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Linear Discriminant FunctionsLinearLinear Discriminant Discriminant FunctionsFunctions

• Assumption: we know the proper forms for 
the discriminant functions, and use the 
samples to estimate the values of parameters 
of the classifier

• The problem of minimizing a criterion 
function

• Sample risk, or training error – the average loss 
incurred in classifying the set of training samples
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• A classifier that uses linear discriminant 
functions is called “a linear machine”

• The decision surfaces for a linear machine 
are pieces of hyperplanes defined by: 
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• The two-category case

is the weight vector
is the bias, or threshold weight

Decision rule: decide ω1 if g(x)>0, ω2 otherwise
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Linear Discriminant FunctionsLinearLinear Discriminant Discriminant FunctionsFunctions

• g(x) = 0 defines a hyperplane 
separating the feature space 
into decision regions R1 and 
R2

• g(x) gives an algebraic 
measure of the distance from 
x to the hyperplane H

Since g(xp ) = 0:
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Linear Discriminant FunctionsLinearLinear Discriminant Discriminant FunctionsFunctions

• The orientation of H is 
determined by the normal 
vector w, and the location of H 
is determined by the bias
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The Multicategory CaseThe The MulticategoryMulticategory CaseCase

• One versus all

• One versus one
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The Multicategory CaseThe The MulticategoryMulticategory CaseCase

• To avoid ambiguous regions:

• Define c linear discriminant functions

• Assign x to class ωi if gi (x) > gj (x) for all j different 
from i
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Generalized Linear Discriminant FunctionsGeneralizedGeneralized LinearLinear Discriminant Discriminant FunctionsFunctions

• Linear discriminant function:

• Polynomial discriminant functions:
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• Generalized linear discriminant function:
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• Generalized linear discriminant function:

• The resulting discriminant function is not 
linear in x, but it is linear in y
• The functions yi (x) map points in d- 
dimensional x-space to points in     - 
dimensional y-space
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http://www.youtube.com/watch?v=3liCbRZPrZ 
A

http://www.youtube.com/watch?v=3liCbRZPrZA
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Two-Category Linearly Separable CaseTwoTwo--CategoryCategory LinearlyLinearly SeparableSeparable CaseCase

• We have a set of n samples y1 , …, yn some 
labelled ω1 and some labelled ω2

• We want to use these samples to determine a 
in 

• If we can find such a that all of the samples 
are correctly classified, the samples are 
linearly separable
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Two-Category Linearly Separable CaseTwoTwo--CategoryCategory LinearlyLinearly SeparableSeparable CaseCase

•
• yi is classified correctly if                   and yi is 
labelled ω1 or                  and yi is labelled ω2

• Normalization: replace all samples labelled ω2 
by their negatives

• We’ll look for such solution vector a that 
for all of the samples
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• a can be thought as a point in weight space
• Each yi places a constraint on the possible 
location of a
• The solution vector must be on the positive 
side of every 
hyperplane
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Two-Category Linearly Separable CaseTwoTwo--CategoryCategory LinearlyLinearly SeparableSeparable CaseCase

• Gradient descent procedures: define a 
criterion function J(a) that is minimized if a is a 
solution vector
• Basic gradient descent:

• Start with arbitrary weight vector a(1)
• Compute
• Repeat iterations (moving weight vector in the 

direction of steepest descent):
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Two-Category Linearly Separable CaseTwoTwo--CategoryCategory LinearlyLinearly SeparableSeparable CaseCase

• Choice of the learning rate is important
• If it is too small, convergence is too slow
• If it is too large, the correction process will 

overshoot
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Two-Category Linearly Separable CaseTwoTwo--CategoryCategory LinearlyLinearly SeparableSeparable CaseCase

• Setting the learning rate:

H is the Hessian matrix of second partial 
derivatives

•
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Minimizing the Perceptron Criterion FunctionMinimizingMinimizing the Perceptron the Perceptron CriterionCriterion FunctionFunction

• Problem: to construct a criterion function for 
solving

• Possibility: Let 
be the number 

of samples misclassified 
by a.
• Disadvantage: this 
function is piecewise 
constant
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• Perceptron criterion function:

where is the set of 
samples misclassified by a

• is proportional to 
the sum of the distances 
from the misclassified 
samples to the decision 
boundary
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•

(since the jth component of the gradient of 
is )
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• Batch Perceptron algorithm : the next weight 
vector is obtained by adding some multiple of 
the sum of the misclassified samples to the 
present weight vector
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Relaxation ProceduresRelaxation Relaxation ProceduresProcedures

Descent algorithm:
• Another possible criterion function is: 

where is the set of 
samples misclassified by a

• Advantage: gradient is 
continuous

• Disadvantages: 1) the function is 
very smooth near the boundary 
of the solution region; 2) value is 
dominated by the longest sample vectors
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Relaxation ProceduresRelaxation Relaxation ProceduresProcedures

• To avoid these problems, we introduce the 
criterion function as: 

where is the set of 
samples for which
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• The relaxation algorithm becomes:
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Relaxation ProceduresRelaxation Relaxation ProceduresProcedures

• Single-sample relaxation rule with margin:
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• In general, 
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Nonseparable behaviorNonseparableNonseparable behaviorbehavior

• Perceptron and relaxation procedures are 
called error-correcting procedures
• In practice they are used if one can believe 
that the error rate for the optimal LDF is low

• Which technique should one apply if sample 
set is unseparable?
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Minimum Squared Error ProceduresMinimum Minimum SquaredSquared ErrorError ProceduresProcedures

• We will consider now a criterion function that 
involves all of the samples
• We shall try to resolve 
where are some arbitrarily specified 
positive constants
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Minimum Squared Error ProceduresMinimum Minimum SquaredSquared ErrorError ProceduresProcedures

•
• If Y were nonsingular, we could obtain a 
solution as 

• Usually Y has more rows than columns no 
exact solution for a exists

• We’ll search to minimize the squared length 
of the error vector :
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Minimum Squared Error ProceduresMinimum Minimum SquaredSquared ErrorError ProceduresProcedures

• We minimize the sum of squared error by a 
gradient search procedure:

• If          is nonsingular, we can solve for a 
uniquely as:

where is called the 
pseudoinverse of Y
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Demo of MSE procedure: 
http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletMSE.html
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Support Vector MachinesSupport Support VectorVector MachinesMachines

• Tutorial
• http://videolectures.net/mlss06tw_lin_svm/

•Library
• http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://videolectures.net/mlss06tw_lin_svm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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