5. Non-Parametric Techniques
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Non-Parametric Technigues

« All Parametric densities are unimodal (have a
single local maximum), whereas many practical
problems involve multi-modal densities

 Nonparametric procedures can be used with
arbitrary distributions and without the
assumption that the forms of the underlying
densities are known

 We will consider
« Parzen Density Estimation
* K, Nearest Neighbor Estimation
« k-Nearest Neighbor Rule
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Histogram Estimation

 Normalized histogram density
estimation is perhaps the simplest
density estimation approach

« Histogram density estimation has the
main shortcomings that it is not smooth

« Other approaches are needed to
overcome this problem
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Histogram Estimation — Example 1D
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Fig. 4.2 A typical bivariate histogram. Reproduced from Scott (1952) with the
permission of the author.
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Density Estimation

» Basic idea:
Probability that a vector x will fall in region R is:

P = j p(x")dx’ @

P is a smoothed (or averaged) version of the density
function p(x) if we have a sample of size n;
therefore, the probability that k points fall in R is
then:

P = (Ejpk (1-P)™ (2)

and the expected value for k Is:
E(k) =nP (3)
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Density Estimation

ML estimation of P =0
5 _k
. MeaX(Pk ‘e) is reached for 7~ n =P

*Therefore, the ratio k/n is a good estimate for the
probability P and hence for the density function p.

*p(X) is continuous and the region R is so small that p
does not vary significantly within it, we can write:

[p(<)dx = p(x)V (4)

where x is a point within R and V is the volume
enclosed by R.
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Density Estimation

« Combining equations (1), (3) and (4) yields:

relative k/ n
profabifiny p(X) Y —
4 V

(
| = L
i P=107 !

FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular
value for the probability density, here where the true probability was chosen 1o be 0.7.
Each curve is labeled by the total number of patterns n sampled, and is scaled to give
the same maximum (at the true probability). The form of each curve is binomial, as
given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the
limit n — oo, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David
G Stork, Fattern Classification. Copyright @© 2001 by John Wiley & Sons, Inc.
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Density Estimation

Justification of equation (4)

| pO<)dx'= p(x)V (4)

We assume that p(x) is continuous and that region
R is so small that p does not vary significantly

within R. Since p(x) = constant, it is not a part of
the integral.
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Density Estimation

J pOx )dx = p(x ) dx' = p(x )] 1 (x)dX' = p(X' )u(R)

Where: u(R) is: a surface in the Euclidean space R?
avolume in the Euclidean space R?
a hypervolume in the Euclidean space R




11

Pattern Recognition: Nonparametric tech.

Density Estimation

Since p(x) p(x’) = constant, therefore in
the Euclidean space R3:

[ p(x )dx = p(x)V

K

and X )=
p( x) =y
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Density Estimation

« Condition for convergence

The fraction k/(nV) is a space averaged value
of p(x).
pP(x) Is obtained only if V approaches zero.

lim p(x)=0 (if n= fixed)

V —0,k=0

This is the case where no samples are
iIncluded in R: it is an uninteresting case!
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Density Estimation

lim X )= o0
V —-0,k=0 p( )

In this case, the estimate diverges: it is an
uninteresting case!
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Density Estimation

The volume V needs to approach 0 anyway if
we want to use this estimation

* Practically, V cannot be allowed to become small
since the number of samples is always limited

 One will have to accept a certain amount of
variance in the ratio k/n and a certain amount of
averaging of the density p(x)
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Density Estimation

Theoretically, if an unlimited number of samples is
available, we can circumvent this difficulty

To estimate the density of x, we form a sequence of
regions

R;, R,,...containing x: the first region contains one
sample, the second two samples and so on.

Let V, be the volume of R_, k, the number of samples
falling in R and p,(x) be the nt estimate for p(x):

P, (X) = (k. /n)/V
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Density Estimation

Three necessary conditions should apply if we want p.(x) to

converge to p(x):

1)limV,_ =0
2)limk =o0
3)limk, /n=0

N—o0
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Density Estimation

* There are two different ways of obtaining sequences
of regions that satisfy these conditions:

1) Shrink an initial region where V,, = 1/y/n
and show that
P, (X) = p(x)

—>0

This is called “the Parzen-window estimation
method”

2) Specify k, as some function of n, such as

kn = +/n ;thevolume V, is grown until
it encloses k,, neighbors of x. This is called
“the k. -nearest neighbor estimation method”
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Density Estimation
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FIGURE 4.2, There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as V, = 1/,/n. The
other method, shown in the bottom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number k, = /n of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Fattern Classification. Copyright @ 2001 by John Wiley &
Sons, Inc.
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Parzen Density Estimation

Properties:

 Also known as kernel estimator or Parzen
windows

« Can be used for multiple features

 Window width is an important parameter in the
Parzen Density Estimation.

 The width is usually found by trial and error
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Parzen Density Estimation

Use the Parzen-window approach to estimate densities:
- Assume that the region R, is a d-dimensional

_______

hypercube ‘

V, =h (h,:length of the edge of R )
Let ¢(u) be the following window function:

-

1 <2
p(u) = - =2 j=1,-,d
0 otherwise

o((x-x;)/h,)) I1s equal to unity if x; falls within the
hypercube of volume V, centered at x. It is equal to zero
otherwise.
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Parzen Density Estimation

« The number of samples in this hypercube is:

By using p(x) =~ " we obtain the following estimate:

P,(X) estimates p(x) as an average of functions of x and
the samples (x;) (i =1,... ,n). These functions ¢ can be
general.
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Parzen Density Estimation

The window function is being used for
Interpolation — each sample contributing to
estimate in accordance with its distance from x
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Effect of the window width on p,(x)

Figure 4.3: Examples of two-dimensional circularly symmetric normal Parzen windows
p(x/h) for three different values of h. Note that because the d;(-) are normalized,
different vertical scales must be used to show their structure.

| e

Figure 4.4: Three Parzen-window density estimates based on the same set of five
samples, using the window functions in Fig. 4.3. As before, the vertical axes have
been scaled to show the structure of each function.
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Parzen Density Estimation

« The behavior of the Parzen-window method
Case where p(x) =N(0,1)

1 _u2/2

. Let p(u) = Nors

and

hn = hl/\/T_?» (h,: known parameter)

IS an average of normal densities centered at
the samples x..
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Parzen Density Estim

Nonparametric tech.

)ation
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Parzen Density Estimation
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Fig. 4.3 Density estimate, displayed on the square (+3, +3), for 100
observations from bivariate normal mixture, window width 1.2.
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Parzen Density Estimation

Fig. 4.4 Density estimate for 100 observations from bivariate normal mixture,
window width 2.2.
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Fig. 4.5 Density estimate for 100 observations from bivariate normal mixture,
window width 2.8.
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Parzen Density Estimation

 Numerical results:
Forn=1andh,=1

1 1/12(x-%4)?
Pi(X) =p(x-X,) = =" - N(x,,1)

J2m

For n =10 and h = 0.1, the contributions of the
Individual samples are clearly observable
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Parzen Density Estimation

hy=1 =(.5 hy=0.1

”” ; \ /\\ WIk

.




31

Pattern Recognition: Nonparametric tech.

Parzen Density Estimation
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FIGURE 4.5. Farzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n = oo estimates are the
same (and match the true density function), regardless of window width. From: Richard
0. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright © 2001

by John Wiley & Sons, Inc.
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Parzen Density Estimation

Figure 4.6: Parzen-window estimates of a bivariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n = oo estimates are the
same (and match the true generating distribution), regardless of window width /.
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Parzen Density Estimation

* Case where p(x) = A, U(a,b) + A, T(c,d) (unknown
density) (mixture of a uniform and triangle densities)
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Parzen Density Estimation
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Figure 4.7: Parzen-window estimates of a bimodal distribution using different window
widths and numbers of samples. Note particularly that the n = oo estimates are the
same (and match the true generating distribution). regardless of window width A.
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Parzen Density Estimation

Classification Example

In classifiers based on Parzen-window estimation:

* We estimate the densities for each category and
classify atest point by the label corresponding to the
maximum posterior

* The decision region for a Parzen-window classifier
depends upon the choice of the window function as
Illustrated in the following figure
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FIGURE 4.8. The decision boundaries in a two-dimensional Farzen-window di-

chotomizer depend on the window width A, At the left a small h leads to boundaries

that are more complicated than for large h on same data sel, shown at the right. Appar-

ently, for these data a small A would be appropriate for the upper region, while a large

fr would be appropriate for the lower region; no single window width is ideal over-

all. From: Richard ©. Duda, Peter E. Harl, and David G. Stork, Paltern Classification.
" Copyright © 2001 by John Wiley & Sons, Inc.
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Parzen Density Estimation — Samples needed

Table 4.2 Sample size required (accurate to about 3 significant
Sigures) to ensure that the relative mean square error at zero is less
than 0.1, when estimating a standard multivarigte normal density

using a normal kernel and the window width that minimizes the-
mean square error at zero

Dimensionality Required sample size

4

19

67

225

768
2790
10 700
43 700
187 000
842 000

O\DOO\JO.M-P-.UJI\)'—H

—




39

Pattern Recognition: Nonparametric tech.

Parzen Density Estimation — Exercise

Let p(x) ~ U(0,a) be uniform from 0 to a, and let a Parzen window be defined
as p(x) =e " for x > 0 and 0 for z < 0.

Show that the mean of such a Parzen-window estimate is given by

0 xr <0
Pnlx) = f(l — e~/hn) 0<z<a
%(f'i“*"fh n— 1)6:_‘1"'-’”1” a < .
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K., Nearest Neighbor Estimation

Goal: a solution for the problem of the unknown “best” window

function
Let the cell volume be a function of the training data.

Center a cell about x and let it grow until it captures
k, samples (k, = f(n))

k., are called the k. nearest-
neighbors of x

Two possibilities can occur:
Density is high near x. Therefore, the cell will be small

which provides a good resolution.

Density is low. Therefore, the cell will grow large and not
stop until higher density regions are reached.

We can obtain a family of estimates by setting kn = k1v/n
and choosing different values for k,
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K., Nearest Neighbor Estimation

p(x)

t—————=a— e — x

Figure 4.10: Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally occur away fom the positions of the points themselves.
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K., Nearest Neighbor Estimation

Figure 4.11: The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and that discontinuities in
the slopes generally occur along lines away from the positions of the points themselves.
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lllustration: K, Nearest Neighbor Estimation

* Previous example for Parzen

e Forn=1and kn = +/n = 1; the estimate
becomes:

P.(X) = 17V,
= 17/ 2|x-x,]
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K., Nearest Neighbor Estimation

n=241

k=11

I 4 : ]
I/ i K. . P

FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities:
a Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
"spiky.” From: Richard O. Duda, Peter E. Harl, and David G. Stork, Fattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.




Pattern Recognition: Nonparametric tech.

K., Nearest Neighbor Estimation

=i
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Estimation of a-posteriori probabilities

* Goal: estimate P(w, | X) from a set of n
labeled samples

* Let us place a cell of volume V around x
and capture k samples

* ki samples amongst k turned out to be
labeled o, then:

ki/n
V
* An estimate for P, (w;| X) Is:

X, W; k;
Pn(w@|)() — p?’l( !w?,) — 1

Z;’:l pn(X, Wj) -k

Pn (xn wi) —
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Estimation of a-posteriori probabilities

* ki/k Is the fraction of the samples within the
cell that are labeled o,

 For minimum error rate, the most
frequently represented category within the
cell is selected

* If k is large and the cell sufficiently small,
the performance will approach the best
possible
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The Nearest Neighbor Rule

* Let D, = {X4, X5, ..., X,,} be a set of n labeled prototypes

* Let X’ e D, be the closest prototype to a test point x
then the nearest- -neighbor rule for cIaSS|fy|ng X isto
assign it the label associated with x’

« The nearest-neighbor rule leads to an error rate greater
than the minimum possible: the Bayes rate

- If the number of prototype is large (unlimited), the error
rate of the nearest-neighbor classifier is never worse
than twice the Bayes rate (it can be demonstrated)

* If n > oo, it IS always possible to find x’ sufficiently close
so that:

P(o; | X*) = P(o; | X)
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Xy

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space into Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Fattern Classification. Copyright @© 2001 by John Wiley & Sons, Inc.
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K-Nearest Neighbor Rule (K-NNR)

Steps:
1. Find the first k nearest neighbors of a given point.

2. Determine the class of the given point by a voting
mechanism among these k nearest neighbors.

x . class-A point

> . class-B point
x e : point with unknown class

Feature 2

: \ Circle of 3-nearest neighbors

x

x

The point is class B via 3-NNR.
Feature 1
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The k-Nearest Neighbor Rule

« Goal: Classify x by assigning it the label
most frequently represented among the k
nearest samples and use a voting scheme
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The k-Nearest Neighbor Rule

-

w1,

FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
ical region until it encloses k training samples, and it labels the test point by a majority

vote of these samples. In this k = 5 case, the test point x would be labeled the category
of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Example

« Example: k = 3 (odd value) and x = (0.10, 0.25)T

Prototype Labels
0.15,0.35) w,
0.10,0.28) w,
0.09,0.30) w,
0.12,0.20) w,

I~ S N N

e Closest vectors to x with their labels are: {(0.10, 0.28, 032);
(0.12, 0.20, oaz); (0.09, 0.30, oa5)}

One voting scheme assigns the label 0)2

to X since m2 Is the most frequently represented
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Flowchart for Nearest Neighbor

General flowchart: Particle example:
Feature From image to features
extraction
reduction
Distance

Distance Computation
measure
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Example

A real-world application, word pronunciation, is
used to exemplify how the classifier learns and
classifies:

http://demo.viidea.com/aaai07 bosch knnc/



http://demo.viidea.com/aaai07_bosch_knnc
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The k-Nearest Neighbor Rule

Figure 4.16: The error-rate for the k-nearest-neighbor rule for a two-category problem
is bounded by Ci(P*) in Eq. 55. Each curve is labelled by k; when k = oo, the
estimated probabilities match the true probabilities and thus the error rate is equal
to the Bayes rate, i.e., P = P*.
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The Error for the k-Nearest Neighbor Rule

Ppi(X) P2pz(X)

%ol A8 £ = 4N
b4 ?A b

ENN = GIN
e

E2NN = 3NN

Fig. 7-3 Example of kNN classification.
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Distance Metrics

L-d norms (aka Minkowski distance):

1/d

dd()_{): leild

e d :_1: City block distance, Manhattan metric,
taxicab distance g (x) = > x|

» d =2: Euclidean distance | , (%) = \/Z X ]2

e d =iInf: maximum distance metric

d,(X) = max|x,|
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Error Estim — k-NN

Nonparametric tech.

Resubstitution error:

Data 1st NN 2nd NN 3rd NN ('l:lxai_rin';uiml
()] w W (1)
Xl I X] ] X3 I X 10 I ] j
X2 2 3(2 2 X,S ] ng 2 2
XN 1 X}".-' ] X}S 2 Xﬁ](} J 2 2

# or errors
N

(b) 2NN (or 3NN resubstitution)

R:

Correct

(8]

Error

Correct

Correct

Error
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Error Estinmation — k-NN

Leave one out error:

3NN ERROR ESTIMATION PROCEDURES

Data 1st NN 2nd NN 3rd NN Classification Correct
PP i b - or
® 0 w w Error
X} l X_q_ l X 10 Xg; 2 | C()ITCC[
XQ 2 X 18 | X 25 2 X_'“'} l ] IEITUI‘
XN 1 X35 2 X5J() l 2 J X 166 ? 2 J l’:”'(}r
i _#_c]{ CIrors
¥ N

(a) 3NN (or 3NN leave-one-out)
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