6. Linear Discriminant Functions

Pattern Recognition: Lin.Discrim.Functions

Linear Discriminant Functions

« Assumption: we know the proper forms for
the discriminant functions, and use the
samples to estimate the values of parameters
of the classifier

e The problem of minimizing a criterion
function

« Sample risk, or training error —the average loss
Incurred in classifying the set of training samples

Pattern Recognition: Lin.Discrim.Functions

Linear Discriminant Functions

e A classifier that uses linear discriminant
functions is called “a linear machine”

T
; X T W50

9i(X) =w

 The decision surfaces for a linear machine
are pieces of hyperplanes defined by:

g;(X) = g;(X)

Pattern Recognition: Lin.Discrim.Functions

Linear Discriminant Functions

 The two-category case

g(x) = g1(X) —g2(X) = Wi x+w10— (WX +wo0)

= (W1 — Wo)Ix + (w19 — wag) = wlx + wg

W is the weight vector
wo IS the bias, or threshold weight

Decision rule: decide w, if g(x)>0, w, otherwise

Pattern Recognition: Lin.Discrim.Functions

Linear Discriminant Functions

Figure 5.1: A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value x; is multiplied
by its corresponding weight w,: the output unit sums all these products and emits a
+1if wix +wg > 0 or a —1 otherwise.

Pattern Recognition: Lin.Discrim.Functions

Linear Discriminant Functions

e g(x) =0 defines a hyperplane
separating the feature space *'
Into decision regions R, and
RZ

* g(X) gives an algebraic
measure of the distance from
X to the hyperplane H

\"\")
T
lw]

X = Xp -
4
Since g(x,) = 0: g(Xx) = wix + wo = r{|W||

Pattern Recognition: Lin.Discrim.Functions

Linear Discriminant Functions

g(x) = wlx 4+ wg = r||wl|

e The orientation of H Is
determined by the normal
vector w, and the location of H
IS determined by the bias WQ

Pattern Recognition:

Lin.Discrim.Functions

The Multicategory Case

e One versus all

]
‘ S—

" notog

ambiguous
region

e One versus one

Figure 5.3: Linear decision boundaries for a four-class problem. The top figure shows

w;i/not w; dichotomies while the bottom figure shows w; /w; dichotomies. The pink
regions have ambiguous category assigments.

Pattern Recognition: Lin.Discrim.Functions

The Multicategory Case

e To avoid ambiguous regions:

e Define ¢ linear discriminant functions

g(X) =w;x+w,g i=1,..c

* Assign x to class wj If g;(x) > g;(x) for all j different
from i

10

Pattern Recognition: Lin.Discrim.Functions

The Multicategory Case

R

/ 04 Ra

Figure 5.4: Decision boundaries produced by a linear machine for a three-class prob-

Ry
fRZ fRz
\ . .
3

lem and a five-class problem.

11

Pattern Recognition: Lin.Discrim.Functions

Generalized Linear Discriminant Functions

e L Inear discriminant function:

d
g(x) = wix+wg =wg+ Y wjz;
i—1

 Polynomial discriminant functions:

d d d
g(X) =wo +) wizi+ Y) wijziz;+
1=1 i=1j=1
dﬁ dﬁ dﬂ~
>) >) > , Wi kT T T+ ...

i=1j=1k=1 >

Pattern Recognition: Lin.Discrim.Functions

Generalized Linear Discriminant Functions

e Generalized linear discriminant function:

d
g(x) = ay(x) =aly
i=1

aq - y1(X) -

a7 | i yd’"(x) 1

13

Pattern Recognition: Lin.Discrim.Functions

Generalized Linear Discriminant Functions

e Generalized linear discriminant function:

d
g(x) = Y ajyi(x) = aly
i—=1

e The resulting discriminant function is not
linear in X, butitis linear iny

* The functions y;(x) map points in d-
dimensional x-space to pointsin (-
dimensional y-space

14

Pattern Recognition: Lin.Discrim.Functions

Example

g(x) = a1+ arxz + agmz

Figure 5.5: The mapping y = (1, z, 22)" takes a line and transforms it to a parabola

in three dimensions. A plane splits the resulting y space into regions corresponding
to two categories, and this in turn gives a non-simply connected decision region in the
one-dimensional x space.

Pattern Recognition: Lin.Discrim.Functions

Example

Figure 5.6: The two-dimensional input space x is mapped through a polynomial
function f to y. Here the mapping is y; = xy, Yo = x5 and yg X xyx5. A linear
discriminant in this transformed space 1s a hyperplane, which cuts the surface. Points
to the positive side of the hyperplane H correspond to category wq, and those beneath
15 it wo. Here, in terms of the x space, R1 1s a not simply connected.

16

Pattern Recognition:

Example

http://www.youtube.com/watch?v=3liICbRZPrZ
A

http://www.youtube.com/watch?v=3liCbRZPrZA

17

Pattern Recognition: Lin.Discrim.Functions

Generalized Linear Discriminant Functions

d d
g(X) =wo+ > wiz;= > wiz;=aly

i=1 i=0
. g
y=|*l| a=| "
K28 | wy _

18

Pattern Recognition: Lin.Discrim.Functions

Two-Category Linearly Separable Case

 We have a set of n samplesy,, ..., y, some
labelled w, and some labelled w,

 We want to use these samples to determine a
in g(x) =aly

 If we can find such a that all of the samples
are correctly classified, the samples are
linearly separable

19

Pattern Recognition: Lin.Discrim.Functions

Two-Category Linearly Separable Case

e g(x)=aly

e y. is classified correctly if aly; >0 andy;is
labelled w, or a7y, <0 andy;is labelled w,

* Normalization: replace all samples labelled w,
by their negatives

a

« We'll look for such solution vector a that
aly;, > 0 for all of the samples

20

Pattern Recognition: Lin.Discrim.Functions

Two-Category Linearly Separable Case

e a can be thought as a point in weight space

* Each y; places a constraint on the possible
location of a

 The solution vector must be on the positive
Slde Of every solu!ion . solution .
hyperplane N

aly;, =0

-
-
o

Figure 5.8: Four training samples (black for wq, red for ws) and the solution region
in feature space. The figure on the lett shows the raw data; the solution vectors leads
to a plane that separates the patterns from the two categories. In the figure on the
right, the red points have been “normalized” — i.e., changed in sign. Now the solution
vector leads to a plane that places all “normalized” points on the same =ide.

Pattern Recognition: Lin.Discrim.Functions

Two-Category Linearly Separable Case

W

solution 4 solution ‘O":\H v
rcgio'n I rcgion - \

Y1 5 / e

rd

h
-~ ! ~ !
! / G
i I 2

Figure 5.9: The effect of the margin on the solution region. At the left. the case of

no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the
right is the case b > 0, shrinking the solution region by margins b/|y;||.

22

Pattern Recognition: Lin.Discrim.Functions

Two-Category Linearly Separable Case

 Gradient descent procedures: define a
criterion function J(a) that is minimized if ais a
solution vector
e Basic gradient descent:

o Start with arbitrary weight vector a(1)

« Compute VJ(a(l))

 Repeat iterations (moving weight vector in the
direction of steepest descent):

a(k+ 1) =a(k) —n(k)VJ(a(k))

n(k) is learning rate

23

Pattern Recognition: Lin.Discrim.Functions

Two-Category Linearly Separable Case

Algorithm 1 (Basic gradient descent)

1 begin initialize a, criterion 6, n(-), k=0

3 a<—a—1nk)V.J(a)
until n(k)V.J(a) <6
5 return a

6 end

P

 Choice of the learning rate is important
e If it is too small, convergence is too slow

« If it is too large, the correction process will
overshoot

24

Pattern Recognition: Lin.Discrim.Functions

Two-Category Linearly Separable Case

e Setting the learning rate:
IvJ|?
VJTHVJ

H is the Hessian matrix of second partial
derivatives 92.J/da;0a;

n(k) =

o Algorithm 2 (Newton descent)

1 begin initialize a,criterion ¢
2 do
s a—a—H 'V.J(a)

y until H-'V.J(a) < 6
return a

6 end

25

Pattern Recognition: Lin.Discrim.Functions

Two-Category Linearly Separable Case

Figure 5.10: The sequence of weight vectors given by a simple gradient descent method
(red) and by Newton’s (second order) algorithm (black). Newton’s method typically
leads to greater improvement per step, even when using optimal learning rates for both
methods. However the added computational burden of inverting the Hessian matrix
used in Newton’s method is not always justified, and simple descent may suffice.

26

Pattern Recognition: Lin.Discrim.Functions

Minimizing the Perceptron Criterion Function

e Problem: to construct a criterion function for
solving aly; >0

e Possibility: Let :
J(a;yi1,....y,) be the number :
of samples misclassified
by a.

e Disadvantage: this
function Is piecewise
constant

BJ

solution
region

27

_Discrim.Fun

Pattern Recognition:

Minimizing the Perceptron Criterion Function

e Perceptron criterion function:

(—aly)
yey

Jp(a) =

Jp(ﬂ}

where Yy(a) Is the set of
samples misclassified by a.

e D
A o TN
e e SR g

_SSSSrs LT
S o i
ﬁm&%\w CTFTITT Sl Tl

R A Ny F LS
e “W“\\@- L

==
T e i
e e

S
S et
ST

e Jp(a) Is proportional to
the sum of the distances
from the misclassified

samples to the decision) f
boundary

solution
region

28

Pattern Recognition: Lin.Discrim.Functions

Minimizing the Perceptron Criterion Function

° Vip = Z (—vy)

yey

(since the jth component of the gradient of J»
iS; Elfp/éh;j)

Algorithm 3 (Batch Perceptron)

1 begin initialize a,n(-),criterion 0,k = 0

2 do kh—k+1
3 a—a+nk)d vy
YEVk
4 until n(k) > y <6
yEVk

5 return a
6 end

Pattern Recognition: Lin.Discrim.Functions

o

Minimizing the Perceptron Criterion Function

oy
=X

A Ny AR i,
s SRR T S
R NN
SN : \\.\\\\\{\x\\'\.‘ﬁ
PO

A Yy
\‘-ﬁ; -

0 solution

region

4

Figure 5.12: The Perceptron criterion, .J, is plotted as a function of the weights a;
and ag for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is y2, ¥3, y1.¥3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by
v3) takes the candidate vector farther from the solution region than after the first
update (cf. Theorem 5.1. (In an alternate, batch method, all the misclassified points
are added at each iteration step leading to a smoother trajectory in weight space.)

30

Pattern Recognition: Lin.Discrim.Functions

Minimizing the Perceptron Criterion Function

e Batch Perceptron algorithm : the next weight
vector Is obtained by adding some multiple of
the sum of the misclassified samples to the

present weight vector

31

Pattern Recognition: Lin.Discrim.Functions

Minimizing the Perceptron Criterion Function

Algorithm 5 (Variable increment Perceptron with margin)

-

1 begin initialize a,criterion 6, margin b,n(:),k =0
¢ do k—k+1

3 if aty.i.' +b <0 then a«— a+n(k)yk
4 until alyy, +b >0 for all k

5 return a

6 end

32

Pattern Recognition: Lin.Discrim.Functions

Relaxation Procedures

Descent algorithm:
 Another possible criterion function is:

Jq(a) = Z (aTy)Q Jq(a
yey T

where Y(a) isthe setof
samples misclassified by a

 Advantage: gradient is
continuous

« Disadvantages: 1) the functionis
very smooth near the boundary :
of the solution region; 2) value is
dominated by the longest sample vectors

solution
region

Pattern Recognition: Lin.Discrim.Functions

elaxation P

cedures

 To avoid these problems, we introduce the
criterion function as:

o e ““3‘"“:‘\ =
2
B A s
e e
e

2 2 I

where Yy(a) Is the set of
samples for which a’y <b

Jay=1y @Y b

e
e

s T

e

solution
region

34

Pattern Recognition: Lin.Discrim.Functions

Relaxation Procedures

* The relaxation algorithm becomes:

Algorithm 8 (Batch relaxation with margin)

1 begin initialize a,7(:), k=0

2 dok—k+1modn

3 Vi =1}

y 7=0

doj—j+1

6 if aTyj <b then Append y; to Vi
7 until j =n

8 a—a+nlk) > E’”_—}:Tfjxy

yey

9 until Vi = {}
10 return a
11 end

35

Pattern Recognition: Lin.Discrim.Functions

Relaxation Procedures

e Single-sample relaxation rule with margin:

Algorithm 9 (Single-sample relaxation with margin)

1 begin initialize a,n(-),k =0
2 doh—Fk+1 modn

3 if al Y. <b then a<— a+nlk)—=
until aly, > b for all y;

b—a'y
Tyel®

Vi||? Yk

4
5 return a
6 end

36

Pattern Recognition: Lin.Discrim.Functions

Relaxation Procedures

*Ingeneral, 0 < n <2

Figure 5.15: At the left, underrelaxation (1 < 1) leads to needlessly slow descent, or
even failure to converge. Overrelaxation (1 < 5 < 2, shown in the middle) describes
overshooting; nevertheless convergence will ultimately be achieved.

37

Pattern Recognition: Lin.Discrim.Functions

Nonseparable behavior

e Perceptron and relaxation procedures are
called error-correcting procedures

 In practice they are used iIf one can believe
that the error rate for the optimal LDF is low

 Which technique should one apply if sample
set IS unseparable?

Pattern Recognition: Lin.Discrim.Functions

Minimum Squared Error Procedures

* We will consider now a criterion function that
Involves all of the samples

« We shall try to resolve aly; =b;
where b; are some arbitrarily specified

positive constants

[Yio Y11 . Yig\ [@0) [b1)
Yoo Y21 ... Yoq ai b?

\G:d/

\Y’HO Yn1 - Yn,d/ \ bn/

Ya=»>b

39

Pattern Recognition: Lin.Discrim.Functions

Minimum Squared Error Procedures

° Ya=»D>b

 If Y were nonsingular, we could obtain a
solutionas a=vy 1p

e Usually Y has more rows than columns = no
exact solution for a exists

 We'll search to minimize the squared length
of the error vector e=Ya-b:

Js(a) = |Ya—b|]* = Z(a Vi — b;)?

Pattern Recognition: Lin.Discrim.Functions

Minimum Squared Error Procedures

* We minimize the sum of squared error by a
gradient search procedure:

n
VJs= 3 2(a'y; —b)y; = 2Y" (Ya—b)
1=1
VJs=2Y!'(Ya—b)=0

Y'ya=Y'b
« If Y'Y is nonsingular, we can solve for a
uniquely as: |3 = (v7y)"1v¥’b = v'b

where v7=(vlvy) 1yl is called the
pseudoinverse of Y

41

Pattern Recognition: Lin.Discrim.Functions

Example

Example 1: Constructing a linear classifier by matrix pseudoinverse

Suppose we have the following two-dimensional points for two categories: wq:
(1,2)" and (2,0)%, and wo: (3,1)" and (2, 3)*, as shown in black and red, respectively,
in the figure.

Our matrix Y is theretore

1 2 0
-1 -3 -1
-1 -2 -3

Y =

and after a few simple calculations we find that its pseudoinverse is

5/4 13/12 3/4 T7/12
Y = lim(Y'Y +eD)'Y = | —-1/2 —1/6 —1/2 —1/6
0 0o -1/3 0 —1/3

42

Pattern Recognition: Lin.Discrim.Functions

Example

X3
4
3 ®
R,
R,
2 9 2
1 ®
0 ®
X
0 1 3 4
1
Four training points and the decision boundary a‘ [a4 = 0. where a was found
€I'a
by means ot a pseudoinverse technique.
We arbitrarily let all the margins be equal, i.e., b = (1,1,1,1)%. Our solution is

a=Y'b = (11/3,-4/3,-2/3)", and leads to the decision boundary shown in the
figcure. Other choices tor b would typically lead to different decision boundaries, of
course.

Demo of MSE procedure:
http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletMSE.html

43

Pattern Recognition: Lin.Discrim.Functions

Support Vector Machines

e Tutorial
e http://videolectures.net/mlssO6tw lin svm/
sLibrary

o http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://videolectures.net/mlss06tw_lin_svm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

	6. Linear Discriminant Functions
	Linear Discriminant Functions
	Linear Discriminant Functions
	Linear Discriminant Functions
	Linear Discriminant Functions
	Linear Discriminant Functions
	Linear Discriminant Functions
	The Multicategory Case
	The Multicategory Case
	The Multicategory Case
	Generalized Linear Discriminant Functions
	Generalized Linear Discriminant Functions
	Generalized Linear Discriminant Functions
	Example
	Example
	Example
	Generalized Linear Discriminant Functions
	Two-Category Linearly Separable Case
	Two-Category Linearly Separable Case
	Two-Category Linearly Separable Case
	Two-Category Linearly Separable Case
	Two-Category Linearly Separable Case
	Two-Category Linearly Separable Case
	Two-Category Linearly Separable Case
	Two-Category Linearly Separable Case
	Minimizing the Perceptron Criterion Function
	Minimizing the Perceptron Criterion Function
	Minimizing the Perceptron Criterion Function
	Minimizing the Perceptron Criterion Function
	Minimizing the Perceptron Criterion Function
	Minimizing the Perceptron Criterion Function
	Relaxation Procedures
	Relaxation Procedures
	Relaxation Procedures
	Relaxation Procedures
	Relaxation Procedures
	Nonseparable behavior
	Minimum Squared Error Procedures
	Minimum Squared Error Procedures
	Minimum Squared Error Procedures
	Example
	Example
	Support Vector Machines

