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Abstract
Solar energy is a highly sustainable energy source,
but its production fluctuates based on weather con-
ditions, posing challenges for energy management.
Hence, accurate solar power generation forecast-
ing is crucial to successfully integrate solar en-
ergy sources and optimizing the electrical usage.
This paper aims to compare the effectiveness of
data-driven models and theory-driven models using
physics formulas. We propose and evaluate multi-
ple data-driven models, such as Extreme Gradient
Boosting (XGBoost) and Long-Short Term Mem-
ory (LSTM), considering their Root Mean Squared
Error (RMSE), their adaptability to different loca-
tions based on data requirements, and their carbon
footprint. Furthermore, we compare these data-
driven models with global horizontal irradiance
(GHI) clear-sky models, such as the Ineichen-Perez
and Simple Solis models. The data-driven model
have demonstrated to have better performance than
the theory driven once with 9.4% RMSE against
29.65%.

1 Introduction
In our society, due to our lifestyle and population growth, us-
ing as much fossil energies is becoming an issue. Therefore,
to satisfy the world’s growing energy demand, meanwhile
reducing the carbon footprint of the electrical sector, one of
our best alternatives is solar energy. Indeed, solar energy
is becoming an increasingly popular source of renewable
energy worldwide. Solar power is a clean and sustainable
source of energy that can be used to generate electricity.
Unlike fuel-based energy sources, such as coal or natural gas,
it does not release harmful pollutants into the environment.
As a sustainable and adaptable source of energy, solar energy
offers a promising solution to the challenges of climate
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change and the transition to a more sustainable future in
terms of energy.Therefore, being able to forecast solar power
generation could help people better optimize their electrical
consumption based to the daily generation, for example.

This energy source being so important for the planet the
aim of my internship is to first analyse existing solar power
generation forecasting models, then try to implement a sus-
tainable model for the needs of the lab whom goal is to use
the forecasting to prove physical formulas. As well as eval-
uating the advantages of employing a data-driven model for
solar power generation forecasting over another model. By
using historical data, a data-driven approach can capture in-
tricate patterns and relationships that may not be easily taken
into account by the physics formulas. This can potentially
enhance the accuracy and reliability of the forecasts. The
evaluation should also consider the benefits and limitations
of both approaches to determine the most suitable method.
An additional goal for the forecasting model is to ensure its
adaptability to different locations. This means that the model
should be capable of accommodating specific characteristics
of each location, allowing for accurate solar power genera-
tion forecasts regardless of geographical differences. Photo-
voltaic (PV) forecast models vary based on the available data
and the forecast horizon we want to predict (short term, long
term,...). In our case, we have access to weather data coming
from the roof of the GreEN-ER building including solar radi-
ation, cloudiness, wind, etc and we would like to be able to
forecast for the next hour so at t + 1, t being the actual time.

We will first expose the state of the art in order to see what
as already been done and which models could be used on the
GreEN-ER building base on the available data and the wanted
forecast horizon.

1.1 State of the art
Data driven models
The forecast of solar power generation is an increasing topic
of discussion nowadays. Therefore, a lot of models using dif-
ferent techniques of machine learning and deep learning have
been studied trough out the years. We establish with the fol-
lowing Figure 1 some of the models that can be interesting
for us base on the data and horizon forecast. The models
were selected regarding the data used, their forecasting hori-
zon (hourly) and the year of the article (most recent ones) and



the aim of the table is to compare the accuracy.

Figure 1: Current models and their accuracy

Some models use solar radiance forecasting rather than the
PV generation [Ahmed et al., 2020] this could be due to the
fact that the production is strongly correlated to the solar ra-
diance [Dimitropoulos et al., 2021]. We still consider those
models since we have access to solar radiance data. Based on
the evaluation using the RMSE metric in Figure 1, XGBoost
and LSTM models show better accuracy compared to other
models. It’s notable that both XGBoost and LSTM models
have displayed superior accuracy when compared to other
models, demonstrating their effectiveness in capturing com-
plex patterns and relationships within the data. My supervisor
has also oriented me towards N-BEATS as a potential model,
that can offer a valuable contribution to further improving the
accuracy of solar power generation forecasting.

Data processing
In addition to the model itself, we also need to consider the
data used and its pre-processing. During our research, we
came across a model utilizing auto-encoders, which seemed
promising for identifying the most significant features in the
data. However, our findings regarding this approach were in-
conclusive. We also explored the use of wavelets in other
models [Almaghrabi et al., 2022] , but due to the numerous
types of wavelets available, we have not reached any defini-
tive conclusions. To identify suitable models for our specific
case scenario, we looked into the available data. Within the
laboratory, we had access to a range of data from 2018 to
2022, including solar radiance, temperature, wind speed and
direction, rainfall, and sky images captured above the build-
ing.

In the case of XGBoost, the model uses features such as
temperature, pressure, humidity, and solar radiance to predict
solar power generation. On the other hand, LSTM utilizes

historical power generation data to capture temporal depen-
dencies and make forecasts. By considering different sets of
input variables, XGBoost focuses on weather-related factors
that impact solar power generation, while LSTM emphasizes
the historical patterns of power generation itself. Both ap-
proaches have demonstrated their efficacy in achieving accu-
rate predictions [Dimitropoulos et al., 2021].

Physical models
Over the years, numerous physical models have been pro-
posed to accurately model solar irradiance under clear sky,
which plays a crucial role in solar power production. These
models have significantly contributed to our understanding of
solar irradiance and have open the way for advancements in
solar energy forecasting. By establishing an accurate model
of solar irradiance and combining it with information on our
panels characteristics, we can try to compute our overall en-
ergy production.

According to the suggestions provided in [Reno et al., ],
it is noted that complex models heavily rely on local mea-
surements that can be challenging to obtain. Hence, simpler
models seem accurate enough for practical purposes. Consid-
ering this, even though the Bird clear sky model has demon-
strated high precision [Mabasa et al., 2021] (RMSE ≤ 5%),
we have chosen not to implement it. Instead, models such as
the Ineichen-Perez clear sky model (RMSE ≤ 10%), which
requires nine parameters including solar zenith, azimuth, lat-
itude, longitude, altitude, etc., or the simplified Solis model
(RMSE ≤ 10%), which has shown coherence between ir-
radiance components and solar elevation angles [Ineichen,
2016] and requires six parameters. These two models seem
to offer a good balance between accuracy and ease of imple-
mentation.

The pvlib Python library provides access the above models
for solar irradiance estimation under clear sky. In particular,
it offers the Hay Davies [Mesri-Merad et al., 2012] model as
the default for calculating solar irradiance . Additionally, the
library includes the isotropic model, which has demonstrated
satisfactory results according to [Loutzenhiser et al., 2007].

1.2 Motivation
As previously mentioned, solar energy is a significant and
sustainable energy source. Accurate forecasting of solar
power generation can greatly enhance energy management
and facilitate the adaptation of its origin to optimize overall
energy utilization.

The ultimate objective is to transition to cleaner energy
sources and align our consumption accordingly. Therefore, it
is important to avoid using forecasting models that consume
excessive time and energy. A key challenge lies in striking a
balance between the energy impact of the forecast model. As
well as, to establish reliable and accurate forecasts, due to its
dependency to weather conditions, solar energy is susceptible
to uncertainty, making it challenging.

Therefore, we will look into the cost of the chosen algo-
rithms, the quality of the model is not only base on its ac-
curacy but on its accuracy over its training cost [Tran et al.,
2022]. We need to be careful with that, if it’s really costly
to train the model but it only has to be done ones maybe this



could be alright. On the contrary if the model has to be re-
trained before every prediction we might as well go for a less
efficient but cheaper model to train.

One limitation that needs to be addressed is the availability
of data, particularly because we aim to propose an adaptable
model that can accommodate to different locations. Achiev-
ing higher accuracy in solar power forecasting often requires
a significant amount of historical data, which may not be
available for every site. Thus, ensuring the model’s adaptabil-
ity across multiple locations becomes a challenging aspect to
consider when using data-driven models.

2 Models Description
Data Processing
The data used for our analysis comes from the weather sta-
tion on the rooftop of the GreEN-ER building. We have used
solar radiance, humidity, pressure, temperature as well as the
power production data from 2020 until now. Before training,
the data is cleared of any inconsistencies or outliers. Once
cleaned, the data is normalized to a common scale between 0
and 1, using min-max scaling. This ensures that all features
contribute equally to the model training process, preventing
any particular feature from dominating the learning process.
By cleaning and normalizing the data, we create a standard-
ized and reliable input for training our model.

In our physical model, we rely on parameters such as lati-
tude, longitude, altitude, angle, and power of reference of the
panels. We do not require data measured by a weather station
for this purpose. Instead, we utilize models from the PVLib
library to calculate additional information, such as the solar
zenith angle throughout the day.

Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost), is an open source
machine learning library designed to perform gradient boost-
ing for decision tree (GBDT) models. It provides parallel
tree boosting and is the leading machine learning library for
regression, classification, and ranking problems.

Figure 2: A general architecture of XBoost 1

As we can see from Figure 2 in XGBoost every tree learns
from the residual of the previous one therefore the results is
construct based on the sum of the sum of all results, this is
why this model is so efficient.

1Image from: https://www.researchgate.net/figure/Simplified-
structure-of-XGBoost fig2 348025909

Long-Short Term Memory
Long Short-Term Memory (LSTM) is a recurrent neural net-
work (RNN) architecture that comprises four feed forward
neural networks. Each of these neural networks is composed
of an input layer and an output layer, with connections be-
tween input neurons and output neurons, as we can see in Fig-
ure 3. This arrangement leads to a fully connected structure
with four layers in the LSTM unit. LSTM is widely employed
for time series forecasting due to its effectiveness in capturing
long-term dependencies and handling sequential data.

Figure 3: A general architecture of LSTM 2

Neural Basis Expansion Analysis for Time Series
My supervisor oriented me towards the N-BEATS (Neural
Basis Expansion Analysis for Time Series) [Oreshkin et al.,
2020] model which is a type of Neural network. N-BEATS
is a fast Deep Learning model that recreates the mechanisms
of statistical models using double residual stacks of fully con-
nected layers as we can see in Figure4. This model has shown
to be really efficient for time series forecasting.

Figure 4: Architecture of the N-BEATS model3

The same way as XGBoost, N-BEATS uses the residuals
from the previous block to learn on the next, making this
model also really accurate and efficient.

Ineichen-Perez clear sky model
The Ineichen clear-sky model is used to estimate the Global
Horizontal Irradiance (GHI) and the Direct Horizontal Irradi-
ance (DHI) under clear-sky conditions. It takes into account
the extraterrestrial solar radiation (DNITOA), and the posi-
tion of the sun (θZ) . The model is based on empirical rela-
tionships and can be expressed as follows: [Reno et al., ]

GHI = a1 ·DNITOA · cos(θZ) · eb (1)
2Image from: https://medium.com/@ottaviocalzone/an-

intuitive-explanation-of-lstm-a035eb6ab42c
3Image from : [Oreshkin et al., 2020]



Where:

b = −a2 ·AM · (fh1 + fh2 · (TL − 1)) (2)
AM is the absolute atmospheric air mass,TL is the linke

turbidity from [Ineichen and Perez, 2002], h represents the
altitude above sea level and a1 = 5.09×10−5h+0.868, a2 =
3.92× 10−5h+ 0.0387, fh1 = e−h/8000, fh2 = e−h/1250.

DHI = GHI −DNI × cos(θZ) (3)
We used the python library PVlib to compute all the param-

eters of equation 1, as well as the equation itself. The model
in pvlib computes GHI, DNI and DHI from (1), (3) and DNI
(direct normal irradiation) with DNITOA .

Simplified solis clear sky model
The simplified Solis model is a simplified version of the orig-
inal Solis model, which is a well-known model used for solar
irradiance estimation. It aims to provide a much easier com-
putationally efficient approach while still maintaining reason-
able accuracy.

GHI = DNI ′TOA · e
−τg

cos(θ
g
z ) · cos(θz) (4)

Where DNI ′TOA is a modified version of DNITOA that
takes into account different altitude and atmospheric condi-
tions, τg corresponds to the total optical depth. We used PVlib
to calculate all the needed parameters as well as the (4).

3 Methodology
Data driven models
We divided it into training and test set. For the XGBoost
model, the training set consisted of the before mentioned
weather data. As for LSTM, it gets the historical production
of the solar panels. Since the historical power production data
from the panels on the roof only begins in September 2022
(the month they were installed), we trained our model initially
on smaller panels not located on the roof. These smaller pan-
els provide historical power production data up until 2020.

We implemented the data-driven models, including XG-
Boost and LSTM, using the sklearn library in Python. The
N-Beats model was implemented by my supervisors based
on [Oreshkin et al., 2020].

To optimize the hyperparameters of XGBoost, we utilized
Grid Search. Through this process, we determined that the
following hyperparameters were the most effective in our
case: learning rate = 0.03, max depth = 5, and number of
estimators = 50. The training lasted approximately 1 minute.
The model is trained from 2020-2021 and predicts on 2022
with a one hour time step.

For the LSTM model, we utilized a single layer with 128
units. Additionally, we included a dense layer with a recti-
fied linear unit (ReLU) activation function. The model was
trained for 50 epochs with a batch size of 32. We also incor-
porated early callback with a patience value of either 5 or 10
to prevent over fitting. The training lasted approximately 1 to
2 minutes. The model is trained on data from 2021 and learns
from the past 24 to predicts the next one.

The N-Beats model architecture includes a 1 block struc-
ture, consisting of a residual dense layer with 4 layers of 64

neurons each, followed by 2 dense output layers with 24 neu-
rons each. A stack is formed by combining 5 blocks. The full
N-Beats model is composed of 5 stacks. During the training
process, the model was trained for 20 epochs with a batch size
of 64. The Adam optimizer was used, and the mean squared
error (MSE) was employed as the loss function. The training
is done over the historical data of production, it looks at the
past 24 hours and predicts the next 24hours, but we shift it by
1 hour so we actually only keep the next hour. The train took
approximately 2-3 minutes to complete.

Theory driven models
As mentioned before we used the python library pvlib to im-
plement the physical models. We first implemented a solar
module similar to the panels installed on the roof of GreEN-
ER, to compute the power production based on the clear sky
models.

Figure 5: Diagram of the steps to compute solar power pro-
duction using the physical formulas in pvlib

As shown in Figure 14 the clear sky model, either ineichen
or simplified solis, is used to calculate the irradiance, since
the model need GHI, DNI, and DHI for its computation.
Then we compute the effective irradiance using pvlib and
finally the power production.

To accurately simulate the PV system, we considered the
tilt and orientation of the solar panels. Since the panels on the
roof do not lay horizontally and have different orientations,
we divided them into groups based on the inverter they are
linked to. We separately computed the solar production for
the panels facing the south-west direction (139 degrees) and
the panels facing the north-east direction (-41 degrees) This
distinction allows us to account for the different sun exposure
throughout the day. After calculating the solar production for
each group, we sum up the results to obtain the total produc-
tion of all the panels on the roof. This approach enables us to
accurately estimate the overall solar power generation of the
PV system.

Evaluation
We utilize the Root Mean Square Error (RMSE) metric, for
model evaluation. The RMSE provides a measure of the aver-
age magnitude of the prediction errors, allowing us to assess
the accuracy of our model’s predictions.



RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (5)

Where N is the number of data points, yi is the true value
and ŷi is the predicted value.

To facilitate the comparison of prediction errors across
tests on different solar panels production, we calculate the
percentage of the RMSE. This involves dividing the RMSE
value by the max of the true values and multiplying by 100.

Visualizing the model’s predictions and comparing them
with the actual data can provide valuable insights into its per-
formance. Therefore, in addition to considering the RMSE, it
is beneficial to analyze the results graphically to better under-
stand the behavior and accuracy of the models.

As mentioned earlier, while accuracy is an essential con-
sideration, it is not the only factor in evaluating the models.
We also place significant importance on developing a sustain-
able and adaptable model. These criteria play a crucial role
in our evaluation process to ensure that the selected model
aligns with our goals of long-term environmental sustainabil-
ity and flexibility in accommodating diverse conditions and
locations.

4 Results
During our experimentation with data-driven models, we ex-
plored different approaches for training and testing. We tested
scenarios such as training the models on data from 2020/2021
and testing on data from 2022, as well as training on data from
2021 and testing on data from 2022.

Figure 6: 1h time step predictions of XGBoost trained on
2020/2021

Figure 7: 1h time step predictions of XGBoost trained 2021

Although the computed RMSE may suggest certain trends
(Figure 11), it is also important to visually analyze the results.
In Figure 6 and Figure 7, we can observe the performance of
the XGBoost model. By examining these figures, we can de-
duce that training the XGBoost model on the data from 2021
leads to better accuracy when predicting the solar power gen-
eration for the year 2022.

Figure 8: LSTM predictions on 2022 on the smaller panels

On Figure 8 and 11 we can see the results of the plotting
and RMSE of the LSTM model, it is so far the most accurate
model we have to test its adaptability and accuracy we train
it on the smaller panel and test it on the once on the roof. We
can visualise this results on Figure 9 and 11.

Figure 9: LSTM predictions on 2022-2023 on the roof panels

N-BEATS is the most complex model we have test as well
as the most performant one, we can observe on Figure 10, the
prediction of N-BEATS compared to the real values of the
production of the roof panels.

Figure 10: N-BEATS predictions 2022-2023 data for the roof
panels

Figure 11: Comparison of the data model based on their
RMSE

From Figure12, Ineichen clear sky model with the isotropic
irradiance model is the most accurate among the theory-



Figure 12: Comparison of the physical model based on their
RMSE

driven models. This model requires few data inputs, that can
all be computed using the pvlib library, making it a promising
option for solar power generation forecasting.

5 Discussion
Overall, while XGBoost demonstrates good accuracy, its re-
liance on historical weather data and the need for storage,
limit its adaptability to different locations. This model’s pre-
dictions is specific to the solar plant and the weather con-
ditions on which it was trained, making it less suitable for
generalization. We have conducted tests on the roof panels,
and the results were consistent with our expectations, as the
model’s performance was not good.

Comparing the results of our XGBoost model with the
XGBoost model from [Dimitropoulos et al., 2021] would not
be fair or meaningful because the models have been trained
on different datasets. The data here relies on the location we
can not conclude on which model is more accurate.

LSTM and N-BEATS have demonstrated a strong capabil-
ity for adaptation, which was anticipated due to its learning
approach. By using the data from the previous 24 hours of
production for the predictions, it can capture and learn the
trends. Additionally, LSTM is relatively small with only one
128-layer making it a good fit for our needs, since it provides
a balance between complexity, performance and adaptability.
On the other hand N-BEATS is much bigger but its training
time is comparable to LSTM’s. However, to determine the
”best” model, we would need to further analyze LSTM and
N-BEATS’ footprint. This includes assessing the computa-
tional resources and memory requirements of both models.

Figure 13: LSTM predictions over 2023 data

In Figure 13 and 14, we can compare the predictions of
LSTM and Ineichen-Perez models on the same production
data. As expected, LSTM shows better prediction perfor-
mance. This is because the physical model relies on clear sky
principles and does not consider cloudiness, thereby limiting

Figure 14: Ineichen-Perez with Isotropic irradiance model
over 2023 data

its accuracy. On the other hand, LSTM takes into account the
previous 24 hour production and can capture the variations of
weather conditions more effectively.

Although the physical model Ineichen-Perez is less accu-
rate compared to data-driven models, it offers the advantage
of adaptability. The model only requires latitude, longitude,
altitude, and the characteristics of the solar panels, making it
suitable for various locations. Furthermore, since it does not
rely on measured data like data-driven models, it has a smaller
environmental footprint, contributing to its sustainability.

6 Conclusion

In this paper, we compare data driven model to physical
model approach for solar power forecasting. Data-driven
models have consistently demonstrated superior performance
compared to theory-driven models in forecasting solar power
generation. These models leverage historical data and ad-
vanced machine learning techniques to capture complex pat-
terns and relationships, resulting in more accurate predic-
tions. Their ability to adapt to changing conditions and learn
from large datasets makes them highly effective in forecast-
ing solar power generation. In contrast, theory-driven models
have some limitations but also advantages. While they may
not always achieve the same level of accuracy as data-driven
models. These models can be particularly useful in situa-
tions where historical data is limited or unavailable. How-
ever, it is important to acknowledge that theory-driven mod-
els may have assumptions and simplifications that can intro-
duce uncertainties, especially when considering factors like
shading, cloudiness, wind speed, and air temperature. To
mitigate these uncertainties, a hybrid approach that combines
both data-driven and theory-driven models can be employed.
By incorporating data-driven techniques to account for spe-
cific environmental factors, the hybrid model can potentially
enhance accuracy and reliability in solar power generation
forecasting. Furthermore, adopting a hybrid approach that
combines both theory-driven and data-driven models would
offer a balanced solution. This approach would leverage the
adaptability of the physical model, the performance of the
data-driven model, and minimize the data requirements, re-
sulting in a smaller footprint. Given more time, implement-
ing and testing this hybrid model would have been a valuable
endeavor, as it could potentially provide more accurate and
reliable solar power generation forecasts while considering
the specific characteristics and limitations of each approach.
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A GreEN-ER Building
During the course of my internship, we utilized the data col-
lected from the weather station at GreEN-ER (Figure 16).
This data served as the basis for our analysis and model test-
ing. Additionally, we evaluated our models using the pro-
duction data obtained from various solar panels within the
building.

The building itself features a rooftop solar panel installa-
tion with a capacity of 183 kilowatts peak, as depicted in
Figure 15. This installation plays a significant role in our
research and analysis. Furthermore, there is an additional so-
lar panel installation adjacent to the building, with a capacity
of 20 kilowatts peak, as shown in Figure 17. These different
panel installations allowed us to evaluate our models under
varying conditions and capacities.

Due to their location, the smaller panels are more suscep-
tible to shadowing caused by the surrounding buildings. This
shading phenomenon can have a significant impact on the per-
formance and efficiency of the smaller panels. Therefore, be-
cause of this and the lack of historical data from the rooftop
panels we used the smaller panels for training and both panels
for testing.

Figure 15: The panels from the roof of GreEN-ER4

4Image from : https://www.univ-grenoble-alpes.fr/inauguration-
de-la-centrale-photovoltaique-de-green-er-1re-experience-d-auto-
consommation-collective-dans-une-universite-1226307.kjsp

Figure 16: Weather staion from the roof of GreEN-ER

All the rooftop PV cells have the same inclination, 6 de-
grees and are oriented towards two different directions. One
side is north-est and the other is south-west.

Figure 17: The smaller panels next to GreEN-ER

B Some physical explanations
In our theory-driven model, we incorporate several physical
variables to accurately estimate solar power generation.
These variables include Global Horizontal Irradiance (GHI),
Direct Normal Irradiance (DNI), and Diffuse Horizontal
Irradiance (DHI).To better understand the significance of
these variables, we can visualize them in Figure 18. This
figure provides a graphical representation of the GHI, DNI,
and DHI.

The Python library pvlib uses various inputs such as the
azimuth and tilt of the solar panel, altitude, and other param-
eters to calculate the solar position throughout the day, such
as the zenith angle. To better understand the concept of the
zenith angle, we can refer to Figure 19. This figure provides
a visual representation of the sun’s position in the sky, with
the zenith angle being the angle between the vertical line and
the line connecting the panel to the sun.



Figure 18: Diagram of solar irradiation partition 5

Figure 19: Variables computed from the solar position 6
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