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Spectral imagery

Spatial context

2D

Digital image →
composed of pixels

Spectral context

Measurement of intensity
of EM radiations (light)
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Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

More information per pixel → increasing capability to distinguish
objects
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Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

+ More information per pixel → increasing capability to distinguish
objects

− Dimensionality increases → image analysis becomes more
complex

⇓
Efficient algorithms for automatic processing are required!

 

λ pixel vector xi

xi xix1 x2 x3
x2i

xn

lines 

samples 

Tens or 
hundreds of 
bands wavelength λ

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu) Classification of Hyperspectral Imagery 6



Introduction
Classification using SVM and Adaptive Neighborhoods

Segmentation and classification using SVM-derived markers
Conclusions and perspectives

Classification problem

Input ROSIS image
[610× 340× 103]

Ground-truth data Task

Assign every
pixel to one

of the nine classes:
alphalt
meadows
gravel
trees

metal sheets
bare soil
bitumen
bricks

shadows
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Classification problem (2)

Input AVIRIS
image

[145×145×200]

Ground-truth
data

Task

Assign every pixel
to one of the 16 classes:

corn-no till, corn-min till, corn,
soybeans-no till, soybeans-min till,

soybeans-clean till, alfalfa,
grass/pasture, grass/trees,
grass/pasture-mowed,

hay-windrowed, oats, wheat,
woods, bldg-grass-tree-drives,

stone-steel towers
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Classification approaches
Only spectral information

Spectra of each pixel is analyzed

Directly accessible

Variety of methods (e.g. SVM)
→ good classification results

⇒

alphalt
meadows
gravel
trees

metal sheets
bare soil
bitumen
bricks

shadows

Overall accuracy = 81.01%
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Classification approaches

Only spectral information

Spectrum of each pixel is analyzed

Directly accessible

Variety of methods (e.g. SVM)
→ good classification results

Spectral + spatial information

Info about spatial structures included
How to define structures?

closest neighborhood → not flexible enough
adaptive neighborhood (segmentation map)
→ currently investigated
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Objective

Segment a hyperspectral image = find an exhaustive partitioning
of the image into homogeneous regions

Spectral info + spatial info → classify image
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1. Watershed segmentation

gradient
⇒

Region growing method:

Minimum of a gradient = core of a homogeneous region

1 region = set of pixels connected to 1 local minimum of the
gradient

Watershed lines = edges between adjacent regions
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1. Watershed segmentation

Tarabalka, Y., Chanussot, J., Benediktsson, J. A., Angulo, J., Fauvel, M., 2008.
Segmentation and classification of hyperspectral data using watershed. In Proc. of
IGARSS ’08, Boston, USA.

Original
image
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Watershed
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1. Watershed segmentation

Tarabalka, Y., Chanussot, J., Benediktsson, J. A., Angulo, J., Fauvel, M., 2008.
Segmentation and classification of hyperspectral data using watershed. In Proc. of
IGARSS ’08, Boston, USA.

Original
image

⇒

Robust Color
Morpho Gradient

⇒

Watershed
11802 regions

⇒

Edges → to
adjacent regions
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2. Partitional clustering (EM)

 

1 Clustering
pixels are grouped into C clusters
in each cluster → pixels drawn from
a Gaussian distribution
distribution parameters → EM algorithm

2 Labeling of connected components

10 clusters
⇒
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2. Partitional clustering (EM)

 

1 Clustering
pixels are grouped into C clusters
in each cluster → pixels drawn from
a Gaussian distribution
distribution parameters → EM algorithm

2 Labeling of connected components

10 clusters
⇒

21450
regions

same cluster,
but different
regions!
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3. Hierarchical image segmentation (HSEG,[Tilton98])

Region growing + Spectral Clustering

Dissimilarity criterion (DC):
Spectral Angle Mapper (SAM)
between the region mean vectors ui and uj

SAM(ui , uj) = arccos(
ui · uj

‖ui‖2‖uj‖2
)

1 Each pixel - one region
2 Find DCmin between adjacent regions
3 Merge adjacent regions with DC = DCmin
4 Merge non-adjacent regions with
DC ≤ DCmin ·SpectralClusterWeight

5 If not converge, go to 2
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3. Hierarchical image segmentation (HSEG,[Tilton98])

Region growing + Spectral Clustering

Dissimilarity criterion (DC):
Spectral Angle Mapper (SAM)
between the region mean vectors ui and uj

SAM(ui , uj) = arccos(
ui · uj

‖ui‖2‖uj‖2
)

1 Each pixel - one region
2 Find DCmin between adjacent regions
3 Merge adjacent regions with DC = DCmin
4 Merge non-adjacent regions with
DC ≤ DCmin ·SpectralClusterWeight

5 If not converge, go to 2

SCW = 0.0

7231 regions
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3. Hierarchical image segmentation (HSEG,[Tilton98])

Region growing + Spectral Clustering

Dissimilarity criterion (DC):
Spectral Angle Mapper (SAM)
between the region mean vectors ui and uj

SAM(ui , uj) = arccos(
ui · uj

‖ui‖2‖uj‖2
)

1 Each pixel - one region
2 Find DCmin between adjacent regions
3 Merge adjacent regions with DC = DCmin
4 Merge non-adjacent regions with
DC ≤ DCmin ·SpectralClusterWeight

5 If not converge, go to 2

SCW = 0.1

7575 regions
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Spectral-spatial classification scheme

 

Pixel-wise 
classification Segmentation 

Hyperspectral image 

Spectral-spatial 
classification 

(majority voting) 

Final classification 
map 

 

Pixel-wise 
classification map 
(dark blue, white 

and light grey 
classes) 

Segmentation 
map  

(3 spatial regions) 

Result of 
spectral-spatial 
classification 
(classification 

map after majority 
vote) 

Combination of  
unsupervised 

segmentation and 
pixel-wise 

classification results 
(majority vote within 

3 spatial regions) 

 1  1   1   1  1   1
 1  1   1   2  2   2 
 1  1   2   2  2   2 
 1  1   2   2  2   2 
 1  1   3   3  3   2 
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Spectral-spatial classification

SVM
classification

OA = 81.01%
AA = 88.25%

⇒

SVM +
Watershed

OA = 85.42%
AA = 91.31%

SVM +
Partit.clustering

OA = 93.59%
AA = 94.39%

SVM + HSEG
(SCW = 0.1)

OA = 93.85%
AA = 97.07%
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Classification accuracies (%):

SVM +Watersh. +Part.Cl. +HSEG EMP1 ECHO
SCW 0.0 0.1

Overall Acc. 81.01 85.42 93.59 90.00 93.85 85.22 87.58
Average Acc. 88.25 91.31 94.39 94.15 97.07 90.76 92.16
Kappa Coef.κ 75.86 81.30 91.48 86.86 91.89 80.86 83.90
asphalt 84.93 93.64 90.72 73.33 94.77 95.36 87.98
meadows 70.79 75.09 92.73 88.73 89.32 80.33 81.64
gravel 67.16 66.12 82.09 97.47 96.14 87.61 76.91
trees 97.77 98.56 99.21 98.45 98.08 98.37 99.31
metal sheets 99.46 99.91 100 99.10 99.82 99.48 99.91
bare soil 92.83 97.35 96.78 98.43 99.76 63.72 93.96
bitumen 90.42 96.23 92.46 95.92 100 98.87 92.97
bricks 92.78 97.92 97.80 98.81 99.29 95.41 97.35
shadows 98.11 96.98 97.74 97.11 96.48 97.68 99.37

1A. Plaza et al., "Recent advances in techniques for hyperspectral image processing,"
Remote Sensing of Environment, vol. 113, Suppl. 1, 2009.
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1 Spectral-spatial classification improves accuracies when
compared to pixel-wise classification

2 Several segmentation techniques are investigated
3 The HSEG segmentation map leads to the best classification
4 Obtained classification accuracies > all previous results

However...
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Unsupervised segmentation

Unsupervised segmentation = exhaustive partitioning into
homogeneous regions
How to define a measure of homogeneity?
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Unsupervised segmentation

Unsupervised segmentation = exhaustive partitioning into
homogeneous regions
How to define a measure of homogeneity?

Hierarchical segmentation (HSEG, [Tilton98])

Image

⇒

2381reg. 1389reg. 280reg.

Oversegmentation! Undersegmentation?
@@I ��� 6
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Unsupervised segmentation

Unsupervised segmentation = exhaustive partitioning into
homogeneous regions
How to define a measure of homogeneity?

Hierarchical segmentation (HSEG, [Tilton98])

Image

⇒

2381reg. 1389reg. 280reg.

Oversegmentation Undersegmentation?
⇓

Preferred in previous works → not to lose objects

���
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Watershed segmentation (IGARSS’08)
Original
image

⇒

Robust Color
Morpho Gradient

⇒

Watershed
1277 regions
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Watershed segmentation (IGARSS’08)
Original
image

⇒

Robust Color
Morpho Gradient

⇒

Watershed
1277 regions

�
�
�
�
�
��3

Severe oversegmentation!

Every local minimum
of the gradient

↓
one region

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu) Classification of Hyperspectral Imagery 24



Introduction
Classification using SVM and Adaptive Neighborhoods

Segmentation and classification using SVM-derived markers
Conclusions and perspectives

Segmentation
Spectral-spatial classification
Concluding discussion

Marker-controlled segmentation

Reduce oversegmentation ⇐ incorporate a priori knowledge into
segmentation
We propose to use markers

Determine markers for
each region of interest

⇒

Segment
an image

One region
in a segmentation map

⇑
One marker

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu) Classification of Hyperspectral Imagery 25



Introduction
Classification using SVM and Adaptive Neighborhoods

Segmentation and classification using SVM-derived markers
Conclusions and perspectives

Segmentation
Spectral-spatial classification
Concluding discussion

Objective

Determine markers automatically ← using results of a pixel-wise
classification

Marker-controlled region growing→ segment and classify a
hyperspectral image
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Input

B-band hyperspectral image
X = {xj ∈ RB, j = 1, 2, ..., n}
B ∼ 100

Hyperspectral image 
(B bands) 

Pixel-wise 
classification 

classification map

 

Selection of the most 
  probability map 

 map of 
Marker-controlled 

region growing 
markers reliable classified 

pixels 

    Segmentation map 
+ classification map 
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Pixel-wise classification

SVM classifier* → well suited for
hyperspectral images

Output:

classification map probability map

-

Hyperspectral image 
(B bands) 

Pixel-wise 
classification 

classification map

 

Selection of the most 
  probability map 

 map of 
Marker-controlled 

region growing 
markers reliable classified 

pixels 

    Segmentation map 
+ classification map 

probability estimate for each pixel
to belong to the assigned class

*C. Chang and C. Lin, "LIBSVM: A library for Support Vector Machines," Software

available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.
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*Y. Tarabalka et al., "Segmentation and classification of hyperspectral data using

watershed," in Proc. of IGARSS’08, Boston, USA, 2008.
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1. Marker-controlled watershed

1 Transform the gradient fg → markers
are the only minima

Create a marker image:

fm(x) =

{
0, if x belongs to marker,

tmax , otherwise

Compute (fg + 1)
∧
fm

Perform minima imposition:
morphological reconstruction by
erosion of (fg + 1)

∧
fm from fm:

fgmi = R
ε
(fg+1)

∧
fm
(fm)

Three local minima

Marker

Single minimum
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1. Marker-controlled watershed

1 Transform the gradient fg → markers
are the only minima

2 Apply watershed on the filtered
gradient image fgmi (Vincent and
Soille, 1991)

Three local minima
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3 Assign every watershed pixel to the
spectrally most similar neighboring
region
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1 Transform the gradient fg → markers
are the only minima

2 Apply watershed on the filtered
gradient image fgmi (Vincent and
Soille, 1991)

3 Assign every watershed pixel to the
spectrally most similar neighboring
region

→
Several minima
in the filtered
gradient

→

Several regions
in the
segmentation
map
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1. Marker-controlled watershed

1 Transform the gradient fg → markers
are the only minima

2 Apply watershed on the filtered
gradient image fgmi (Vincent and
Soille, 1991)

3 Assign every watershed pixel to the
spectrally most similar neighboring
region

4 Merge regions belonging to the same
marker

5 Class of each marker → class of the
corresponding region
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Classification maps & classification accuracies (%)

SVM

Markers(107reg.)

NoMarker*(1277reg.)

*IGARSS’08

SVM Markers NoMarker*

Overall Accuracy 78.17 85.99 86.63
Average Accuracy 85.97 86.95 91.61
Kappa Coefficient κ 75.33 83.98 84.83
Corn-no till 78.18 80.35 94.22
Corn-min till 69.64 71.94 78.06
Corn 91.85 73.37 88.59
Soybeans-no till 82.03 98.91 96.30
Soybeans-min till 58.95 80.48 68.82
Soybeans-clean till 87.94 84.75 90.78
Alfalfa 74.36 94.87 94.87
Grass/pasture 92.17 95.30 95.08
Grass/trees 91.68 92.97 97.99
Grass/pasture-mowed 100 100 100
Hay-windrowed 97.72 99.54 99.54
Oats 100 100 100
Wheat 98.77 99.38 99.38
Woods 93.01 99.36 97.11
Bldg-Grass-Tree-Drives 61.52 55.45 69.39
Stone-steel towers 97.78 64.44 95.56
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1) Map an image onto a graph
Weight wi ,j indicates the degree of dissimilarity between pixels xi
and xj . Spectral Angle Mapper (SAM) distance can be used:

wi ,j = SAM(xi , xj) = arccos
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Given a graph G, a MSF F ∗ rooted on vertices {r1, ..., rm} is:
a non-connected graph without cycles
contains all the vertices of G
consists of connected subgraphs, each subgraph (tree) contains
(is rooted on) one root ri
sum of the edges weights of F ∗ is minimal
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2) Add m extra vertices ri , i = 1, ..., m corresponding to m markers
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3) Construct a MSF F ∗ = (V ∗, E∗)

Initialization: V ∗ = {r1, r2, ..., rm} (roots are in the forest)
1 Choose edge of the modified graph ei j with minimal weight such

that i ∈ V ∗ and j /∈ V ∗
2 V ∗ = V ∗ ∪ {j}, E∗ = E∗ ∪ {ei ,j}
3 If V ∗ 6= V , go to 1
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3) Construct a MSF F ∗ = (V ∗, E∗)

4) Class of each marker → class of the corresponding region
(of all the pixels grown from this marker)
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Pixel-wise
classification map

⇒

Map of
107 markers

⇒

MSF-based
classification map
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2. Construction of a Minimum Spanning Forest (MSF)

Pixel-wise
classification map

⇒

Map of
107 markers

⇒

MSF-based
classification map

If a marker
is classified

to the wrong class
⇒

The whole region grown
from this marker

risks to be
wrongly classified!
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2. Construction of a Minimum Spanning Forest /
Post-processing

Map of connected 
components
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classification map

Combination of 
segmentation and 

spectral 
classification results 

 1  1   1   1  1   1
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 map of Construction of 
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markers reliable classified 
pixels 

Majority voting 
within connected 

components 

    Segmentation map 
+ classification map 

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu) Classification of Hyperspectral Imagery 45



Introduction
Classification using SVM and Adaptive Neighborhoods

Segmentation and classification using SVM-derived markers
Conclusions and perspectives

Marker selection
Classification using marker-controlled region growing
Concluding discussion

Classification accuracies (%)
SVM MSF MSF+MV M-WHED* WHED+MV**

Overall Accuracy 78.17 88.41 91.80 85.99 86.63
Average Accuracy 85.97 91.57 94.28 86.95 91.61
Kappa Coefficient κ 75.33 86.71 90.64 83.98 84.83
Corn-no till 78.18 90.97 93.21 80.35 94.22
Corn-min till 69.64 69.52 96.56 71.94 78.06
Corn 91.85 95.65 95.65 73.37 88.59
Soybeans-no till 82.03 98.04 93.91 98.91 96.30
Soybeans-min till 58.95 81.97 81.97 80.48 68.82
Soybeans-clean till 87.94 85.99 97.16 84.75 90.78
Alfalfa 74.36 94.87 94.87 94.87 94.87
Grass/pasture 92.17 94.63 94.63 95.30 95.08
Grass/trees 91.68 92.40 97.27 92.97 97.99
Grass/pasture-mowed 100 100 100 100 100
Hay-windrowed 97.72 99.77 99.77 99.54 99.54
Oats 100 100 100 100 100
Wheat 98.77 99.38 99.38 99.38 99.38
Woods 93.01 97.59 99.68 99.36 97.11
Bldg-Grass-Tree-Drives 61.52 68.79 68.79 55.45 69.39
Stone-steel towers 97.78 95.56 95.56 64.44 95.56

*Tarabalka et al., IGARSS’09 **Tarabalka et al., IGARSS’08
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Classification using markers for the Pavia image

Original
image

⇒

Classification
using MSF
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Classification accuracies for the Pavia image (%):

SVM +WHED +Part.Cl. +HSEG MSF MSF+MV
SCW 0.0 0.1

Overall Acc. 81.01 85.42 93.59 90.00 93.85 84.14 91.08
Average Acc. 88.25 91.31 94.39 94.15 97.07 92.35 94.76
Kappa Coef.κ 75.86 81.30 91.48 86.86 91.89 79.71 88.30
Asphalt 84.93 93.64 90.72 73.33 94.77 93.05 93.16
Meadows 70.79 75.09 92.73 88.73 89.32 72.30 85.65
Gravel 67.16 66.12 82.09 97.47 96.14 89.15 89.15
Trees 97.77 98.56 99.21 98.45 98.08 87.02 91.24
Metal sheets 99.46 99.91 100 99.10 99.82 99.91 99.91
Bare soil 92.83 97.35 96.78 98.43 99.76 97.11 99.91
Bitumen 90.42 96.23 92.46 95.92 100 98.57 98.57
Bricks 92.78 97.92 97.80 98.81 99.29 95.66 99.05
Shadows 98.11 96.98 97.74 97.11 96.48 98.36 96.23
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Outline

1 Introduction

2 Classification using SVM and Adaptive Neighborhoods
Segmentation
Spectral-spatial classification
Concluding discussion

3 Segmentation and classification using SVM-derived markers
Marker selection
Classification using marker-controlled region growing

Marker-controlled watershed
Construction of a Minimum Spanning Forest

Concluding discussion

4 Conclusions and perspectives
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1 Classification using Minimum Spanning Forest grown from
automatically selected markers:

significantly decreases oversegmentation
improves classification accuracies
provides classification maps with homogeneous regions

2 Robustness of the parameters settings for the marker selection
procedure has been experimentally proved
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Conclusions

1 Several schemes for spectral-spatial classification of
hyperspectral images are proposed and investigated

2 The developed techniques:
significantly decrease oversegmentation
improve classification accuracies
provide classification maps with more homogeneous regions

when compared to the previously proposed classification methods
3 Classification using MSF gives the best or close to the best

classification accuracies for all the tested images
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Perspectives

1 Further develop marker-based methods
investigate parameter estimation techniques
develop new similarity measures

2 Apply and adapt the proposed methods for analysis of
multivariate and multisource data in other types of applications

medical imaging
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Thank you for your attention!
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