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Pattern Recognition: Bayesian theory .

Bayesian Decision Theory

« Fundamental statistical approach to the
problem of pattern classification

e Assumptions:

1. Decision problem is posed Iin
probabilistic terms

2. ldeal case: probability structure
underlying the categories is known
perfectly
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Statistical Decision Theory

 What is a pattern?

 |n statistical pattern recognition, a pattern is a
d-dimensional feature vector

X = (X].7 X27 e Xd)T



Pattern Recognition: Bayesian theory

Statistical Decision Theory

 The sea bass/salmon example

e State of nature
e Prior

o State of nature is a random variable (o):
o = o, for sea bass; o = o, for salmon.

 The catch of salmon and sea bass is equiprobable

P(®,) = P(w,) (Prior)

P(w,) + P(®w,) = 1 (exclusivity and
exhaustivity)
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Statistical Decision Theory

e Decision rule with only the prior information
* Decide o, iIf P(o,) > P(w®,)
otherwise decide o,

e Use of the class-conditional information

p(X | ;) and p(x | m,) describe the difference
In lightness between populations of sea
and salmon
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Statistical Decision Theory
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Figure 2.1: Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value z given the pattern is
in category w;. If r represents the length of a fish, the two curves might describe
the difference in length of populations of two types of fish. Density functions are
normalized, and thus the area under each curve is 1.0.
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Statistical Decision Theory

 Bayes formula (demo):

P = o))

Where in case of two categories

2
p(z) = ) p(x|w;)P(w;)
j=1

l1kelithood X prior
evidence

posterior =



http://www.youtube.com/watch?v=pPTLK5hFGnQ
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Statistical Decision Theory

P(w,}x)
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Figure 2.2: Posterior probabilities for the particular priors P(w;) = 2/3 and P(wg) =
1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this case,
given that a pattern is measured to have feature value x = 14, the probability it is
in category w is roughly 0.08, and that it is in w; is 0.92. At every z, the posteriors
sum to 1.0.
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Statistical Decision Theory

*Decision given the posterior probabilities

X 1S an observation for which:

If P(w, | X) > P(®, | X) True state of nature = o,
If P(w, | X) <P(®, | X) True state of nature = o,
*Therefore:

whenever we observe a particular x, the probability of
error is :

P(error | X) = P(o, | X) If we decide o,

P(error | X) = P(o, | X) iIf we decide o,
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Statistical Decision Theory

Minimizing the probability of error
* Decide o, If P(0, | X) > P(®, | X);
e otherwise decide o,

Therefore:

P(error | X) = min [P(w, | X), P(®, | X)]
(Bayes decision rule)
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Probability of Error

p(x|w;)P(a;)

reducible
error

|
[prxten)Pre;ix )
Rl

[pexioP(@)dx
R:,

Figure 2.17: Components of the probability of error for equal priors and (non-optimal)
decision point z*. The pink area corresponds to the probability of errors for deciding
wy when the state of nature is in fact wg; the gray area represents the converse, as
given in Eq. 68. If the decision boundary is instead at the point of equal posterior
probabilities, zg, then this reducible error is eliminated and the total shaded area is
the minimum possible — this is the Bayes decision and gives the Bayes error rate.
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Statistical Decision Theory

Generalization of the preceding ideas

— Use of more than one feature
— Use more than two states of nature

— Allowing actions and not only decide on the state
of nature

— Introduce a loss function which is more general
than the probability of error
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Statistical Decision Theory

*Allowing actions other than classification,
primarily allows the possibility of rejection —
refusing to make a decision in close or bad
cases

*The loss function states how costly each
action taken is
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Statistical Decision Theory

Let {o,, ®,,..., ® .} be the set of c states of
nature (“categories”)

Let {a,, a,,..., a } be the set of a possible
actions

Let Ao, | @) be the loss incurred for taking
action o; when the state of nature Is o,
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Statistical Decision Theory

e Overall risk (expected loss) decision
R =Sum of all R(a; | X) fori1=1,...,a function

R = [ R(a{x)X)p(X)dx

* Minimizing the conditional risk R(a; | X)
fori=1,...,a

R(oyx) = Y Aoy|w;j) P(w;|x)
i=1
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Minimum Risk Classification

» Bayes decision rule: Select the action a. for
which R(a; | X) is minimum

=2 R is minimum and R in this case is called

the Bayes risk = best performance that
can be achieved.
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Two-Category Classification

 Two-category classification
e a, : deciding o,
* a, : deciding o,
* }"ij = _7»(0% | (Dj)

loss incurred for deciding o; when the true state of
nature is o,

e Conditional risk:

R(a1]|x) = A11P(w1|X) + A12P (w2 |X)
R(ao|X) = A1 P(w1|X) + ApoP(w2|X)
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Two-Category Classification

Our rule is the following:

it R(a1]|X) < R(as|x)
action o,: “decide o,” Is taken

This results in the equivalent rule :
decide o, If:

(A21—=A11)p(X|w1) P(w1) > (A12—A22)p(X|w2) P(w2)

and decide o, otherwise



19

Pattern Recognition: Bayesian theory

Two-Category Classification

eL_ikelihood ratio:

The preceding rule is equivalent to the
following rule (assuming that A21 > A11):

. p(X|wy1) - A12 — Ao P(w2)

p(X|wp)  Ao21 — A11 P(w1)

* Then take action a, (decide o,)
» Otherwise take action a, (decide o,)
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Two-Category Classification

e Optimal decision property

o “If the likelihood ratio exceeds a threshold
value independent of the input pattern x, we
can take optimal actions”
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Minimum-Error-Rate Classification

e Actions are decisions on classes

e [f action o, Is taken and the true state of
nature is o, then:

the decision is correct if i =j and in error if i #

e Seek a decision rule that minimizes the
probability of error which is the error rate
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Minimum-Error-Rate Classification

Introduction of the zero-one loss function:

0, i=]j
Majlw;) = { /

1, 1%
Therefore, the conditional risk Is:

R(oyx) = > AMoy|w;j) P(wj|X)
j=1

m— Z P(wj‘)() =1 — P(wﬂX)
JFi

i,i=1,..c

“The risk corresponding to this loss function is
the average probability of error”
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Minimum-Error-Rate Classification

 Minimizing the risk requires maximizing
P(wj|x) since R(a;x) =1 — P(wj|X)

e For Minimum error rate

Decide w; if P(w;|x) > P(w;|x) for all j 7 i
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Minimumn-Error-Rate Classification

* Investigate the loss function:

A12 — A22 P(w2) o p(X|wi)
0) = i if 1L >0
Let 0 o1 — A1 P(w1) then decide w1 1T 570y > O

If AIs the zero-one loss function which means:
0 1
= (10)

then 0, = }283 = 0q4

If A= ('f g) then 0, = 2130 — g,
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Decision Regions: Effect of Loss Functions

p(zlw, )
p(T|w2)

Figure 2.3: The likelihood ratio p(x|w;)/p(z|ws) for the distributions shown in Fig. 2.1.
If we employ a zero-one or classification loss, our decision boundaries are determined
by the threshold é,. If our loss function penalizes miscategorizing we as w; patterns
more than the converse, (i.e., A\j2 > A21), we get the larger threshold ;, and hence
R, becomes smaller.
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Classifiers, Discriminant
Functions and Decision Surfaces

THE MULTICATEGORY CASE

Set of discriminant functions
g(x),1=1,...,c

The classifier assigns a feature
vector x to class o,

f: 9i(x) > g(x) V] #1
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Classifiers, Discriminant

=

Functions and Decision Surfaces

*Let gi(x) = - R(ay | X)
(max. discriminant corresponds to min. risk)

eFor the minimum error rate, we take

gi(X) = P(w; | x)
(max. discrimination corresponds to max. posterior)

In this case, we can also write:
9i(x) = P(x | o;) P(o;) or

gi(x) =In P(x | ®;) + In P(w;) (In: natural logarithm)
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General Statistical Classifier

Action

Discriminant
functions

Figure 2.5: The functional structure of a general statistical pattern classifier which
includes d inputs and ¢ discriminant functions g;(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pat-
tern accordingly. The arrows show the direction of the flow of information, though
frequently the arrows are omitted when the direction of flow is self-evident.
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Classifiers, Discriminanit

-l

Functions and Decision Surfaces

e Feature space divided into ¢ decision regions
If g;(x) >g;(x) V] #i1then xisin R,

R, means assign X to o,

* The regions are separated by decision
boundaries
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The Two-Category Case

e A classifier is a dichotomizer with two
discriminant functions g, and g,

* Let g(x) =9g,(X) — gx(X)
. Decide o, if g(x) > 0;
. Otherwise decide o,

g(x) = P(w1]X) — P(wslX)
p(X|w1) |, P(wi)
(X)) T P(wn)
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Classifiers, D mm'mam
Eunctions am(dJ cision Surface

p(xjw,)P(w,)

p(xjw )P(w,)

Decision
Boundary

Figure 2.6: In this two-dimensional two-category classifier, the probability densities
are Gaussian (with 1/e ellipses shown), the decision boundary consists of two hyper-
bolas, and thus the decision region Rz is not simply connected.
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Pattern Recognition:
The Normal Density

Univariate density

e Density which is analytically tractable
« Continuous density
A lot of processes are asymptotically Gaussian

 Handwritten characters, speech sounds are
examples or prototypes corrupted by random process
(central limit theorem)

p(z) = A exp[-3(%54)?)

Where: KU = mean or expected value of x
=the variance of x
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The Normal Density

l ; x

T T

M-206 uU-0 V] L+o U+ 20

Figure 2.7: A univariate normal distribution has roughly 95% of its area in the range
|z — p| < 20, as shown. The peak of the distribution has value p(u) = 1/v270.



34

Pattern Recognition:
The Normal Density

e Multivariate density
e Multivariate normal density in d dimensions Is:

1 1 B
p(X|p, ) = (QW)d/zﬁexp{—E(x—u)TZ L(x—p)}

where: X = ($1}3’32=---,$d)T

= (1, o, ..., ud)T mean vector
> = d*d covariance matrix
|Z| and Xt are the determinant
and inverse, respectively
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Discriminant Functions for the Normal Density

e We saw that the minimum error-rate
classification can be achieved by the
discriminant function

9;(X) = In P(X|w;) + In P(w;)
e Case of multivariate normal distribution

1 _ d 1
9i(¥) = =S (=) 7 (x—p) =5 In 27— In [S;]4-1n P(w;)
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Discriminant and Classification for Different

Cases

e Case| X, = o1
« Features are statistically independent

« Each feature has the same variance o2
|34 = o2 = (1/02)I
2
x — .
gi(X) =1 L;” + In P(w;)
20

!

9;(X) = W X + w;g

1 1
where: Wi = 5k wi0 =~ 5 M Mi ~+ In P(w;)

threshold for the category 7
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Discriminant and Classification for Different
Cases

e A classifier that uses linear discriminant
functions is called “a linear machine”

 The decision surfaces for a linear machine
are pieces of hyperplanes defined by:

g;(X) = g;(X)
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Equal Covariances

Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d — 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|w;) and the
boundaries for the case P(w;) = P(wg). In the 3-dimensional case, the grid plane
separates R, from R,.
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Discriminant and Classification for Different
Cases

wl(x —xg) =0 W = p; — [t

* The hyperplane separating R; and R,
0'2 P(wz)
5 In
pi — | P(w;)
always orthogonal to the line linking the
means

1
Xg = 5(m + 1) — i (i — 1)

If P(w;) = P(w;) then xg = %(M + 1)
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Shift in Priors

Figure 2.11: As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these 1-, 2- and
3-dimensional spherical Gaussian distributions.
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Shift in Priors

Bayesian theory

plxjm,)

oy
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Discrimination and Classification for Different

Cases

« Case X = X (covariance of all classes are
Identical but arbitrary)
gi(x) = W; X + w;g
_ 1 _
w; =", wip= —EM;E Ly +1n P(w))

Hyperplane separating R; and R,

In[P(w;)/P(w;)]
(i — p)TE"(py — py)

1
X = 5(##%)— (i—pej)

(the hyperplane separating R, and R;Is
generally not orthogonal to the line between
the means)
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Decision Surfaces

Figure 2.12: Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmetric
Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means.
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ecision Surface

Bayesian theory
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Discrimination and Classification for Different
Cases

Case X, = arbitrary

e The covariance matrices are different for each
category

g;(x) = xTW;x + w; X + w;g
where: w, = _lz.—l
a 2 3
=21,
W; = 2., " l;
1 e q 1
Wi = —SHj 2 T — > In|3%;] + In P(w;)

2

(Hyperquadratics which are: hyperplanes, pairs of
hyperplanes, hyperspheres, hyperellipsoids,
hyperparaboloids, etc.)
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Decision Boundaries

Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.
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Bayesian theory
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Decision Boundaries

Figure 2.16: The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex.
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Funny Dice Example

¢ Funny dice example
Two players,
Two pairs of dice,
One normal
One Augmented (2 extra spots on each side)
Player 1 selects a pair of dice at random and rolls,
Announces the total showing.
Player 2 names the pair of dice used, with a $1 bet.

To determine a “decision boundary” in this case, one can determine how likely each
possible outcome is (2 through 12 for the normal die, 6 through 16 for the augmented
die). The result of this can be displayed as a histogram as follows:

49
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Funny Dice Example
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The decision boundary can then be set based upon choosing the most likely outcome
In any given case. For example, if a 6 is the outcome, it is seen from the above to have
more likely come from the normal dice. We shall generalize and formalize this idea

next.
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Funny Dice Example

Now let's complicate the funny dice rules. Suppose the dice to be rolled are

selected at random from 80 standard pairs and 20 augmented pairs. You bet
$1 on each play.

-if you guess wrong, you lose your dollar
-if you guess correctly when a standard pair is drawn, you win $1
-if you guess correctly when an augmented pair is drawn, you win $5

Possible strategies are as follows:
¢ Maximum likelihood:
951()() ™ p()(|8)
9a'(x) = p(x|A)

51
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Funny Dice Example

O Minimum a posteriori probability of error
Itis p(wi[x), the so-called a posteriori probability, the probability of
error after knowing the value of x, that we wish to maximize in this
case. Bayes’ Theorem states that,
1w PX|o)p(ei) — p(x,oi)
POR) =500 = px)

Note that p(x) is the same for any i, thus pick the larger of gi2(x),

9s%(X) = p(x,S) = p(x|S)p(S) = p(x[S)*0.8

92%(X) = p(x,A) = p(x|A)p(A) = p(x|A)*0.2
This strategy is referred to as the Bayes’ Rule Strategy. Note that
for equal class prior probabilities p(w;), this reduces to the
Maximum likelihood strategy.
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iny Dice Example

0 Minimum risk
The expected loss for each class is given by

o\X) = Zh@lwi) P(wi|x) where A is the loss on any one
outcome. ( is your answer, w; the true result.) So,
Ls(x) = A(S|S) p(S|x) + A(S|A) p(A[x)
La(X) = A(A|S) p(S|x) + A(AJA) p(A]x)

For the discriminant functions, we can use
QSS(X) = Ls(x)
ga3(X) = - La(x)

For this problem, A(S|S) = -1 (win = negative loss),
A(S|A) =1, A(A|S)=1, and A(AlA) =

53
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Funny Dice Example

Or we can use the equivalent discriminant functions:

93(X) = -2 A@oy) p(x|ey) p(w)

which yields
gs(x) = p(x|S) p(S) - p(x|A) p(A)
ga3(X) = - p(x|S) p(S) + 5 p(x|A) p(A)

The next step is to determine the decision rules. To do so it is convenient to establish a
table, as shown.

54
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Funny Dice Example

Bayesian theory

X p(x|S)
1 0

2 0.028
3 0.056
4 0.083
B 0.111
6 0.139
7 0.167
8 0.139
9 M
10 0.083
11 0.056
12 0.028
13 0

14 0

15 0

16 0

p(x|A)

0

0

0

0

0
0.028
0.056
0.083
0.111
0.139
0.167
0.139
0.111
0.083

0.056
0.028

Max Like.
Decision

2O OOOOOOW

DECISION TABLE
Max. a post

P(x|S)p(S)  p(x|A)p(A) Decision

0 0
0.022 0 S
0.044 0 2
0.067 0 S
0.089 0 S
0.111 0.006 S
0.133 0.011 S
0.111 0.017 S
0.089 0.022 S
0.067 0.028 L
0.044 0.033 S
0.022 0.028 A

0 0.022 A

0 0.017 A

0 0.011 A

0 0.006 A

From it the following decision rules can be established.

9S3(x)

0.022
0.044
0.067
0.089
0.106
0.122
0.094
0.067
0.039
0.011
-0.006
-0.022
-0.017
-0.011
-0.006

gA3(x)

-0.022
-0.044
-0.067
-0.089
-0.083
-0.078
-0.028
0.022
0.072
0.122
0.117
0.111
0.083
0.056
0.028

Min Risk
Decision

2O 00OOOONOONW
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Funny Dice Example

Maximum Likelihood: Decide
d¢(x) XeS for 2<x<9,
XeA for 10<x<16

Minimum Error Probability: Decide
ds(x) XeS for 2<x< 11,
XeA for 12<x<16

Minimum Risk: Decide
d5(x) XeS for 25x<9,
XeA for 10£x< 16

(It is coincidental that Maximum Likelihood and Minimum Risk are the same.)
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Funny Dice Example

To evaluate the three strategies, calculate the probability of being correct on any given
play and the expected winings after 100 plays. This may be done as follows.

Wj
pr(correct) = 2 pr(XeRlwi) Ri:gi(X)z gj(X) iz

For the maximum likelihood and minimum risk cases:
pr(correct) = pr(x<9and w=S) + pr(x= 10 and w = A)

9 16
= Y pr(x,S) + ) pr(x,A)

Y=t ¥=10

57
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Funny Dice Example

9 16
= Y pr(x|S)pr(S) + ¥ pr(x|A) pr(A)
X=2 Xx=10

A similar equation is used for the minimum error rule except summing over the limits
defined by that decision rule.

58
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Funny Dice Example

For the winnings after 100 plays, calculate the expected (average) loss using the
previous loss formula, them multiply -1 (to get expected winnings per play instead of
loss) and 100. This may be done as follows. For a given class, o; and decision rule,
d(x), the expected loss is,

j
Ld{x)(X) = 2 }L(d(X),UJJ p((l)ilx)

Then the expected loss over all possible outcomes (i.e. classes and x's) is,

16
ElLgso®)] = Y Lgny P(X)
X=2

16 Wi

= > 2 Md()lw) p(eifx) p(x)
=2

16 Wi

= 3, 2 M) pixio) p(w)

Xz=2

59



60

Pattern Recognition: Bayesian theory

Funny Dice Example

The results for both p(correct) and the expected winnings turn out as follows:

Maximum Likelihood and Minimum Risk,
p(correct) = 0.811, $/100 plays = +$120

Minimum Error Probability
p(correct) = 0.861 $/100 plays = + $105.55

Thus, though the latter decision rule will produce more correct responses, the former
ones will produce a larger dollar win. However, remember that it is coincidental that
the Maximum Likelihood strategy also produced minimum risk in this case.
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Classifiers and Error Computation

 Bayes Classifier

 Neyman-Pearson Classifier

« Minimax Test (Minimax Classifier)

e Error Compuation and Error Bounds
e Linear Classifiers
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Bayesian Decision Theory — Discrete Features

Components of x are binary or integer valued, x
can take only one of m discrete values
Vi, Vo, oy Vi,

Case of independent binary features in the two-
category problem

Let X = (x1,29,...,24)" where each x. is either
O or 1, with probabilities:

p=PX =1 ®,)
q; =P =1] 0,
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Bayesian Decision Theory — Discrete Features

The discriminant function in this case is:
d
g(x) = > w;z; + wo
i=1

(1—q:) .
where w; = In Pi{1=4 i=1.....d
’ q¢i(1—p;) P

decide wy if g(x) > 0 and ws if g(x) <0



	3. Bayesian Decision Theory
	Bayesian Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Probability of Error
	Statistical Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Statistical Decision Theory
	Minimum Risk Classification
	Two-Category Classification
	Two-Category Classification
	Two-Category Classification
	Two-Category Classification
	Minimum-Error-Rate Classification
	Minimum-Error-Rate Classification
	Minimum-Error-Rate Classification
	Minimum-Error-Rate Classification
	Decision Regions:  Effect of Loss Functions
	Classifiers, Discriminant �Functions and Decision Surfaces
	Classifiers, Discriminant �Functions and Decision Surfaces
	General Statistical Classifier
	Classifiers, Discriminant �Functions and Decision Surfaces
	The Two-Category Case
	Classifiers, Discriminant �Functions and Decision Surfaces
	The Normal Density
	The Normal Density 
	The Normal Density
	Discriminant Functions for the Normal Density 
	Discriminant and Classification for Different Cases
	Discriminant and Classification for Different Cases
	Equal Covariances
	Discriminant and Classification for Different Cases
	Shift in Priors
	Shift in Priors
	Discrimination and Classification for Different Cases� 
	Decision Surfaces
	Decision Surfaces
	Discrimination and Classification for Different Cases
	Decision Boundaries
	Decision Boundaries
	Decision Boundaries
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Funny Dice Example
	Classifiers and Error Computation
	Bayesian Decision Theory – Discrete Features�
	Bayesian Decision Theory – Discrete Features�

