list, available after:
Require Import List.

▶ Various forms of binary trees, with efficient adding and lookup
functions

▶ Computation can be performed for recursive functions on
these datatypes, using the Compute command.

20 / 32

Proofs from the practical side

▶ Logical statements are types

▶ When there is an element in the type, the statement is proved

▶ Making proofs is constructing objects in types

▶ This can be done by writing programs (as was shown already)
▶ This is impratical for proofs of reasonable statements

▶ It is practical in Agda, but the user-interface has been
fine-tuned for that

▶ In Coq, one resorts to a proof mode, goals, and tactics

21 / 32

Demo: computing 10 digits of PI

Require Import Arith QArith.

Coercion Z.of_nat : nat >-> Z.

Fixpoint atan_approx (n : nat) (x : Q) :=

match n with

| 0%nat => x

| S p => (-1) ^ S p / (2 * S p + 1 # 1) *

x ^ (2 * S p + 1) + atan_approx p x

end.

Definition pi_digits (n m : nat) :=

let v := 4 * (atan_approx n (1/2) + atan_approx n (1/3)) in

(Qnum v * 10 ^ m / Zpos (Qden v))%Z.

Time Compute pi_digits 15 10.

(* result in less than 0.02 secs on my machine *)

22 / 32

Proof mode

▶ Entering the mode

Lemma example0 : forall (A : Prop) A -> A.

Proof.

============

forall A : Prop, A -> A

▶ The current goal is the statement we want to prove

▶ The next three commands called tactics will modify the goal

23 / 32

Transforming the goals

Lemma example0 : forall (A : Prop) A -> A.

Proof.

intros A hyp_A.

A : Prop

hyp_A : A

============

A

▶ The top of the bar is a context
▶ It contains things that are assumed to exist
▶ For instance, hyp A : A means: “hyp a is a proof of A”

▶ The text below the bar is what we need to prove

24 / 32

Transforming the goals (2)

Lemma example0 : forall (A : Prop) A -> A.

Proof.

intros A hyp_A.

exact hyp_A.

No more goals

▶ When a solution is found for a goal, it disappears

▶ If there were several goals, the system displays the next one
▶ For beginners, this can be puzzling

▶ the new goal may look that a transformation of the previous
one, even though they are rather unrelated

25 / 32

Finishing a proof

Qed.

▶ You have to type Qed. at the end of a proof
▶ Othewise

▶ The theorem is not saved
▶ You do not exit proof mode
▶ You cannot start another proof

▶ Other ways to exit proof mode
▶ Admitted. The theorem is saved, but recorded as not actually

proved
▶ Abort. The theorem is not saved
▶ Defined. Like Qed., but different on a technicality

26 / 32

A large number of tactics

▶ Step tactics for basic logical connectives: intros, assert,
apply, exact, destruct, split, left, right, exists

▶ Tactics for equality reasoning: reflexivity, rewrite,
replace

▶ Tactics for defined functions: unfold, fold, change

▶ Specialized tactics for inductive types: induction, case,
discriminate, injection, simpl, cbv

▶ Automation tactics: auto, tauto, intuition

▶ Domain specific automated tactics: ring, lia, lra, nia,
nra, interval (only loaded upon request)

27 / 32

A beginner’s tactic table

⇒ ∀ ∧
Hypothesis H apply H apply H destruct H as [H1 H2]

conclusion intros H intros H split

¬ ∃ ∨
Hypothesis H destruct H destruct H as [x H1] destruct H as [H1 | H2]

conclusion intros H exists v left or
right

= False

Hypothesis H rewrite H destruct H

rewrite <- H

conclusion reflexivity

ring

28 / 32

Goal handling tactics

▶ exact will solve a goal by providing an assumption from the
context that is the same

▶ assert (hyp name : statement) will create two goals
▶ In the first you have to prove statement
▶ In the secon you have an extra hypothesis hyp name stating

that statement holds

▶ Very useful to state intermediary steps in your proof, to make
it more readable

29 / 32

Proofs by induction

▶ induction e will be available anytime e belongs to an
inductive type

▶ The proof will follow a canonical structure, requiring to check
all constructors of the inductive type, providing induction
hypotheses when relevant

30 / 32

Demo time

31 / 32

Real numbers

▶ Real numbers cannot be described by inductive type

▶ We cannot use the Compute command to obtain a “better
form” of a real number

▶ However, we can compute in proof
▶ We can verify that two real numbers are equal
▶ We can add an hypothesis that states an approximation of

value

32 / 32

