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Introduction

Context

• Continuous proliferation & improvement of
remote data sensors

• Huge volume of unstructured satellite images
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Introduction

Context

• Crucial need: automatize the analysis of remote sensing data

• Remote sensing image classification: assign a semantic class to
every pixel

Input

⇒

Output

� Impervious surf.
� Building
� Low veget.
� Tree
� Car
� Clutter
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Introduction

Classification approaches

Pixelwise

• SVMs [Camps-Valls 2006]

• Random forests [Ham 2005]

• Neural networks [Goel2003,
Ratle 2010]

Graph-based

• Minimum spanning forest
[Bernard 2012]

• Partition trees [Valero 2010]

• Graph cut [Tarabalka 2014]

Feature engineering

• Morphological, attribute &
extinction profiles [Fauvel 2008,
Dalla Mura 2010]

• Texture + SVMs [Huang 2008]

• Strong shape prior [Lacoste 2005,
Wang 2010, Jeong 2015]

Deep learned features

• Convolutional neural networks
[Mnih 2012]

• Deep features + SVMs
[Chen 2014]

• Fully convolutional networks
[Marmanis 2016, Volpi 2017]

Spectral-spatial methods
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Introduction

Challenges: Large-scale data sources

• Increasing amount & openness of data, e.g.:
Pléiades: entire earth every day (< 1 m resolution)
Free Copernicus satellite data

⇒ Scalability: temporal/space complexity

• Intra-class variability:

Chicago Austin Vienna

• Interest in semantic classes (e.g., building, road, lane)

⇒ Need for high-level contextual reasoning (shape, patterns,...)

⇒ Generalization to different locations
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Introduction

Outline

1. Introduction

2. Classification with shape constraints

3. Video segmentation with shape growth/shrinkage constraint

4. Deep learning for large-scale image classification

5. Conclusions and future work
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Classification with shape constraints

Outline

1. Introduction

2. Classification with shape constraints

3. Video segmentation with shape growth/shrinkage constraint

4. Deep learning for large-scale image classification

5. Conclusions and future work
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Classification with shape constraints

Optimization with shape constraints

Common graph-based classification approach

Input

⇒

Pixelwise classif.
(e.g., SVM)

⇒

Spatial regularization
(e.g., graph cut)

Introducing shape constraints

• Shape information may improve classification [Tarabalka 2010]

E.g., rectangularity, area, compactness priors

• Difficult to optimize energies with high-level “regional” priors
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Classification with shape constraints

Optimization with shape constraints

State of the art

• Template matching

Graph-based [Fredman 2005]
Active contours [Cremers 2006]
Marked point processes [Ortner 2008, Jeong 2015]

• Soft priors: specific optimizer

Express in MRF’s pairwise interaction term
(e.g., compactness [Das 2009], star-shaped [Veksler 2008])
Linear approx. + trust regions opt. framework
(e.g., shape moments, convexity [Gorelick 2013 & 2014])

• Goal: Incorporate soft shape priors into the classification process

Multiple objects & classes

Multiple constraints
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Classification with shape constraints

Problem formulation: Multi-label classification

Image I , set of regions R = (Ri ), class labels L = (Li ), Li ∈ Ω. Minimize:

E (R,L) = EC (I ,R,L)︸ ︷︷ ︸
Color prior

+
∑
Ri∈R

ES(Ri , Li )︸ ︷︷ ︸
Shape prior

.

Color prior

EC (I ,R,L) =∑
Ri∈R

∑
Ij∈Ri

− logP(Li |Ij)︸ ︷︷ ︸
Classifier

• How well the labeling fits a
classifier’s prediction, based on
color/spectrum

• E.g., SVM-derived probabilities

Shape prior

ES(Ri , Li ) =
Shape feat. vector

−|Ri | logP(Li |
︷︸︸︷
Si )

• How plausible are the objects’ shapes

• Train shape feature distributions
by kernel density estimation
to derive P(Li |Si )
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Classification with shape constraints

Proposed optimization method

• Progressively update a solution to reduce E (R,L)

• Not feasible to explore entire search space to update regions

→ Maintain a hierarchical tree of superpixels (BPT)
→ The current solution is obtained by selecting the optimal combination

of nodes in the tree (dynamic prog.)
→ The solution is improved by local transformations on the tree

Binary partition tree (BPT)
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Classification with shape constraints

Constructing an initial BPT

Greedy construction algorithm

Iteratively merge the most similar
pair of regions:

• Color histograms to represent
regions

• Earth Mover Distance to
measure histogram dissimilarity

Issue with unoptimized BPTs

• Shape info cannot be used
during BPT construction

• Objects often not represented by
single node

E. Maggiori, Y. Tarabalka, G. Charpiat. “Improved partition trees for multi-class segmentation of remote sensing images”.
IGARSS 2015.
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Classification with shape constraints

Optimization algorithm

Optimization operator

“Prune and paste” move:

α and β spatial neighbors

Algorithm

Iterate:

1. Construct a heap of all moves
according to the energy gain.

2. Apply the best k moves

until no moves that decrease the
energy left.

→ Theoretical properties reduce search space of possible moves

• For every prune place (β) we only try a constant number of paste places (α)

E. Maggiori, Y. Tarabalka, G. Charpiat. “Optimizing Partition Trees for Multi-Object Segmentation with Shape Prior”.
BMVC 2015.
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Classification with shape constraints

Experiments

• Input: Google Maps image over Long Island
• SVM and shape features (area, rectangularity, elongatedness)

trained on adjacent image

Input (225×180) Reference
Tiles, roads, internal roads,

veget., shadow

SVM + Graph Cut
Acc. = 68%

SVM + BPT
Acc. = 65%

→ →
SVM + BPT opt.

Acc. = 79%
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Classification with shape constraints

Experiments

Convexity prior

Input Gorelick et al.
(ECCV 2014)

BPT Opt.

Cell nuclei:

Input
(457× 454)

Gorelick et al. Gorelick et al.,
object by object

BPT opt.
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Classification with shape constraints

Concluding remarks

• Shape-aware classification method has been proposed

Multiple soft shape constraints
Multi-class
Multi-object

• Issue: scalability

Computational complexity
Features
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Video segmentation with shape growth/shrinkage constraint

Outline

1. Introduction

2. Classification with shape constraints

3. Video segmentation with shape growth/shrinkage constraint

4. Deep learning for large-scale image classification

5. Conclusions and future work
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Video segmentation with shape growth/shrinkage constraint

Motivation: segment a melting flow in time series

⇒ ⇒ ⇒ ⇒

• Segment ice floes from time series of AMSR-E + MODIS images

• Main difficulties:
Low signal-to-noise ratio
Foreground & background intensity distributions vary significantly
Data for some pixels can be missing

• Solution: exploit temporal coherence
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Video segmentation with shape growth/shrinkage constraint

How to exploit temporal coherence?

Previous works: Our problem:

• Rely on coherence of
foreground/background
intensity distributions over
time [Shi’98,
Grundmann’10]

• Foreground/background
intensity distributions
vary significantly over
time

• Introduce shape priors into
image segmentation
[Cremers’02,
Schoenemann’07]

• Shape prior is unknown

• Shape is changing over
time

• Smooth 2D+T
spatio-temporal volume
[Riklin-Raviv’10, Wolz’10]

• Rapid shrinkage events
will be underestimated
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Video segmentation with shape growth/shrinkage constraint

Solution: introduce shape shrinkage or growth constraint

• Objective:
Segment monotonously growing or shrinking shapes,
From time sequences of extremely noisy images,
In a low computational time

• Method:
Formulate video segmentation as an optimization problem,
Using the spatio-temporal graph of pixels,
With shape growth or shrinkage constraint expressed with
directed infinite links.
Globally-optimal solution is computed with a graph cut

• Examples of growing shapes:

Savanna fires, 2D satellite data Brain tumor, 3D medical MRI volumes

Y. Tarabalka, G. Charpiat, L. Brucker, B. H. Menze. “Spatio-temporal video segmentation with shape growth or shrinkage
constraint”. IEEE Trans. on Image Processing, 2014.
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Video segmentation with shape growth/shrinkage constraint

Graph cut for image segmentation

• Goal: Compute T (t ∈ [1,T ]) segmentation maps
Lt = {Lt(x ,y) ∈ [0, 1], x = [1..H], y = [1..W ]},

Lt(x ,y) =

{
1, if (x , y) ∈ foreground at time t;

0, otherwise.

• Graph-cut segmentation:
1. map each image I (t) onto a graph
2. minimize a submodular energy of the form:

E t(L) =
∑

pixels i

V t
i (Lti ) +

∑
i∼j

W t
i ,j(L

t
i , L

t
j )

Lti = label of pixel i at time t

V t
i (Lti ) = penalty for a pixel i to have a label Lti

W t
i,j (L

t
i , L

t
j ) = interaction term between adjacent pixels i and j

source

source
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source

sink

sink
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to all nodes

from all nodes
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Video segmentation with shape growth/shrinkage constraint

Enforcing shape growth

• Shape growth = property that the foreground cannot
lose any pixel when time advances

• Enforcing shape growth (label 1 = foreground,
label 0 = background)

⇔ if Lt1

i = 1, then Lt2

i = 1 ∀t2 > t1

⇔ pair of pixels ((x , y , t), (x , y , t + 1)) cannot have
the pair of labels (1, 0)

⇔ directed infinite link from each pixel to its predecessor
in time

source

source

source

source

sink

sink

sink

sink

to all nodes

from all nodes

Image grid at time t

t+1

t+2

t+3

Joint segmentation with growth enforcement
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from all nodes
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8
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Independent segmentation of T images

⇓

⇓

t

t + 1

t + 2
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Video segmentation with shape growth/shrinkage constraint

Graph cut with shape growth constraint

• Segment jointly all T images together

apply graph cut to the 3D grid W × H × T

with directed infinite links in time

• Criterion minimized: E =
∑

t E
t under the constraint of shape

growth:

E =
∑

pixels i

Vi (Li ) +
∑
i∼j

Wi ,j(Li , Lj) + ∞
∑
t

δLti>Lt+1
i

source

source

source
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sink

sink

sink

to all nodes

from all nodes

Image grid at time t

t+1

t+2

t+3

Joint segmentation with growth enforcement

sink

to all nodes

from all nodes

t+1

t+2

t+3

Image grid at time t

source

8
8

8

Independent segmentation of T images

Y. Tarabalka Learning Approaches for Remote Sensing Image Classification 24 November 2017 23 / 50



Video segmentation with shape growth/shrinkage constraint

Extensions

• Shape shrinkage: reverse the direction of
infinite links

from each pixel to its successor in time

• 3D shape: set directed infinite links for all
voxel pairs ((x , y , z , t), (x , y , z , t − 1))

• Encourage, but not impose shape
growth: replace directed infinite links by
directed finite links

• Inter-sequences inclusion constraint:
foreground in one sequence has to be
included in foreground of another sequence

see figure

• Weighting frames by reliability
strong level of noise at time t → multiply
E t by a small reliability factor < 1

Sequence 2Sequence 1

t

t+1

t+2

t+3

Directed infinite links

Segmenting jointly two sequences
S1 and S2, by enforcing

the foreground of S1 to contain
the foreground of S2,

with directed infinite links between
all pixels of coordinates (x , y , t),

from S1 towards S2
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Video segmentation with shape growth/shrinkage constraint

Experiments: shrinking ice floe segmentation

Original MODIS data Graph-cut with directed infinite links
Manual segmentation

Dice score (DC) = 0.980 ± 0.007
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Video segmentation with shape growth/shrinkage constraint

Comparison with other graph-cut-based methods

• [w/o] No temporal links = independent segmentation of each frame

• [Feedforward] Foreground pixels of the frame t are marked as seeds
with infinite unary costs in the frame (t + 1)

• [Bi=const] Bidirectional temporal links with a constant weight

• [Bi=variable] Bidirectional temporal links are computed based on
intensity differences between pixels in successive frames [Wolz’10]

source

source

source

source

sink

sink

sink

sink

to all nodes

from all nodes

Image grid at time t

t+1

t+2

t+3
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source
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8

8
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Video segmentation with shape growth/shrinkage constraint

Comparison with other graph-cut-based methods

[w/o]

DC = .933 ± .099

[Feedforward]

DC = .554 ± .128

[Bi=variable]

DC = .958 ± .048

• Conclusion: These methods are very sensitive to:

noise
variations of foreground/background intensities
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Video segmentation with shape growth/shrinkage constraint

Using temporal links with constant weights

0 0.25 0.5 2 4 8 16 32 64 inf
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Bidirectional links = smoothing constraint
Monodirectional links = shrinkage constraint

Weight

Mean and standard deviation for the
dice score as a function of the temporal
link’s weight, when using mono- and
bidirectional temporal links
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 Monodirectional links = inf
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Monodirectional links = 2
Bidirectional links = 2
Bidirectional links = 16
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Day

Area of a multiyear ice floe as a function
of time, computed by using mono- and
bidirectional links with different weights
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Video segmentation with shape growth/shrinkage constraint

Concluding remarks

• The main contribution:

1. framework for segmentation of 2D/3D image time series with the
constraint of shape growth/shrinkage,

2. in order to be able to segment very noisy/low-contrast/incomplete
data,

3. in a very low computational time.

• Limitations:

Designed for specific shape
priors
Limited scalability

} Convolutional neural networks?
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Deep learning for large-scale image classification

Outline

1. Introduction

2. Classification with shape constraints

3. Video segmentation with shape growth/shrinkage constraint

4. Deep learning for large-scale image classification

5. Conclusions and future work
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Deep learning for large-scale image classification

Convolutional neural networks (CNNs) [LeCun 1998]

• Jointly learn to extract contextual features & conduct classification

Convolutional layers:

• Only local spatial connections

• Location invariance

• Learned convolution filters → feature maps

Pooling layers: subsample feature maps

• Increase receptive field ©
• Downgrade resolution

Robustness to spatial variation ©
Not good for pixelwise labeling §

5 3

12 1
12

Max pooling
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Deep learning for large-scale image classification

Remote sensing: dense classification with CNNs?

Fully convolutional networks (FCNs)

[Long et al., CVPR 2015]

• Interpolation with a learned kernel (“deconvolutional” layer)

• Lost resolution is upsampled

Proposed FCN for remote sensing

• Adapted from previous work (Mnih, 2013) and made it fully conv.

• 10x faster and more accurate
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Deep learning for large-scale image classification

Classification with FCNs: some results

Massachusetts dataset

[Dataset: Mnih, 2013]

Color input Reference FCN Pixelwise SVM

• Classification of 22.5 km2 (1 m resolution): 8.5 seconds
(2.7 GHz 8-core, Quadro K3100M GPU)

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “Convolutional neural networks for large-scale remote sensing image
classification”, IEEE TGRS 2017.
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Deep learning for large-scale image classification

Yielding high-resolution outputs

Recognition/localization (RL) trade-off

Subsampling:

• increases the receptive field (improving recognition)

• reduces resolution (hampering localization)

Input Ref. FCN

Recent work

Three families of architectures:

• Dilation (Chen et al., 2015; Dubrovina et al., 2016,...)

• Unpooling/deconv. (Noh et al., 2015; Volpi and Tuia, 2016,...)

• Skip networks (Long et al., 2015; Badrinarayanan et al., 2015,...)
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Deep learning for large-scale image classification

Goal: architecture that addresses RL trade-off

Premise

• CNNs do not need to “see” everywhere at the same resolution

• E.g., to classify central pixel:

Full resolution context Full resolution only near center

⇒ Combine resolutions in a flexible way to address trade-off
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Deep learning for large-scale image classification

Proposed method: MLP network

Concatenate

Learn to combine features

Upsample features

1. Base FCN

2. Extract intermediate features

⇒ Pool of features

3. Multi-layer perceptron (1 hidden layer)
learns how to combine those features

⇒ Output classification map

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “High-Resolution Aerial Image Labeling with Convolutional Neural Networks”,
IEEE TGRS 2017.
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Deep learning for large-scale image classification

Experiments

Vaihingen & Postdam ISPRS datasets:

Image GT Base FCN MLP

Impervious surface (white), Building (blue), Low veget.
(cyan), Tree (green), Car (yellow)

Vaihingen Imp. surf. Build. Low veg. Tree Car Acc.
CNN+RF 88.58 94.23 76.58 86.29 67.58 86.52

CNN+RF+CRF 89.10 94.30 77.36 86.25 71.91 86.89
Deconvolution 87.83

Dilation 90.19 94.49 77.69 87.24 76.77 87.70
Dilation + CRF 90.41 94.73 78.25 87.25 75.57 87.90

MLP 91.69 95.24 79.44 88.12 78.42 88.92

Submission to ISPRS server

• Overall accuracy: 89.5%

• Second place (out of 29) at the time of submission

• Significantly simpler and faster than other methods
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Deep learning for large-scale image classification

Classifying cities over the earth: can CNNs generalize?

Inria Aerial Image Labeling Dataset (810 km2):

Bellingham Innsburck San Francisco Tyrol

• Images over US and Austria with open images and building footprints
• Different cities in training and test sets

⇒ project.inria.fr/aerialimagelabeling

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial
Image Labeling Benchmark”. IGARSS 2017.

Y. Tarabalka Learning Approaches for Remote Sensing Image Classification 24 November 2017 38 / 50



Deep learning for large-scale image classification

Inria Aerial Image Labeling Benchmark

• Dec. 2016 - Nov. 2017: > 500 downloads
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Deep learning for large-scale image classification

Dealing with imperfect training data

• Frequent misregistration/omission in large-scale data sources

Example: OpenStreetMap data are mostly misaligned with satellite
data
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Deep learning for large-scale image classification

Recurrent neural networks to enhance classification

...

+

Image

...+ ... ...

 

N j∗I

ut=0
ut=1 ut=2 ut=3

Color image Coarse CNN
IoU = 48%

CNN+CRF
IoU = 44%

Class-agnostic
CNN+RNN
IoU = 65%

CNN+RNN
IoU = 73%

Reference
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Deep learning for large-scale image classification

Fully-convolutional net for multimodal image registration

• Chain of scale-specific neural networks to solve alignment problem
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before and after processing

A. Zampieri, G. Charpiat, Y. Tarabalka. “Coarse to fine non-rigid registration: a chain of scale-specific neural networks for
multimodal image alignment with application to remote sensing”, submitted to CVPR 2018.
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Deep learning for large-scale image classification

Concluding remarks

• CNN-based architectures for image classification and alignment
have been developed

• CNNs exploit the properties of images particularly well

• Shifting efforts from feature engineering to network engineering

• Good payoff of the efforts,
e.g., learning better features than handmade ones,
convolutions → GPUs, borrowing pretrained network
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Conclusions and future work

Outline

1. Introduction

2. Classification with shape constraints

3. Video segmentation with shape growth/shrinkage constraint

4. Deep learning for large-scale image classification

5. Conclusions and future work
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Conclusions and future work

Conclusions

There is no such thing as a universally better classifier

• For specific applications:

Manually designed features and priors may work very well

• To classify remote sensing images on a world-scale:

Learning methods must be generic and highly scalable

CNNs have shown a remarkable computational performance

Capable to learn expressive multi-scale contextual features

Succeed in classifying new unseen earth areas

Still significant work to be done to design automatic mapping
systems
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Conclusions and future work

Future work

2017-2021: ANR JCJC project EPITOME

• Epitome = summary, an instance that represents a larger reality

• Objective: devise novel epitome-like, or summary, representations
for large-scale satellite images:

Generic = applicable for diverse images & applications

Structure-preserving = represent meaningful objects within images

We opt for multi-resolution vector-based representations
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Conclusions and future work

ANR project EPITOME - Approach

• Learn about both geometric and semantic structures & their accurate
scale alignment

Use crowd-sourced maps to derive weakly labeled training data

Solve multimodal alignment problem

CNN segmentation to update/correct maps

• Devise vector-based epitome representation + algos for generation &
manipulation

1. Take inspiration from recent multi-resolution image vectorization
techniques

Preserve geometric & semantic structures discovered by learning

2. Learn in a space of vector primitives
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Conclusions and future work

Future work

• ANR PRC project “Properties of faults, a key to realistic generic
earthquake modeling and hazard simulation” (PI: Geoazur)

VRH DEM construction from multiple Pléiades images to recover
complex topology
CNN-based learning to identify and measure properties of the damage
faults

• FAPESP project with INPE, Brasil

Registration of UAV images with satellite images in tropical forests

• IRT project with Thales Alenia Space

Onboard image processing for autonomous space systems
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Conclusions and future work

Yuliya Tarabalka - Research scientist at Inria

• Publications: 65 scientific articles (>3000 citations, h-index = 18)

• Teaching: ∼ 96 h/year

Discrete inference & learning (ENS Paris-Saclay), Optimization &
Math. methods (CentralSupelec), Advanced algos (IUT Nice)

• Supervision:

2010-2017: 2 PhD and 8 MSc students
2017-pres: 3 PhD students

L. Matteo “Study of faults from VHR satellite images”
O. Tasar “Learning approaches for efficient image representations”
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Thank you for your attention!

Questions?

Y. Tarabalka Learning Approaches for Remote Sensing Image Classification 24 November 2017 50 / 50


	Introduction
	Classification with shape constraints
	Video segmentation with shape growth/shrinkage constraint
	Deep learning for large-scale image classification
	Conclusions and future work

	anm0: 
	fd@rm@0: 
	fd@rm@1: 
	fd@rm@2: 
	fd@rm@3: 
	fd@rm@4: 


