8. Unsupervised Analysis
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Unsupervised Analysis

Previously, all our training samples were labeled:
these samples were said to be “supervised”

We now investigate a number of “unsupervised”
procedures which use unlabeled samples

Collecting and labeling a large set of sample
patterns can be costly

We can train with a large amount of (less expensive)
unlabeled data, and only then use supervision to
label the groupings found, this is appropriate for
large “data mining” applications where the
contents of a large database are not known
beforehand
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Unsupervised Analysis

This is also appropriate in many applications
when the characteristics of the patterns can
change slowly with time

Improved performance can be achieved if
classifiers running in a unsupervised mode
are used

We can use unsupervised methods to identify
features that will then be useful for
classification

We gain some insight into the nature (or
structure) of the data
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Mixture Densities & ldentifiability

« We shall begin with the assumption that the functional
forms for the underlying probability densities are known
and that the only thing that must be learned is the value
of an unknown parameter vector

« We make the following assumptions:
- The samples come from a known number c of classes

- The prior probabilities P(w) for each class are known
=1, ...,0)

- P(x| @, 8) (=1, ...,c) are known

- The values of the ¢ parameter vectors 4,, 6,, ..., 6. are
unknown
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Mixture Densities & ldentifiability

 The category labels are unknown

component densities

~N

P(x|9)=jb(x|;j,e,.). P(@,)

Y
mixing parameters

where 8=(46, .0, ,...,6. )
This density function is called a mixture density

Our goal will be to use samples drawn from this
mixture density to estimate the unknown parameter
vector 6. Once @is known, we can decompose the
mixture into its components and use a MAP
classifier on the derived densities
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Mixture Densities & ldentifiability

e Definition

- A density p(x | @) is said to be identifiable if
0 # @ implies that there exists an x such that:

p(x| &) =p(x| &)
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As a simple example, consider the case where x is
binary and P(x | ) is the mixture:

1 X —-X 1 X —-X
F’(X|9)=§6’1(1—6’1)1 +§6’2(1—92)l

-

%(01+6?2)if Xx=1

1-%Uﬁ+@)ﬁx=0

Assume that:
Px=1|6=06 =P(x=0]|6=0.4
by replacing these probabilities values, we obtain:
6, +60,=1.2
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« Thus, we have a case in which the mixture
distribution is completely unidentifiable, and
therefore unsupervised learning is impossible

* In the discrete distributions, if there are too many
components in the mixture, there may be more
unknowns than independent equations, and
Identifiability can become a serious problem!
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 While it can be shown that mixtures of normal densities are
usually identifiable, the parameters in the simple mixture
density

P(w,) [ 1 2} P(w,) { 1 2}
P(x|0)= L2expl —=(x—-8, )" |+ 22exp| ——(x—-8
(x[8) o, P 5 (x=0.) n, P 5 (x=0,)
e Cannot be uniquely identified if P(@,) = P(w,)

(we cannot recover a unigue fdeven from an infinite amount of
data!)

e 0=(6, 6,) and 8= (6,, 6)) are two possible vectors that can be
Interchanged without affecting P(x | )

« Identifiability can be a problem, we always assume that the
densities we are dealing with are identifiable!
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ML Estimates

Suppose that we have a set D = {Xj, ..., Xn }of
n unlabeled samples drawn independently
from the mixture density

C

p(x|0) = > p(X|wj, 0;)P(w;)
j=1
(@is fixed but unknown!)

0 =argmaxp(Dl0) with  p(DIO) = [ »(x,I0)
k=1

The gradient of the log-likelihood is:

n

Vol= > Pwilx,0)Vg. Inp(Xy|w;,6;)
k=1
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ML Estimates

Since the gradient mustﬂyanish at the value of

g that maximizes [ = ) Inp(xx|0) , therefore,
k=1

the ML estimate @, must satisfy the
conditions:

T
> P(wilxg, 0)Vg Inp(Xglw;, 0;) =00 =1,...,c)
k=1
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Pattern Recognition:

ML Estimates

By including the prior probabilities as unknown

variables, we finally obtain:
R l T N N
P(w) == 3 P(wilx;,0)
" k=1

T

and Z P(wﬂxk}@)‘v@f In p(xk‘wizéi) =0
k=1 "

p(Xg|w;, 9@)?(%‘)
> 5—1P(Xg|wj, 05) P(w;)

where  P(w;|Xg, 0) =
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Applications to Norm

p(X|w;, 0;) ~ N(p;,%;)

Case 7/
1 ?
2 ?
3 ?

Case 1 = Simplest case

(Unsupervised Analysis|
al Mixtures
P(w) C
X X
? X
? ?
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Applications to Normal Mixtures

e Case 1: Unknown mean vectors

p, =0;Vi=1,...c

Inp(xX|w;, pg) = —In [(2w)d/2|2i\1/2}—%(x—ui)Tzsl(x—ua
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Applications to Normal Mixtures

e Case 1: Unknown mean vectors (continued)

ML estimate:

,,. 1 P(w;|Xp, )X

Pl /1) (1)

P(w;|Xg, &) is the fraction of those samples
having value x, that come from the ith
class, and f; is the average of the
samples coming from the ith class.
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Applications to Normal Mixtures

» Unfortunately, (1) does not give &; explicitly

« However, if we have some way of obtaining
good initial estimates £;(0) for the unknown
means, (1) can be seen as an iterative process
for improving the estimates

> r—1 Pwilxg, 1(5))Xp,
—1 P(w;|x, n(7))

ni(g+1) =

* This is a gradient ascent for maximizing the
log-likelihood function
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Applications to Normal Mixtures

e Example:

Consider the simple two-component one-
dimensional normal mixture

DOX | yy ) = 3jﬂeX|o[—;<x—u1)2}+:,jﬂexno[—;(x—uz)z]

(2 clusters!)

Let's set u, = -2, u, =2 and draw 25 samples
sequentially from this mixture.
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Applications to Normal Mixtures

The log-likelihood function is:

W(p1,p2) = > Inp(xglpr, po)
k=1

 The maximum value of | occurs at:

1 = —2.130 and pp = 1.668
(which are not far from the true values: u, = -2
and u, = +2)

* There Is another f; = 2.085 and jip, = —1.257
peak at which has almost the same height as
can be seen from the following figure:
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FIGURE 10.1. {Above) The source mixture density used o generate sample data, and
two maximum-likelihood estimates based on the data in the table. (Bottom) Log-
likelihood of a mixture model consisting of two univariate Caussians as a function of
their means, for the data in the table. Trajectories for the iterative maximume-likelihood
estimation of the means of a two-Gaussian mixture model based on the data are shown
as red lines. Two local optima (with log-likelihoods —52.2 and —56.7) correspond o the
two density estimates shown above. From: Richard O. Duda, Peter E. Hart, and David
G Stork, Fattern Classification. Copyright @© 2001 by John Wiley & Sons, Inc.
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Applications to Normal Mixtures

 This mixture of normal densities is identifiable

* When the mixture density is not identifiable, the
ML solution is not unique

e Case 2: All parameters unknown

* No constraints are placed on the covariance matrix

Let p(x | &, ¢?) be the two-component normal mixture:

5 (55) 7o 57

(2, 02) = ——— exp
rlu, o) =
PRTIH 2V 2mo
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Applications to Normal Mix

Suppose u = x4, therefore:
1 1
2y |
For the rest of the samples:

p(zp|p, o) > L exp [——:c
= o/ on 2k

Finally,

this term -
-0

The likelihood is therefore large and the

maximum-likelihood solution becomes singular.
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Applications to Normal Mix

e Adding an assumption

Consider the largest of the finite local maxima of the
likelihood function and use the ML estimation

We obtain the following:

n 1, A n
C B(0)=1 (a1 %,.0)
Ny
_ le(a’u |Xk’é)xk
Iterative ﬂi=k=1n - -
scheme < D P(a;|%,.0)

Is(a)i | X, ’é)(xk — 1 ) (X — 1 )

N ils(wilxk’é)
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Unsupervised Analysis

Applications to Normal Mixtures

Where:

ﬁ@@|xwé)=

_ 1 A ~ A ~
‘Zi‘ v epr:_Z(Xk — K, )tZi l(xk — K, )]P(mi )

212

=1

-1/2 1 A Nt o1 R ~
em)_é(xk_ﬂj)zj(Xk_ﬂj)P(wj)
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Pattern Recognition:

Clustering

What i1s a Cluster?

A cluster is a collection of data points with
similar properties.
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Unsupervised Analysis

Pattern Recognition:

Clustering

Partitional clustering
« C-means algorithm (Hard)
e |Isodata algorithm
 Fuzzy C-means Clustering

Hierarchical clustering
« Single-linkage algorithm (minimum method)
« Complete-linkage algorithm (maximum method)
« Average linkage algorithm
 Minimum-variance method (Ward’s method)
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N

C-Means Clustering

e Goal: find the c mean vectors u, t, ..., 1.

 Replace the squared Mahalanobis distance
In the previous discussion

~ \Ta—1 ~
(Xp — ;)" 2 ~(Xg — ;) by the squared
Euclidean distance |IXx — &;l|?

e Find the mean x, nearestto x, and
approximate

,\ ~ ~ 1 ifi=m
Plw, | X, ,0) as: Pl |Xk’0)§{

0 otherwise
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N

C-Means Clustering

e Use the iterative scheme to find ,le ,,le ,---,,Zlc

e if nis the known number of patterns and c the desired
number of clusters, the C-means algorithm is:

Begin
initialize n, ¢, y, My, ...\
u.(randomly selected)

do classify n samples according
to nearest u;

recompute y;
until no change In p;
return p;, Ho, ..., UHg
End
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Pattern Recognition:
C-Means Clustering

Figure 10.2: Trajectories for the means of the k-means clustering procedure applied to
two-dimensional data. The final Voronoi tesselation (for classification) is also shown
— the means correspond to the “centers” of the Voronoi cells.
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Pattern Recognition: Unsupervised Analysis

]

C-Means Clustering

C-means algorithm:
1. Begin with C cluster centers

2. For each sample, find the cluster center nearest to
It. Put the sample in the cluster represented by the
just-found cluster center.

3. If no samples changed clusters, stop.

4. Recompute cluster centers of altered clusters and
go back to step 2.

Properties:
« The number of cluster C must be given in advance.

« The goal is to minimize the square error, but it
could end up in alocal minimum.

Demo:
http://home.dei.polimi.it/matteucc/Clustering/tutori
al html/AppletKM.html



http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
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Pattern Recognition:

Clustering: ISODATA

Similar to C-means with some enhancements:

e Clusters with too few elements are discarded.

 Clusters are merged if the number of clusters
grows too large or if clusters are too close
together.

o A cluster is split if the number of clusters is too
few or if the cluster contains very dissimilar
samples

Properties:

« The number of clusters C is not given exactly in
advance.

* The algorithm may requires extensive
computations.
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Fuzzy C-Means Clustering

X={ Xqs Xpes e xn} = Object Data in R P

{ Uy, Upy wony Uy } = Fuzzy Subsets € 3(X)

ui(xk) =uy = membership of X, in class (i)

X4 X, X
1 %
¥
U= | =9 u, === objects
C $

classes
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Fuzzy C-Means Clustering

5> Row (i) = Membership of all X, 's in class i
5> Col (k) = Membership of X, in each class i

U is a [ Constrained ] Probabilistic or
Fuzzy c-Partition of X iff:

1) O«< Uy < 1 any i,k (at least)
2) O« Zuik all (rowsums) k
3) 1= Zuik all (colsums) i
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Solution Spaces for Clustering

Unsupervised Analysis

Constrained c-Partition Matrices

10 00 1 .07 0 .44
01 00 0 .91 0 .06
o 0 1 1 0 .02 1 .50
"Take a Second Look" }
Ue Mc¢n U e Micn
Crisp Fuzzy
Partition Partition

Matrices Matrices



34

Pattern Recognition:

Partition of Data

Unsupervised Analysis

Partitions of Data

Crisp Partition of X

U e Mcn c Mfcnu

Fuzzy Partition of X

Membership Area

Membership Area

Exclusive (N = @)

Exhaustive (U = X)
Subsets Disjoint

|

No!! (N= 2)
No!! (U= X)
Subsets Overlap
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Defuzzification of Fuzzy Partitions

Unsupervised Analysis

Conversion via max membership anc
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zzy c-Means Clustering

The Fuzzy c-Means (FCM) Model

X cRP = Unlabeled Object Data

Ue I*.z‘lmn = Unknown Fuzzy c-partition of X

= {Vi } = Unknown "cluster centers": Vi€ RrP

Min Jp (U, 5 X) = 22 ugy ™ (11xg-vill5)°

Dunn ('73) ms=2
Bezdek ('73) m> 1
Gustafson/Kessel ('79) Variable Norms {Ai}
Bezdek, et al ('80) Linear Varieties for {vi}
Pedrycz ('85) Labeled/Unlabeled X
Yang and Yu ('89) Integrals

Dave ('89) Hyperspheres for {vi}
Bezdek/Bobrowski ('90) q=1and q =« norms

Krishnapuram ('91) Hyperquadrics for {vi}
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Unsupervised Analysis

Fuzzy c-Means (FCM) Clustering

Let’s now assume that a sample can belong to all the
clusters. Define u; where

chuij =1 V] =1...,n
=1

The cost function (or objective function) for FCM can
then be written as

J(U,c,....c.) =D, =D >uld?,
i=1 i=1 |
whereu;; is between 0 and 1; ¢ Is the cluster center of
fuzzy group  14; d;; = ||c; — X/ IS the Euclidean
distance between i-th cluster center and jth data point;
and m e [l,00) isaweighting exponent.
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Fuzzy c-Means (FCM) C

Unsupervised Analysis
stering

The updated mean vector is

n m
_Zjlull Xj
C =

:E:j=1uﬁ

where
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Pattern Recognition:

C-means Algorithm (FCM/HCM)

c-Means Algorithms (FCM/HCM)

Given unlabeled data set X = {x1 . xn} in RP

] x2!

Fix : T<ec<nand1<me<=
g . ” - -v)T 5
A-norm : [|x, Vi”A' «J(:a(k vj) A(x, vi)
g, @ small positive constant

FCM/HCM 1

Guess - Vc,O ) € R P

Vo=(V40: V2o’

FCM/HCM 2
For t = 1 to tmax:

Calculate Ut with {vjt.1}

Update {Vi,t-1} to {Vi,t} with U
u 2
It = ”Vi,t-1 Vi,t €} <,

Then stop and put (U*,v*) = (Ut,vy); Else

Next t



Pattern Recognition: Unsupervised Analysis .

Hierarchical Clustering

Agglomerative 1234567
clustering (bottom up) | |

I
1. Begin with n clusters; 1131516,7| 2,4 |
each containing one |

|
sample 17 35,6 2,4
2. Merge the most similar
two clusters into one. 1,7 356 2 | 4 |
3. Repeat the previous ——
step until done 1,7| 56 3| 2 4
Divisive clustering (top |
down) 1| 7] 56| 3] 2 4
T
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Hierarchical Clustering

Unsupervised Analysis

The most natural representation of hierarchical
clustering is a corresponding tree, called a
dendrogram, which shows how the samples

are grouped

X, X

Level 1 . g - X3 - Xs X
Level 2 _ L_I L_I
Level 3 —

Level 4 e

Level 5 =

Level 6 =
Level 7 =

X7

Xsg
’

Level § =

Figure 10.10: A dendrogram can represent the results of hierarchical clustering algo-
rithms. The vertical axis shows a generalized measure of similarity among clusters.
Here, at level 1 all eight points lie in singleton clusters; each point in a cluster is
highly similar to itself, of course. Points x5 and x7; happen to be the most similar,

and are merged at level 2. and so forth.

100}
90}
80f
70}
60t
S0}
40
30t
20}
10}

Ok

Similarity scale
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Pattern Recognition:

Hierarchical Clustering

Demo:
http://home.del.polimi.it/matteucc/Clustering/tu

torial html/AppletH.html



http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
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Hierarchical Clustering

Single-linkage algorithm (minimum method)
(C;,C;)= min d(ab)

B acC,,beC;

Complete-linkage algorithm (maximum method)
D.(C,,C;)= max d(gb)

aeC,,beCj
Average-linkage algorithm (average method)

D,.(C,;C,)= > d(ab)

aEC/,bEC/'

C.

/

B

/
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Hierarchical Clustering

Ward’s method (minimum-variance method)

d 2

DAY

MQ

DWard(C/’C

The distance measure characterizing Ward's method is based on the variance criterion
(goal: small variance within each cluster and large variance between the clusters). In
each step the two clusters are merged whose merging contributes least to the variance

criterion which is increasing in each step. This distance measure is called the Ward
distance and is defined as:

d.. - Ny Ng "—

— 2
'S '_n +Ng %l

where r and s denote two specific clusters, n, and n; denote the number of data
points in the two clusters, and X, and X5 denote the centers of gravity of the clusters;
|-| is the Euclidean norm.
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Pattern Recognition:

Hierarchical Clustering

Single-linkage algorithm

\ \
\ 7 \ /'
. / L ./g
N/ N/
'./-l '.,Of

] #~ ey
NI \Lf

Figure 10.12: T'wo Gaussians were used to generate two-dimensional samples, shown
in pink and black. The nearest-neighbor clustering algorithm gives two clusters that
well approximate the generating Gaussians (left). If, however, another particular
sample is generated (red point at the right) and the procedure re-started, the clusters
do not well approximate the Gaussians. This illustrates how the algorithm is sensitive
to the details of the samples.
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Unsupervised Analysis

Hierarchical Clustering

Complete-linkage algorithm

gy = large dyar = sSmall

Figure 10.13: The farthest-neighbor clustering algorithm uses the separation between
the most distant points as a criterion for cluster membership. If this distance is set
very large, then all points lie in the same cluster. In the case shown at the left, a
fairly large d,,., leads to three clusters; a smaller d,,,,, gives four clusters, as shown
at the right.
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