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Unsupervised AnalysisUnsupervised AnalysisUnsupervised Analysis

Previously, all our training samples were labeled: 
these samples were said to be “supervised”

We now investigate a number of “unsupervised” 
procedures which use unlabeled samples

Collecting and labeling a large set of sample 
patterns can be costly

We can train with a large amount of (less expensive) 
unlabeled data, and only then use supervision to 
label the groupings found, this is appropriate for 
large “data mining” applications where the 
contents of a large database are not known 
beforehand
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Unsupervised AnalysisUnsupervised AnalysisUnsupervised Analysis

This is also appropriate in many applications 
when the characteristics of the patterns can 
change slowly with time

Improved performance can be achieved if 
classifiers running in a unsupervised mode 
are used

We can use unsupervised methods to identify 
features that will then be useful for 
classification

We gain some insight into the nature (or 
structure) of the data
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Mixture Densities & IdentifiabilityMixture Densities & Mixture Densities & IdentifiabilityIdentifiability
• We shall begin with the assumption that the functional 

forms for the underlying probability densities are known 
and that the only thing that must be learned is the value 
of an unknown parameter vector

• We make the following assumptions:

- The samples come from a known number c of classes

- The prior probabilities P(ωj ) for each class are known 
(j = 1, …,c) 

- P(x | ωj , θj ) (j = 1, …,c) are known

- The values of the c parameter vectors θ1 , θ2 , …, θc are 
unknown



Unsupervised AnalysisPattern Recognition:

5

• The category labels are unknown

This density function is called a mixture density

Our goal will be to use samples drawn from this 
mixture density to estimate the unknown parameter 
vector θ. Once θ is known, we can decompose the 
mixture into its components and use a MAP 
classifier on the derived densities
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• Definition

- A density p(x | θ) is said to be identifiable if
θ ≠ θ’ implies that there exists an x such that:

p(x | θ) ≠ p(x | θ’)

Mixture Densities & IdentifiabilityMixture Densities & Mixture Densities & IdentifiabilityIdentifiability
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As a simple example, consider the case where x is 
binary and P(x | θ) is the mixture:

Assume that:
P(x = 1 | θ) = 0.6 ⇒ P(x = 0 | θ) = 0.4 

by replacing these probabilities values, we obtain: 
θ1 + θ2 = 1.2
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• Thus, we have a case in which the mixture 
distribution is completely unidentifiable, and 
therefore unsupervised learning is impossible

• In the discrete distributions, if there are too many 
components in the mixture, there may be more 
unknowns than independent equations, and 
identifiability can become a serious problem!

Mixture Densities & IdentifiabilityMixture Densities & Mixture Densities & IdentifiabilityIdentifiability
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• While it can be shown that mixtures of normal densities are 
usually identifiable, the parameters in the simple mixture 
density

• Cannot be uniquely identified if P(ω1 ) = P(ω2 )
(we cannot recover a unique θ even from an infinite amount of 
data!)

• θ = (θ1 , θ2 ) and θ = (θ2 , θ1 ) are two possible vectors that can be 
interchanged without affecting P(x | θ)

• Identifiability can be a problem, we always assume that the 
densities we are dealing with are identifiable!
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ML EstimatesML EstimatesML Estimates
Suppose that we have a set                             of 
n unlabeled samples drawn independently 
from the mixture density

(θ is fixed but unknown!)

The gradient of the log-likelihood is:

with
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Since the gradient must vanish at the value of 
θi that maximizes , therefore,

the ML estimate must satisfy the 
conditions:

ML EstimatesML EstimatesML Estimates
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By including the prior probabilities as unknown 
variables, we finally obtain:

and

where

ML EstimatesML EstimatesML Estimates
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Applications to Normal MixturesApplications to Normal MixturesApplications to Normal Mixtures

Case 1 = Simplest case

Case μi Σi P(ωi ) c

1 ? x x x

2 ? ? ? x

3 ? ? ? ?
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• Case 1: Unknown mean vectors

Applications to Normal MixturesApplications to Normal MixturesApplications to Normal Mixtures
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• Case 1: Unknown mean vectors (continued)

ML estimate:

is the fraction of those samples 
having value xk that come from the ith 
class, and        is the average of the 
samples coming from the ith class.

Applications to Normal MixturesApplications to Normal MixturesApplications to Normal Mixtures
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• Unfortunately, (1) does not give       explicitly

• However, if we have some way of obtaining 
good initial estimates           for the unknown 
means, (1) can be seen as an iterative process 
for improving the estimates

• This is a gradient ascent for maximizing the 
log-likelihood function

Applications to Normal MixturesApplications to Normal MixturesApplications to Normal Mixtures
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• Example:
Consider the simple two-component one- 

dimensional normal mixture

(2 clusters!)

Let’s set μ1 = -2, μ2 = 2 and draw 25 samples 
sequentially from this mixture.

Applications to Normal MixturesApplications to Normal MixturesApplications to Normal Mixtures
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The log-likelihood function is:

• The maximum value of l occurs at:

(which are not far from the true values: μ1 = -2 
and μ2 = +2)

• There is another 
peak at which has almost the same height as 
can be seen from the following figure:

Applications to Normal MixturesApplications to Normal MixturesApplications to Normal Mixtures
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• This mixture of normal densities is identifiable
• When the mixture density is not identifiable, the 

ML solution is not unique

• Case 2: All parameters unknown

• No constraints are placed on the covariance matrix 

Let p(x | μ, σ2) be the two-component normal mixture:

Applications to Normal MixturesApplications to Normal MixturesApplications to Normal Mixtures
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Suppose μ = x1 , therefore:

For the rest of the samples: 

Finally,

The likelihood is therefore large and the 
maximum-likelihood solution becomes singular. 
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• Adding an assumption
Consider the largest of the finite local maxima of the 
likelihood function and use the ML estimation.
We obtain the following:
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ClusteringClusteringClustering

What is a Cluster? 
A cluster is a collection of data points with 
similar properties.
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ClusteringClusteringClustering

Partitional clustering
• C-means algorithm (Hard)
• Isodata algorithm
• Fuzzy C-means Clustering

Hierarchical clustering
• Single-linkage algorithm (minimum method)
• Complete-linkage algorithm (maximum method)
• Average linkage algorithm
• Minimum-variance method (Ward’s method)
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• Goal: find the c mean vectors μ1 , μ2 , …, μc

• Replace the squared Mahalanobis distance 
in the previous discussion

by the squared 
Euclidean distance

• Find the mean         nearest to xk and 
approximate 

as:
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C-Means ClusteringCC--Means ClusteringMeans Clustering
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Begin

initialize n, c, μ1 , μ2 , …, 
μc (randomly selected)

do classify n samples according  
to nearest μi
recompute μi

until no change in μi
return μ1 , μ2 , …, μc

End

• Use the iterative scheme to find                         
• if n is the known number of patterns and c the desired 

number of clusters, the C-means algorithm is:

c21 ˆ,...,ˆ,ˆ μμμ

C-Means ClusteringCC--Means ClusteringMeans Clustering
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C-Means ClusteringCC--Means ClusteringMeans Clustering
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C-Means ClusteringCC--Means ClusteringMeans Clustering
C-means algorithm:

1. Begin with C cluster centers
2. For each sample, find the cluster center nearest to 

it. Put the sample in the cluster represented by the 
just-found cluster center.

3. If no samples changed clusters, stop.
4. Recompute cluster centers of altered clusters and 

go back to step 2.
Properties:

• The number of cluster C must be given in advance.
• The goal is to minimize the square error, but it 

could end up in a local minimum.
Demo: 

http://home.dei.polimi.it/matteucc/Clustering/tutori 
al_html/AppletKM.html

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
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Clustering: ISODATAClustering: ISODATAClustering: ISODATA

Similar to C-means with some enhancements:
• Clusters with too few elements are discarded.
• Clusters are merged if the number of clusters 

grows too large or if clusters are too close 
together.

• A cluster is split if the number of clusters is too 
few or if the cluster contains very dissimilar 
samples

Properties:
• The number of clusters C is not given exactly in 

advance.
• The algorithm may requires extensive 

computations.



Unsupervised AnalysisPattern Recognition:

31

Fuzzy C-Means ClusteringFuzzy CFuzzy C--Means ClusteringMeans Clustering
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Fuzzy C-Means ClusteringFuzzy CFuzzy C--Means ClusteringMeans Clustering
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Solution Spaces for ClusteringSolution Spaces for ClusteringSolution Spaces for Clustering

Constrained c-Partition Matrices
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Partition of DataPartition of DataPartition of Data
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Defuzzification of Fuzzy PartitionsDefuzzificationDefuzzification of Fuzzy Partitionsof Fuzzy Partitions
Conversion via max membership and α-cuts
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Fuzzy c-Means ClusteringFuzzy cFuzzy c--Means ClusteringMeans Clustering
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Fuzzy c-Means (FCM) ClusteringFuzzy cFuzzy c--Means (FCM) ClusteringMeans (FCM) Clustering
Let’s now assume that a sample can belong to all the 
clusters. Define uij where

The cost function (or objective function) for FCM can 
then be written as

where is between 0 and 1; is the cluster center of 
fuzzy group is the Euclidean 
distance between i-th cluster center and jth data point; 
and         is a weighting exponent.
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Fuzzy c-Means (FCM) ClusteringFuzzy cFuzzy c--Means (FCM) ClusteringMeans (FCM) Clustering

The updated mean vector is

where
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C-means Algorithm (FCM/HCM)CC--means Algorithm (FCM/HCM)means Algorithm (FCM/HCM)
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Hierarchical ClusteringHierarchical ClusteringHierarchical Clustering

Agglomerative 
clustering (bottom up)

1. Begin with n clusters; 
each containing one 
sample

2. Merge the most similar 
two clusters into one.

3. Repeat the previous 
step until done

Divisive clustering (top 
down)
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Hierarchical ClusteringHierarchical ClusteringHierarchical Clustering
The most natural representation of hierarchical 
clustering is a corresponding tree, called a 
dendrogram, which shows how the samples 
are grouped
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Hierarchical ClusteringHierarchical ClusteringHierarchical Clustering

Demo: 
http://home.dei.polimi.it/matteucc/Clustering/tu 
torial_html/AppletH.html

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
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Hierarchical ClusteringHierarchical ClusteringHierarchical Clustering

Single-linkage algorithm (minimum method)

Complete-linkage algorithm (maximum method)

Average-linkage algorithm (average method)

D (C ,C ) d(a,b)i j a C ,b Ci j
min min=

∈ ∈

D (C ,C ) d(a,b)i j a C ,b Ci j
max max=
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Hierarchical ClusteringHierarchical ClusteringHierarchical Clustering

Ward’s method (minimum-variance method)
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d: the number of features
m: the number of samples in Ci and Cj
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Hierarchical ClusteringHierarchical ClusteringHierarchical Clustering

Single-linkage algorithm
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Hierarchical ClusteringHierarchical ClusteringHierarchical Clustering

Complete-linkage algorithm
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