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•
 

Basic concepts of mathematical morphology

•
 

Mathematical morphology for grey-scale and hyperspectral 
images

•
 

Remote sensing application 1: Classification of hyperspectral 
images of an urban area using morphological profiles

•
 

Remote sensing application 2: Segmentation and classification 
of hyperspectral images using watershed

•
 

Practical session on mathematical morphology



Basic concepts of 
mathematical morphology
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Mathematical
 

morphology: why
 

to use?

•
 

How to remove this noise?
•

 
How to separate these two components?

•
 

How to label differently these two connected 
shapes?

•
 

How to compare these two shapes?
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Mathematical
 

morphology
 

(MM)

•
 

A theory for the analysis of spatial structures
•

 
Morphology:

 
aims at analysing the shape and form of objects.

•
 

Mathematical:
 

analysis is based on:
set theory 
integral geometry
lattice algebra

•
 

Non-linear
 

processing operators (do not blur the edges as 
convolutions do)

•
 

We’ll concentrate on MM for digital images: binary, grey-scale 
and hyperspectral

•
 

Basic idea: locally compare structures within the image with a 
reference shape called the Structuring Element

 
(SE)
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Structuring
 

element
 

(SE)

•
 

A small set used to analyse locally the image
•

 
Shape

 
and size

 
of SE a priori knowledge  about the 

geometry of relevant/irrelevant image structures
•

 
Usually symmetrical, connected, and convex

•
 

But not always
origins

 
of SEs

for positioning
 

of
 the SE at

 
a given

 
pixel
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Dilation and erosion

Fundamental
 

morphological
 

operators
 

=
 2 letters

 
of the morphological

 
alphabet

All other operators are expressed in terms of 
dilations and erosions
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Dilation for binary
 

images

•
 

“Does
 

the SE hit
 

the set?”
•

 
Dilation

 
of a set X by a structuring

 
element

 
E

 
is

 
defined

 
as 

the locus of points x
 

such
 

that
 

E
 

hits
 

X
 

when
 

its
 

origin
 

is
 placed

 
at

 
x:

δE

 

(X) = {x
 

∈
 

Rd

 
| Ex ∩

 
X

 
≠ ∅}

0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0
0   0 1   1   1   1   1 0   0
0   0 1   1   1 0   0   0   0
0   0 1   0 1 0   1 0   0
0   0   1   1   1   1   1 0   0
0   0   1   1   1   1   1 0   0
0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0

result
 

of dilation
E

0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0
0   0 1   1   1   1   1 0   0
0   0 1   1   1 0   0   0   0
0   0 1   0 1 0   1 0   0

0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0

0   0   1   1   1   1   1 0   0
0   0   1   1   1   1   1 0   0

0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0
0   0 1   1   1   1   1 0   0
0   0 1   1   1 0   0   0   0
0   0 1   0 1 0   1 0   0

0   0   1   1   1   1   1 0   0
0   1   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0

0   0   1   1   1   1   1 0   0
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Dilation for binary
 

images

•
 

“Does
 

the SE hit
 

the set?”
•

 
Dilation

 
of a set X by a structuring

 
element

 
E

 
is

 
defined

 
as 

the locus of points x
 

such
 

that
 

E
 

hits
 

X
 

when
 

its
 

origin
 

is
 placed

 
at

 
x:

δE

 

(X) = {x
 

∈
 

Rd

 
| Ex ∩

 
X

 
≠ ∅}

result
 

of dilation

E
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Dilation: properties
 

and use

•
 

Basic property:
 

X ⊆
 

δE

 

(X)
•

 
Consequences:

Fill in the holes smaller than E
Enlarge capes
Connect two close shapes

•
 

Example
 

of application: bridging
 

gaps

E

R. C. Gonzalez, R. E. Woods, Digital Image Processing. Prentice Hall, 2002.
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Erosion for binary
 

images

•
 

“Does
 

the SE fit
 

the set?”
•

 
Erosion

 
of a set X by a structuring

 
element

 
E

 
is

 
defined

 
as the 

locus of points x
 

such
 

that
 

E
 

is
 

included
 

in X
 

when
 

its
 

origin
 coincides

 
with

 
x:

εE

 

(X) = {x
 

∈
 

Rd

 
| Ex ⊆

 
X }

E

erosion?
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Erosion for binary
 

images

•
 

“Does
 

the SE fit
 

the set?”
•

 
Erosion

 
of a set X by a structuring

 
element

 
E

 
is

 
defined

 
as the 

locus of points x
 

such
 

that
 

E
 

is
 

included
 

in X
 

when
 

its
 

origin
 coincides

 
with

 
x:

εE

 

(X) = {x
 

∈
 

Rd

 
| Ex ⊆

 
X }

E

erosion
!
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Erosion for binary
 

images

•
 

“Does
 

the SE fit
 

the set?”
•

 
Erosion

 
of a set X by a structuring

 
element

 
E

 
is

 
defined

 
as the 

locus of points x
 

such
 

that
 

E
 

is
 

included
 

in X
 

when
 

its
 

origin
 coincides

 
with

 
x:

εE

 

(X) = {x
 

∈
 

Rd

 
| Ex ⊆

 
X }

E

erosion
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Erosion for binary
 

images

•
 

“Does
 

the SE fit
 

the set?”
•

 
Erosion

 
of a set X by a structuring

 
element

 
E

 
is

 
defined

 
as the 

locus of points x
 

such
 

that
 

E
 

is
 

included
 

in X
 

when
 

its
 

origin
 coincides

 
with

 
x:

εE

 

(X) = {x
 

∈
 

Rd

 
| Ex ⊆

 
X }

result
 

of erosion

E
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Erosion: properties
 

and use

•
 

Basic property:
 

εE

 

(X) ⊆
 

X ⊆
 

δE

 

(X)
•

 
Consequences:

Eliminate connected components smaller than E
Eliminate narrow capes
Enlarge holes

•
 

Example
 

of application: eliminating
 

irrelevant
 

details
 

(noise)

squares 10x10

erosion

with

 

11x11 
square SE

noise is
 removed

large shapes
 are shrinked
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Erosion: properties
 

and use

•
 

Basic property:
 

εE

 

(X) ⊆
 

X ⊆
 

δE

 

(X)
•

 
Consequences:

Eliminate connected components smaller than E
Eliminate narrow capes
Enlarge holes

•
 

Example
 

of application: eliminating
 

irrelevant
 

details
 

(noise)

squares 10x10

erosion

with

 

11x11 
square SE

noise is
 removed

large shapes
 are shrinked

dilation

with

 

11x11 
square SE

sizes
 

of large 
objects

 
are 

restored!
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Opening
 

for binary
 

images

•
 

Opening
 

of a set X by a structuring
 

element
 

E
 

is
 

defined
 

as 
the erosion

 
of X by E

 
followed

 
by the dilation with

 
the reflected

 (symmetric
 

with
 

respect to the origin) SE Ẽ:

γE

 

(X) = δẼ
 

[εE

 

(X)]
•

 
Consequences:

Objects smaller than E disappear
Other objects remain “unchanged”

squares 10x10

erosion

with

 

11x11 
square SE

dilation

with

 

11x11 
square SE

result
 

of opening
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Opening
 

for binary
 

images

•
 

Opening
 

of a set X by a structuring
 

element
 

E
 

is
 

defined
 

as 
the erosion

 
of X by E

 
followed

 
by the dilation with

 
the reflected

 (symmetric
 

with
 

respect to the origin) SE Ẽ:

γE

 

(X) = δẼ
 

[εE

 

(X)]
•

 
Consequences:

Objects smaller than E disappear
Other objects remain “unchanged”

squares 10x10

erosion

with

 

11x11 
square SE

dilation

with

 

11x11 
square SE

result
 

of opening

E

Ẽ
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Opening
 

for binary
 

images

•
 

Opening
 

of a set X by a structuring
 

element
 

E
 

is
 

defined
 

as 
the erosion

 
of X by E

 
followed

 
by the dilation with

 
the reflected

 SE Ẽ:

γE

 

(X) = δẼ
 

[εE

 

(X)]
•

 
Consequences:

Objects smaller than E disappear
Other objects remain “unchanged”

result
 

of opening

E
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Closing
 

for binary
 

images

•
 

Closing
 

of a set X by a structuring
 

element
 

E
 

is
 

defined
 

as the 
dilation of X by E

 
followed

 
by the erosion

 
with

 
the reflected

 
SE Ẽ:

φE

 

(X) = εẼ
 

[δE

 

(X)]
•

 
Order: γE

 

(X) ⊆
 

X
 

⊆
 

φE

 

(X) 
•

 
Consequences:

Holes smaller than E are eliminated
Other objects remain “unchanged”

result
 

of dilation

E E

result
 

of closing
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Other
 

MM operators: Top-hat

•
 

Top-hat
 

transformation of an image X
 

is
 

defined
 

as the 
difference

 
between

 
the original image X

 
and its

 
opening

 
γ:

TH(X) = X
 

-
 

φ(X) 

•
 

Consequences:
Objects smaller than E are extracted
Other objects disappear

_ =

X φ11x11

 

(X) TH(X)
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Morphological
 

gradient

•
 

The basic morphological
 

gradient
 

of an image X
 

is
 

defined
 

as 
the arithmetic

 
difference

 
between

 
the dilation and the erosion

 
of 

X
 

by the elementary
 

SE E
 

:

ρ
 

E

 

(X) = δE

 

(X) -
 

εE

 

(X)

•
 

Only
 

symmetric
 

SEs
 

are considered
•

 
Tends to depend

 
less

 
on edge

 
directionality

 
(when

 
compared

 
to 

first derivatives)
E

morphological
 gradient of X

X
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Summary: Basic concepts of MM

•
 

Mathematical morphology can be defined as a theory for the 
analysis of spatial structures

•
 

Basic idea
 

of MM: locally
 

compare structures within
 

the image 
with

 
a reference

 
shape

 
called

 
the Structuring

 
Element

•
 

Dilation and erosion
 

are two
 

fundamental
 

MM operators
All other operators are expressed in terms of dilations and 
erosions

•
 

Dilation, erosion, opening, closing, top-hat
 

and 
combinations

 
of these

 
operators

 
are often

 
used

 for image filtering



Mathematical morphology for 
grey-scale and hyperspectral 

images
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Dilation for grey-scale
 

images

•
 

Dilation:
 

replace every pixel by the maximum
 

value computed 
over the neighborhood defined by the structuring element

0
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

pixel position

gr
ay

 le
ve

l

f(x)
Dilation

E
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Dilation for grey-scale
 

images

•
 

Dilation:
 

replace every pixel by the maximum
 

value computed 
over the neighborhood defined by the structuring element

•
 

Consequence:
Features that are brighter than their immediate surroundings 
are enlarged
Features that are darker than their immediate surroundings 
are shrinked
Effect driven by the size and shape of the SE

δ5
 

(X)

SE: disk
 

of 
radius = 5
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Dilation for grey-scale
 

images

•
 

Dilation:
 

replace every pixel by the maximum
 

value computed 
over the neighborhood defined by the structuring element

•
 

Consequence:
Features that are brighter than their immediate surroundings 
are enlarged
Features that are darker than their immediate surroundings 
are shrinked
Effect driven by the size and shape of the SE

δ15
 

(X)

SE: disk
 

of 
radius = 15
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Erosion for grey-scale
 

images

•
 

Erosion:
 

replace every pixel by the minimum
 

value computed 
over the

 
neighborhood defined by the structuring element

E

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

pixel position

gr
ay

 le
ve

l

f(x)
Erosion
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Erosion for grey-scale
 

images

•
 

Erosion:
 

replace every pixel by the minimum
 

value computed 
over the

 
neighborhood defined by the structuring element

•
 

Consequence:
Features that are darker than their immediate surroundings 
are enlarged
Features that are brighter than their immediate surroundings 
are shrinked
Effect driven by the size and shape of the SE

ε5
 

(X)
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Erosion for grey-scale
 

images

•
 

Erosion:
 

replace every pixel by the minimum
 

value computed 
over the

 
neighborhood defined by the structuring element

•
 

Consequence:
Features that are darker than their immediate surroundings 
are enlarged
Features that are brighter than their immediate surroundings 
are shrinked
Effect driven by the size and shape of the SE

ε15
 

(X)
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Opening
 

for grey-scale
 

images

•
 

Opening:
 

erosion followed by a dilation with the symmetrical 
structuring

 
element

E

0
1
2
3
4

5
6
7
8
9

10
11
12

13
14
15
16

pixel position

gr
ay

 le
ve

l

f(x)
Opening
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Opening
 

for grey-scale
 

images

•
 

Opening:
 

erosion followed by a dilation with the symmetrical 
structuring

 
element

•
 

Consequence:
Features that are brighter than their immediate 
surroundings and smaller than the SE disappear
Other features (dark, or bright and large) remain 
“unchanged”

γ5
 

(X)

ε5
 

(X) δ5
 

(X)
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Opening
 

for grey-scale
 

images

•
 

Opening:
 

erosion followed by a dilation with the symmetrical 
structuring

 
element

•
 

Consequence:
Features that are brighter than their immediate 
surroundings and smaller than the SE disappear
Other features (dark, or bright and large) remain 
“unchanged”

γ15
 

(X)

ε15
 

(X) δ15
 

(X)
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Closing
 

for grey-scale
 

images

•
 

Closing:
 

dilation
 

followed by an erosion with the symmetrical 
structuring

 
element

E

0
1
2

3
4
5
6
7
8

9
10
11
12
13

14
15
16

pixel position

gr
ay

 le
ve

l

f(x)
Closing



Y. Tarabalka, J. A. Benediktsson, J. Chanussot Mathematical morphology

Closing
 

for grey-scale
 

images

•
 

Closing:
 

dilation
 

followed by an erosion with the symmetrical 
structuring

 
element

•
 

Consequence:
Features that are darker than their immediate surroundings 
and smaller than the SE disappear
Other features (bright, or dark and large) remain 
“unchanged”

φ5
 

(X)

δ5
 

(X) ε5
 

(X)
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Closing
 

for grey-scale
 

images

•
 

Closing:
 

dilation
 

followed by an erosion with the symmetrical 
structuring

 
element

•
 

Consequence:
Features that are darker than their immediate surroundings 
and smaller than the SE disappear
Other features (bright, or dark and large) remain 
“unchanged”

φ15
 

(X)

δ15
 

(X) ε15
 

(X)



Y. Tarabalka, J. A. Benediktsson, J. Chanussot Mathematical morphology

Geodesic
 

reconstruction

•
 

Connected
 

operators
•

 
Same properties, with no shape noise

•
 

Opening by reconstruction:
Preserves the shape of
the objects that are not
removed by erosion

γ15
 

(X) opening

by
 reconstruction

Original image: X
 Im1 := ε15

 

(X)
 Im2 := δ15

 

(Im1)
 Im3 := min(Im2, X)

 Im1 := Im3CV

To read: P. Soille, Morphological Image Analysis, 2nd ed. Springer-Verlag, 2003.



Mathematical morphology for 
hyperspectral images
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Multivariate
 

mathematical
 

morphology

•
 

Hyperspectral image:
 

every
 

pixel = spectrum
 = vector

 
of very

 
high

 
dimension

•
 

Problem:
 Mathematical

 
morphology

 
requires

 a complete
 

lattice
 

structure.
 Every

 
set of pixels has one 

infimum
 

and one supremum.

Shall one process hyperspectral data in a vector way ?

If yes : How can one order vectors ?
If no : How shall one proceed ?
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Multivariate
 

mathematical
 

morphology

•
 

Marginal
 

approach:
 Hyperspectral

 
image = set of grey level images

 
that are 

processed separately

Scalar processing
Scalar processing

Scalar processing
Scalar processing

Scalar processing
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Multivariate
 

mathematical
 

morphology

•
 

Marginal
 

approach:
 Hyperspectral

 
image = set of grey level images

 
that are 

processed separately

Scalar processing
Scalar processing

Scalar processing
Scalar processing

Scalar processing

New vectors appear
(loss of inter-band correlation)
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Multivariate
 

mathematical
 

morphology

•
 

Marginal
 

approach:
 Hyperspectral

 
image = set of grey level images

 
that are 

processed separately

Original image Marginal opening
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Multivariate
 

mathematical
 

morphology

•
 

Marginal
 

approach:
 Hyperspectral

 
image = set of grey level images

 
that are 

processed separately

Original image Marginal opening
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Multivariate
 

mathematical
 

morphology

•
 

Marginal
 

approach:
 Hyperspectral

 
image = set of grey level images

 
that are 

processed separately

Scalar processing
Scalar processing

Scalar processing
Scalar processing

Scalar processing

F
U
S
I
O
N
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Multivariate
 

mathematical
 

morphology

•
 

Vector
 

approach:
 hyperspectral image = one single image, every pixel is one 

(very long) vector

Vector
processing
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Multivariate
 

mathematical
 

morphology

•
 

Vector
 

approach
 

define
 

an order
 

on vectors?
Canonical order ( X ≤ Y ) ⇔ ( X(i) ≤ Y(i) , ∀i )

Xo

X < Xo

X > Xo?

?

Partial order

X = sup {Xi} 

Xi

False “colors”
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Multivariate
 

mathematical
 

morphology

•
 

Vector
 

approach
 

define
 

an order
 

on vectors?
Canonical order ( X ≤ Y ) ⇔ ( X(i) ≤ Y(i) , ∀i )
General formalism :

Change space for ordering

transform h such that: 

h: ℜB→ℜQ

X→h(X)

( X ≤
 

Y ) ⇔ ( h(X) ≤
 

h(Y) )
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Multivariate
 

mathematical
 

morphology

h: ℜB→ℜQ

X→h(X)

Q ? h ?

Q>1 Q=1 bijective non bijective

partial total order pre-order



Y. Tarabalka, J. A. Benediktsson, J. Chanussot Mathematical morphology

Multivariate
 

mathematical
 

morphology

h: ℜB→ℜQ

X→h(X)

Q ? h ?

Q>1 Q=1 bijective non bijective

partial total order pre-order
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Multivariate
 

mathematical
 

morphology

h: ℜB→ℜQ

X→h(X)

Q ? h ?

Q>1 Q=1 bijective non bijective

partial total order pre-order
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Multivariate
 

mathematical
 

morphology

•
 

Total ordering
 

relation ⇔
 

bijective
 

function h, Q=1

⇔
 

space filling curve

•
 

Problem: such a mapping h
 

cannot be linear
 distortion

 
of the space

 
topology
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Multivariate
 

mathematical
 

morphology

•
 

Mixed approach

Band
selection

/
transform

Scalar processing
Scalar processing

F
U
S
I
O
N

•
 

Band selection/transform:
 

Principal Component Analysis
 

(PCA)
 Independent Component

 
Analysis

 
(ICA) 

Decision
 

Boundary
 

Feature
 

Extraction (DBFE)

•
 

Fusion:                               Concatenate
 

marginal results
 Decision

 
fusion
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Summary: MM for grey-scale and
 hyperspectral images

•
 

MM operators can be directly extended to grey-scale images using 
max (sup) and min (inf) operators

•
 

MM requires
 

a complete
 

lattice
 

structure:
 

total ordering
 

is
 

required
How shall one extend MM to hyperspectral images?

•
 

Marginal approach: each
 

band is
 

processed
 

separately
•

 
Vector

 
approach:    each

 
pixel is

 
one vector

•
 

Mixed approach
–

 
Band selection/transform

–
 

Decision
 

fusion

Band
selection

/
transform

Scalar 
processing

F
U
S
I
O
N



Remote sensing application 1:
 

Classification of hyperspectral 
images of an urban area using 

morphological profiles
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Pavia
 

data

•
 

DAIS7915 airborne imaging 
spectrometer from DLR

•
 

Pavia, ITALY
Date: 08/07/2002

•
 

Spatial resolution 2.6 m
•

 
80 channels

73 channels, 0.496 – 4.315 μm
•

 
Only use channels 1-40 (0.496 
–

 
1.756 μm) due to noise in 

higher bands
7 thermal infrared bands

Channels 35(r), 8(g), and 1(b)
 (400 x 400 pixels)
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Classification problem

Ground truth reference

•
 

Task:
 

Assign every
 

pixel to one
 of the nine

 
information

 
classes:

█
 

Shadows
█

 
Roofs

█
 

Parking lots
█

 
Asphalt

█
 

Trees
█

 
Meadow

█
 

Soil
█

 
Bitumen

█
 

Water



Y. Tarabalka, J. A. Benediktsson, J. Chanussot Mathematical morphology

Classification problem

Ground truth reference

•
 

Task:
 

Assign every
 

pixel to one
 of the nine

 
information

 
classes:

█
 

Shadows
█

 
Roofs

█
 

Parking lots
█

 
Asphalt

█
 

Trees
█

 
Meadow

█
 

Soil
█

 
Bitumen

█
 

Water

Training            Test
samples          samples

61 180
500 1682
74 213

429 1275
500 1817
311 940
366 1109
165 520
500 3214
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Classification approaches

•
 

Only
 

spectral
 

information
Spectrum of each pixel is analysed
Directly accessible
Classification methods*:

•
 

Gaussian
 

maximum likelihood
•

 
Neural networks

•
 

Kernel-based
 

methods
 

(e.g. SVM) good performances

•
 

Spectral + spatial
 

information
Info about spatial structures included
How to define spatial structures?

Mathematical morphology
 

deals with
 

the
 analysis of spatial structures

*To read: R. O. Duda

 

et al., Pattern Classification, 2nd ed. Wiley, 2001.
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Morphological
 

opening
 

by reconstruction

•
 

Consequence:
Features that are brighter than their immediate 
surroundings and smaller than the SE disappear
Other features (dark, or bright and large) remain 
“unchanged”

γ15
 

(X) opening

by
 reconstruction
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Morphological
 

profile

•
 

Structuring Element: disc
•

 
Segmentation Variables

Number of openings/closings
Radius increment (step size)

Openings (increasing SE)Closings (increasing SE)

R=1 R=2 R=3 R=4 R=5

closing      closing       closing original opening     opening      opening
ES=21      ES=14       ES=7         image          ES=7        ES=14       ES=21 
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Feature
 

extraction

•
 

Method previously applied to high resolution panchromatic data 
(grey-scale images)

•
 

Here we consider the use of the method for high resolution 
hyperspectral data

•
 

Need to create a morphological profile from the 
hyperspectral data

•
 

Use feature extraction: Principal Component Analysis (optimum 
for signal representation)
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Pavia data: principal components

Eigenvalues λ1

 

and λ
 

2

 

make up
 

>96% of the 
total eigenvalue

 
sum.  We keep

 
PC1 and

 
PC2 

and discard other components
 

for 
morphological

 
processing.

PC1

PC2

PC3

PC4

Value λi

 

/ ∑λ
λ1 2.27·105 78,2%
λ2 5.22 ·104 18.0%
λ3 8.39·103 2.9%
λ4 1.16·103 0.4%

λ5

 

+...+ λ40 <0.5%

PC5



Y. Tarabalka, J. A. Benediktsson, J. Chanussot Mathematical morphology

Combined morphological profile

•
 

2nd

 

principal component contains too much information to be 
discarded

•
 

Morphological profiles for 1st

 

and 2nd

 

principal components 
combined in one profile

Profile from
 

PC 1 Profile from
 

PC 2

Combined Profile

Original OpeningsClosings Original OpeningsClosings
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Classification of Pavia data

•
 

Morphology settings
The use of 1st and 2nd Principal Components with four 
openings/closings and step size of 2 resulted in good 
classification accuracies

•
 

Neural network (NN) classifier
Classification performed using a neural network with one 
hidden layer

Decision Boundary Feature Extraction (DBFE) for the NN 
was tested on the morphological profile
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Pavia data:
 

classification
 

results

•
 

Only the
 

1st

 

principal
 component

 
(1 input feature)

 is used for
 

NN

•
 

3 hidden neurons

•
 

Overall test
 

accuracy: 56.2%
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Pavia data:
 

classification
 

results

•
 

Morphological profile
 

of the 
1st

 

PC (9 input features)
4 openings/closings,
radius increment: 2

•
 

9 hidden neurons

•
 

Overall test
 

accuracy: 77.0%
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Pavia data:
 

classification
 

results

•
 

Morphological profile
 

of the 1st

 and 2nd

 

PCs
 

(18 input 
features)

PC1: 4 openings/closings,
radius increment: 2
PC2: 4 openings/closings, 
radius increment: 2

•
 

13
 

hidden neurons

•
 

Overall test
 

accuracy: 91.5%
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Pavia data:
 

classification
 

results

•
 

Morphological profile
 

of the 
1st

 

and 2nd

 

PCs
 

(18 input 
features)

PC1: 4 openings/closings,
radius increment: 2
PC2: 4 
openings/closings, radius 
increment: 2

•
 

DBFE
Reduced to 8 features 
(99%)

•
 

Overall test
 

accuracy: 95.0%
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Pavia data: overall test accuracies for NN (%)

Index PC1

PC1 
Morph. 
profile

PC1+PC
 2 

Morph. 
profiles

PC1+PC
 2 

Morph. 
profiles 

with 
DBFE

1 Shadows 0.0 73.3 40.0 83.9
2 Roofs 89.1 91.6 84.8 89.8
3 Parking lots 0.0 0.0 87.3 97.2
4 Asphalt 39.6 88.5 95.5 96.4
5 Trees 51.3 46.2 94.1 94.2
6 Meadow 0.0 53.5 94.3 94.1
7 Soil 0.0 57.4 79.0 95.3
8 Bitumen 0.0 83.7 82.5 84.4
9 Water 100.0 100.0 100.0 100.0

Overall Acc. 56.2 77.0 91.5 95.0
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Summary: classification using
 

MM profiles

•
 

Spatial information captured
 

by morphological
 

profiles
Great potential for classification of images of urban areas

•
 

The use of morphological
 

profiles
 

for hyperspectral data
Use feature extraction: Principal Component Analysis 

•
 

Spectral-spatial approaches for image analysis to be
 developed



Remote sensing application 2:
 

Segmentation and 
classification of hyperspectral 

images using watershed
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Classification problem

Input ROSIS image
610 x 340 pixels,

103 bands

Ground truth
reference Task

Assign every
 

pixel to 
one

 
of the nine

 information classes:
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Classification problem
 

(103-band ROSIS data)

Ground truth
reference Task

Assign every
 

pixel to 
one

 
of the nine

 information classes:

Class Training 
samples

Test 
samples

Asphalt 548 6641

Meadows 540 18649

Gravel 392 2099

Trees 524 3064

Metal

 

sheets 265 1345

Bare

 

soil 532 5029

Bitumen 375 1330

Bricks 514 3682

Shadows 231 947
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Spectral-spatial classification

•
 

Spectral + spatial information for more 
accurate classification

•
 

How to define spatial structures?
Closest neighborhood (e.g. morphological 
profiles) done before
Adaptive neighborhood (segmentation 
map) currently investigated

+
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Spectral-spatial classification

•
 

Spectral + spatial information for more 
accurate classification

•
 

How to define spatial structures?
Closest neighborhood (e.g. morphological 
profiles) done before
Adaptive neighborhood (segmentation 
map) currently investigated

+

•
 

Segment
 

a hyperspectral image = find
 

an exhaustive partitioning
 

of 
the image into

 
homogeneous

 
regions

Use MM approach to segmentation: watershed transformation

•
 

Spectral
 

info + spatial
 

info classify image

Objective:
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Watershed
 

segmentation

•
 

Minimum
 

of a gradient = core of a homogeneous region
•

 
1 region

 
= set of pixels connected to 1 local minimum of the

 gradient
•

 
Watershed lines

 
= edges between adjacent regions

gradient

Region growing + edge detection method:
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watersheds

Watershed
 

algorithm

•
 

L. Vincent and P. Soille, “Watersheds in digital spaces:
 an efficient

 
algorithm based on immersion simulations,”

 IEEE Trans. Pattern Analysis and Machine Intel., vol. 13,
 no. 6, pp. 583–598, June 1991.
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Watershed
 

for a hyperspectral image

•
 

From
 

B-band image 
1-band segmentation map: Hyperspectral image

(B

 

bands)

Gradient

Watershed

Segmentation map
(1 band)

Feature

 

extraction

Combine gradients

Combine regions
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Watershed
 

for a hyperspectral image

•
 

From
 

B-band image 
1-band segmentation map:

Feature extraction (PCA,
ICA, …)?

Hyperspectral image
(B

 

bands)

Gradient
(1 band – 1 band)

Watershed
(1 band – 1 band)

Segmentation map
(1 band)

Feature

 

extraction
(B bands – 1 band)

Combine gradients

Combine regions
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Watershed
 

for a hyperspectral image

•
 

From
 

B-band image 
1-band segmentation map:

Feature extraction (PCA,
ICA, …)?

Vectorial gradient?

Hyperspectral image
(B

 

bands)

Gradient
(B bands – 1 band)

Watershed
(1 band – 1 band)

Segmentation map
(1 band)

Feature

 

extraction

Combine gradients

Combine regions
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Watershed
 

for a hyperspectral image

•
 

From
 

B-band image 
1-band segmentation map:

Feature extraction (PCA,
ICA, …)?

Vectorial gradient?

Combine B gradients?

Hyperspectral image
(B

 

bands)

Gradient
(B

 

bands – B bands)

Watershed
(1 band – 1 band)

Segmentation map
(1 band)

Feature

 

extraction

Combine gradients
(B bands – 1 band)

Combine regions
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Watershed
 

for a hyperspectral image

•
 

From
 

B-band image 
1-band segmentation map:

Feature extraction (PCA,
ICA, …)?

Vectorial gradient?

Combine B gradients?

Combine B watershed
regions?

Hyperspectral image
(B

 

bands)

Gradient
(B

 

bands – B bands)

Watershed
(B

 

bands – B bands)

Segmentation map
(1 band)

Feature

 

extraction

Combine gradients

Combine regions
(B bands – 1 band)
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Segmentation and classification of data

•
 

Input
B-band hyperspectral image 
X = {xj ∈ RB, j = 1, 2, …, n}
B ~ 100

•
 

Vectorial
 

gradient

Hyperspectral image
X (B

 

bands)

Vectorial

 

gradient

Watershed

Spectral-spatial 
classification

Pixel-wise

 classification

 (by SVM)
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Robust Color Morphological Gradient 

•
 

For each
 

pixel xp

 

, χ
 

= [xp1

 

, xp2

 

, …, xpe

 

] is
 a set of e

 
vectors

 
within

 
E

•
 

Color Morphological
 

Gradient (CMG):
 

CMGE

 

(xp

 

) = max{|| xpi

 

-
 

xpj

 

||2
 

}

•
 

Robust
 

Color Morphological
 Gradient (RCMG):

xpi_max, xpj_max – pixels that define
the CMG of xp

RCMGE(xp) =               max         {|| xpi - xpj ||2}

i, j ∈ χ

i, j ∈

 

{χ

 

- [xpi_max

 

, xpj_max

 

]}

E

If two
 

pixels marked
 

by 
green define

 
the CMG:

The RCMG is
 

computed
 using

 
all the pixels 

except
 

these
 

two:

E
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RCMG of the University
 

of Pavia
 

image

•
 

B-band image one-band 
gradient

•
 

Principal borders
 

are defined

•
 

Presence
 

of “noisy”
 

edges

Filter image “noisy”
borders reduced, but info 
about details lost

Input image RCMG
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Segmentation and classification of data

•
 

Input
B-band hyperspectral image 
X = {xj ∈ RB, j = 1, 2, …, n}
B ~ 100

•
 

Vectorial
 

gradient

•
 

Watershed

Hyperspectral image
X (B

 

bands)

Vectorial

 

gradient

Watershed

Spectral-spatial 
classification

Pixel-wise

 classification

 (by SVM)



Y. Tarabalka, J. A. Benediktsson, J. Chanussot Mathematical morphology

Watershed

•
 

Algorithm
 

of Vincent and Soille
 

(1991)
•

 
For every

 
region

 
S

 
Standard Vector

 
Median:

•
 

Every
 

watershed
 

pixel to the neighboring region with the 
“closest” median
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Watershed

•
 

Oversegmentation
Merging of regions

•
 

Obtained
 

regions
to improve classification
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Segmentation and classification of data

•
 

Input
B-band hyperspectral image 
X = {xj ∈ RB, j = 1, 2, …, n}
B ~ 100

•
 

Vectorial
 

gradient

•
 

Watershed

•
 

Pixel-wise
 

classification
 (by SVM)

Hyperspectral image
X (B

 

bands)

Vectorial

 

gradient

Watershed

Spectral-spatial 
classification

Pixel-wise

 classification

 (by SVM)
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Pixel-wise
 

SVM classification

•
 

Milti-class pairwise
 

(one 
versus

 
one) classification, 

with
 

Gaussian
 

Radial Basis 
Function

 
was

 
performed

•
 

Optimal parameters
 

were
 determined

 
by 5-fold

 
cross-

 validation: C = 128, γ
 

= 0.125

•
 

Overall test accuracy: 82.1%
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Segmentation and classification of data

•
 

Input
B-band hyperspectral image 
X = {xj ∈ RB, j = 1, 2, …, n}
B ~ 100

•
 

Vectorial
 

gradient

•
 

Watershed

•
 

Pixel-wise
 

classification
 (by SVM)

•
 

Spectral-spatial classification

Hyperspectral image
X (B

 

bands)

Vectorial

 

gradient

Watershed

Spectral-spatial 
classification

Pixel-wise

 classification

 (by SVM)



Y. Tarabalka, J. A. Benediktsson, J. Chanussot Mathematical morphology

Spectral-spatial classification

Pixel-wise
 classification map

Pixel-wise
 classification map

 +
 segmentation map

Majority
 

vote within
 

the watershed
 regions

No WHEDs With
 

WHEDs
(watershed

 

pixels not 
processed)

(watershed

 

pixels assigned

 
to neighboring regions)
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Spectral-spatial classification

Classification accuracies
 

(%):

Accuracy Pixel-wise
 SVM

SVM + Majority
 

vote
No WHEDs With

 
WHEDs

Overall
 

accuracy 82.08 84.41 86.64
Average

 
accuracy 89.11 90.70 92.13

Kappa coefficient κ 77.49 80.32 83.05
Asphalt 85.48 89.82 94.28
Meadows 71.56 74.03 76.41
Gravel 70.70 69.99 69.89
Trees 97.88 98.04 98.30
Metal

 
sheets 99.55 99.78 99.78

Bare
 

soil 93.46 95.37 97.51
Bitumen 91.95 94.74 97.14
Bricks 92.97 96.31 98.29
Shadows 98.42 98.20 97.57
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Spectral-spatial classification

Pixel-wise
 classification map

Majority
 

vote within
 

the watershed
 regions

No WHEDs With
 

WHEDs
(watershed

 

pixels not 
processed)

(watershed

 

pixels assigned

 
to neighboring regions)

•
 

Noise 
reduced

•
 

Rough 
borders
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Summary: segmentation and classification
 using

 
watershed

•
 

Segmentation by morphological watershed combines
 region growing and edge detection techniques

Extension of a watershed to hyperspectral data is 
feasible

•
 

A further
 

step
 

forward
 

towards
 

the integration
 

of spatial
 and spectral information for the classification of 

hyperspectral data:
 use of adaptive neighborhoods

 
(segmentation map)

Results are promising

•
 

Perspectives:
 Reduce

 
oversegmentation incorporate a priori

knowledge into segmentation
Marker-controlled watershed segmentation



Practical session on 
mathematical morphology  

using Image Processing
 Toolbox of Matlab
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Binary mathematical morphology

•
 

Download
 

the image test.tif: 
http://www3.hi.is/~yut2/files/MMImage/test.tif

•
 

For the considered
 

image:
Test elementary morphological operators (erosion and 
dilation) with different structuring elements: horizontal 
segments (line) or vertical segments (column), square, cross

Help: 
•

 
IM2 = imdilate(IM, SE)

 
performs dilation of image IM by a structuring element 

SE. 
•

 
Function se = strel(shape, parameters)

 
constructs structuring elements with a 

variety of shapes and sizes. Examples:
SE = strel('line', LEN, DEG)
SE = strel('square', W)

• To perform erosion, use function imerode.

http://www3.hi.is/~yut2/files/MMImage/test.tif
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Binary mathematical morphology

•
 

For the considered
 

image:
Combine elementary operators to construct the following 
operations:

•
 

Opening (erosion followed by dilation with the same 
structuring element, for example line or square)  and 
closing (dilation followed by erosion). What is the effect 
of these filters?

•
 

“Top-hat”
 

(initial image minus opening). How this 
operator can be useful?

Help: 
•

 
Opening and closing are implemented in Image Processing Toolbox of Matlab

 with functions imopen
 

and imclose. 
•

 
Top-hat filtering can be performed using function IM2 = imtophat(IM,SE)

 
or 

function imsubtract
 

together with opening function.
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Binary mathematical morphology

•
 

For the considered
 

image:
With the help of different morphological operators:

•
 

Try to isolate pixels belonging to one or another structure 
of the image (diamond formation, circle, line, cross, black 
square or white square)

•
 

Delete the white line, preserving all the other structures 
intact

Implement and test different morphological gradients 
(dilation-image, image-erosion, dilation-erosion)

•
 

Which differences do you observe between these 
gradients (finesse, localisation)?

•
 

What is the influence of the structuring element (size
 and shape)?
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Binary mathematical morphology

•
 

You can investigate the influence of these different operators for 
the “natural”

 
binary images obtained by thresholding

 
of grey-

 scale images
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MM for grey-scale images

•
 

Download
 

grey-scale
 

images femme.tif and chaise.tif: 
http://www3.hi.is/~yut2/files/MMImage/femme.tif

 http://www3.hi.is/~yut2/files/MMImage/chaise.tif
 You can

 
also

 
use any

 
other

 
grey-scale

 
images

•
 

Repeat, for the grey-scale images, the study
 fulfilled for the binary images:

Erosion (minimum value of the image in the 
window defined by the structuring element)
Dilation (maximum value of the image in the 
window defined by the structuring element)
And combinations of these operators

•
 

Opening and closing
•

 
“Top-hat”

 
operator

•
 

Morphological gradients

http://www3.hi.is/~yut2/files/MMImage/femme.tif
http://www3.hi.is/~yut2/files/MMImage/chaise.tif
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