
Mathematical Methods - Lecture 9

Yuliya Tarabalka

Inria Sophia-Antipolis Méditerranée, Titane team,
http://www-sop.inria.fr/members/Yuliya.Tarabalka/

Tel.: +33 (0)4 92 38 77 09
email: yuliya.tarabalka@inria.fr

Yuliya Tarabalka (yuliya.tarabalka@inria.fr) Differential Equations 1 / 33

http://www-sop.inria.fr/members/Yuliya.Tarabalka/
yuliya.tarabalka@inria.fr


Outline

1 Partial Differentiation

2 Partial Differential Equations

Yuliya Tarabalka (yuliya.tarabalka@inria.fr) Differential Equations 2 / 33



Partial Differentiation

Functions of several variables

f (x) is a function of one variable x

We may consider functions that depend on more than one variable

Example: f (x , y) = x2 + 3xy depends on 2 variables x and y

For any pair of values x , y , f (x , y) has a well-defined value

Function f (x1, x2, . . . , xn) depends on the variables x1, x2, . . . , xn
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Partial Differentiation

Partial derivatives

A function f (x , y) will have a gradient in ALL directions in the
xy -plane

Gradient = rate of change of a function

The rates of change of f (x , y) in the positive x- and y - directions are
called partial derivatives wrt x and y , respectively

Partial derivatives are extremely important in a wide range of
applications!
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Partial Differentiation

Partial derivatives

Partial derivative of f (x , y) with respect to x is denoted by ∂f /∂x :

to signify that a derivative is wrt x , but
to recognize that a derivative wrt y also exists

∂f

∂x
= lim

∆x→0

f (x +∆x , y) − f (x , y)
∆x

,

provided that the limit exists

The partial derivative of f with respect to y :

∂f

∂y
= lim

∆y→0

f (x , y +∆y) − f (x , y)
∆y

,

provided that the limit exists
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Partial Differentiation

Partial derivatives - Notations

Partial derivative of f (x , y) with respect to x :

∂f

∂x
= (∂f

∂x
)
y
= fx

Partial derivative of f with respect to y :

∂f

∂y
= (∂f

∂y
)
x

= fy

It is important when using partial derivatives to remember which
variables are being held constant!

Yuliya Tarabalka (yuliya.tarabalka@inria.fr) Differential Equations 6 / 33



Partial Differentiation

Partial derivatives

The extension to the general n-variable case is straightforward:

∂f (x1, . . . , xn)
∂xi

= lim
∆xi→0

f (x1, . . . , xi +∆xi , . . . , xn) − f (x1, . . . , xi , . . . , xn)
∆xi

,

provided that the limit exists
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Partial Differentiation

Partial derivatives

Second (and higher) partial derivatives may be defined in a similar
way:

∂

∂x
(∂f
∂x

) = ∂
2f

∂x2
= fxx

∂

∂x
(∂f
∂y

) = ∂2f

∂x∂y
= fxy

∂

∂y
(∂f
∂y

) = ∂
2f

∂y2
= fyy
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Partial Differentiation

Properties of partial derivatives

Provided that the second partial derivatives are continuous at the
point in question:

∂2f

∂x∂y
= ∂2f

∂y∂x

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
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Partial Differentiation

Partial derivatives - Example

Exercise: Find the first and second partial derivatives of the function
f (x , y) = 2x3y2 + y3

The first partial derivatives:

∂f

∂x
= 6x2y2,

∂f

∂y
= 4x3y + 3y2

The second partial derivatives:

∂2f

∂x2
= 12xy2,

∂2f

∂y2
= 4x3 + 6y ,

∂2f

∂x∂y
= ∂2f

∂y∂x
= 12x2y
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Partial Differentiation

The chain rule

The total derivative of f (x , y) with respect to x :

df

dx
= ∂f
∂x

dx

dx
+ ∂f
∂y

dy

dx

The total differential of the function f (x , y):

df = ∂f
∂x

dx + ∂f
∂y

dy

The chain rule:

df

du
= ∂f
∂x

dx

du
+ ∂f
∂y

dy

du

Particularly useful when an equation is expressed in a parametric form
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Partial Differentiation

The chain rule

Exercise: Given that x(u) = 1 + au and y(u) = bu3, find the rate of
change of f (x , y) = xe−y with respect to u

Using the chain rule:

df

du
= (e−y)a + (−xe−y)3bu2

Substituting for x and y :

df

du
= e−bu

3(a − 3bu2 − 3bau3)
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Partial Differential Equations

What is a partial differential equation?

Partial differential equation (PDE) is a differential equation that
contains unknown multivariable functions and their partial derivatives

PDEs are used to describe a wide variety of phenomena: sound, heat,
electrodynamics, quantum mechanics...

Examples:

1 transport: ux + uy = 0

2 shock wave: ux + uuy = 0

3 vibrating bar: utt + uxxxx = 0
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Partial Differential Equations

Partial differential equation

The most general second-order PDE in two independent variables is:

F (x , y ,u,ux ,uy ,uxx ,uxy ,uyy) = 0

A solution of a PDE is a function y(x , y , . . .) that satisfies the
equation identically, at least in some region of the x , y , . . . variables

Most of the important PDEs of physics are second-order and linear

For linear homogeneous PDEs, the superposition principle applies
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Partial Differential Equations

Partial differential equation - Example

Exercise: Find all u(x , y) satisfying the equation uxx = 0

We could integrate once to get ux = constant?

Since there is another variable y , that’s not really right. We get:

ux(x , y) = f (y),

where f (y) is arbitrary

We integrate again to get u(x , y) = f (y)x + g(y). This is the general
solution.

Note that there are two arbitrary functions in the solution
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Partial Differential Equations

Partial differential equation - Example 2

Exercise: Solve the PDE uxx + u = 0

Again, it’s an ODE with an extra variable y

The solution is
u = f (y) cos x + g(y) sin x ,

where f (y) and g(y) are two arbitrary functions of y

Moral: A PDE has arbitrary functions in its solution
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Partial Differential Equations

Important PDEs

Transport equation: ut + cux = 0

Wave equation: utt = c2uxx

Diffusion equation: ut = kuxx

Laplace equation: uxx + uyy = 0.
It is often written as: ∇2u = 0 or ∆u = 0, where ∆ = ∇2 is the Laplace
operator
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Partial Differential Equations

Numerical methods to solve PDEs

The three most widely used numerical methods:

1 Finite difference method

The simplest method to learn and use

Functions are represented by their values at certain grid points, and
derivatives are approximated through differences in these values

2 Finite element method

3 Finite volume method

Other methods exist: method of lines, spectral methods, multigrid
methods, ...
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Partial Differential Equations

Transport equation: intuition and derivation
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Partial Differential Equations

Transport equation: general solution

Solve the transport equation ut + cux = 0

You see a wave with speed c : ut + cux = 0

I see a stationary wave: vt = 0

“moving” coordinate ξ = x − ct

u(x , t) = v(ξ, t)

Derivatives using the chain rule:

ut =
∂v

∂ξ
⋅ ∂ξ
∂t

+ ∂v
∂t

⋅ ∂t
∂t

= −c ∂v
∂ξ

+ ∂v
∂t

ux =
∂v

∂ξ
⋅ ∂ξ
∂x

+ ∂v
∂t

⋅ ∂t
∂x

= ∂v
∂ξ

ut + cux = −cvξ + vt + cvξ = vt = 0
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Partial Differential Equations

Transport equation: general solution

Usual coordinates (x , t): u(x , t) ut + cux = 0

Moving coordinates (ξ, t) ∶ v(ξ, t) vt = 0 ξ = x − ct

Procedure: solve vt = 0, use to find u(x , t)

vt = 0 ⇒ v = F (ξ)

v(ξ, t) = u(x , t) ⇒ u(x , t) = F (ξ) = F (x − ct)

Conclusion: General solution of ut + cux = 0 is F (x − ct) , where F
is a “once differentiable” function
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Partial Differential Equations

Initial and boundary conditions

Because PDEs typically have so many solutions, we single out one
solution by imposing auxiliary conditions

These conditions are motivated by the considered problem (ex.:
physics)

They come in two varieties: initial conditions and boundary conditions
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Partial Differential Equations

Initial and boundary conditions

An initial condition specifies the physical state at a particular time
t0.

We can have one or several initial conditions:

u(x, t0) = φ(x) = φ(x , y , z)

u(x, t0) = φ(x) and
∂u

∂t
(x, t0) = ψ(x),

Examples: φ(x) is the initial position, or the initial temperature, ...
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Partial Differential Equations

Initial and boundary conditions

In each physical domain there is a domain D in which the PDE is
valid.

Example: For the vibrating string, D is the interval 0 < x < l , where l is
the length of the string. The boundary of D consists only of the two
points x = 0 and x = l

To determine the solution, it is necessary to specify some boundary
conditions

Three most important kinds of boundary conditions:

1 Dirichlet condition: u is specified

2 Neumann condition: the normal derivative ∂u/∂n is specified

Example: ∂u/∂n = g(x, t)

3 Robin condition: ∂u/∂n + au is specified, a = a(x , y , z , t)
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Partial Differential Equations

Initial and boundary conditions

Three most important kinds of boundary conditions:

1 Dirichlet condition: u is specified

2 Neumann condition: the normal derivative ∂u/∂n is specified

Example: ∂u/∂n = g(x, t)

3 Robin condition: ∂u/∂n + au is specified, a = a(x , y , z , t)

In one-dimensional problems the boundary consists of two endpoints
⇒ boundary conditions take the simple form

(D) u(0, t) = g(t) and u(l , t) = h(t)

(N) ∂u
∂x

(0, t) = g(t) and ∂u
∂x

(l , t) = h(t)
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Partial Differential Equations

Well-posed problems

Well-posed problems consist of:

a PDE in a domain

a set of initial and/or boundary conditions

or other auxiliary conditions

that enjoy the following fundamental properties

1 Existence: There exists at least one solution u(x , t) satisfying all
conditions

2 Uniqueness: There is at most one solution

3 Stability: If the data are changed a little, the solution changes only a
little
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Partial Differential Equations

Transport equation: method of characteristics

Technique for solving PDE by reducing to ODE

x(t) = position of the moving observer

How does u(x , t) change from observer’s perspective?

d

dt
u(x(t), t) = du

dt
= ux

dx

dt
+ ut

0 = cux + ut

⇒
⎧⎪⎪⎨⎪⎪⎩

dx/dt = c - moving with speed c

du/dt = 0 - u not changing
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Partial Differential Equations

Transport equation: method of characteristics

ut + cux = 0

↕
du

dt
= 0 along curves given by

dx

dt
= c

dx

dt
= c ⇒ x = ct + x0

Need initial condition u(x ,0) = f (x)

Along x − ct = x0, u(x , t) = f (x0) = f (x − ct)

Solution: u(x , t) = f (x − ct)
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Partial Differential Equations

Transport equation: Exercise

Solve the initial value problem (PDE + initial condition):

⎧⎪⎪⎨⎪⎪⎩

ut + cux = 1

u(x ,0) = sin x

du

dt
= ux

dx

dt
+ ut

1 = uxc + ut

⇒
⎧⎪⎪⎨⎪⎪⎩

dx/dt = c

du/dt = 1

du

dt
= 1 ⇒ u = t +A along characteristic lines

Using an initial condition: u(x ,0) = 0 + sin x ⇒ A = sin x

Solution: u(x , t) = t + sin(x − ct)
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Partial Differential Equations

Solving PDE using Laplace transforms

Laplace transforms are well suited to solve linear PDE with constant
coefficients

If we have a function of two variables w(x , t):

L{w(x , t)} =W (x , s) = ∫
∞

0
e−stw(x , t)dt

Transform of partial derivatives:

L{wt(x , t)} = sL{w(x , t)} −w(x ,0) = sW (x , s) −w(x ,0)
L{wtt(x , t)} = s2L{w(x , t)} − sw(x ,0) −wt(x ,0)

L{wx(x , t)} =
∂

∂x
L{w(x , t)}

L{wxx(x , t)} =
∂2

∂x2
L{w(x , t)}
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Partial Differential Equations

Solving PDE using Laplace transforms: Example

Exercise: Solve, via Laplace transforms:

wx + 2xwt = 0, w(x ,0) = 0, w(0, t) = t, t ≥ 0

We have: L{wx} + 2xL{wt} = 0

Apply TOD to obtain: Wx + 2x[sW (x , s) −w(x ,0)] = 0

Apply initial conditions: Wx + 2xsW = 0 (ODE, 1st-order, linear)

General solution of the separable equation: W (x , s) = A(s)e−sx2

Obtain A(s): W (0, s) = L{w(0, t)} = L{t} = 1/s2 ⇒ A(s) = 1/s2

W (x , s) = 1

s2
e−sx

2
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2

Second shifting theorem: L−1{e−csF (s)} = uc(t)f (t − c), where the
Heaviside (unit step) function:

uc(t) =
⎧⎪⎪⎨⎪⎪⎩

0, t < c ;

1, t ≥ c

F (s) = 1

s2
⇒ f (t) = t

w(x , t) = L−1 { 1

s2
e−sx

2} = ux2(t)[t − x2]
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Partial Differential Equations

Partial differential equations

Other analytical methods exist:

Separation of variables

Change of variables

Fundamental solution

You can read more here:

W. A. Strauss, Partial Differential Equations: An Introduction, John
Wiley & Sons Ltd, 2008
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