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Introduction 
The interconnection of small, medium and large packet data networks in a world wide 

Internet represents today’s faster and more broadly polyvalent service factory. Internet, based 

on IP networking technologies, offers the possibility to interconnect communication areas, 

where multiple technologies are adopted for the local connectivity and for the backbone 

networking elements. The IP protocol is the Solution for heterogeneous networks to 

interoperate, no matter if some users adopt wirelines and some others use wireless 

technologies, no matter if point-to-point communication mechanisms are devised to serve 

small or wide areas and rely on cable, optical fiber or radio transmission media. IP has 

revealed to be suitable also for satellite communications, both in the case of geostationary 

orbits and when satellites move due to low or medium earth orbits adopted, where satellites 

often fly from pole to pole. IP has been also proposed for interplanetary data transmission. 

Thus, every category of users and service providers could potentially exploit Internet features. 

The point is that services require network resources, and network resources are limited. So, in 

order to actually deploy services over the Internet, it rises the necessity to have resource 

enough, and, in turn, to make the best with any available resource. In particular, as the load 

offered to the network grows up to a moderately level, it arises the problem to protect some 

applications whose data are more sensitive to impairments like delay and packet loss due to 

the statistical multiplexing adopted in each network element. In practice, the overall Internet 

can be seen as an enormous network of queues where packets are served with different rates 

and policies. 

Network nodes deal with a variety of applications which generate a multiform traffic. The 

basic Internet applications were meant to support slow rate data transfer as in the case of e-

mail and remote terminal control. Web browsing was limited to very simple on-line pages, 

with some text and few or not images. The file transfer was considered a heavy load 

application requiring long time to be completed, so that it was recommended to operate it out 

of the working hours, i.e., during the night. Luckily, today’s network and user resources are 

enough to transfer tens of gigabytes in a few minutes or in tens of minutes also for private 

users paying for DSL or cable connections. Unluckily, the amount of traffic generated by 

users is not limited to e-mail and file transfer applications. Mostly relevant, the degree of 

interaction with the network is well above the remote terminal and web browsing 

applications. In fact, the evolution of the concept of interaction between users and between 
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users and network is now proposing a full immersive multimedia exchange based on several 

interrelated data flows. Example of market relevant applications are the delivery of 

multimedia on-demand, the multicasting and broadcasting of real time audio and video to 

complement, enhance or also replace the traditional mass media operation. Modern 

telecommunication systems also converges to IP services in order to extend the almost 

traditional cellular telephony to a general-purpose wireless multimedia, including packet 

network facilities. A great number of these applications is resource consuming and, mostly 

important, they generate traffic not  reactive to network congestions. This is the case of UDP-

based streaming protocols that try to send data without adapting to the network load, no 

matter if every packets are lost because of network queues overflow. It is clear that any not 

reactive flow cannot be under the network control after it starts, but it should be stopped 

before to enter the network, if available resource are not enough to sustain the additional load 

offered by the new flow.  

In the framework depicted above, it is worth considering the risk that the impressive 

amount of available network resources could result insufficient to satisfy today’s services 

requirements. It seems that the more room is allotted to host applications in a network, the 

more heavy is the load requested by users and the more stringent are the requisites of quality 

associated with new applications. It is like a fractal process, where a figure recursively 

replicates its own parts while expanding in the space and complicating the resulting drawing. 

Hence it is needed to provide the network with some tools that can help to avoid to definitely 

lose the control of traffic dynamic behavior. Obviously, a full control of the Internet is out of 

reach for everyone. This is due to the multiple technologies adopted, and also to the broad 

variety of network providers that can be found all over the Internet. However, even though 

Internet were managed by a single entity, it would be impossible to manage all the 

information related to every users, every flows and to do it all over the time. Conversely, 

some partial solutions are possible, and in this thesis we will focus on a networking design 

which allows network providers to offer services with a suitable level of quality, without 

requiring a tight control of the overall network, but enforcing the majority of quality-enabling 

mechanisms at the edge of the network. Here, the term edge is related to the border between 

areas managed by separate providers, and also to the borderline between users and networks, 

i.e., in that part of data networks which is called access network. The complexity of our 

approach is quite limited in space: we look for same scalable mechanisms that can be 

enforced in the overall network without requiring a substantial and sudden change in devices 



 
3

and technologies already adopted. Instead, the complexity of the proposed approaches is 

concentrate in edge nodes, which could be more easily changed or updated without excessive 

costs.  

Since we want to support different kind of services with deeply different requirements, we 

need to know something about the application and the traffic generated by users, without 

forcing inefficient and heavy signaling exchanges all over the network. Heavy signaling 

exchanges should be limited to access networks, where the number of concurrent connections 

is almost limited, while the core of the network should be as much as possible free of stateful 

per-flow mechanisms that requires the instantiation of a finite state machine for each flow. 

We feel that quality of service aware applications should be supported by opportune network 

services, whose intelligence is bound as much as possible to the network edge nodes. 

However, the role of core network nodes is not negligible at all. In fact, we will see that edge 

nodes need at least some implicit form of signaling conveyed from the core routers along a 

communication path. Thus we will show that the mechanisms that enables quality support can 

be placed at network edge, while the effectiveness of such mechanisms is strongly dependent 

on the degree of interoperation between edge and core nodes. We will also demonstrate how 

an implicit form of collaboration between edge and core of the networks is possible without 

introducing any complex tools and without causing a revolution in the network 

infrastructures. Hence, we will deal with several kind of networks and technologies, aiming at 

proposing a sort of paradigm for the edge-based control of network resources as well as of the 

access to network resources and their utilization. 

In the first chapter of the thesis, an overview of network models is proposed. In particular 

we present the already implemented network model with its “best effort” behavior for every 

kind of applications. In the same chapter we present two opposite visions that was proposed in 

the last years in order to enhance the degree of service that networks can support. They are the 

IP Differentiated Service architecture, and the IP Integrated Service architecture. Pros and 

cons of these approaches will be presented, together with a comparative performance study. In 

Chapter II to Chapter IV we present some solutions to the problem of resource sharing in a 

network with finite resources. The aim of those chapters is to deal with the support that 

network can offer to applications by means of shrewd  admission control mechanisms. In 

particular, Chapter II introduces to the admission control theory and proposes some insights in 

the family of parameter based and measurement based admission control. The measurement 

based features are deeper investigated, and quite unexpected capabilities are shown that make 
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measurement based admission control preferable to parameter based schemes, especially 

when heavy burstiness arises in the offered traffic, as in the case of traffic aggregates 

exhibiting a self-similar behavior. Chapter III proposes the GRIP paradigm for end-to-end, or 

edge-to-edge, admission control support, which capabilities will be enhanced if core routers 

are able to convey implicit signaling by means of local discarding of packets that carry 

admission requests. GRIP is a probe based tool that can be deployed in already existent 

DiffServ routers implementing the “assured forwarding per hop behavior”, even though some 

modifications are required inside routers to enforce a sort of local measurement based 

admission control. Simulated performance results and real implementation schemes are 

eventually proposed for GRIP over DiffServ. Chapter IV proposes two classes of GRIP 

extensions to multicast applications and to signaling interoperations between stateless and 

stateful network domains. The case of RSVP signaling extension over DiffServ domain is 

presented as a particular and concrete example. Chapter V uses the example of vehicular area 

networks, where a proxy operates as the edge node of a mobile network, thus allowing 

vehicular customer to access Internet facilities and real time broadcast services. In that 

scenario, we will focus on the features that edge nodes need to implement in order to control 

the service level of the already admitted connections. The point is that once a network 

provider wants to provide users with services, it has to honor some service requirements upon 

a user accesses the service. That chapter mostly concerns the advantages offered by the 

adoption of proxy servers able to elastically buffer user data while decoupling data retrieval 

and data delivery operations. The effectiveness of the approach also depends on the way a 

proxy enforces a bandwidth sharing scheme for the management of the active connections. 

The last chapter of this thesis (Chapter VI) finally introduces to issues related to the 

optimization of quality of service support that can be obtained by harmonizing network layer 

protocols with underlying MAC protocols. Dealing with the concrete example of a DVB-RCS 

satellite network, in Chapter VI it is shown how IntServ and DiffServ architectures can 

collaborate with each other and with the MAC layer capabilities offered by the DVB-RCS 

system. A conclusive example will show the possibility to map IntServ services and RSVP 

messages to DiffServ “per hop behaviors” by means of GRIP. Furthermore, GRIP is proposed 

to run in a DiffServ framework with measurement based admission control facilities, and a 

smart mapping of DiffServ classes and GRIP messages on DVB-RCS Profile Classes is 

drawn. Finally, some short conclusive remarks complete the thesis.  



 
5

Chapter I  

IP network architectures for QoS  
Modern data networks have to support manifold types of traffic over network links shared 

by multiple kind of applications. Each different application demands different treatments from 

the network, and some customers are ready to pay extra for preferential treatment of their 

traffic. Unfortunately, they cannot have separate network connections for each of the 

customers. Therefore much of the bulk of network traffic has to flow through lines where 

“first class” traffic and other classes of traffic have to share the bandwidth. The network 

provider can only differentiate the service at active network elements where the traffic flows 

through. Hence, there is the necessity to design networks which can deliver multiple classes 

of service, so that networks should be aware of Quality of Service (QoS) issues. New 

networks should also be scalable, so that user traffic can increase without affecting network 

performance. Moreover, data networks should support emerging intensive and mission critical 

applications which will be the key determinant of a service providers success. 

QoS is the capability of a network to provide better service to selected network traffic 

over various underlying technologies like ATM, IP, MPLS, and also Layer 2 standards like 

ethernet, WiFi, WiMax, DVB and many others. In other words, it is that feature of the 

network by which it can differentiate between different classes of traffic and treat them 

differently. QoS in a entire network involves capabilities in the endpoint software running on 

a user terminal, and in the networks that carry the data being sent back and forth from one 

endpoint to another. Several parameters can be metered in order to quantify the QoS level, 

such as:  

• delay: the time interval experienced by a packet to cross a network path; 

• delay jitter: the variation in the delay encountered by similar packets following the same 

route through the network; 

• throughput: the neat rate at which packets go through the network; it can be considered 

from different points of view, according to the protocols which the measure is referred to1; 

                                                 
1 For instance, IP throughput is computed on the basis of the total number of bit per second transmitted in IP 
datagrams, while the TCP throughput solely takes into account data segments correctly delivered, without 
considering packet retransmitted due to data loss or transmission errors. 
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• loss rate: the rate at which packets are dropped, get lost or become corrupted during the 

transmission through the network route; 

• service availability: the reliability of the offered connection to network services. 

Any network design should try to maximize the service availability and, mostly important, the 

throughput, while minimizing the transmission delay and reducing as much as possible the 

jitter and the loss occurrences. 

In this first chapter we shall be mostly discussing about network capabilities required to 

support QoS, rather than endpoint features devoted to augment network performance. A 

thorough analysis of endpoint-driven network operations for QoS purposes will be treated in 

following chapters. Hence, this first chapter offers an introduction to IP network architectures 

that have been proposed in order to enhance and differentiate the QoS experienced by 

network users. These architectures also offer to network administrators and service providers 

a set of tools well suited to administrate and to manage the network and its resources in a 

QoS-aware fashion. In particular two approaches are presented in following sections: the 

Differentiated Service architecture (DiffServ) and the Integrated Services architecture 

(IntServ). They were both proposed by the IETF, and their specifications are given in public 

domain RFC documents and IETF standards, that contain the guideline for a correct 

architectural implementation. It is worth noting that a number of implementation details still 

remain available for customized deployments, and each network provider has to take care of 

the appropriate design of such parameters, also tacking into account the set of services that it 

wants to provide and traffic engineering related factors. 

The new architectures are meant to cope with QoS issues while the existing IP networks, 

and specially today’s Internet, are founded on the Best Effort principle: hence, they are not 

prepared to deal with Quality of Service considerations. Conversely, the Best Effort model 

maximizes network resource utilization, while keeping at a minimum the complexity of 

network devices.  

In what follows, section §1.1 introduces to today’s IP network models and possible 

enhancement strategies, that are deeply treated in the two following sections: section §1.2 

gives an insight in the Differentiated Services architecture, while section n §1.3 deals with the 

Integrated Services model. Eventually, section §1.4 very briefly concludes the chapter. 
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§1.1 IP network models 

IP is now the foundation for a universal networking of multiple technologies and 

standards. It is a widely spread - almost ubiquitously diffused - protocol, because it is simple, 

flexible and powerful. However, as a consequence of its simplicity, especially as regards 

management issues, IP has not native means to control the quality of the service that can be 

offered through its networks. As such a broad IP diffusion has grown, it also has arisen the 

necessity to endow IP with QoS-aware mechanisms, in order to applications receive adequate 

treatment across the network. The problem with IP is that, like currently adopted forms of 

ethernet, it is a connectionless technology and does not guarantee bandwidth. Specifically, the 

IP protocol will not differentiate network traffic based on the type of flow to ensure that the 

proper amount of bandwidth and prioritization level are defined for a particular type of 

application. For example, network customers might need a way to ask to the network to 

provide a low level of latency and packet loss to ensure some performance bound to data 

flows of particular interest. They may need to ensure that a real time communications such as 

voice or video over IP be not degraded and look choppy and annoying. Unluckily, currently 

deployed IP networks are mostly compliant with the Best Effort model. In this model, an 

application sends data whenever it decides to do it, as much as it feels like and without 

requiring permission to anyone. On the other hand, the network elements try their 

mechanisms best to deliver the packets to their destination without any packet discriminations 

or any bounds on delay, jitter, loss rate and other QoS parameters. As a consequence, a 

network element could stop attempting to deliver packets if it cannot, and it do it without 

informing either the sender or the receiver. Network endpoint are ultimately in charge of 

surveying the packet flow and its correct behavior. 

Best Effort is the default service associated with Internet, and it is characterized by a 

variable service response. In fact, the network makes no attempt to actively differentiate its 

service response between the traffic generated by concurrent users of the network. Hence, as 

the load generated by the active traffic flows within the network varies, the Best Effort service 

response will also vary. Various Internet QoS efforts have been spent with the aim to 

augmenting this base service with a number of optional service responses. Some form of 

superior service level has to be provided, or a somewhat predictable service response which is 

scarcely or not affected at all by the number of concurrent users and active services. Since any 

network service response is an outcome of the resources available to service a load, and the 

level of the load itself,  service responses can be distinguished by means of a form of loose or 
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tight control of the load admitted into a service, so that the resources allocated by the network 

to support a particular service are capable of providing the desired response for the imposed 

load.   

QoS provisioning generally encompasses bandwidth allocation, prioritization, and control 

over network latency. There are several ways to reach the desired performance for a service 

response, in terms of QoS experienced by network applications. The easiest, and perhaps 

more expensive, way to augment the QoS level is to increase the available bandwidth until 

service quality becomes acceptable all over the time. In turn, this approach generally drives to 

inefficiencies and not needed resources overprovision. However, augmenting bandwidth 

resources involves the upgrade of physical devices and communication media with higher-

speed technologies. Thus, network dimensioning is often performed in accordance to 

statistical parameters that characterize the user traffic behaviors, and they guarantee a certain 

QoS in the level of the service response, but only in a statistical fashion. Moreover, this 

simplistic strategy collapses if a network is even moderately busy, since the variability of the 

traffic can easily turn in bottlenecks and congestions in some network links and paths. 

Additionally, simply adding bandwidth does not furnish the sometime needed capability to 

distinguish high priority traffic flows from lower priority ones. In other words, in a Best 

Effort environment, all traffic is treated the same. In any case, additional bandwidth can solve 

some of short-term problems, but it is not a viable long-term solution, especially if the 

network is expected to accommodate intensive real time application and multimedia streams. 

Multiple queues with different priorities could be implemented at network interfaces, so 

that flows could be accommodated in distinct classes of services. The mechanisms to select 

the right queue to be adopted may use a flow identification code embedded in the IP header, 

or based on information like source and destination addresses conveyed by each datagram. 

This approach requires a shared protocol devised to suitably add a label to each IP datagram, 

or to diffuse information  about flow requirements to allow every routers to filter flows based 

on a learned flow database. The presence of multiple queue does not imply any QoS 

guarantees, but it is enough to satisfy some service differentiation requirements. In fact, the 

traffic pertaining to higher level queues is rather scarcely affected by traffic intended for 

lower level queues. In any case, not differently from any other queue, the higher priority 

queue could be overwhelmed by incoming traffic, and network performance remain still poor 

in severe load conditions.   
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A smarter solution to QoS related problems, but with higher associated operational load, 

consists of a reservation style adopted for distinguishing network flows and to bind part of 

available resources to single data flows. Reservation protocols are meant to let end stations 

request specific QoS levels for QoS-enabled applications. Request could include information 

that defines the maximum transmission rate, the maximum delay and an acceptable level of 

jitter, as well as the maximum loss rate, and so on. When an user makes a reservation request 

for an application, each router along the data path annotates the QoS request and attempts to 

honor it. If a router cannot comply with the request, the requesting station receives an error 

message, possibly conveying the reason of the impossibility to setup a reservation in the 

network. The user can re-attempt to obtain a reservation after having modified the request 

conditions or after a suitably long time interval. Obviously, the reservation approach is quite 

expensive in terms of network management and signaling overhead. Furthermore, as to the 

service availability, using a reservation approach could also lead to a perceived degradation of 

some network services. In fact, in a Best Effort scenario, even though an application might 

run slowly or badly, a somewhat reduced services is provided. Conversely,  using reservation, 

sometime  applications might not run at all if there is not enough bandwidth to support them. 

Note that some applications, like e-mail, are better supported by low rate and variable 

network services, rather than not constantly available high level services. Similarly, upon high 

priority flows commit all the available resources, a router have to drop packets belonging to 

non prioritized flows. Finally, consider the difficulty expressed by reservation protocols in 

scaling as soon as the network dimensions and the number of potential users grows.  

Based on the consideration carried out in this section, and focusing on the capability of the 

network and of the network protocols to convey and retain information about traffic and 

flows, the following subparagraph introduces to stateful and stateless networking strategies 

that will be respectively adopted in the two major IP network architectures proposed to 

overcome the Best Effort model problems: DiffServ (section §1.2) and IntServ (section §1.3).  

§1.1.1 Stateless and stateful QoS approaches 

Basically, there are two approaches to network load control, and they can be characterized 

as stateful and stateless approaches respectively. An example of stateless architecture is 

represented by the Differentiated Services model, where the packets are marked with a code 

to trigger the appropriate service response from the network elements that take care of 

packets. Thus, there is no strict requirement to install a per-reservation state on these network 
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elements. Similarly, the endpoint application or the service requestor is not required to 

provide the network with advance notice relating to the destination of the traffic, nor any 

indication of the intended traffic profile or the associated service profile. In the absence of 

such information any form of per-application or per-path resource reservation is not feasible. 

In this model there is no maintained per-flow state within the network. 

Conversely, the architecture of the Integrated Services model represents an example of 

stateful approach. In this model, the cumulative sum of honored service requests is equated to 

the current reserved resource levels of the network. In order for a resource reservation to be 

honored by the network, the network must maintain some form of permanent state to describe 

the resources that have been reserved, and the network path over which the reserved service 

will operate. This is to ensure integrity of the reservation.  In addition, each active network 

element within the network path must maintain a local state that allows incoming IP packets 

to be correctly classified into a reservation class. This classification allows the packet to be 

placed into a packet flow context that is associated with an appropriate service response 

consistent with the original end-to-end service reservation.  This local state also extends to the 

function of metering packets for conformance to a flow-by-flow basis, and the additional 

overheads associated with maintenance of the state of each  of these meters. 

The stateless approach to service management is rather approximate in the nature of its 

outcomes. There is no explicit negotiation between the application signaling of the service 

request and the network capability to deliver a particular service response. If the network is 

incapable of meeting the service request, then the request simply will not be honored. In such 

a situation there is no requirement for the network to inform the application that the request 

cannot be honored, and it is left to the application to determine if the service has not been 

delivered. The major attribute of this approach is that it can excellently scale with flows 

number. If the network is capable of supporting a limited number of discrete service 

responses, and the routers uses per-packet marking to trigger the service response, then the 

processor and memory requirements in each router do not increase in proportion to the level 

of traffic passed through the router. Of course, this approach does introduce some degree of 

compromise in that  the service response is more approximate as seen by the end client,  and 

scaling the number of clients and applications in such an environment may not necessarily 

result in a highly accurate service response to every application. 

The state-based Integrated Services architectural model admits the potential to support 

greater level of accuracy, and a finer level of granularity on the part of the network to respond 
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to service requests.  Each individual service request can be used to generate a reservation state 

within the network that is intended to prevent the resources associated with the reservation to 

be reassigned or otherwise preempted to service other reservations or to service Best Effort 

traffic loads.  The state-based model is intended to be exclusionary, where other traffic is 

displaced in order to meet the target of the reservation. 

§1.2 DiffServ  

The Differentiated Service (DiffServ) IP architecture was proposed in order to introduce a 

scalable and flexible service differentiation between IP flows. DiffServ IP networks operate a 

flow aggregation at domain edges and then resulting macro-flows (or traffic aggregates) 

receive separate treatment inside the DiffServ domain. Each DiffServ node is provided a set 

of different “behaviors” (Per Hop Behaviors, PHB)  to operate in correspondence with 

different traffic aggregates, thus obtaining a service differentiation in terms of bandwidth, 

delay performance, latency and packet loss. DiffServ has no knowledge of network state (i.e., 

it is a stateless network architecture) and service guarantees are not assured. Nonetheless, 

DiffServ architecture results in a very scalar approach to traffic engineering, and, most 

importantly, we will show how DiffServ allows network providers to introduce traffic control 

procedures as well as connection admission control and congestion control procedures. 

Finally, implementing DiffServ includes the following advantages: reducing the burden on 

network devices and easily scaling as the network grows; allowing customers to keep any 

existing Layer 3 prioritization scheme; allowing customers to mix DiffServ-compliant devices 

with any existing equipment in use; alleviating bottlenecks through efficient management of 

current corporate network resources.  

§1.2.1 DiffServ field definition (DSCP) 

A replacement header field, called the DiffServ Code Point (DSCP) field, is defined by 

Differentiated Services. The DSCP replaces the existing definitions of the IP version 4 type of 

service (TOS) octet and the IPv6 traffic class octet. More precisely, only six bits are used as 

the DSCP to select the Per Hop Behavior (PHB) at each interface. A currently unused two-bit 

field is reserved for explicit congestion notification.  

§1.2.2 Differentiated services components 

The following components are used to implement DiffServ in real systems:  
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• Traffic conditioning (policing and shaping). Traffic conditioners perform traffic shaping 

and policing functions to ensure that traffic entering the DiffServ domain conforms to the 

rules specified by the Traffic Conditioning Agreement (TCA), and complies with the 

service provisioning policy of the domain. Traffic conditioning may range from simple 

code point re-marking to complex policing and shaping operations. Traffic conditioning is 

performed at the edges of a DiffServ domain. Shapers buffer the traffic stream and 

increase the delay of a stream to make it compliant with a particular traffic profile. 

Packets might be discarded if there is lack of buffer resources.  

• Packet classification, used to categorize a packet within a specific group. After the packet 

has been defined (that is, classified), the packet is then accessible for QoS handling on the 

network. Using packet classification, one can partition network traffic into multiple 

priority levels or classes of service. Traffic policers and traffic shapers use the traffic 

descriptor of the packet to ensure adherence to TCA agreement. 

• Packet marking, allowing to classify a packet based on a specific traffic descriptor (such 

as the DSCP value). Markers add a label to packets by setting the DSCP value to a correct 

code point in its IP header. This classification can then be used to apply user-defined 

differentiated services to the packet and to associate a packet with a local QoS group. 

Thus a packet is categorized into a particular behavior aggregate. When a marker changes 

the label of a packet, then it is said to re-mark the packet. The marker may be configured 

by various policies. 

• Scheduling, or Congestion management,  is achieved through traffic scheduling and traffic 

queueing. When there is network congestion, a scheduling mechanism such as CBWFQ is 

used to provide guaranteed bandwidth to the different classes of traffic. 

• Congestion avoidance. Congestion avoidance techniques monitor network traffic loads in 

an effort to anticipate and avoid congestion at common network bottlenecks. Congestion 

avoidance is achieved through packet dropping. Among the more commonly used 

congestion avoidance mechanisms is WRED. Specific droppers are adopted, and they also 

drop packets of a stream to make the stream profile compliant to TCAs. 

• Metering. The DiffServ conditioner module receives packets from the classifier and uses a 

meter to measure the temporal properties of the stream against the appropriate traffic 

profile from the TCA. Further processing is done by the markers, shapers and policers 

based on whether the packet is in- or out-of-profile. The meter passes this information to 

the other components along with the packet. 
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figure 1 – DiffServ components interoperation   

§1.2.3 Per Hop Behaviors (PHB) 

Out of the existing QoS approaches, the DiffServ requires low additional complexity to be 

implemented in legacy network node, resulting in a modular, scalable, and incrementally 

deployable architecture. From the end user point of view, QoS should be supported from end-

to-end between any pair of hosts but this goal is not immediately reachable because it requires 

inter-domain QoS support. Many steps remain on the road to achieve this. The first is to 

support edge-to-edge or intra-domain QoS between the ingress and the egress of a single 

network. The DiffServ Working Group concluded a first standardization phase defining the 

behaviors required in the forwarding path of all network nodes, the Per Hop Behaviors or 

PHBs. A generalization of this concept to an homogeneous domain (PDB) was defined in a 

subsequent phase.  

The DiffServ philosophy is based on the concept of traffic aggregation. That is, traffic 

flows are not independently forwarded, but they are aggregate in a certain number of macro-

flows, according to their QoS requirements. In order to constitute traffic flow aggregates, 

packet marking is used. Every IP packet, in a DiffServ Internet, is labeled with a code point, 

named DSCP that corresponds to the TOS field in legacy IP, but it is regarded in conformance 

to a new meaning. By this way, a router is able to distinguish between several macro-flows 

(i.e., traffic aggregates), and to treat each of them according to specified rules. The way to 

handle a macro-flow (i.e., network behavior), is referred to PHB.  

RFC 2475 [14] defines PHB as the externally observable forwarding behavior applied at a 

DiffServ-compliant node to a DiffServ Behavior Aggregate (BA). With the ability of the 

system to mark packets according to DSCP setting, collections of packets with the same 

DSCP setting and sent in a particular direction can be grouped into a BA. Packets from 
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multiple sources or applications can belong to the same BA. In other words, a PHB refers to 

the packet scheduling, queueing, policing, or shaping behavior of a node on any given packet 

belonging to a BA, as configured by a service level agreement (SLA) or a policy map. The 

following sections describe the four available standard PHBs:  

• Default PHB (as defined in [75])  

• Class-Selector PHB (as defined in [75])  

• Assured Forwarding (AFny) PHB (as defined in [50])  

• Expedited Forwarding (EF) PHB (as defined in [63])  

§1.2.3.1 Default PHB 

The default PHB essentially specifies that a packet marked with a DSCP value of 

‘000000’ (recommended) receives the traditional Best Effort service from a DiffServ-

compliant node (that is, a network node that complies with all of the core DiffServ 

requirements). Also, if a packet arrives at a DiffServ-compliant node, and the DSCP value is 

not mapped to any other PHB, the packet will get mapped to the default PHB. 

§1.2.3.2 Class-Selector PHB 

To preserve backward-compatibility with any IP precedence scheme currently in use on 

the network, DiffServ has defined a DSCP value in the form xxx000, where x is either 0 or 1. 

These DSCP values are called Class-Selector Code Points. (The DSCP value for a packet with 

default PHB 000000 is also called the Class-Selector Code Point). The PHB associated with a 

Class-Selector Code Point is a Class-Selector PHB. These Class-Selector PHBs retain most of 

the forwarding behavior as nodes that implement IP Precedence-based classification and 

forwarding. For example, packets with a DSCP value of 11000 (the equivalent of the IP 

Precedence-based value of 110) have preferential forwarding treatment (for scheduling, 

queueing, and so on), as compared to packets with a DSCP value of 100000 (the equivalent of 

the IP Precedence-based value of 100). These Class-Selector PHBs ensure that DiffServ-

compliant nodes can coexist with IP Precedence-based nodes.  

§1.2.3.3 Assured Forwarding PHB 

AF PHB defines a method by which BAs can be given different forwarding assurances. 

For example, network traffic can be divided into the following classes: 

• Gold: Traffic in this category is allocated P1 percent of the available bandwidth;  
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• Silver: Traffic in this category is allocated P2 percent of the available bandwidth;  

• Bronze: Traffic in this category is allocated P3 percent of the available bandwidth; 

where P1+ P2+ P3=100 and P1> P2> P3.  

Further, the AF PHB defines four AF classes: AF1, AF2, AF3, and AF4. Each class is 

assigned a specific amount of buffer space and interface bandwidth, according to the SLA 

with the service provider or policy map. Within each AF class, one can specify three drop 

precedence values: 1, 2, and 3.  Assured Forwarding PHB can be expressed as AFxy: x 

represents the AF class number (1 to 4) and y represents the drop precedence value (1 to 3) 

within the AFx class. In instances of network traffic congestion, if packets in a particular AF 

class (say class x) need to be dropped, packets in the AFx class will be dropped according to 

the following guideline:  

(1) )1()2()3( AFxPAFxPAFxP ddd ≥≥  

where Pd(AFxy) is the probability that packets of the AFxy class will be dropped. The 

dropping precedence method penalizes traffic flows within a particular BA that exceed the 

assigned bandwidth. Packets on these offending flows could be re-marked by a policer to a 

higher drop precedence.  

Drop Precedence  Class 1  Class 2  Class 3  Class 4  

Low drop precedence  001010  010010  011010  100010  

Medium drop precedence  001100  010100  011100  100100  

High drop precedence  001110  010110  011110  100110  

table 1 - Recommended DSCP value and corresponding dropping precedence value for each 

AF PHB class. 

§1.2.3.4 Expedited Forwarding PHB 

The EF PHB, is meant to supply a robust service by providing low loss, low latency, low 

jitter, and assured bandwidth service. EF can be implemented using Priority Queueing, along 

with rate-limiting on the class (or BA). When implemented in a DiffServ network, EF PHB 

provides a virtual leased line, or premium service. For optimal efficiency, however, EF PHB 

should be reserved for only the most critical applications because, in instances of traffic 

congestion, it is not feasible to treat all or most traffic as high priority. EF PHB is ideally 

suited for applications such as VoIP that require guaranteed bandwidth, low delay, and low 

jitter. The recommended DSCP value for EF PHB is ‘101110’.  
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§1.2.4 DiffServ PDBs 

In order to support QoS in Internet in a scalable fashion the behavior for a group of 

packets has to be identified and quantified and than to be preserved when these packets are 

aggregated with other packets, while traversing the Internet. The DiffServ Work Group has 

decided to use the term Per-Domain Behavior or PDB, to describe the behavior experienced 

by a particular set of packets as they cross a DiffServ domain. A PDB is characterized by 

specific metrics that quantify the treatment a set of packets with a particular DSCP, or set of 

DSCPs, will receive as it crosses a DiffServ domain. By definition, a PDB is “the expected 

treatment that an identifiable or target group of packets will receive from edge-to-edge of a 

DiffServ domain. A particular PHB (or, if applicable, a list of PHBs) and traffic conditioning 

requirements are associated with each PDB”[76]. 

A PDB specifies a forwarding path treatment for a traffic aggregate and, due to the role 

that particular choices of edge and PHB configuration play in its resulting attributes, it is 

where the forwarding path and the control-plane interact. Thus a PDB can be considered as 

the extension of PHB over an entire DiffServ domain.  

Each PDB has measurable, quantifiable, attributes that can be used to describe what 

happens to its packets as they enter and cross the DiffServ domain. These attributes derive 

from the characteristics of the traffic aggregate that results from application of classification 

and traffic conditioning during the entry of packets into the DiffServ domain and the 

forwarding treatment (PHB) the packets get inside the domain. PDB attributes may be 

absolute or statistical and they may be parameterized by network properties. A wide range of 

metrics is possible but in general they will be expressed as bounds or percentiles rather than 

absolute values. 

 

figure 2 - How PDB acts on the arriving packets 
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The measurable parameters of a PDB should be suitable for use in Service Level 

Specifications (SLS) at the network edge, thus providing an external description of the edge-

to-edge quality of service that can be expected by packets of that PDB within that network.  

A PDB is applied to a target group of packets arriving at the edge of the DiffServ domain. 

This group is distinguished from all arriving packets by use of packet classifiers. The PDB 

acts on the target group in two parts. The first one is the use of traffic conditioning to create a 

traffic aggregate. During traffic conditioning, conformant packets are marked with a DSCP 

for the PHB associated with the PDB. The second part is the treatment experienced by packets 

from the same traffic aggregate transiting the interior of a DiffServ domain. The following 

figure describes these two effects. 

PDB performance is characterized by metrics relative to the transit of packets between any 

two edges of the DiffServ domain, since the traffic aggregate is generally formed in the 

boundary router before the packets are queued and scheduled for output. A PDB does not 

have to be consistent for arbitrary network topologies, but the limits on the range of 

applicability for a specific PDB must be clearly specified. PHBs give explicit expressions of 

the treatment a traffic aggregate can expect at each hop. For a PDB, this behavior must apply 

to merging and diverging traffic aggregates; thus characterization of a PDB requires 

understanding what happens to a PHB under aggregation. That is, PHBs recursively applied 

must result in a known behavior. An advantage of constructing behaviors that aggregate is the 

ease of concatenating PDBs so that the associated traffic aggregate has known attributes. The 

use of PHB groups to construct PDBs can be done in several ways. A single PHB member of 

a PHB group might be used to construct a single PDB. A single PDB can be realized using 

more than one PHB from the same PHB group. A set of related PDBs might be defined using 

a PHB group. This is appropriate when the traffic conditioners that build traffic aggregates 

associated with each PDB have some relationships and interdependencies such that the traffic 

aggregates for these PDBs should be described and characterized together.  

There are long-term (average) and short-term (bursty) PDB attributes. Long term 

attributes hold in normal situation. Unexpected situation will come out, if the topology of the 

DiffServ domain suddenly changes and new route must be used. Long-term attributes should 

be told as the rates or throughput seen over some specified period of time. Short-term 

attributes are usually expressed as the allowable burstiness in a traffic aggregate. Burst might 

also accumulate in a large DiffServ domain with many tails. Conditions should be imposed in 

PDB to avoid this to ensure concatenating of PDBs. A relationship between PHB and PDB 
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can be made using many different ways. Multiple PDBs may use the same PHB. The 

specification of a PDB can contain a list of PHBs and their required configuration, all of 

which would result in the same PDB. In operation, it is expected that a single domain will use 

a single PHB to implement a particular PDB, though different domains may select different 

PHBs. A single PHB might be selected within a domain by a list of DSCPs. Multiple PDBs 

might use the same PHB in which case the transit performance of traffic aggregates of these 

PDBs will be the same. Yet, the particular characteristics that the PDB designer wishes to 

claim as attributes may vary, so two PDBs that use the same PHB might not be specified with 

the same list of attributes.  

Five PDBs have been defined. One is for Best Effort traffic. Opposite to Best Effort traffic 

is Low Effort PDB, which is meant for traffic having lower priority than Best Effort. There 

are two PDBs for Assurated Rate traffic. Virtual Wire PDB is meant  for traffic, which needs 

a behavior of hard-wired circuit. 

§1.2.4.1 Best Effort (BE) Per Domain Behavior 

A Best Effort (BE) PDB is for sending common Internet traffic across a DiffServ network. 

That is, the definition and use of this PDB is to preserve the delivery expectation for packets 

in a DiffServ network that do not require any special differentiation. Packets of this PDB will 

not be completely starved and when there are resources available this PDB is let to use them. 

The PDB does not include bounds on availability, latency, and packet loss. Yet providers can 

use bounds to give the network the quality the want to sell their customers. 

§1.2.4.2 The Virtual Wire (VW) PDB 

The VW PDB describes a service between edge-to-edge in the domain just identical to 

dedicated wires between the endpoints. The domain using VW PDB must support DiffServ 

EF PHB. It is important that there will be almost empty queues. The VW document is meant 

for ISPs and router builders. The VW PDB is suitable for any packet based on traffic that uses 

fixed circuits (e.g., telephone, leased data lines) and packet traffic that has similar delivery 

requirements (e.g., IP telephone or video conferencing). VW PDB can replace some part or all 

of the physical wire between two points. The DiffServ domain using VW PDB is totally 

invisible to sender and receiver. 
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§1.2.4.3 An Assurated Rate (AR) 

This AR PDB is meant for traffic that requires rate assurance, but do not require delay and 

jitter bounds. It is possible that AR PDB traffic will get excess bandwidth beyond the 

committed information rate, but it is no guarantee of that extra bandwidth. AR PDB is created 

using the AF PHB with suitable policers at the domain ingress nodes. AR PDB can be used to 

create services using only TCP or UDP micro-flows. Attributes used for this PDB are a rate 

that is assured and low drop probability. There is also determined that some parameters must 

be included to the AR PDB. These parameters are a committed information rate (CIR) that is 

assured with high probability, traffic parameters that are needed to measure CIR and 

maximum packet size for the aggregate. The idea is that policers mark the arriving packets 

with colors to describe the drop precedence (green, yellow and red). The packets with 

assurance are marked green and these are the one to be dropped the last. The assumption has 

been made that the network is well provisioned so possibility to drop packets marked with 

green color is very low. This PDB is applicable for a one-to-one or one-to-few VPN-like 

services and one-to-any general services. 

§1.2.4.4 An one-to-any Assurated Rate PDB 

An one-to-any AR PDB is meant for traffic that requires rate assurance, but does not 

require delay and jitter bounds. This PDB is similar to AR PDB, but determines only the one-

to-any case. It is very expensive to assure CIR with almost no drops in this one-to-any case, 

so this PDB considers the possibility that assurated rate will no be met with a certain 

probability. This PDB is used in situation, where one ingress point is sending data to any 

egress point of the DiffServ domain. The example user could be web site that wants to 

provide its users with high-speed access to its web pages.  

§1.2.4.5 A Lower Effort (LE) PDB 

A LE PDB is meant for sending non-critical traffic across DiffServ domains. The idea is 

to delay or drop LE PDB packets, if there are other traffic present. So, LE PDB has lower 

priority compared to other traffic. It is meant as a tool for operator to protect their networks 

for selected types of traffics. This LE PDB is meant e.g. for multimedia applications using 

UDP, Netnews, peer-to-peer traffic and for traffic caused by worldwide web search engines 

while they gather information from web servers. It is not meant as a PDB to use with 
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customer traffic; but only as a tool to help operator to organize or shape the traffic during the 

rush hour. 

§1.3 IntServ  

In response to the growing demand for an integrated services Internet, the Internet 

Engineering Task Force (IETF) [57] setup an Integrated Services (IntServ) Working Group 

[58], which has defined several service classes for any offered data flow. 

In a IntServ network, a data flow identifies the set of packets to receive special QoS, and it 

is defined by a session comprising the IP address, transport-layer protocol type, and port 

number of the destination along with a list of specific senders to that session that are entitled 

to receive the special QoS. Each sender is identified by source address and port number, while 

its protocol type must be the same as for the session. If supported by the routers traversed by a 

data flow, different classes for particular QoS commitments can be provided. In contrast, best 

effort traffic entering a router will receive no such service commitment and will have to make 

do with whatever resources are available.  

The level of QoS provided by these enhanced QoS classes is programmable on a per-flow 

basis according to requests from the endpoints. These requests can be passed to the routers by 

network management procedures or, more commonly, using a reservation protocol such as 

RSVP. The requests describe the level of resources (e.g., bandwidth, buffer space) that must 

be reserved along with the transmission scheduling behavior that must be installed in the 

routers to provide the desired end-to-end QoS commitment for the data flow. In determining 

the resource allocations necessary to satisfy a request, the router needs to take into account the 

QoS support provided by the link layer in the data forwarding path. Furthermore, in the case 

of a QoS-active link layer such as asynchronous transfer mode (ATM) or certain types of 

local area network (LAN), the router is responsible for negotiations with the link layer to 

ensure that the link layer installs appropriate QoS support should the request be accepted. 

Each router must apply admission control to requests to ensure that they are only accepted if 

sufficient local resources are available. In making this check, admission control must consider 

information supplied by end applications regarding the traffic envelope their data flow will 

fall within. One of the parameters in the traffic envelope that must be supplied is the 

maximum datagram size of the data flow, and should this be greater than the maximum 

transmission unit (MTU) of the link, admission control will reject the request since the 

integrated services models rely on the assumption that datagrams receiving an enhanced QoS 
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class are never fragmented. Once an appropriate reservation has been installed in each router 

along the path, the data flow can expect to receive an end-to-end QoS commitment provided 

no path changes or router failures occur during the lifetime of the flow, and provided the data 

flow conforms to the traffic envelope supplied in the request. Service-specific policing and 

traffic reshaping actions are employed within the network to ensure that non-conforming data 

flows do not affect the QoS commitments for behaving data flows. The IETF has considered 

various QoS classes such as in [4], although to date only two of these, Guaranteed Service and 

Controlled-Load Service, have been formally specified for use with RSVP. 

§1.3.1 Integrated Service Architecture 

As is usual in the Internet, there are a number of options for implementing a function. For 

IntServ, some information has to be communicated between the end systems and the network 

elements (routers and subnets). A logical choice for this communication is RSVP, but that is 

not the only possibility. Some other setup protocol (equivalent in functionality) or 

management procedures may be used to perform the same functions. figure 3 shows part of 

the architecture of an integrated services system. Note that the RSVP is only a protocol that 

carries (among other things) the invocation of some QoS functions. This is communicated to 

the functions within the router/subnet which actually deliver the QoS. RSVP itself is not 

aware of the semantics of the objects that it carries. Note that other relationships exist 

between these types of information than are shown in this picture. For example, the admission 

control function would use not only policy objects carried by RSVP, but also the objects used 

to invoke the QoS functions and possibly even the authentication and accounting objects. 

 
figure 3 - High level architecture for integrated services 
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figure 4 - Object in the Path message 

 
figure 5 - Object in a Flow descriptor 

The main point is that the invocation and provision of the QoS functions are different, and 

further, that RSVP itself does not provide any functions, but only communication services. 

So, the provision of integrated services is independent of RSVP itself. While acknowledging 

that integrated services can be setup in various ways, it is nonetheless handy to describe the 

information needed for the various kinds of service in terms of sets of parameters that 

(possibly) will flow in RSVP messages. We begin by looking at figure 4 which show some of 

the data objects found in the Path message. In RSVP, the Path message flows from the sender 

to the receiver (downstream) and contains information about the traffic stream coming from 

the sender. The traffic stream itself is described by the TSpec of the sender. The TSpec does 

not change, but signals to all intermediate nodes and the destination what the characteristics of 

the stream are. The AdSpec can be originated by the sending host or the first router in the 

path, and contains a number of general parameters characterizing the path which are 

determined by hop-by-hop computations, and also parameters characterizing particular QoS 

services supported by the network elements. Examples of the general parameters are: 

PathMTU size, path bandwidth, path minimum latency, etc.  

figure 5 shows the format of a Flow Descriptor in RSVP. A Flow Descriptor is made up of 

two parts: the Flow Spec and the Filter Spec. The Flow Descriptor is found in the Resv 

message which flows from the receiver to the sender (upstream). The Filter Spec is input to 

the packet classifier which selects sub-streams of the packet stream seen by a particular link 

which have requested a particular kind of service. The Flow Spec is made up of three parts 



 
23

which state: the type of service requested, the parameters of the service (the RSpec) and the 

parameters of the flow requesting the service (the TSpec). The Filter Spec serves a purely 

logical packet discrimination function. Based either on the flow label (in an IPv6 packet) or 

the combination source address and source port (in an IPv4 packet) a sub-stream of packets 

can be selected to which the service is applied. The Flow Spec contains the specific values of 

the parameters that make up the traffic characteristics of the flow and the specific values of 

the parameters of the service being requested. 

There is more detail in the QoS control data path functions, as shown in figure 6. Here we 

see the information from RSVP being passed to the various functions that must exist in the 

router in order for QoS to be provided. We see, first of all, packet classifier and packet 

scheduler functions. The packet classifier determines how the packets will be handled. The 

packet scheduler applies the particular mechanisms to the packets in order to provide the 

quality of service requested. Other important functional blocks play a role. The policy control 

and admission control functions work together to determine whether the particular flow is 

permitted to request this particular service at this particular time (policy) and whether there 

exist enough resources in the network element to support the service requested by this flow 

(admission). The results of the application of these functions will of course influence the 

operation of the packet classifier. In addition, the RSVP information can be used to influence 

the routing algorithms that are running in the network element. 

 
figure 6 - Relationship of RSVP information to router packet handling 
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§1.3.1.1 IntServ/RSVP QoS-related parameters 

The IntServ/RSVP parameters which define the reservation request are the Flow Spec 

contained in the RSVP Resv message. The Flow Spec includes: i) the requested service class 

(Guaranteed Service or Controlled Load Service); ii) two set of numeric parameters: a TSpec 

that describes the data flow and a RSpec which defines the desired QoS when a guaranteed 

service is requested.  

The TSpec parameters include: 

• Token Bucket Rate or Sustainable Rate [r] 

• Peak Data Rate [p] 

• Token Bucket Size [b] 

• Minimum Policed Unit [m] 

• Maximum Packet Size [M] 

The token rate is measured in bytes of IP datagrams per second. Values of this parameter 

may range from 1 byte per second to 40 terabytes per second. The bucket depth is measured 

in bytes. Values of this parameter may range from 1 byte to 250 gigabytes. The peak traffic 

rate is measured in bytes of IP datagrams per second. Values of this parameter may range 

from 1 byte per second to 40 terabytes per second. The minimum policed unit is an integer 

measured in bytes. This size includes the application data and all protocol headers at or above 

the IP level (IP, TCP, UDP, RTP, etc.). The maximum packet size is the biggest packet that 

will conform to the traffic specification; it is also measured in bytes. Any packets of larger 

size sent into the network may not receive QoS-controlled service, since they are considered 

to not meet the traffic specification. Both m and M must be positive, and Mm ≤ .  

The RSpec parameters include: 

• The Rate R selected to obtain bandwidth and delay guarantees. R is greater than or equal 

to r. It can be bigger than the TSpec rate because higher rates will reduce queuing delay 

and it is measured in bytes of IP datagrams per second and has the same range and 

suggested representation as the bucket and the peak rates.  

• The optional Slack Term S, which signifies the difference between the desired delay and 

the delay obtained by using a reservation level R. This parameter, when specified, can be 

used by a network element to reduce its resource reservation for the relevant flow. When a 

network element chooses to utilize some of the slack in the RSpec, it must follow specific 

rules in updating the R and S fields of the RSpec. If at the time of service invocation no 
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slack is specified, the slack term, S, is set to zero. S is nonnegative and it is measured in 

microseconds. 

TSpec parameters RSpec Parameters 

p (bytes/s) Peack rate of flow R (bytes/s) Bandwidth 

b (bytes) Bucket depth S (ms) Slack term 

r (bytes/s) Token bucket rate 

m (bytes) Minimum policed unit2 

M (bytes) Maximum datagram size

 

 

table 2 - TSpec and Rspec parameters 

§1.3.2 Guaranteed Service 

Guaranteed Service provides an assured level of bandwidth, a firm end-to-end delay 

bound, and no queuing loss for conforming packets of a data flow. It is intended for 

applications with stringent real time delivery requirements, such as certain audio and video 

applications that use playout buffers and are intolerant of any datagram arriving after their 

playout time. Each router characterizes the guaranteed service for a specific flow by 

allocating a bandwidth, R, and buffer space, B, that the flow may consume. This is done by 

approximating the fluid model of service [77], [78] so that the flow effectively sees a 

dedicated wire of bandwidth R between source and receiver. In a perfect fluid model, a flow 

conforming to a token bucket of rate r and depth b will have its delay bound by b/R provided 

rR ≥ . To allow for deviations from this perfect fluid model in the router approximation3, two 

error terms, C and D, are introduced; consequently, the delay bound now becomes b/R + C/R 

+ D. However, with guaranteed service a limit is imposed on the peak rate, p, of the flow, 

which results in a reduction of the delay bound. In addition, the packetization effect of the 

flow needs to be taken into account by considering the maximum packet size, M. These 

additional factors result in a more precise bound on the end-to-end queuing delay as follows: 
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2 Policing will treat any IP datagram less than size m as being size m. 
3 Among other things, the router approximation must take account of the medium-dependent behavior of the link 
layer of the data forwarding path. 
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where Ctot and Dtot represent the summation of the C and D error terms, respectively, for each 

router along the end-to-end data path. In order for a router to invoke guaranteed service for a 

specific data flow, it needs to be informed of the traffic characteristics, TSpec, of the flow 

along with the reservation characteristics, RSpec. Furthermore, to enable the router to 

calculate sufficient local resources to guarantee a lossless service requires the terms Csum and 

Dsum, which represent the summation of the C and D error terms, respectively, for each router 

along the path since the last reshaping point. 

Guaranteed service traffic must be policed at the network access points to ensure 

conformance to the TSpec. The usual enforcement policy is to forward non-conforming 

packets as best effort datagrams4; if and when a marking facility becomes available, these 

non-conforming datagrams should be marked to ensure that they are treated as best effort 

datagrams at all subsequent routers. In addition to policing of data flows at the edge of the 

network, guaranteed service also requires reshaping of traffic to the token bucket of the 

reserved TSpec at certain points on the distribution tree. Any packets failing the reshaping are 

treated as best effort and marked accordingly if such a facility is available. Reshaping must be 

applied at any points where it is possible for a data flow to exceed the reserved TSpec even 

when all senders associated with the data flow conform to their individual TSpecs. Such an 

occurrence is possible in the following two cases. 

First, at branch points in the distribution tree where the reserved TSpecs of the outgoing 

branches are not the same, the reserved TSpec of the incoming branch is given by the 

“maximum” of the reserved TSpecs on each of the outgoing branches. Consequently, some of 

the outgoing branches will have a reserved TSpec which is less than the reserved TSpec of the 

incoming branch; so it is possible that, in the absence of reshaping, traffic which conforms to 

the TSpec of the incoming branch might not conform when routed through to an outgoing 

branch with a smaller reserved TSpec. As a result, reshaping must be performed at each such 

outgoing branch to ensure that the traffic is within this smaller reserved TSpec. Second, at 

merge points in the distribution tree for sources sharing the same reservation, the sum of the 

TSpecs relating to the incoming branches will be greater than the TSpec reserved on the 

outgoing branch. Consequently, when multiple incoming branches are each simultaneously 

active with traffic conforming to their respective TSpecs, it is possible that when this traffic is 

                                                 
4 Action with regard to non-conforming datagrams should be configurable to allow for situations such as traffic 
sharing where the preferred action might be to discard nonconforming datagrams. This configuration 
requirement also applies to reshaping. 
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merged onto the outgoing branch it will violate the reserved TSpec of the outgoing branch. 

Hence, reshaping to the reserved TSpec of the outgoing branch is necessary. 

§1.3.3 Controlled Load Service 

Unlike Guaranteed Service (GS), Controlled Load Service (CLS) provides no firm 

quantitative guarantees. A TSpec for the flow desiring CLS must be submitted to the router as 

for the case of GS, although it is not necessary to include the peak rate parameter. If the flow 

is accepted for CLS, the router makes a commitment to offer the flow a service equivalent to 

that seen by a best effort flow on a lightly loaded network. The important difference is that the 

controlled load flow does not noticeably deteriorate as the network load increases. This will 

be true regardless of the level of load increase. By contrast, a best effort flow would 

experience progressively worse service (higher delay and loss) as the network load increased. 

CLS is intended for those classes of applications that can tolerate a certain amount of loss and 

delay provided it is kept to a reasonable level. Examples of applications in this category 

include adaptive real time applications. Routers implementing the CLS must check for 

conformance of controlled load data flows to their appropriate reserved TSpecs. Any non-

conforming controlled load data flows must not be allowed to affect the QoS offered to 

conforming controlled load data flows or to unfairly affect the handling of best-effort traffic. 

Within these constraints the router should attempt to forward as many of the packets of the 

non-conforming controlled load data flow as possible. This might be done by dividing the 

packets into conforming and non-conforming groups and forwarding the non-conforming 

group on a best effort basis. Alternatively, the router may choose to degrade the QoS of all 

packets of a non-conforming controlled load data flow equally. 

§1.3.4 Resource Reservation Protocol (RSVP) 

The Resource Reservation Protocol (RSVP) [18] was designed to enable the senders, 

receivers, and routers of communication sessions (either multicast or unicast) to communicate 

with each other in order to setup the necessary router state to support the services described 

previously. RSVP identifies a communication session by the combination of destination 

address, transport-layer protocol type, and destination port number. It is important to note that 

each RSVP operation only applies to packets of a particular session; therefore, every RSVP 

message must include details of the session to which it applies. In addition, although RSVP is 
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applicable to both unicast and multicast sessions, we concentrate on the more complicated 

multicast case.  

RSVP is not a routing protocol; it is merely used to reserve resources along the existing 

route setup by whichever underlying routing protocol is in place. figure 7 shows an example 

of RSVP for a multicast session involving one sender, S1, and three receivers, RCV1 to 

RCV3. The primary messages used by RSVP are the Path message, which originates from the 

traffic sender, and the Resv message, which originates from the traffic receivers. The primary 

roles of the Path message are first to install reverse routing state in each router along the path, 

and second to provide receivers with information about the characteristics of the sender traffic 

and end-to-end path so that they can make appropriate reservation requests. The primary role 

of the Resv message is to carry reservation requests to the routers along the distribution tree 

between receivers and senders. Returning now to figure 7, as soon as S1 has data to send it 

begins periodically forwarding RSVP Path messages to the next hop, R1, down the 

distribution tree. RSVP messages can be transported “raw” within IP datagrams using 

protocol number 46, although hosts without this raw input/output capability may first 

encapsulate the RSVP messages within a UDP header. 

§1.3.4.1 Path messages 

Each Path message includes the following information: 

• Phop, the address of the last RSVP-capable node to forward this Path message. This 

address is updated at every RSVP-capable router along the path. 

 
figure 7 - direction of RSVP messages 
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• The Sender Template, a filter specification identifying the sender. It contains the IP 

address of the sender and optionally the sender port (in the case of IPv6 a flow label may 

be used in place of the sender port). 

• The Sender TSpec defining the sender traffic characteristics. 

• An optional AdSpec containing One Pass With Advertising (OPWA) information which is 

updated at every RSVP-capable router along the path to attain end-to-end significance 

before being presented to receivers to enable them to calculate the level of resources that 

must be reserved to obtain a given end-to-end QoS. 

Each intermediate RSVP-capable router along the distribution tree intercepts Path 

messages and checks them for validity. If an error is detected, the router will drop the Path 

message and send a PathErr message upstream to inform the sender who can then take 

appropriate action. Assuming the Path message is valid, the router does the following: 

• update the path state entry for the sender identified by the Sender Template. If no path 

state exists, create it. Path state includes the Sender TSpec, the address, Phop of the 

previous hop upstream router, and optionally an AdSpec. The Phop address needs to be 

stored in order to route Resv messages in the reverse direction up the tree. The Sender 

TSpec provides a ceiling to clip any inadvertently over specified TSpec subsequently 

received in Resv messages. 

• Set cleanup timer equal to cleanup timeout interval and restart timer. 

Associated with each path state entry is a cleanup timer, the expiration of which triggers 

deletion of the path state. Expiration of the timer will be prevented if a Path message for the 

entry is received at least once every cleanup timeout interval. This is the so-called RSVP soft-

state mechanism, which ensures that state automatically timeouts if routing changes while 

subsequent Path messages install state along the new routing path. In this way, the use of soft-

state rather than hard-state helps to maintain much of the robustness of the initial Internet 

design concepts whereby all flow-related state was restricted to the end systems [28]. The 

router is also responsible for generating Path messages based on the stored path state and 

forwarding them down the routing tree, making sure that for each outgoing interface the 

AdSpec (see the next subsection) and Phop objects are updated accordingly. Path messages 

will be generated and forwarded whenever RSVP detects any changes to stored path state or is 

informed by the underlying routing protocol of a change in the set of outgoing interfaces in 

the data forwarding path. Otherwise, a Path message for each specific path state entry is 
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created and forwarded every refresh period timeout interval in order to refresh downstream 

path state. The refresh period timeout interval is several times smaller than the  cleanup 

timeout interval so that occasional lost Path messages can be tolerated without triggering 

unnecessary deletion of path state. However, it is still recommended that a minimum network 

bandwidth be configured for RSVP messages to protect them from congestion losses. 

Although all path state would eventually timeout in the absence of any refreshes via Path 

messages, RSVP includes an additional message, PathTear, to expedite the process. PathTear 

messages travel across the same path as Path messages and are used to explicitly tear down 

path state. PathTear messages are generated whenever a path state entry is deleted, so a 

PathTear message generated by a sender will result in deletion of all downstream path state 

for that sender. It is recommended that senders do this as soon as they leave the 

communications session. Also, deletion of any path state entry triggers deletion of any 

dependent reservation state.  

§1.3.4.1.1 AdSpec 

The AdSpec is an optional object that the sender may include in its generated Path 

messages in order to advertise to receivers the characteristics of the end-to-end 

communications path. This information can be used by receivers to determine the level of 

reservation required in order to achieve their desired end-to end-QoS. The AdSpec consists 

of a message header, a Default General Parameters fragment, and at least one of a Guaranteed 

Service fragment and Controlled Load Service fragment. Omission of either the Guaranteed 

or Controlled Load Service fragment is an indication to receivers that the omitted service is 

not available. This feature can be used in a multicast session to force all receivers to select the 

same service. (At present RSVP does not accommodate heterogeneity of services between 

receivers within a given multicast session). 

The Default General Parameters fragment includes the following fields, which are updated 

at each RSVP-capable router along the path in order to present end-to-end values to the 

receivers: 

• Minimum path latency (summation of individual link latencies) - This parameter 

represents the end-to-end latency in the absence of any queuing delay. In the case of 

guaranteed service, receivers can add this value to the bounded end-to-end queuing delay 

to obtain the overall bounded end-to-end delay. 

• Path bandwidth (minimum of individual link bandwidths along the path) 
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• Global break bit — This bit is cleared when the AdSpec is created by the sender. 

Encountering any routers that do not support RSVP will result in this bit being set to one 

in order to inform the receiver that the AdSpec may be invalid. 

• Integrated services hop count — incremented by one at every RSVP/IntServ-capable 

router along the path. 

• PathMTU — path maximum transmission unit (minimum of MTUs of individual links 

along the path). 

Correct functioning of IETF integrated services requires that packets of a data flow to 

receive the special QoS are never fragmented. This also means that the value of M in the 

TSpec of a reservation request must never exceed the MTU of any link to which the 

reservation request applies. A receiver can ensure that this requirement is met by setting the 

value of M in the TSpec of its reservation request to the minimum of the PathMTU values 

received in relevant Path messages. A Path message is relevant if it originated from a sender 

that is captured in the intended reservation request in accordance with the reservation styles 

described later. The value of M in each generated reservation request may be further reduced 

on the way to each sender if merging of Resv messages occurs. 

The minimum value of M from the TSpec of each Resv message5 received by the sender 

should then be used by the sending application as the upper limit on the size of packets to 

receive special QoS. In this way fragmentation of these packets will never occur. 

The Guaranteed Service fragment of the AdSpec includes the following fields, which are 

updated at each RSVP-capable router along the path in order to present end-to-end values to 

the receivers: 

• Ctot — end-to-end composed value for C 

• Dtot — end-to-end composed value for D 

• CSum — composed value for C since last reshaping point 

• DSum —composed value for D since last reshaping point (CSum and DSum values are used 

by reshaping processes at certain points along the distribution tree) 

• Guaranteed Service Break bit — This bit is cleared when the AdSpec is created by the 

sender. Encountering any routers that support RSVP/IntServ but do not support 

guaranteed service will result in this bit being set to one in order to inform the receiver 

that the AdSpec may be invalid and the service cannot be guaranteed. 
                                                 
5 In cases where the last hop to a sender is a shared-medium LAN, the sender may receive Resv messages across 
the same interface from multiple next-hop router. 
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• Guaranteed Service General Parameters Headers/Values — These are optional, but if any 

are included, each one overrides the corresponding value given in the Default General 

Parameters fragment as far as a receiver wishing to make a guaranteed service reservation 

is concerned. These override parameters could, for example, be added by routers along the 

path that have certain service-specific requirements. For example, a router may have been 

configured by network management so that guaranteed service reservations can only take 

up a certain amount, Bgs, of the outgoing link bandwidth. Consequently, if the Default 

Path bandwidth value in the AdSpec to be sent out of this interface is greater than Bgs, 

then a Guaranteed Service Specific Path bandwidth header and value equal to Bgs may be 

included in the AdSpec. As for Default General Parameters, any Service-Specific General 

Parameters must be updated at each RSVP hop. 

The Controlled-Load Service fragment of the AdSpec includes the following fields which 

are updated at each RSVP-capable router along the path in order to present end-to-end values 

to the receivers. 

• Controlled Load Service Break Bit — This bit is cleared when the AdSpec is created by 

the sender. Encountering any routers that support RSVP/IntServ but do not support CLS 

will result in this bit being set to one in order to inform the receiver that the AdSpec may 

be invalid and the service cannot be guaranteed. 

• Controlled Load Service General Parameters Headers/Values — As for the Guaranteed 

Service fragment, override Service-Specific General Parameters may be added to the 

Controlled Load Service fragment. 

§1.3.4.2 Reservation via OPWA 

OPWA (One Pass With Advertising) refers to the reservation model for the case where the 

sender includes an AdSpec in its Path messages to enable the  receiver to determine the end-

to-end service that will result from a given reservation request. If the sender omits the AdSpec 

from its Path messages, the reservation model is referred to simply as “One Pass”, in which 

case there is no easy way for the receiver to determine the resulting end-to-end service. Here 

we consider the OPWA case. Let us assume that the sender omits the CLS data fragment from 

the AdSpec, thereby restricting each receiver to reservation of guaranteed service only. Upon 

receiving Path messages the receiver extracts the following parameters from the Sender 

TSpec contained therein: r, b, p, m. In addition, the following are extracted from the AdSpec: 

minimum path latency, Ctot, Dtot, PathMTU, and path bandwidth. The required bound on end-
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to-end queuing delay, Qdelreq, is now calculated by subtracting the minimum path latency from 

the value of end-to-end delay required by the receiver application. 

Typically, the receiver would then perform an initial check by evaluating (3) for R equal 

to peak rate p. If the resultant delay was greater than or equal to Qdelreq, (3) would be used for 

calculation of the minimum value of R necessary to satisfy Qdelreq; otherwise, (2) would be 

used for this purpose. This minimum value of R is then obtained by inserting Qdelreq into either 

(2) or (3) along with M (given by PathMTU), Ctot, Dtot, r, b, and p, as appropriate. If the 

obtained value of R exceeds the path bandwidth value as obtained from the AdSpec of the 

received Path message, it must be reduced accordingly. The receiver can now create a 

reservation specification, RSpec, comprising firstly the calculated value R of bandwidth to be 

reserved in each router, and second a slack term that is initialized to zero6. The RSpec can 

now be used in the creation of a Resv message, which also includes the following: 

• An indication of the reservation style, which can be FF, SE or WF (see the next 

subsection). 

• A filter specification, Filter Spec (omitted for the WF reservation style). This is used to 

identify the sender(s), and the format is identical to that of the Sender Template in a Path 

message. 

• A flow specification, Flow Spec, comprising the RSpec and a traffic specification, 

TSpec. TSpec is usually set equal to the Sender TSpec, except M will be given by 

PathMTU obtained from the received AdSpec. 

• Optionally, a reservation confirm object, ResvConf, containing the IP address of the 

receiver. If present, this object indicates that the node accepting this reservation request, at 

which propagation of the message up the distribution tree finishes, should return a  

ResvConf message to the receiver to indicate that there is a high probability7 that the end-

to-end reservation has been successfully installed. 

The Resv message is now sent to the previous hop upstream as obtained from the stored 

path state. Upon reaching the next upstream router, the Resv message can be merged with 

other Resv messages arriving on the same interface, according to certain rules as described in 

the next subsection, to obtain an effective Flow Spec and Filter Spec. The following actions 

are then taken: 
                                                 
6 Sometime, even with R set to the minimum value of r, the resultant end-to-end queuing delay as given by (2) 
and (3) will still be less than Qdelreq, in which case the difference can be represented in a nonzero slack term. 
7 In practice there are certain scenarios in which a ResvConf message might be received by a receiver, only for 
the request to be rejected shortly afterwards. 
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• The effective Flow Spec is passed to the traffic control module within the router, which 

applies both admission control and policy control to determine whether the reservation 

can be accepted. Admission control is concerned solely about whether enough capacity 

exists to satisfy the request, while policy control also takes into account any additional 

factors that need to be considered (e.g., certain policies may limit a user reserved 

bandwidth even if spare bandwidth exists). 

• If the reservation attempt is denied, any existing reservations are left unaltered, and the 

router must send a ResvErr message  downstream. 

• If the reservation request is accepted, reservation state is setup in accordance with the 

effective Flow Spec and Filter Spec as described in the next subsection. In accepting the 

request it may be permissible to alter the Rspec associated with the reservation from (Rin, 

Sin) to (Rout, Sout) in accordance with the rules described later. The resultant reservation 

may then be merged with other reservations in accordance with the rules in the next 

subsection to obtain a new Resv message which is sent to the next router upstream, the 

address of which is obtained from the stored path state. 

§1.3.4.3 Reservation styles and merging 

Associated with each reservation made at a router interface is a Filter Spec describing the 

packets to which the reservation applies along with an effective Flow Spec. Both the Filter 

Spec and effective Flow Spec are obtained from a merging process applied to selected Resv 

messages arriving on the router interface. The rules for merging are dependent on the 

reservation style of each Resv message, as described below. In addition, the router calculates 

the Filter Spec and Flow Spec of Resv messages to be sent to the previous hop(s) upstream by 

applying style-dependent merging of stored reservation state. Any changes to stored 

reservation state that result in changes to the Resv messages to be sent upstream will cause an 

updated Resv message to be sent upstream immediately. Otherwise, Resv messages are 

created based on stored reservation state and sent upstream periodically. As for path state, all 

reservation state is stored in routers using soft-state and consequently relies on periodic 

refreshes via Resv messages to prevent state timeout. In addition, just as a PathTear message 

exists to explicitly tear down path state, a ResvTear message exists to explicitly tear down 

reservation state. Currently three reservation styles are permissible, as described below and 

illustrated in figure 8 to figure 10 where the convention style (Filterspec{Flowspec}) is used 

to summarize the requests made by the Resv messages. It should be noted that the merging 
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processes described below apply only to packets of the same session (this is true of any RSVP 

process). Also, merging can only occur between messages with the same reservation style. 

Details of the reservation styles are as follows, where it is assumed that each interface I in 

figure 8 to figure 10 is routable to any other router interfaces.  

§1.3.4.3.1 Fixed filter (FF) 

The Filter Spec of each FF reservation installed at an interface consists of a single sender 

only. The effective Flow Spec of the reservation installed is the maximum of all FF 

reservation requests received8 on that interface for that particular sender. The Flow Spec of 

the FF Resv message unicast to the previous hop of a particular sender is given by the 

maximum Flow Spec of all reservations installed in the router for that particular sender. 

§1.3.4.3.2 Wildcard filter (WF) 

 
figure 8 - Fixed Filter reservation example 

 
figure 9 - Wildcard filter reservation example 

                                                 
8 In cases where the interface connects to a shared-medium LAN, Resv messages from multiple next hops may 
be received. 
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figure 10 - Shared Explicit reservation example 

The Filter Spec of each WF reservation installed at an interface is wildcard and matches 

on any sender from upstream. The effective Flow Spec installed is the maximum from all WF 

reservation requests received on that particular interface. The Flow Spec of each WF Resv 

message unicast to a previous hop upstream is given by the maximum Flow Spec of all WF 

reservations installed in the router9. 

§1.3.4.3.3 Shared explicit (SE) 

The Filter Spec of each SE reservation installed at an interface contains a specific set of 

senders from upstream and is obtained by taking the union of the individual Filter Spec from 

each SE reservation request received on that interface. The effective Flow Spec installed is the 

maximum from all SE reservation requests received on that particular interface. The Filter 

Spec of an SE Resv message unicast out of an interface to a previous hop upstream is the 

union of all senders whose previous hop is via that interface and who are contained in the 

Filter Spec of at least one SE reservation in the router. Likewise, the Flow Spec of this SE 

Resv message is given by the maximum Flow Spec of all SE reservations whose Filter Spec 

contains at least one sender whose previous hop is via that interface. SE and WF styles are 

useful for conferencing applications where only one sender is likely to be active at once, in 

which case reservation requests for, say, twice the sender bandwidth could be reserved in 

order to allow an amount of over-speaking. Although RSVP is unaware of to which service 

(controlled load or guaranteed) reservations refer, RSVP is able to identify those points in the 

distribution tree that require reshaping in the event that the reservations are for guaranteed 

service, as described previously. Consequently, at all such points RSVP informs the traffic 

                                                 
9 Strictly speaking, only WF reservations whose scope applies to the interface out of which the Resv message is 
sent are considered for this second merging process. Scope details are required for WF reservations on non-
shared trees to prevent looping. 
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control mechanisms within the appropriate router accordingly, although such action will only 

result in reshaping if the reservation is actually for guaranteed service. 

§1.3.4.4 The slack term 

When a receiver generates an RSpec for a Resv message to be sent for a guaranteed 

service reservation request, it must include a slack term, S(ms), as well as the amount of 

bandwidth R to be installed in each router along the path. S represents the amount by which 

the end-to-end delay bound will be below the end-to-end delay required by the application, 

assuming each router along the path reserves R bandwidth according to the guaranteed service 

fluid approximation. Inclusion of a non-zero slack term offers the individual routers greater 

flexibility in making their local reservations. In certain circumstances this greater flexibility 

could increase the chance of an end-to-end reservation being successful. Some routers have 

deadline-based schedulers that decouple rate and delay guarantees. Such a scheduler may 

sometimes be unable to meet its deadline requirement for guaranteed service, in which case it 

might still be able to accept the reservation, provided the slack term is at least as large as the 

excess delay. The excess delay would then be subtracted from the slack term before 

unicasting the Resv message to the previous hop upstream. Similarly, a rate-based scheduler 

might be able to admit a reservation request by reserving less than the requested bandwidth 

and unicasting the reduced reservation request to a previous hop upstream, provided it could 

extract enough slack. Any router using available slack to reduce its reservation must conform 

to the rules in (4) to ensure that the end-to-end delay bound remains satisfied:  
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where Ci
tot is the cumulative sum of the error terms C for all the routers that are upstream of, 

and including, the current element i.  (Rin, Sin) is the reservation request received by router i. 

(Rout, Sout) is the modified reservation request unicast to the previous hop router upstream. An 

example of how intelligent use of the slack term can increase the probability of an end-to-end 

reservation request being accepted is illustrated in figure 11 and figure 12. Suppose the token 

bucket rate of the data to be sent is 1.5 Mbps, and the receiver has calculated from the TSpec 

and AdSpec parameters in received Path messages that the desired end-to-end delay can be 

achieved by a reservation of (R = 2.5 Mbps, S = 0), which is then requested in figure 11. 

However, because R3 only has 2 Mbps of unused bandwidth and there is no slack available, 

the reservation is denied. In the figure the reservation is increased to R = 3 Mbps, and the 
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amount by which such a reservation would be within the required delay bound is put in the 

slack term (S > 0). R5 and R6 reserve the requested 3 Mbps.  R3 can only reserve a value of 2 

Mbps, which, if used as the new reservation value in the propagated Resv message, will 

cause an increase in the end-to-end delay bound. R3 can calculate this increase, di, and if it is 

less than the value of the slack term, S1, in the received Resv message, the request can be 

accepted and a reservation of 2 Mbps installed in R3. R3 will then set the RSpec in the Resv 

message to (R = 2 Mbps, S2 = S1 – di) before unicasting it to the next hop upstream, which 

results in R2 and R1 also reserving 2 Mbps. The end-to-end delay bound of the reserved path 

is now no greater than for a reservation of 2.5 Mbps in every router if that were possible.  

§1.4 Conclusions 

The DiffServ and IntServ architectures presented above represent the mostly diffused 

philosophies adopted by researchers and network managers to face QoS issues. DiffServ and 

IntServ approach the QoS provisioning problem in two orthogonal modes. In fact, while 

DiffServ proposes to differentiate the network behavior by means of aggregate flows in a very 

limited number of classes, symbolized by PHBs and PDBs,  IntServ proposes to manage per-

flow resource allocation in all network nodes, taking as reference strictly guaranteed and 

loosely guaranteed services. The DiffServ is a network stateless vision, where QoS can be 

enhanced with respect to the legacy Best Effort Internet, but no guarantees can be assured to 

any user or flow. This is a light and promising approach, because of its flexibility, scalability 

and the possibility to be customized. On the contrary, IntServ envisions a stateful networking, 

resulting in the possibility to provide QoS guarantees in change of sensible network signaling 

overhead and relevant augmented complexity in the routers. 

 
figure 11 - R = 2.5 Mbps, S = 0. Reservation request denied. 
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figure 12 - R = 3 Mbps, S1 > 0, R’ = 2 Mbps, S2 < S1. Reservation accepted. 

As a matter of fact, DiffServ and IntServ represent two opposites in the field of network 

architecture design strategies, even though they show complementary features, suitable to be 

deployed in access networks (IntServ) and core networks (DiffServ). However, in the 

following of this thesis, we will show that a DiffServ IP network can be endowed with some 

particular QoS-aware tools that permit to add effective QoS capabilities and enhance the 

gettable service level without hurting DiffServ principles.  
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Chapter II  

Traffic control issues 
In the previous chapter we introduced some possible extensions to the IP architecture, 

with the aim of enhancing the QoS level that a network can be made able to support. We have 

also shown that any modified IP network architectures need some extra tools that exploit the 

capabilities of the architectures and enforce QoS differentiation among users and flows. In 

this field, a fundamental role is played by the admission control tools adopted in the network. 

In fact, the tuning of admission control parameters determines the characteristics of the traffic 

that traverses the network and, in turn, it shapes any kind of performance figures. This is 

particularly relevant for that class of applications which do not adapt to the network 

congestion state on their own. These applications send their data as long as their transmission 

buffer is not empty. They do not exploit any tool that monitor the network state and change 

the transmission rate accordingly. Not reactive data sources could severely degrade the 

congestion state of a network, but they are needed for market appealing services, like voice 

over IP, video on-demand, news broadcast and so on. However, congestion reactive 

application, e.g., TCP-based applications, could unsuitably reduce their transmission rate due 

to the overbooking of network facilities, so that a preventive traffic control is also needed. 

Thus, various aspects of QoS-oriented traffic control and engineering are addressed in the 

present and in the next chapters and admission control issues are primarily considered. Here 

we will take into consideration the case of not reactive flows which adopt UDP-like transport 

protocols and we will introduce to the families of endpoint admission control, parameter 

based admission control and measurement based admission control. Eventually we will show 

the different impact of such schemes on different network traffic scenarios. In particular we 

will afford a solution able to significantly reduce the burstiness of data traffic in a network 

that manages flow aggregates (e.g., DiffServ), even when self-similarity arises in the 

originating traffic sources. In doing so, we will show how the measurement based admission 

control schemes result superior in principle to parameter based admission control paradigms. 

Further measurement based and DiffServ-oriented admission control mechanisms will be also 

presented in the following chapters.  

This chapter in subdivided into three main sections: the first (§2.1) introduces to the 

admission control schemes and in particular to parameter based admission control (PBAC - 
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§2.1.1), measurement based admission control (MBAC - §2.1.2) and endpoint admission 

control (EAC - §2.1.3). Next section §2.2 thoroughly investigates the impact of MBAC and 

PBAC schemes on traffic burstiness, with particular reference to the “long range dependence” 

that arises in real network traffic (§2.2.1) and its negative impact on network performance. A 

comparison between the implementations of MBAC and PBAC is given in subsection §2.2.2, 

and a simulative framework is defined in subsection §2.2.3. Performance results are then 

proposed in subsection §2.2.4. Eventually, section §2.3 concludes the chapter. 

§2.1 Admission Control Schemes 

The amount or resources a network has at its disposal is, in general, not enough to satisfy 

all possible users in the same instant. In fact, users do not need to access the same resources at 

every time instant; on the contrary, the majority of customers tries to access network resource 

for a very minor percentage of its life time. This behavior makes network resources suited to 

be shared in a statistical multiplexing fashion with a large multiplexing factor. However, it is 

possible that particular network segments or particular sets of resources can be timely over-

requested, and in turn overloaded if no countermeasures are adopted. This is the role of 

admission control protocols: to check for the availability of resources before to accommodate 

a new flow, a new user or a new service. In fact, the same argumentation can be repeated if 

we consider a scenario in which a given amount of resources is reserved to a particular class 

of service that can be accessed by multiple users. Furthermore, some applications, such as 

video conferencing or streaming audio, produce network traffic which requires a guaranteed 

level of QoS to work properly. These QoS requirements may be in terms of a minimum 

bandwidth, bounded end-to-end delays, or maximum packet loss rates suffered by a flow. 

Network nodes that support such flows must be able to allocate and maintain their finite 

network resources to uphold their guarantees. Thus, these nodes may also have to reject new 

traffic flows that would cause a violation of promises. The admission control decision may be 

as straightforward as a simple inequality calculation: if the sum of the bandwidth usage of the 

current flows and a new flow is greater than a given threshold (the target network utilization), 

then reject the flow. These QoS guarantees, which have no tolerance for violations, are called 

hard guarantees, and some flows demand this guaranteed service. Other flows, however, may 

accept some amount of QoS guarantee violation, usually bounded by some probability values. 

This is called predictive service, and such statistical, or soft, guarantees provide more 

flexibility for the admission control algorithm, leading to increased network utilization. 
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figure 13 - The general admission control scheme 

There are many possible admission control schemes that can be classified according to the 

network entities involved or according to the modalities adopted in the resource management. 

Thus it is possible to distinguish between centralized and distributed admission control 

systems, depending on the location of the admission control functions. A particular case of 

distributed admission control is the endpoint admission control, where decisions are taken by 

connection endpoints after having probed the network state. A further classification can be 

done in accordance with the resource consumption estimate that is performed by the 

admission control unit: a parameter based approach relies on the knowledge of certain traffic 

flow parameters, while a measurement based admission control relies on run time estimates of 

the traffic behavior. Parameter and measurement based admission control schemes can either 

be centralized or distributed. 

Eventually, the three basic components of admission control schemes are traffic 

descriptors, measurement processes and admission decision criteria, as depicted in figure 13 

together with the admission control unit. The figure illustrates the role of traffic descriptors, 

admission criteria and measurement processes and their relationship with the overall 

admission process: 

• Traffic descriptors, if present, convey a set of parameters that characterize traffic sources. 

A typical traffic descriptor is a token bucket, which is comprised of a token fill rate r and 

a token bucket size b. A source described by a token bucket will send at most b+ t*r 

amount of traffic over any period of t larger than one packet transmission time. Sometimes 

a token bucket also contains a peak rate p, which constrains the smallest packet inter-
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arrival time to be 1/p. In any case, traffic descriptors allow flows to present their usage 

requirements to an admission control. 

• Measurement processes offer run time computed network parameters to the admission 

control unit. These process are adopted since the parameters reported in the traffic 

descriptors are often difficult to calculate, they roughly summarize the average traffic 

behavior and its extreme deviations, but do not suit for bursty traffic. A frequently used 

parameter is the average arrival rate of the aggregate traffic. 

• Admission Criteria are the rules by which an admission control scheme accepts or rejects 

a flow. Since the network resources allocated to a traffic class are shared by all the flows 

of that class, the decision to accept a new flow may affect the QoS commitments made to 

the admitted flows of that particular class. The new flow can also affect the QoS of flows 

in lower priority classes. Therefore, an admission control decision is usually performed 

based on an estimation of the effect the new flow will have on other flows and the 

utilization target of the network. 

§2.1.1 Parameter Based Admission Control (PBAC)  

A category of admission control schemes is based on the network knowledge of flow 

parameters. This is the case of RSVP signaled services in IntServ and, in general, the 

parameter based admission control applies in any network scenarios where each source 

disposes of  means to declare the traffic behavior that want to establish. This is, an explicit 

message is sent to ask for a specific set of resources. Alternatively, this approach is also suited 

for services where users has established an a-priori agreement for a given amount of network 

resources, or again when all data flows behave identically, in a known way. Another feature 

that makes it possible to deploy a PBAC is the availability of a signaling pipe that allows 

users and network nodes to exchange information about the service the user requires or the 

service that the network is able to offer. 

PBAC schemes exploit the knowledge of parameters like the data rate a flow will offer if 

admitted, provided in terms of average value and/or in terms of maximum transmission rate 

(peak rate), the desired delay and delay jitter that each data packet can tolerate, the loss rate of 

packets injected by the source, and, in general, some statistic bound to delay, jitter and loss 

performance. Thus the number of possible PBAC implementations ranges in a very wide 

field, even though the larger is the number of parameters to be considered, the more heavy the 
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signaling overhead and the network computation overload, and, in turn,  the more difficult is a 

real effective implementation. 

As an example, the simplest parameter based admission control algorithm is the so called 

“simple sum algorithm”: it works by simply ensuring that the sum of requested resources does 

not exceed link capacity. For instances, resources can be summarized by the bandwidth 

consumption. Thus, let S be the sum of reserved rates, B the link bandwidth, F the name of a 

flow requesting admission, and R the rate requested by flow. This algorithm accepts the new 

flow if and only if the following inequality applies:   

(5) S+R(F)  < B 

This is the simplest admission control algorithm and hence is being most widely implemented 

by switch and router vendors adopting PBAC schemes. However, when applicable, the 

efficiency of the simple sum algorithm is dependent on the definition of the bandwidth 

consumption parameter R. In fact, R does not take into account the possible variability of data 

rate at sender side. For instance, if R is the average data rate of a variable bit rate transmitter, 

relation (5) could be violated in terms of instantaneous values, while remaining still valid in 

terms of average rates. A solution is to define R as the peak rate, or, in alternative, relation (5) 

should be rewritten in terms of statistic bounds, e.g., by defining a (limited) probability that 

the relation is not respected. 

In general, the implementation  of a PBAC requires the support of the network 

architecture and of opportune signaling protocols. Eventually, it is worth noting that PBAC 

represent a suitable solution in the circumstances that all previously reported features apply 

and traffic characteristics are modeled into details. In this conditions, the network 

administrator can regulate the PBAC in order to attain the higher possible network and service 

performance. The point is that a deeply knowledge of every parameters and traffic variability 

not easily applies to real heterogeneous networks. Furthermore, sophisticated elaborations 

based on several a-priori traffic parameters are often unfeasible and sometime simply lead to 

meet QoS requirements by significantly reducing the admitted traffic, in a proactive fashion.  

§2.1.2 Measurement Based Admission Control (MBAC)  

While PBAC methods rely on the a-priori knowledge of the statistical characterization of 

the offered traffic, other algorithms base the decision whether to accept or reject an incoming 

connection on run-time measurements of the traffic aggregate process. If we assume sources 

can characterize their traffic accurately using traffic descriptors, the admission control unit 
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can simply use parameters in the traffic descriptors. However, it is observed that real traffic 

source, such as real time and multimedia entertainment applications, are very difficult to 

characterize and the parameters in the traffic descriptor may only provide a very loose upper 

bound of the traffic rate. When the real traffic becomes very bursty, the network utilization 

can get very low if admission control is solely based on the parameters provided at connection 

setup time. Therefore, the admission control unit should monitor the network dynamics and 

use measurements such as instantaneous network load and packet delay to make its admission 

decisions. MBAC schemes take advantage of statistical multiplexing of traffic to maximize 

network utilization, even though to make an intelligent admission decision, MBAC must have 

an accurate measure of the amount of congestion and the amount of resources used in the 

network. There are a number of mechanisms to obtain these measurements, and they range 

from very simple traffic sampling to average estimates of load and performance figures by 

means of sliding windows filtering or exponential averaging filtering or also more 

complicated numeric filters (such as autoregressive and ARMA models, Kalman filters, etc.). 

Each has a rather significant effect on the behavior of the admission control schemes. A large 

number of MBAC algorithms have been proposed in literature (see for example [45], [47], 

[65]), but it appears that the measurement process, and in particular the length of the 

averaging periods and the way in which new flows are taken into account, are much more 

important than the specific admission criteria (either heuristic or theoretically founded) in 

determining the MBAC performance, in terms of throughput and packet loss (see [21]). 
MBAC schemes have been traditionally proposed in order to solve the problem of 

admission control when no information can be retrieved about traffic sources or even when 

the load associated to PBAC schemes is not affordable. For instance, in a stateless network 

(e.g., DiffServ) a stateful parameter based per flow admission control cannot be implemented 

due to the impossibility to store in the network nodes any pieces of information about the 

number of already admitted flows or their specifications. Hence, MBAC was meant to merely 

approximate the PBAC behavior, without the aim of competing with performance offered by 

the original PBAC scheme. However, the evolution of MBAC techniques allows to obtain 

performance comparable with the adoption of a PBAC scheme. Moreover, in particularly 

bursty traffic condition, we will show that any MBAC scheme is in principle able to 

outperform the traditional parameter based approach (as a matter of fact, PBAC are not meant 

to deal with bursty traffic, and do not perform well when burstiness arises). 
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§2.1.3 Endpoint Admission Control 

Endpoint Admission Control (EAC) is a recent research trend in QoS provisioning over IP 

[20]. EAC builds upon the idea that admission control can be managed by pure end-to-end 

operation, involving only the source and destination hosts. According to [20], EACs share the 

common idea that accept/reject decisions are taken by the network endpoints and are based on 

the processing of “probing” packets, possibly carrying control information, injected in the 

network at setup to verify the congestion state of the source to destination path. This approach 

is a radical overhaul of existing admission control schemes, in which all the routers in the 

source to destination path are involved in connection admission and make an accept/reject 

decision based on their occupancy state. 

At connection setup, each sender-receiver pair starts a probing phase whose goal is to 

determine whether the considered connection can be admitted to the network. In some EAC 

proposals [17], [20], [34], during the probing phase, the source node sends packets that 

reproduce the characteristics (or a subset of them) of the traffic that the source wants to emit 

through the network. Upon reception of the first probing packet, the destination host starts 

monitoring probing packets statistics (e.g., loss ratio, probes inter-arrival times) for a given 

period of time. At the end of the measurement period and on the basis of suitable criteria, the 

receiver takes the decision whether to admit or reject the connection and notifies back this 

decision to the source node. 

Although the described scheme looks elegant and promising (it is scalable, it does not 

involve core routers), a number of subtle issues come out when we look for QoS performance. 

A scheme purely based on endpoint measurements suffers of performance drawbacks mostly 

related to the necessarily limited (few hundreds of ms, for reasonably bounded connection 

setup times) measurement time spent at the destination. Measurements taken over such a short 

time cannot capture stationary network states, and thus the decision whether to admit or reject 

a connection is taken over a snapshot of the network state, which can be quite an unrealistic 

picture of the network congestion level. The simplest solution to the above issue is to attempt 

to convey more reliable network state information to the edge of the network. Several 

solutions have been proposed in the literature. [24] proposes to drive EAC decisions from 

measurements performed on a longer time scale among each ingress/egress pair of nodes 

within a domain. [45], [67] and [93] use packet marking to convey explicit congestion 

information to the relevant network nodes in charge of taking admission control decisions. 

[74] performs admission control at layers above IP (i.e., TCP), by imposing each core router 
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to parse and capture TCP SYN and SYN/ACK segments, and forward such packets only if 

local congestion conditions allow admission of a new TCP flow. 

To summarize the above discussion, and to proceed further, we can state that an EAC is, 

ultimately, the combination of three logically distinct components (although, in some specific 

solutions the following issues are not clearly distinct): 

• edge nodes in charge of taking explicit per flow accept/reject decisions; 

• physical principles and measures on which decisions are based (e.g., congestion state of 

an internal link or an ingress/egress path, and particular measurement technique - if any - 

adopted to detect such state); 

• the specific mechanisms adopted to convey internal network information to edge nodes 

(e.g., received probing bandwidth measurement, IP packet marking, exploitation of layers 

above IP with a well-defined notion of connection or even explicit signaling). 

In such a view, EAC can be re-interpreted as a MBAC that runs internally to the network 

(i.e., in a whole domain or, much simpler, in each internal router). This MBAC scheme 

locally determines, according to some specific criteria (which can be as simple as not 

performing any measure at all, and taking a snapshot of the link state, or as complex as some 

of the techniques proposed in [21], [47]), whether a new connection can be locally admitted 

(i.e., as far as the local router is concerned). This set of information (one per each distinct 

network router) is implicitly (or explicitly) collected and aggregated at the edge nodes of the 

network; these nodes are ultimately in charge of performing the acceptance/rejection decision. 

A group of EAC proposals aims at complete end-to-end EAC schemes (EEAC). Core 

routers only need to be properly configured to support head-of-line priority based forwarding 

penalizing probing packets over data packets, and to possibly limit the buffer sizes. No 

modification or cooperation from the internal network routers is required. The EEAC schemes 

only require modifications in the end terminals or the edge routers which will initiate the 

probing phase, take measurements on the arriving probing flow, make accept/reject decision 

based on the measured statistics on such flow, communicate the decision to the end user. The 

basic feature of end-to-end endpoint admission control is then that no additional 

functionalities are required to the core routers, which only have to be configured in order to 

implement priority based forwarding, or to limit the size of given buffers. Such solutions can 

therefore be immediately implemented in the Internet, and represent the first step of the 

evolution toward more refined endpoint admission control schemes. Indeed, we envision that 

EAC can represent an evolutionary approach in the sense that its philosophy is to 
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progressively provide increasing level of QoS support, starting with statistical guarantees that 

can be provided by the simplest end-to-end EAC scheme, and progressively moving toward 

more complex EAC solutions with better QoS support. 

§2.1.3.1 EAC in DiffServ 

Of the three components outlined above, we argue that, in a DiffServ framework, the least 

critical issue is how to estimate the congestion state of a router without resorting to per flow 

operation. In fact, recent papers [21] and [47] have shown that aggregate load measurements 

are extremely robust and efficient. These schemes do not exploit per-flow state information 

and related traffic specifications. Instead, they operate on the basis of per-node aggregate 

traffic measurements carried out at the packet level. The robustness of these schemes stays in 

the fact that, in suitable conditions (e.g., flow peak rates small with respect to link capacities), 

they are barely sensitive to uncertainties on traffic profile parameters. As a consequence, it 

seems that scalable estimations can be independently carried out by the routers. 

The real admission control problem is how to convey the state of core routers (evaluated 

by means of aggregate measurements) to the endpoints so that the latter devices can take 

learned admission control decisions, without violating the DiffServ paradigm. For obvious 

reasons, we cannot use explicit per flow signaling. Similarly, we do not want to modify the 

basic router operation, by introducing packet marking schemes or forcing routers to parse and 

interpret higher layer information. What we want to do is to implicitly convey the state of core 

routers to the end points, by means of scalable, DiffServ compliant procedures. A solution 

will be proposed in the next chapter, with a suitable evolution path to follow in order to 

gradually enhance network performance without enforcing a network revolution (i.e., without 

the need of immediately replace any network device already deployed). 

§2.2 The effect of MBAC on Self-similarity 

In this section we consider an admission-controlled traffic scenario, in which non-adaptive 

connections are offered to the network. As observed in wide area Internet traffic (see [31]and 

[80]), self-similarity is shown by the traffic aggregate, no matter the transport protocol or 

mechanism is adopted. In particular our work focuses on traffic generated by non-reactive 

sources, i.e., sources that do not react when congestion arises as for real time transmissions 

over UDP. Even though this kind of flows is not numerically predominant, it relates to a class 

of market strategically relevant applications, as real time multimedia streams, that is speedily 
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growing, and a great effort has been recently expressed in order to offer to these applications a 

suitable QoS level. 

We show the superiority of MBAC algorithms over PBAC, in particular when Long 

Range Dependence (LRD) or asymptotic second order self-similarity arises in the offered 

traffic. We show that a pure MBAC approach is capable of significantly reduce the LRD of 

the accepted traffic aggregate, thus yielding a considerable performance improvement, in 

terms of QoS experienced by each flow sharing the media. We focus on LRD and self-

similarity because of the severe detrimental impact that they cause in network performance. 

This negative effect is due to the huge burstiness that is intrinsically shown by LRD and self-

similar flows. This turns in a significant reduction of the number of flows that can be 

conjunctly admitted to the network. In fact, when QoS constrains are given, they have to be 

guaranteed at least in a minimum number of occurrence (e.g., only a limited percentage of out 

of QoS profile events can be tolerated); due to the elevate self-correlation of LRD flows, the 

probability to experience a very large variation from average behavior is very consistent and 

not well predictable, so that resource over-provisioning is needed without any other 

countermeasure is adopted. Contrary to PBAC, the MBAC approach results in a powerful 

tool, robust to traffic correlations properties, specially as to burstiness, and able to overcome 

the horizon of PBAC scheme, despite of the traditional meaning of MBAC role, commonly 

intended as an even coarse approximation for PBAC. 

§2.2.1 Self-similarity and LRD in network traffic   

Packet networks traffic is self-similar. The first experimental evidence was first given in 

[103], with reference to traffic generated by ethernet LANs. That paper stimulated the 

research community to explore the various taste of self-similarity. This phenomenon has been 

also observed in wide area Internet traffic, and many of the causes that contribute to self-

similarity for both TCP, [82], [103], and UDP [5] traffic aggregates have been now more fully 

understood. In what follows, we focus our attention on traffic generated by sources non-

reactive to network congestion such as real time streams and multimedia entertainment 

application. These sources are often the cause of a considerable degree of LRD in the traffic 

aggregation. At the same time, these are the applications that mostly suffer for the LRD 

implications, because of the unpredictable delay arising in the congested links, due to very 

high delay jitter typically generated when network queues are loaded in a bursty way.  
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In particular, it has been shown that Long Range Dependence, also known as asymptotic 

second order self-similarity, arises when flows has heavy-tailed (HT) periods of 

activity/inactivity (see[48]). The random variable assumes a HT behavior when its cumulative 

distribution function converges to:  

(6) cattF −−1~)(  as ∞→t , with 1<c<2 and a= constant. 

Thus we assume, for convenience, a traffic aggregate scenario resulting from the 

superposition of homogeneous heavy-tailed flows. In particular, [81], [68] and [103] give 

insights into the relation between LRD of aggregate traffic and heavy-tailedness. Since a 

widespread evidence that humans as well as computer sources tend to behave as heavy-tailed 

On/Off sources ([31], [103]), the result should be considered a physical explanation of the 

traffic self-similarity, independently of network or protocol traits, rather than a mere way to 

generate self-similar traces. Self-similarity has a global negative impact on network 

performance ([46], [74], [81], [87]). In fact, for a given link capacity, a buffer size, and a 

fixed number N of superposed offered flows, the QoS (e.g., loss ratio, delays, etc) experienced 

by heavy-tailed flows results much worse than that experienced by flows whose 

activity/inactivity periods are drawn from exponential distributions. By repeating this study 

for various values of N_, it is straightforward to design a traditional (parameter based) 

Connection Admission Control (CAC) scheme. The PBAC scheme consists in checking that 

the number of flows admitted to the considered link never exceeds a threshold Nt, computed 

as the maximum number of connections that can be admitted while still satisfying 

predetermined QoS requirements. The “parameter-based” stays in the fact that the threshold 

Nt depends on the flow statistic parameters. As a consequence of self-similarity, the maximum 

number Nt of heavy-tailed flows that can be admitted to a link may be much lower than in the 

case of Markovian flows. 

The aim of our research is to understand what happens when a PBAC rule is replaced by a 

MBAC scheme as in [21], [42], [45], [47], [65],where a number of quite unexpected 

beneficial effects can be highlighted. Our simulation test will allow to draw several 

conclusions that we anticipate here. Firstly, MBAC schemes provide superior performance 

than PBACs when LRD flows are considered. Secondly, the traffic aggregate resulting from 

the accepted flows shows very little LRD - in other words, unlike PBACs, MBAC appears 

capable of smoothing the self-similarity of the accepted traffic aggregate. Secondly, but not 

less important, we argue that MBAC approaches are not mere approximations of ideal PBAC 
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schemes, useful in situations where the statistical traffic source characterization is not fully 

known. On the contrary, they appear to be a promising, powerful and practical way to 

compensate the high variability of LRD traffic, and therefore improve the network efficiency. 

In the following sections we discuss and intuitively justify the important role of MBAC in 

the presence of  self-similar traffic. Upon that, we describe the specific MBAC algorithm that 

we have adopted, and the methods to evaluate self-similarity. Eventually, simulation results 

are given and discussed. 

§2.2.2 MBAC vs. PBAC implementations 

It is frequently considered obvious that the ultimate goal of any MBAC scheme is to reach 

the ideal performance of a PBAC scheme. In fact, MBAC schemes are traditionally meant to 

approximate the operation of a parameter based CAC  by estimating the state of the system 

e.g. in terms of number n(t) of admitted flows at time t. On the opposite, in this section we 

want to highlight that MBAC algorithms should have a broader theoretical target. In fact, 

MBAC schemes cannot rely on the a-priori knowledge of the traffic characteristics, and 

therefore use an estimate of the accepted traffic aggregate, but they can outperform traditional 

PBAC approaches, in particularly burst traffic conditions. 

This superiority of MBAC can be intuitively justified by comparing the simulation traces 

presented in figures figure 14 and figure 15, in which two typical traffic behaviors, 

respectively related to a PBAC scenario and to an MBAC one, are depicted. The figures 

report both the normalized number of accommodated connections, and the smoothed link 

load, as measured by the autoregressive filter adopted in the MBAC, whose time constant is 

of the order of 10 seconds (see section §2.2.3). 

figure 14 reports results for an ideal PBAC. In the simulation run a very high offered load 

(~ 600%) was adopted, so that the number of flows admitted to the link sticks, in practice, to 

the upper limit (i.e., Nt = 129 flows, in the example, corresponding to about 88% in link 

utilization). The leftmost 200 simulation seconds, represented in figure 14, show that, owing 

to LRD of the accepted traffic, the load offered by the admitted sources is consistently well 

above the nominal average load. Traffic bursts even greater than the link capacity are very 

frequent. On the other hand, as shown by the rightmost 200 seconds, there are long periods of 

time in which the system remains under-utilized. The criticality of self-similarity lies in the 

fact that the described situation occurs at time scales which dramatically affect the loss/delay 

performance. Aggregate traffic behaves very differently when an MBAC scheme is adopted. 
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figure 15 reports results for the simple MBAC scheme described in section §2.2.3.2. In this 

case, new connections are blocked as long as the offered load measurement is higher than a 

given threshold10. Specifically, we see from both leftmost and rightmost plots that the offered 

load measurement fluctuates slightly around the threshold. However, long term traffic bursts 

are dynamically compensated by a significant decrease in the number of admitted connections 

(leftmost plot). Instead, if admitted connections continually emit below their nominal average 

rate, the number of admitted connections significantly increases. This compensation 

capability of MBAC schemes leads us to conclude that MBAC is very suited to operate with 

LRD traffic: the quantitative analysis carried out in section §2.2.4, in fact, confirms this 

insight. 

§2.2.3 The simulation scenario 

To attain evidence for our thesis, we choose to apply a simulative approach. In fact, due to 

the long term characteristics to be observed in data traffic, and considering the amount of 

packets to be involved in the measurement campaign, the only alternative to simulation was 

the long lasting and direct supervision of traffic offered to a high capacity network node. Thus 

we preferred to develop a C++ event-driven simulator, based on a batch simulation approach. 

The simulation time was divided into 101 intervals, each lasting 300 simulated minutes, and 

results collected in the first “warm-up” time interval were discarded. As in many other 

admission control works ([21], [47]), the network model consisted of a single bottleneck link. 

In fact, the basic performance aspects of MBAC are most easily revealed in this simple 

network configuration rather than in a multi-link scenario. Unless otherwise specified, the link 

capacity was set equal to 2 Mbps, and an infinite buffer size was considered.  Thus, QoS is 

characterized by the delay experienced by data packets rather than packet loss as in [65]. The 

rationale for using delay instead of loss is twofold. Firstly, loss performance depends on the 

buffer size adopted in the simulation, while delay performance do not require a choice of 

buffer size. Secondly, the loss performance magnitude may be easily inferred, for a given 

buffer size, from the analysis of the distribution of the delay. Furthermore, in a very large 

buffer scenario, the system is forced to keep memory of non-smoothed traffic bursts and 

therefore performance are strongly degraded in the presence of high traffic variability. 

However, a comparison with results dealing with a finite buffer scenario is also presented. 

                                                 
10 In correspondence with the choice of Nt = 129, in PBAC, we select 89% in MBAC, since these selected value 
results in the same average throughputs in both PBAC and MBAC scenarios. 
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As performance figures, we evaluated link utilization and delay distribution, summarized 

by the 99th delay percentile. The 95% confidence intervals were evaluated. In all cases, 

throughput results show a confidence interval consistently lower than 0.3%. Instead, despite 

the very long simulation time, higher confidence intervals occur for 99th delay percentiles: 

less than 5% for MBAC results, and as much as 25% for PBAC (this is an obvious 

consequence of the self-similarity of the PBAC traffic aggregate). Nonetheless, even 

accounting for such uncertainty in the results, the PBAC and MBAC delay performance are 

clearly very different. 
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figure 14 - Traditional Admission Control operation 
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figure 15 – Measurement Based Admission Control operation 



 
54

§2.2.3.1 Traffic sources 

For simplicity, we have considered a scenario composed of homogeneous On/Off flows. 

While in the ON state, a source transmits 1000 bit fixed size packets at a Peak Constant Rate 

(PCR) ranging in the small interval 31 to 33 Kbps, in order to avoid source synchronization 

effects at packet level. Conversely, while in the Off state, it remains idle. The mean value of 

the On and Off periods have been set, respectively, equal to 1 s and 1.35 s, following a Brady 

model for voice traffic as in [19]. This results in an average source rate 

(7) 6.13][ ≈
+

= PCRE
TT

Tr
offon

on  Kbps 

On and Off periods were drawn from two Pareto distributions with the same shaping 

parameter c = 1.5 (infinite variance), which exhibit heavy tails, hence the traffic aggregate is 

self-similar. In fact the cumulative distribution function of a Pareto Random Variable is 

(8) 
c

s
sttF

−

⎟
⎠
⎞

⎜
⎝
⎛ +

−= 1)(  for t ≥ 0 

where s is a scale parameter, so that it suits with the definition of heavy-tailedness in (6). 

Simulation experiments were obtained in a dynamic scenario consisting of randomly 

arriving flows. Each flow requests service from the network, and the decision whether to 

admit or reject the flow is taken by the specific simulated CAC. A rejected flow departs from 

the network without sending any data, and does not retry its service request again. The 

duration of an accepted flow is taken from a lognormal distribution [16] with mean 300 s and 

standard deviation 676 s (we adopted unitary variance for the corresponding normal 

distribution as reported in [16]), but connection duration is extended to the end of the last On 

period. Because of this, the real connection lifetime exhibits longer mean (320 s) and infinite 

variance. If the last burst were cut off, the process variance would become finite.  

The flow arrival process is Poisson with arrival rate λ connections per second. For 

convenience, we refer to the normalized offered load ρ: 

(9) 
link

hold

C
rTλρ =  

being r the mean source rate, Thold the average connection duration and Clink the link capacity. 

Depending on the simulation experiment, the arrival rate ranges from underload conditions 

(less than 50% of the link capacity) to severe overload conditions (up to 650%).  
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§2.2.3.2 Adopted MBAC algorithm 

We have adopted and tested a very basic MBAC approach. In fact, The results in [21] 

show that different MBAC schemes present similar performance, and, more importantly, our 

goal is to show that the introduction of measurement in the admission control decision is the 

key to obtaining performance advantages in comparison to the PBAC approach, rather than 

the careful design of the MBAC algorithm. In this perspective the simpler the MBAC scheme 

is, the more general the conclusions are. Our MBAC implementation can be described as 

follows: a discrete time scale is adopted, with sample time T=100 ms. Let X(k) be the load, 

entering the link buffer during the time slot k, and B(k) its smoothed version, the bandwidth 

estimate, obtained by using a first order autoregressive filter: 

(10) )()1()1()( kXkBkB αα −+−=  

We chose α=0.99, corresponding to about 10 s time constant in the filter memory. If a 

connection requests admission during the slot k+1, the connection is admitted only if the 

estimated bandwidth B(k) is less than a predetermined percentage of the link bandwidth. By 

tuning this percentage, performance figures can be obtained for various accepted load 

conditions. 

Moreover, when a new flow is admitted, a step input is offered to the system, and a 

transient phase occurs, in which the load is underestimated, thus not reflecting the presence of 

a new flow ([42], [65]). A solution to prevent this performance-impairing situation is to 

artificially increase the load estimate to account for the new flow. Specifically, in our 

implementation, the actual bandwidth estimate B(k) is updated by adding the average rate of 

the flow: 

(11) rkBkB += )(:)(  

§2.2.3.3 Statistical analysis of self-similarity 

The Hurst parameter H is able to quantify the self-similarity of the accepted traffic 

aggregate. For a wide range of stochastic processes H=0.5 corresponds to uncorrelated 

observations, H>0.5 to LRD processes and H<0.5 to Short Range Dependence processes. In 

order to evaluate H, we used three different methods. All methods receive in input a 

realization X(i) of the discrete-time stochastic process representing the load offered, during a 

100 ms time window, to the link buffer by the accepted traffic aggregate. 
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The first method is the Aggregate Variance method, where the original series X(i) is 

divided into blocks of size m and the aggregated series X(m)(k) is calculated as: 

(12) ∑
+−=

=
km

mki

m iX
m

kX
1)1(

)( )(1)(          for k=1,2,… 

The sample variance of X(m)(k)  is an estimator of Var[X(m)]; asymptotically: 
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In the second method, called R/S, for a time series X(i) with partial sum  
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and sample variance S2(n), the R/S statistics or the rescaled adjusted range, is given by: 
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Asymptotically: 

(16) HCnn
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The third approach adopted is the Wavelet Estimator. The spectrum of a LRD process X(t) 

exhibits power-law divergence at the origin: 

(17) H
fX fcfW 21~)( −  

The wavelet estimator method, proposed in [1], recovers the power-law exponent 1-2H and 

the coefficient cf turning to account the following relation: 

(18) ( ){ } ( ) CcljdE f
Hj

X
212 2, −=  

where dX(j,l)=<X,ψ l,j> are the coefficients of the discrete wavelet transform of the signal 

X(t), i.e., its projections on the basis functions ψl,j, constructed by the mother wavelet through 

scaling and translation (2j and l are respectively the scaling and the translation factor). A 

MatLab implementation is freely distributed [51]. 

The three methods described allow to compute the Hurst parameter through a simple 

linear regression in a log-log diagram. A comprehensive overview of LRD statistical-

parameters estimation, including the first two methods, can be found in [5]. The first two 

methods have the advantage of being simple and practical to implement, but often exhibit 
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poor statistical properties [96]. The wavelet-based joint estimator, according to [1], displays 

reliable and robust statistical performance. Besides, if the process X(i) is Gaussian, this 

estimator is able to provide confidence intervals for the Hurst parameter. 

A common problem is to determine over which scales LRD property exists, or 

equivalently the alignment region in the log-scale diagrams. Using the fit test of the 

MatLab™ tool [51] we determined for our traces the range from 2000 s -11th octave- to 

250000 s -18th octave- (the two last octaves were discarded because there were too few 

values). All the three methods were applied over this scale. 

§2.2.4 Performance evaluation 

Every CAC scheme has some adjustable parameters that allow the network operator to set 

a suitable utilization target and a consequent QoS provisioning. In the present case, both for 

ideal PBAC and MBAC algorithms, a higher setting of the threshold value results in an 

increased system throughput, at the expense of delay performance. By adjusting this 

parameter, the proposed CAC rules can be designed to be more aggressive or conservative 

with regard to the number of flows admitted. Results presented in figure 16 were obtained by 

setting the PBAC and MBAC tuning parameters so that a target 90% link-utilization 

performance is achieved in offered traffic overload conditions. The figure compares the 

throughput/delay performance (99th delay percentiles, measured in ms, are numerically 

reported) of MBAC and PBAC, versus the normalized offered load. 
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figure 16 - Link utilization vs. offered load 



 
58

0

500

1000

1500

2000

2500

3000

3500

4000

80% 82% 84% 86% 88% 90% 92% 94% 96% 98%

99
th

 d
el

ay
 p

er
ce

nt
ile

 (
m

s)

Link utilization

PBAC-LRD flows

PBAC-MRK flows

MBAC-MRK flows

MBAC-LRD flows

2 Mbps link

 
figure 17 - Delay performance vs. link utilization (2 Mbps link) 
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figure 18 - Delay performance vs. link utilization (5 Mbps link) 

Minor differences can be noted in the capability of the considered schemes to achieve the 

performance target. A much more interesting result is the significantly lower MBAC delay 

versus the PBAC one. Rather than varying the offered load, figure 17 compares MBAC and 

PBAC by plotting their QoS performance versus the link utilization (following [21], the QoS 

versus utilization curve is called Performance Frontier). Specifically, the figure reports the 

delay/utilization performance frontiers of PBAC and MBAC in terms of 99th delay 

percentiles. The figure depicts results obtained for both LRD and Markovian flows, when 
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CAC thresholds range from low to full utilization, while the offered load is very high (about 

600%). It is shown that better performance are obtained using a Markovian traffic model, but 

it is also emphasized the remarkable performance improvement provided by MBAC with 

respect to PBAC in LRD assumptions, especially for large link utilization. Under Markovian 

assumptions PBAC acts slightly better than MBAC, in fact no memory arises in offered traffic 

process, thus the best bandwidth control simply consists in monitoring the number of admitted 

connections. Instead, with LRD flows, MBAC performance frontiers assume intermediate 

values, better than PBAC-LRD performance frontiers but worst than the curves obtained 

under Markovian assumptions. Thus, MBAC appears to be more robust than PBAC to the 

traffic statistical properties. Moreover, in figure 18 the performance frontiers are plotted for a 

5 Mbps link. Beside the general performance improvement in comparison to the 2 Mbps link 

scenario shown in figure 17, one can see that MBAC behavior, with Markovian traffic, is 

closer to the PBAC behavior, since the traffic granularity is reduced and the impact of a flow 

erroneously admitted is less significant. We argue that the impressive performance 

enhancement of MBAC over PBAC is due to the beneficial effect of MBAC in reducing the 

self-similarity of the accepted traffic aggregate. 

 
figure 19 - Delay performance vs. link utilization, using a 100 packets buffer 
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figure 20 - Delay performance vs. link utilization, using a 2000 packets buffer 

 
figure 21 - Packet loss ratio in high offered load condition, using a 100 packet buffer 

Further results obtained by considering a finite buffer scenario are depicted in figure 19 

and figure 20, where buffers having respectively 100 and 2000 packets length, are considered. 

Note that in the former case, in which a short buffer of 100 packets is considered, PBAC 

performance is comparable to the MBAC one only in extreme underload condition or 

conversely in a harsh over-utilized scenario. In the latter case, with a 2000 packets buffer, 

MBAC performance does not saturate at all, while in the PBAC scenario a greater buffer 

length should be needed in order to avoid losses occurring when the buffer is entirely filled. 
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These figures show, in the same conditions as before, i.e., in very high offered load 

conditions, that the performance gain resulting from MBAC scheme adoption is not impaired 

by a finite buffer application. Moreover figure 21 shows how MBAC approach allows a 

significantly improvement in packet loss ratio, which is controlled well under 1% even in a 

high offered load and a high link utilization scenario. 

To quantify the time behavior of the two PBAC and MBAC traffic aggregate time series, 

figure 22 plots the estimated squared wavelet coefficients ( )ljd X ,2  versus the basis-function 

time scale. The 95% confidence interval under Gaussian assumption are depicted. While the 

two curves exhibit similar behavior for small values of the aggregation scale, the asymptotic 

slope of the PBAC plot is very different from the MBAC one. For reference purposes, the 

lines corresponding to H=0.5, and H=0.8 are also plotted in the figure. Note that the figure 22 

appears to suggest that the MBAC-controlled traffic is not self-similar (Hurst parameter close 

to 0.5). An interesting consideration is that again in figure 22 the MBAC curve departs from 

the PBAC curve at a time scale of the order of about 100 seconds. Although a thorough 

investigation of this aspect was not performed in our work, and the complete understanding of 

the emergence of such a specific time scale is outside the scope of the present thesis, we 

suggest that it might have a close relationship with the concept of  “critical time scale” 

outlined in [47]. 
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figure 22 - Wavelet coefficients plot 
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figure 23 - Aggregate variance plot 

In  a similar way, the time behavior of the two PBAC and MBAC traffic aggregate time 

series is reported in figure 23, in which a log-log plot of the aggregate variance, computed as 

described in section §2.2.3.3, is depicted. While the two curves exhibit similar behavior for 

small values of the aggregation scale, the asymptotic slope of the PBAC plot is very different 

from the MBAC one, suggesting that the MBAC-controlled traffic is not self-similar (H≈0.5). 

We recall that the asymptotic slope β is related to H by β=2H-2. The lines corresponding to 

H=0.5, H=0.55, H=0.75 and H=0.8 are plotted in the figure as reference comparison. 

The Hurst parameter estimates are reported in table 3 and table 4, with the corresponding 

CAC settings (the maximum connections number for PBAC and the maximum link utilization 

for MBAC), and the achieved link utilization. For the wavelet estimates, 95% confidence 

intervals are also indicated (see section §2.2.3.3).  The three methods described in section 

§2.2.3.3, provide congruent estimates. Results are impressive, and show that the Hurst 

parameter decreases from about 0.75, in the case of PBAC, to about 0.5 for MBAC. It is 

interesting to note that 0.75 is the Hurst parameter value theoretically calculated in [48], 

[103], [69] under different assumptions, when a flow has heavy-tailed  periods of 

activity/inactivity with a shaping parameter c = 1.5 (the formula is H = (3-c)/2). We note that, 

as expected, the Hurst parameter does not depend on the link utilization.  Finally, table 5 

reports the Hurst parameter estimate obtained via the Wavelet method, when a finite and short 

buffer is employed. Even if these results relate to a short buffer scenario (100 packets instead 

of infinite), the values reported in table 5 for H are very similar to those of tables table 3 and 
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table 4, where an infinite buffer size was adopted. In conclusion table 4 and table 5 

quantitatively supports our thesis that self-similarity is a marginal phenomenon for MBAC 

controlled traffic (the achieved Hurst parameter is very close to 0.5, which represents Short 

Range Dependent traffic). 

Threshold  

(connections) 

Throughput

(%) 

Hurst 

(Variance)

Hurst

(R/S)

Hurst 

(Wavelet) 

105 71.8 0.73 0.79 0.78 [0.74, 0.82] 

115 78.3 0.74 0.78 0.80 [0.76, 0.84] 

125 84.5 0.71 0.79 0.75 [0.71, 0.79] 

130 88.7 0.78 0.76 0.75 [0.71, 0.79] 

135 91.7 0.72 0.72 0.77 [0.74, 0.81] 

140 94.7 0.78 0.80 0.74 [0.70, 0.78] 

table 3 - Hurst-parameter estimate for PBAC controlled traffic (infinite buffer size) 

 
Threshold  

(% utilization) 

Throughput

(%) 

Hurst 

(Variance)

Hurst

(R/S)

Hurst 

(Wavelet) 

70 69.1 0.55 0.48 0.55 [0.51, 0.58] 

78 76.9 0.58 0.54 0.58 [0.54, 0.62] 

86 84.5 0.55 0.51 0.60 [0.56, 0.64] 

90 88.5 0.60 0.52 0.57 [0.53, 0.60] 

94 92.4 0.51 0.46 0.56 [0.52, 0.60] 

96 94.3 0.58 0.52 0.58 [0.54, 0.62] 

table 4 - Hurst-parameter estimate for MBAC controlled traffic (infinite buffer size) 

Threshold 

(% utilization)

Hurst 

(PBAC) 

Hurst 

(MBAC) 

70 0.75 [0.72, 0.80] 0.51 [0.47, 0.55] 

80 0.74 [0.70, 0.78] 0.60 [0.56, 0.63] 

85 0.75 [0.71, 0.79] 0.51 [0.48, 0.55] 

90 0.75 [0.71, 0.79] 0.51 [0.48, 0.55] 

94 0.79 [0.75, 0.82] 0.51 [0.48, 0.55] 

table 5 - Hurst-parameter Wavelet estimate for PBAC and MBAC, using a 100 packets buffer 
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figure 24 - Hurst parameter vs. offered load 
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figure 25 - Wavelet coefficients plot for different holding time 

Most of the previous results were obtained under constant overload conditions. The aim of 

the figure 24 is to show the behavior of the two CAC schemes in a wide range of offered load 

conditions, with a fixed target link-utilization (the thresholds chosen, 110 connection for 

PBAC and 77% for MBAC, give very similar throughput performance under the same offered 

load). The vertical dashed line corresponds to this target. Hurst parameter was estimated by 
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the wavelet estimator. When the offered load is below the target, the Hurst parameter 

estimates11 are quite similar because MBAC and PBAC do not enforce any rejection. By the 

way, in this situation, no need of access control arises and delay/loss performance figures 

cope with high QoS requirements. Instead, the effect of CAC rules becomes evident when the 

offered load exceeds the target utilization: the PBAC curve approaches to H=0.75, while the 

MBAC one declines and approaches to non LRD values.  Moreover, the uncertainty of 

statistical results is shown by plotting several points for each simulated scenario, obtained 

with different seeds for the random generator. 

The impact of the connection duration is drawn in figure 25. The ability of reducing traffic 

LRD is more effective as the duration increases. In fact, MBAC measurements are not able to 

efficiently track traffic variability when the holding time is too short in comparison to the 

filter memory. 

§2.3 Conclusions 

After a presentation of the mostly adopted admission control schemes, in this chapter we 

focused on the features of MBAC schemes and a comparison with traditionally adopted 

PBACs is also highlighted. In particular we presented some experimental results about the 

behavior of PBAC and MBAC schemes in case of Markovian and, mostly important, self-

similar traffic generated by On/Off sources. In the former case, the PBAC performance 

slightly outperforms MBAC results, but no significant differences can be noted using MBAC 

or PBAC, especially if the ratio between the traffic source rate and the overall link capacity is 

small. Conversely, our simulation results show that the LRD of the traffic aggregate in a 

MBAC context is marginal, particularly when compared with that resulting from a traffic 

aggregate accepted by a PBAC scheme. For this reason MBAC allows to minimize the 

performance impairments due to the bursty nature of self-similar flows, thus making the 

system robust to statistical traffic properties. A greater QoS can be achieved using MBAC 

rather than PBAC schemes in order to control LRD flows.  

We feel that there are two important practical implications of our study. Firstly, our study 

support the thesis that MBAC is not just an approximation of PBAC, useful when the 

statistical pattern of the offered traffic is uncertain. On the contrary, we view MBAC as a 

value-added traffic engineering tool that allows a significant increase in network performance 

                                                 
11 In accordance with the fit test of the MatLab tool, the LRD hypothesis on the range from 2000 to 250000 
seconds  should not be rejected. 
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when offered traffic shows LRD. Secondly, provided that the network is ultimately expected 

to offer an admission control function, which we recommend should be implemented via 

MBAC, our results seem to question the practical significance of LRD, the widespread usage 

of self-similar models in traffic engineering, and the consequent network oversizing. 
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Chapter III  

Support for multiple-levels QoS-needy unicast applications 

in DiffServ networks 
The Differentiated Services architecture and the application of measurement based 

admission control schemes constitute a concrete framework for QoS enabled network 

services. RSVP protocol and the Integrated Services architecture are a valid alternative, but 

they present serious scalability and configurability drawbacks, which, conversely, are the 

better advantages rising from the adoption of DiffServ and MBAC. The point is how to 

enforce MBAC schemes, and admission control in general, in a legacy DiffServ 

implementation. Our purposes, hereinafter reported, is to change the network deployment in a 

evolutionary  fashion, rather than with a revolutionary approach. So we propose to gradually 

enhance the network functionalities by adopting end-to-end admission control schemes and by 

upgrading core network routers with measurement modules to replace normal queue-length 

based active queue management mechanisms. We will show that this kind of approach 

promises a very effective enhancement of network performance, so that the network itself 

could be ready to: i) actually differentiate the service level; ii) give concrete QoS guarantees, 

even though in a statistical fashion; iii) support easy management and configuration 

procedures. Hence our proposal envisions a considerable revenue in terms of capability of the 

network to host high data rate applications with particularly stringent delay and jitter 

requirements, as in the case of video and, in general, multimedia and real time streaming. 

Thus, in this and in the following chapter, a thorough analysis of a particular mechanisms 

is proposed, similar to endpoint admission control, and whose name is GRIP. Firstly we 

provide a presentation of the GRIP philosophy and we show how it somehow inherits some 

characteristics from EAC schemes and how it additionally complements the EAC operation 

with a mechanism that resembles MBAC operation at each network node. It will be also 

shown that GRIP can operate over a common DiffServ infrastructure, even though the 

effectiveness of the overall service support depends on the possibility to slightly modify the 

traditional packet dropping scheme adopted, but not in a mandatory way, over commercial 

and commonly envisioned routers. We will qualitatively and quantitatively discuss the impact 
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of GRIP over network performances, also by means of a comparative study on the GRIP 

admission control features implemented via existing and proposed traffic handlers.  

The first part of the chapter describes GRIP and its features (section §3.1), while the 

match of GRIP and DiffServ semantics, in given in section §3.2, with particular reference to 

the Assured Forwarding PHB. Afterwards, in section §3.3 it is deepened the question of QoS 

level that GRIP can provide in its different implementations, and several simulative results are 

presented. Section §3.4 additionally presents some application programming interfaces that 

allow a real and effective GRIP over DiffServ implementation (and more). Real performance 

are presented in section §3.5, while section §3.6 concludes and summarizes the chapter.  

§3.1 GRIP 

A particular set of EAC proposals are those in which some level of cooperation is required 

by core routers, and depending on the level of cooperation and intelligence required in 

network routers a finer QoS support is possible. The attempt is to convey more reliable 

network state information to the edge of the network. In such a view, EAC can be supported 

by a MBAC that runs internally to the network (i.e., in a whole domain or in each internal 

router or in the edge devices). This MBAC scheme locally determines, according to some 

specific criteria (which can be as simple as non performing any measure at all, and taking a 

snapshot of the link state, or as complex as some of the techniques proposed in [21], [47]), 

whether a new connection can be locally admitted.  

As previously stated in §2.1.3, a number of proposal have been suggested as EAC 

schemes, taking into account the different aspects of the QoS provisioning. Here we treat a 

specific reservation framework where EAC decisions are driven by probing packet losses 

occurring in the internal network routers. The name of the proposed mechanism is GRIP 

(Gauge&Gate Reservation with Independent Probing). The Gauge&Gate acronym stems from 

the assumption that network routers are able to drive probing packet discarding (Gate) on the 

basis of accepted traffic measurements (Gauge), and thus implicitly convey congestion state 

information to the edge of the network by means of reception/lack of reception of probes 

independently generated by edge nodes. The GRIP endpoint operation is not different from a 

mere EAC but in the GRIP mechanism core routers are able to drive endpoint admission 

control by implicit signaling. The routers only have to distinguish probe and data packets, 

without any comprehension of the signaling semantic inside the packet payload, and to 

effectuate some running measurements over the network state. A probe packet arriving at the 
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router indicates a request for a new connection, the router, basing on its network-state 

knowledge, can decide to drop the packet or to forward it. If the probe packet is discarded, the 

source will not receive a feedback and it is made able to implicitly determine that at least one 

router along the path has declared itself not capable of accommodating additional flows. 

According to the endpoint behavior previously described, the flow setup attempt will be 

aborted. The following figures show the GRIP mechanism in cases of acceptance and reject: 

A unidirectional flow connection setup is considered in figure 26 as well as in figure 27. 

Hence, if bidirectional connection need to be established, the GRIP mechanisms can be 

separately adopted in the forward and in the return path. In any case, the local MBAC 

decision is driven by a specific congestion threshold for each network interface. These 

thresholds are freely set by each domain administrator depending on its provisioning target. 

 

figure 26 - Basic model of GRIP (ACCEPT state) 

 
figure 27 - Basic model of GRIP (REJEC state) 
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§3.1.1 End Point Operation 

The source node, triggered by the application via proprietary signaling, starts a connection 

setup attempt by sending in principle just one single packet, labeled as “probe packet” (the 

GRIP) probe. At the same time, a probing phase timeout is started. The role of the destination 

node simply consists of monitoring the incoming IP packets and detecting those labeled as 

probe. Upon reception of a probe packet, the destination node, if it wants to accept the 

connection, simply will relay a feedback packet (the GRIP ack or GRIP feedback). The 

decision whether to admit or reject the connection request is driven by the eventual reception 

of the feedback by the source. When a feedback packet is received in response before timeout 

expiration, the setting up flow is elected at the state of accepted, and the source node can start 

transmitting information packets, labeled as data packets. For unidirectional data flows 

feedback packets are labeled as data packets because the only goal of the feedback is to report 

back to the source the correct reception of the probe, while for bi-directional flows they could 

be labeled as probe packets because they aim also to test the reverse path. 

Our solution seems then perfectly compatible with existing applications. In addition, this 

scheme leaves the service provider free to provide optional implementation details, including: 

• definition of more complex probing phase operation, e.g., by including reattempt 

procedures after a setup failure, multiple timers and probes during the probing phase, etc; 

• addition of proprietary signaling information (e.g., for capability negotiation) in the 

probing packet payload or in the feedback packet payload, to be parsed, respectively, at 

the destination node or at the source node. 

So capability negotiation, recognized as an important functionality for QoS enabled 

applications, is in an important by-product of our solution. Note also that the basic GRIP 

operation, i.e., a single probe packet and a single feedback packet, is compatible with the 

H.323 call setup scheme using UDP, which encapsulates a H.225.0v2 call setup PDU into a 

UDP packet. As a last consideration, it is quite interesting to remark that this idea is extremely 

close to what TCP congestion control technique does, but it is used in the novel context of 

admission control: end points interpret failed receptions of probes as congestion in the 

network and reject the relevant admission requests. 

§3.1.2 Router Operation 

The endpoint operation is not different from a mere EAC but in the GRIP mechanism core 

routers are able to drive endpoint admission control by implicit signaling. The routers only 
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have to distinguish probe and data packets (without any comprehension of the signaling 

semantic inside the packet payload) and to effectuate some running measurements over the 

network state. A probe packet arriving at the router indicates a request for a new connection, 

the router, basing on its network state knowledge, can decide to drop the packet or to forward 

it. If the probe packet is discarded, the source will not receive a feedback and it will be made 

able to implicitly determine that at least one router along the path has declared itself not 

capable of accommodating additional flows. According to the endpoint behavior previously 

described, the flow setup attempt will be aborted. 

§3.2 GRIP over AF DiffServ 

The Assured Forwarding Per Hop Behavior (AF PHB) has been devised by the IETF 

DiffServ Working Group to provide drop level differentiation. The intent of AF is to support 

services with different loss requirements, but with no strict delay and jitter guarantees. 

Another suggested use of AF is to provide differentiated support for traffic conforming to an 

edge conditioning/policing scheme with respect to non-conforming traffic. Now we show that, 

quite surprisingly, a standard AF PHB class is semantically capable of supporting per flow 

admission control. This is obtained by adopting the AF PHB as core routers forwarding 

mechanism in conjunction with an EAC mechanism running at the network edge nodes. The 

performance achieved by our proposed approach depend on the specific AF PHB 

implementation running in the core routers. We also prove that changes in the customary AF 

PHB implementations are indeed required to achieve strict QoS performance. To prove this 

point, we have evaluated the performance of GRIP through a simple and legacy AF 

implementation based on RED queues. Our results show that, regardless of the selected RED 

thresholds configuration, such an implementation is never capable of guaranteeing tight QoS 

support, but is limited to provide better than best effort performance. Additionally, by 

substituting RED active queue management mechanism with in principle not more complex 

measurement based dropping algorithms, we show that network performance can be 

considerably enhanced. Guideline for GRIP router implementation over Linux operative 

systems is eventually given.  

§3.2.1 DiffServ semantic and GRIP 

Quoting the recent RFC 2990 [52], “both the Integrated Services architecture and the 

Differentiated Services architecture have some critical elements in terms of their current 
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definition, which appear to be acting as deterrents to widespread deployment... There appears 

to be no single comprehensive service environment that possesses both service accuracy and 

scaling properties”. In fact, the IntServ/RSVP paradigm [18], [105] is devised to establish 

reservations at each router along a new connection path, and provide hard QoS guarantees. In 

this sense, it is far to be a novel reservation paradigm, as it inherits its basic ideas from ATM 

and the complexity of the traffic control scheme is comparable. In the heart of large-scale 

networks, the cost of RSVP soft state maintenance and of processing and signaling overhead 

in the routers is significant and thus there are scalability problems. In addition to complexity, 

we feel that the lack of a total and ultimate appreciation in the Internet market of the IntServ 

approach is also related to the fact that RSVP needs to be deployed in all the involved routers, 

to provide end-to-end QoS guarantees; hence this approach is not easily and smoothly 

compatible with existing infrastructures. What we are trying to say is that complexity and 

scalability are really important issues, but that backward compatibility and smooth Internet 

upgrade in a multi-vendor Internet market scenario is probably even more important. 

Following this line of reasoning, we argue that the success of the DiffServ framework [14] 

[75], does not uniquely stays in the fact that it is an approach devised to overcome the 

scalability limits of IntServ. As in the legacy Internet, the DiffServ network is oblivious of 

individual flows. Each router merely implements a suite of scheduling and buffering 

mechanisms, to provide different aggregate service assurances to different traffic classes 

whose packets are accordingly marked with a different value of the DSCP field in the IP 

packet header. By leaving untouched the basic Internet principles, DiffServ provides 

supplementary tools to further move the problem of Internet traffic control up to the definition 

of suitable pricing/service level agreements (SLAs) between peers. However, DiffServ lacks a 

standardized admission control scheme, and does not intrinsically solve the problem of 

controlling congestion in the Internet. Upon overload in a given service class, all flows in that 

class will suffer a potentially harsh degradation of service. RFC 2998 [23] recognizes this 

problem and points out that “further refinement of the QoS architecture is required to 

integrate DiffServ network services into an end-to-end service delivery model with the 

associated task of resource reservation”. It is thus suggested to define an “admission control 

function which can determine whether to admit a service differentiated flow along the 

nominated network path” [52].  

Scope of this section is to show that such an admission control function can be defined on 

top of a standard DiffServ framework, by simply making smart usage of the semantic at the 
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basis of the Assured Forwarding Per Hop Behavior (AF PHB [50]). It is obvious that this 

function must not imply a management of per flow states, which are alien to DiffServ and 

which would re-introduce scalability problems. Considering the GRIP as discussed above, one 

can note that: 

• the scope of GRIP admission control function is Internet-wise (i.e., not limited to a single 

domain);  

• GRIP is deployed by pure endpoint operation: edge nodes involved in a communication 

are in charge of taking an explicit decision whether to admit a new flow or reject it;  

• these edge nodes rely upon the successful delivery of probe packets, e.g., packets tagged 

with a suitable DSCP label, independently generated by the endpoints at flow setup.  

The internal differentiated management of probes and packets originated by already admitted 

flows could be performed in conformance with the AF PHB definition, and the GRIP would  

candidate to play the role of admission controller in DiffServ, although GRIP was originally 

proposed in [6] out of the scope of a DiffServ implementation. Also, the possible degree of 

QoS provided is delegated to each individual DiffServ domain, and depends on the AF PHB 

specific implementation and tuning done at each core router of the domain. However, we 

remark that, strictly speaking, GRIP is not a new reservation protocol for the Internet (in this, 

differing from the SRP protocol [3], from which GRIP inherits some strategic ideas). Instead, 

GRIP is a novel reservation paradigm that allows independent endpoint software developers 

and core router producers to interoperate within the DiffServ framework, without explicit 

protocol agreements.  

§3.2.2 GRIP AF Router Operation 

A particular implementation of the DiffServ router output-port operation supporting the 

AF PHB is depicted in figure 28. Packets routed to the relevant output are classified on the 

basis of their DSCP tag and dispatched to the relevant PHB handler. Let us now focus our 

attention to a specific module in charge of handling AF traffic belonging to a given class x. 

A measurement module is devised to run-time measure the aggregate AF class x traffic (or 

AFx traffic). The measurement module depicted in the figure does not interact with the AFx1 

packets forwarding, i.e., these packets are forwarded to the FIFO buffer placed at the output 

regardless of the measurements taken. On the basis of such measurements, this module 

triggers a suitable dropping algorithm on the AFx2 traffic. With respect to the general AF 

PHB operation, our AFx2 dropping algorithm depends on AFx traffic measurements. 
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The simplest dropping algorithm is represented by a gate (smoother dropping algorithms 

for AFx2 packets - e.g., RED-like algorithms - may be considered to improve stability). When 

the measurement module does not detect congestion on the AFx traffic, it keeps the gate 

opened (we call this accept state). When the gate is open no AFx2 packets are dropped. 

Conversely, the measurement module keeps the gate closed (reject state) when congestion is 

detected, i.e., it enforces a 100% drop probability over AFx2 packets. Note that this operation 

does not violate the AF drop level relationship, as AFx1 dropping probability is lower than 

the AFx2 one. Finally, with reference to figure 28, the AFx PHB class handler stores packets 

in a FIFO buffer, to ensure that packets are forwarded in the order of their receipt, as required 

by the AF PHB specification [50]. Packets transmission over the output link is eventually 

managed by a scheduler, which has the task of merging the traffic coming from the different 

PHB handlers implemented within the router output port. 

From the above GRIP-oriented description, it is easy to see how the GRIP mechanism can 

be implemented over such AF routers. In fact, let us assume that: 

• the considered AF class x is devoted to the support of QoS-aware flows, requiring AC; 

• AFx1 packets are data packets, generated by flows which have already passed an 

admission control test; 

• AFx2 packets are probe packets injected in the network by flows during the setup phase 

(in principle, one AFx2 packet per flow). 

 
figure 28 - DiffServ Router supporting AF PHB 
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According to the described operation, an AFx2 packet is delivered to its destination only if 

it encounters all the routers along the path in the accept state. This operation provides an 

implicit binary signaling pipe, semantically equivalent to a one-bit explicit congestion 

notification scheme, without requiring explicit packet marking, or, worse, explicit signaling 

messages, contrary to the DiffServ spirit. Conversely, the described router output port 

operation, combined with an endpoint admission control logic, allows overlaying an implicit 

signaling pipe over a signaling-unaware DiffServ framework. 

§3.2.3 Possible roles of the AFx3 level 

In the above description, the AFx3 drop level appears in principle unnecessary. However, 

it may be convenient to use this level. A first possibility is that the AFx3 level be used to 

mark non-conforming packets, which can be eventually delivered if network resources are 

available. Secondly, AFx3 packet marking can be enforced over flows that have not 

successfully passed the described admission control test. This allows deploying a service 

model where high QoS is provided to flows that pass the admission control test, while best 

effort delivery is provided to initially-rejected flows. These latter flows may occasionally 

retry the setup procedure, by simply marking occasional packets as AFx2, and may eventually 

receive the upgraded AFx1 marking when network resources become available (as testified by 

the eventual reception of an AFx1 feedback). The usage of the AFx3 level as described above 

is targeted to increase the link utilization. However, [50] requires the drop probability for 

AFx3 to be greater (or at most equal) than AFx2. This implies that the link utilization is 

bounded by the possibly strict mechanism that triggers AFx2 packets dropping: when AFx2 

packets receive a 100% dropping probability, all AFx3 packets must also be dropped to 

conform to the [50] specification.  

A more interesting possible usage of the AFx3 level consists in providing a second control 

(probing) channel, in addition to AFx2. According to this solution, AFx1 traffic 

measurements trigger a dropping algorithm on the AFx3 traffic too, with stricter dropping 

conditions than the AFx2 dropping algorithm (i.e., AFx3 packets are assumed to detect 

congestion, and notify it via packet drop, before AFx2 packets). For instance, this AFx3 

probing class could request admission for flows with higher peak rate and bandwidth 

requirements than flows supported via the AFx2 probing class. Also, being the AFx3 channel 

more reactive to congestion conditions, its usage can be envisioned to provide lower access 
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priority to network resources. This would improve fairness and avoid some kinds of sources 

to “steal” a large part of network resources. 

§3.2.4 Security considerations  

As all admission control functions, our solution presents the risk of theft of resources 

through the unauthorized admission of traffic. In fact the user may bypass the admission 

control test and directly sends AFx1 packets. Administrators are then expected to protect 

network resources by configuring secure polices at interfaces (access routers) with not trusted 

customers. Similar protections must be provided at the interface between different domains. 

In particular, it may be necessary to restrict the access to the AF classes used for admission 

controlled traffic. For example, a DiffServ domain should remark AF packets when they come 

from an not trusted adjacent DiffServ domain. In more generality, we remark that policing 

and conditioning rules enforced at the border routers of each domain depend on the usage of 

the considered AF PHB class within the specific domain and thus have to be accounted of in 

the definition of each specific PDB supporting admission control. 

A quite obvious security hazard is flooding the network with AFx2 packets. The 

objectives are twofold. On one side, denial of service situations can be easily created, as a 

massive loading of the network with AFx2 packets prevent the setup of normal connection. 

On the other side, the goal might be to affect fairness: the continuous transmission of AFx2 

packets at a rate higher than normal connection requests is meant to gain faster access to 

resources when these are made available by a router along the path. This implies that some 

form of traffic conditioning and policing is necessary over AFx2 streams. While it is simple to 

recognize an hard attack, by monitoring the AFx2 packets crossing an edge router, it may be 

not straightforward for DiffServ boundary routers to recognize smoother fairness attacks. 

However, note that the same fairness problem is present also in more complex reservation 

mechanisms, such as RSVP where malicious users can continuously require setup to increase 

their access possibility with respect to normal users. 

§3.3 The degree of QoS support in GRIP 

Scope of this section is to provide some qualitative insights about the performance 

achievable by the GRIP operation. Quantitative and tunable performance may be 

independently provided and specified by each administrative entity. Uniform implementation 

across a specific domain allows defining a quantitative view of the performance achievable 
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within a considered DiffServ domain, similarly to PDB operation. In this way, the refinements 

deemed necessary in [52] to provide service accuracy in the DiffServ architectural model 

could be considered as accomplished. 

In fact, the performance achievable by the described endpoint admission control operation 

depends on the notion of congestion as the triggering mechanism for AFx2 packet discarding, 

which is left to each specific implementation. Each administrative entity may arbitrarily tune 

the optimal throughput-delay/loss operational point supported by its routers, by simply 

determining the aggregate AFx1 traffic target supported in each router. The mapping of AFx1 

throughput onto loss/delay performance, in turn, depends on the link capacities and on the 

traffic flow characteristics offered on the AF class x. With this approach, it is possible to 

construct PDBs offering quantitative guarantees. A building block of such PDBs is the 

definition of specific measurement modules and AFx2 dropping algorithms. A generic 

dropping algorithm is based on suitable rules (or decision criteria). An example of a trivial 

decision criterion is to accept all AFx2 packets when the measured throughput is lower than a 

given threshold and reject all AFx2 packets when the AFx1 measurements overflow this 

threshold. The resulting performance depends upon the link capacity and the traffic model. 

It is well recognized that target QoS performance can be obtained by simply controlling 

throughput (i.e., by aggregate measurements taken on accepted traffic). This principle is at the 

basis of more sophisticated state of the art MBAC implementations described in [21], [47]. As 

a simple quantitative example, with 32 Kbps peak rate Brady On/Off voice connections 

offered to a 2 Mbps (20 Mbps) link, a target link utilization of 75% (92%) leads to a 99th 

percentile per hop delay lower than 5 ms - see figure 29 (reproduced from [8]). 

Tighter forms of traffic control are possible. As a second example of a decision criterion, 

it has been demonstrated that hard QoS guarantees can be provided, under suitable 

assumptions on the offered traffic (i.e., traffic sources regulated by standard Dual Leaky 

Buckets, as in the IntServ framework) and with ad hoc defined measurement modules in the 

routers [6]. When hard QoS guarantees are addressed, it is furthermore necessary to solve the 

problem of simultaneous activation of flows. In fact, the Gauge&Gate operation implies that 

simultaneous setup attempts (i.e., probes arriving at the router within a very short time frame) 

may see the router in the accept state, and thus may lead to concurrent activation of several 

flows, which can, in turn, overload the router above the promised QoS level. Actually, this is 

a common and recognized problem of any MBAC scheme that does not rely on explicit 

signaling. Although it does not compromise the stability of described operation (overloaded 
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routers close the gate until congestion disappears - see the mathematical formalization of such 

a problem and the computation of the “remedy” period in [47]), this can be a critical issue if 

strict QoS guarantees are aimed at. It is possible to solve this problem by introducing an 

aggregate stack variable [6], which takes into account “transient” flows, that are flows elected 

at the state of accepted but not yet emitting information packets. This stack protection scheme 

avoids the concurrent activation of a number of flows, which could overload the router above 

the promised QoS level: the price to pay is a slight under-utilization of the available link 

capacity. The same effect can be obtained in a traffic load estimation environment by 

artificially augment the estimate with a term that takes into account the traffic that could be 

transmitted later by a new admitted source. This estimation bias will be filtered out in a time 

that is proportional to the digital filter memory.    

Another important issue is what happens when traffic flows with widely different peak 

rates are offered to the same link. Several approaches may be adopted. The simplest one is to 

differentiate traffic aggregates into classes of similar traffic characterization (in terms of  

rate), and associate to each class a different AF PHB. A second possibility is to multiplex 

traffic onto a same AF PHB class, but differentiate probing packets by using the AFx3 drop 

level for traffic flows with higher peak rate. 

 
figure 29 - 99th delay percentile versus throughput, for different EAC schemes and related 

parameter settings 



 
79

§3.3.1 GRIP over pure DiffServ (RED/RIO queues) 

GRIP becomes effective as long as two conditions jointly occur. Firstly, each DiffServ 

router along the path must distinguish a probe from an information packet. This is achieved 

by marking probe packets with a different DiffServ label than data packet. Secondly, the 

performance of GRIP is related to the capability of routers to locally take decisions about the 

degree of congestion, and suitably block probing packets when congestion conditions are 

detected. To this purpose, the congestion level can be computed via local traffic 

measurements on the accepted traffic [7]. The described operation translates the problem of 

provisioning a given QoS level within a domain, into the much more simple problem of 

suitably configuring a packet forwarding/dropping mechanism within each router in a domain. 

For example, a domain can configure its routers so that all AFx2 packets are dropped (i.e., all 

incoming connections are blocked) when the average AFx1 traffic exceeds a given threshold. 

The higher the threshold, the worse the QoS performance provisioned. However, RED-like 

mechanisms are usually deployed, as shown in following subsections. 

§3.3.1.1 RED/RIO queue management 

Traditionally, a FIFO policy has been used in router queues. In this case, if the input rate 

is greater than the output rate, packets are stored in the queue until it gets full: at this point, 

incoming packets may be discarded. Although this method is very simple, it has some 

drawbacks. Firstly, it can be very unfair: sources producing large bursts are more penalized 

than quasi-constant sources. Secondly, a large number of consecutive packets may be 

dropped, making many TCP connections switch to the Slow Start phase, which can lead to 

synchronization problems. Finally, heavily loaded queues result in bigger delays. There exist 

several proposals (see [43], [64], [73], [88] and [100]) that address the problems of FIFO 

queuing. In these proposals, a transmission protocol running at the endpoints of a connection 

controls the emission rate, in order to reduce the occupation of router queues. Such solutions, 

however, are difficult to put into practice and their efficiency is somewhat questionable. The 

best place to control the evolution of a queue of a router seems to be the router itself [43]. In a 

DiffSer router, packet dropping is primarily managed by a specific queue management 

function that, within a given class, decides which packets should be discarded when 

congestion arises. That is, DiffServ adopts a selective discarding policy, especially in the 

context of the Assured Forwarding (AF) behavior.  
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The Random Early Detection (RED) mechanism [43], proposed by S. Floyd, is an 

efficient queue management method that has become very popular. Using a fairly simple 

algorithm, RED succeeds in keeping queue occupation low, while being fair with respect to 

packet loss. RED can be easily modified so as to discard packets according to their priority: 

WRED (Weighted RED) and RIO (RED with In and Out) are two instances of such an 

algorithm that will be described later in this section. RED is intended to deal mainly with 

persistent congestion in a queue. Its packet discard function is based on the average queue 

size, so that instantaneous fluctuations present in highly bursty traffic do not have a strong 

impact in the performance of the algorithm. In its definition [43], RED does not impose any 

formula for computing the mean queue occupation. However, examples in the literature 

always use a low-pass filter where the average queue size (avg) is computed as follows: 

• when the routes is switched on: avg = 0; 

• when a new packet arrives, 

o if the queue is not empty: avg = (1-w) avg + w q; 

o else: avg = (1-w) m avg; 

where m is the queue empty period, and w is the weight assigned to each new measure. 

Remark that this pseudo-code takes into account those periods during which the queue 

remains empty, with the assumption that m minimal-sized packets might have been 

transmitted during that interval. Based on the mean queue size (avg), RED uses a non-

decreasing drop-probability function to decide whether a packet should be discarded or not, 

and, thanks to this feature, consecutive packet drops are avoided12. Random discards are a fair 

solution, since the probability of dropping a packet of a given flow is proportional to the 

number of packets of that flow that are in the queue. In RED, packets are randomly discarded 

only if the average queue size is between two thresholds thmin and thmax , as shown in the 

figure 30. 

Actually, the probability of dropping two consecutive packets is reduced by means of the 

following algorithm: 

• when the routes is switched on: count = 0; 

• when a new packet arrives: 

o If ],[ maxmin ththavg ∈  then  

 increment count by 1; 

                                                 
12 Remember that the loss of several consecutive packets of a connection mat trigger TCP Slow Start mechanism. 
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 Set the dropping probability 
minmax

min
max thth

thavgPPb −
−

= ; 

 Drop the packet with probability 
b

b
a Pcount

PP ⋅−= 1 ; 

o Else if avg>thmax, then drop the packet; 

• If the last packet is dropped, then set count=0; 

The variable count contains the number of packets that were accepted in the queue after 

the last packet-drop event. Hence, this variable permits to reduce the probability of dropping 

consecutive packets. Note that the probability of discarding the packet increases linearly from 

0 to Pmax as the mean queue size goes from thmin to thmax, as also shown in figure 30. If the 

mean queue size is greater that thmax, then all packets are discarded13. If sources react 

adequately, the mean queue size should rapidly decrease to an acceptable value. 

The operation of RED has served as a model for designing methods aiming to improve the 

performance of TCP, notably ECN (Early Congestion Notification). When this mechanism is 

used, a TCP source is informed of the congestion by means of a flag in the IP header of the 

ACK segment. In this case, RED does not discard any packet: instead, it sets the flag to tell 

the source to reduce its emission rate. Notice that ECN is orthogonal to DiffServ. A detailed 

description of ECN can be found in [84]. 

 
figure 30 -  RED drop probability function 

                                                 
13 Alternatively, the dropping probability could linearly grow from Pmax to 1 as the queue estimate grows from 
thmax to 100%. 
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§3.3.1.2  Weighted RED (WRED) 

WRED, originally proposed by Cisco, consists in using different sets of RED parameters 

for different sets of flows. By assigning different values of Pmax, thmin and thmax, to each set, it 

would be possible to offer a differentiated distribution of packet loss [27]. In the Assured 

Forwarding behavior, the router must discard packets depending on their drop precedence, 

often referred to as green (AFx1), yellow (AFx2) and red (AFx3). WRED can be used for this 

purpose, by using three different sets of parameters. In WRED, the mean queue size is 

computed as in RED. When a packet arrives, the variable avg is always updated, no matter the 

precedence of the packet. However, the computation of Pa is different than in RED. figure 31 

illustrates a set of parameters that could be used in the DiffServ architecture. For high-

precedence packets (red packets), the algorithm follows an aggressive drop policy: as soon as 

the average queue size gets higher than a (fairly low) value, packets are not allowed to transit 

through the router. On the other hand, for low-precedence (green) packets the mechanism 

authorizes the building up of a much higher queue, following the principle that, in a well-

dimensioned network, such packets should never be discarded. 

§3.3.1.3 RIO (RED with In and Out) 

RIO is one of the first algorithms introduced for service differentiation purposes. In the 

original proposal, Clark and Fang [29] describe a whole architecture that served as a reference 

for DiffServ-related work in the IETF. RIO was first conceived as means to differentiate 

between two precedence levels (called In and Out), but this model can be extended to 

accommodate more than two levels. In RIO, differentiation is partially based on the mean 

queue size. Contrary to WRED, RIO calculates a mean queue size for each precedence level: 

that is, the mean avgn is updated each time a packet of precedence less than or equal to n 

arrives at the queue. In the context of DiffServ, avg0 reflects the mean number of green 

packets in the queue, avg1 corresponds to the total number of green and yellow packets, and 

finally avg2 takes into account all packets (as in RED). This makes possible to isolate the drop 

probability for each precedence level: for low-precedence packets, only an excess of packets 

having the same precedence level can produce a packet drop. For high-precedence packets, an 

excess of packets of any precedence level may yield a packet drop.  
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figure 31 - WRED drop probability functions 

Clark and Fang [29] suggest also to use a different set of RED parameters (Pmax, thmin and 

thmax) for each precedence level. Similar values as those used in WRED may be chosen. 

However, less aggressive threshold values could be used, since the mean queue size for high-

precedence packets augments more rapidly than in (W)RED, due to the computation method 

employed. Differentiated computation of mean queue sizes makes RIO a powerful algorithm 

for precedence based packet discarding, but its implementation is more involved than that of 

WRED, which is already available in commercial routers [27]. 

§3.3.2 Performance of GRIP over legacy AF PHB (with RED/RIO) 

In the previous paragraphs, we have concluded that arbitrary degree of performance 

guarantees can be obtained by designing specific AF PHB implementations based on runtime 

traffic measurements. A question that comes out naturally is the following. As long as 

Random Early Detection (RED) queue management is customarily considered as the natural 

AF PHB implementation14, what are the performance of GRIP when it is operated over RED 

queues? We tried to answer the question by means of a simulated test bed. 

In our simulation program, we have assumed, for convenience, only two drop levels, 

namely AFx1 and AFx2. We have adopted a single buffer for both AFx1 and AFx2 packets. 

AFx1 packets are dropped only if the buffer is completely full. 

                                                 
14 We recall that the AF PHB specification does not recommend, by any means, a specific implementation. 
Indeed, RED have emerged as the natural AF PHB implementations, since they provide improved performance 
when TCP traffic (i.e., the traffic traditionally envisioned for AF) is considered. We now face a very different 
problem, i.e., what happens to performance when widespread RED AF PHB implementations are used for a 
completely different purpose, i.e., to support admission controlled (UDP) traffic. 
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figure 32 - Buffer management scheme 

Instead, AFx2 packets are dropped according to a RED-like management, where the  

AFx2 dropping probability is a function of the queue occupancy, computed accounting for 

both AFx1 and AFx2 packets15. As shown in figure 32, the AFx2 dropping probability versus 

the queue occupancy is a piecewise linear curve: no AFx2 packets are dropped when the 

number of packets stored in the queue is lower than a lower threshold. As the number of 

packets gets greater than the lower threshold, the AFx2 dropping probability increases 

linearly, until a value Pmax is reached in correspondence with an upper threshold. After this 

value, the dropping probability is increased linearly until the number of packets fills the buffer 

capacity (see figure 32). Depending on the considered implementation, the AFx buffer 

occupation is either sampled at the arrival of an AFx2 packet, or suitably smoothed/filtered in 

order to capture the moving average of the AFx queue occupancy. However, in all 

implementations proposed in the literature, an AFx2 packet that finds no packets stored in the 

buffer is always accepted (regardless of the fact that the smoothed AFx queue occupation may 

give a value different from 0). We will see in what follows that, ultimately, this specific 

condition prevents GRIP to achieve effective performance, regardless of the RED parameter 

settings considered. Performance results have been obtained via simulation of a single 

network link, loaded with offered connections arriving at the link according to a Poisson 

process. Each offered connection generates a single probe packet. A sufficiently large probing 

phase timeout has been set to guarantee that connections are accepted when the probing 

packet is not dropped (in the simulation, we have attempted to simulate conditions as close to 

                                                 
15 The described operations can also be seen as a particular case of a standard WRED implementation, where the 
Tlow and Thigh thresholds for AFx1 packets both coincide with the buffer size. 
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ideal as possible, in order to avoid that numerical results were affected by marginal 

parameters settings as round trip time, probing phase timer, etc). Accepted connections have 

been modeled as Brady On/Off sources, with peak rate equal to 32 Kbps, and On/Off  periods 

exponentially distributed with mean value, respectively, 1.0 second for the On period, and 

1.35 seconds for the Off period (yielding an activity factor equal to 0.4255). Each connection 

lasts for an exponentially distributed time, with mean value 120 s. The link capacity has been 

set to 2 Mbps. Therefore, The link results temporarily overloaded when more than 146.9 

active connections (=2000/(0.4255*32)) are active at a given instant of time. 

The figure 33 to figure 35 report the number of accepted connections versus the 

simulation time for three different load conditions: underload (normalized offered load equal 

to 75% of the link capacity), slight overload (110% offered load), and harsh overload (400% 

load). 

In the above figures, we have considered a very large AFx buffer size, such that no AFx1 

packet losses occur (thus, QoS of accepted traffic is quantified in terms of AFx1 packet 

delay). We have tried several different RED parameters configuration, but, for simplicity of 

presentation, we report results related to a basic parameters settings where a single threshold 

is considered: all AFx2 packets are accepted whenever the number of AFx packets is lower 

than this threshold, while all AFx2 packets are dropped when the number of AFx packets is 

greater than this threshold (very similar results are obtained with more complex RED 

configurations, as it will be clear from the following discussion). Similarly, for simplicity, no 

smoothing on the buffer occupancy has been performed. 

 
figure 33 - Active connection vs. simulation time, with 75% offered load; “packs” indicates 

the AFx2 threshold. 
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figure 34 - Active connections vs. simulation time, with 110% offered load. “packs” indicates 

the AFx2 threshold. 

 
figure 35 - Active connections vs. simulation time, with 400% offered load. “packs” indicates 

the AFx2 threshold. 

AFx2 Offered Throughput 95th delay percentile 99th delay percentile 
1 pack 110% 68,64% ± 0,28% 2,3 ± 0,014 3,3 ± 0,019
1 pack 400% 90,89% ± 0,08% 80,6 ± 1,2 175,2 ± 1,3 
10 packs 110% 88,71% ± 0,22% 55,4 ± 0,7 148,444 ± 3.0
10 packs 400% 97,72% ± 0,03% 586,3 ± 4,8 987,2 ± 10,2 
200 packs 110% 93,11% ± 0,28% 235,9 ± 4,0 433,8 ± 3,5
200 packs 400% 99,02% ± 0,02% 1282,8 ± 15,9 2023,3 ± 75,1 
2000 packs 110% 96,39% ± 0,24% 1433,9 ± 20,0 1975,6 ± 26,9
2000 packs 400% 99,77% ± 0,03% 4656,0 ± 24,9 5921,8 ± 58,2 

table 6 - Throughput and delay performance. 

The figure 33 shows that, in low load conditions, a tight threshold setting (just one packet, 

i.e., an AFx2 packet is dropped as long as just 1 AFx packet is stored in the buffer) is overly 
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restrictive, and exerts a high and unnecessary blocking probability on offered connections. 

With larger thresholds (200 and 2000 packets), we note from figure 33 that the number of 

accepted connections fluctuates in the range 100 to 120, meaning that just a small fraction of 

the offered connections are blocked by the GRIP operation (as it should ideally occur if a 

stateful  admission control algorithm were operated). 

Much more interesting and meaningful (for our purposes) are the results presented in 

figure 34. Here, we see that, in slight overload conditions, the only RED configuration setting 

that allows to keep the accepted load lower than the target 75% value (i.e., about 110 accepted 

connections) suggested by figure 29, is the threshold set to just 1 packet. Even with a very 

small threshold value, such as 10 packets, we see that the average number of accepted 

connections gets much greater than 110, thus resulting in unacceptable delay performance for 

accepted traffic. 

Throughput and delay performance are quantified in table 6, for 110% and 400% offered 

load conditions. The table reports the AFx1 throughput, as well as the 95th and 99th delay 

percentiles experienced by accepted flows. Confidence intervals corresponding to a 95% 

confidence level are also reported in the table to quantify the accurateness of the numerical 

results. 

From the table, we see that the only case in which we meet target QoS performance for IP 

telephony (i.e., 99th delay percentile of the order of few ms) is the case of threshold set to one 

packet, and light overload. It is quite impressive to note that the smallest possible RED 

threshold (i.e., drop an AFx2 packet whenever the AFx queue is not strictly empty) does not 

succeed in guaranteeing QoS in large overload conditions. This result allows us to conclude 

that, regardless of the RED parameters configuration, a RED implementation is never capable 

of guaranteeing QoS in all load conditions. As long as a RED implementation always accepts 

an AFx2 packet when the AFx queue is empty, performance will be at best equal to that 

reported in table 6, for a threshold equal to one packet. 

As figure 35 shows, in high overload conditions, thresholds greater than 1 packet cannot 

even avoid that, temporarily, the number of accepted connections is greater than 146.9, i.e., 

that the link is overloaded. In such a case, load oscillation phenomena occur: as clearly shown 

in figure 35, the link alternates between periods of significant overload (in which the AFx 

buffer fills up), and remedy periods [47], where the router locks in the reject state, until 

congestion disappears. The result is that 95th and 99th delay performance are of the order of 

several seconds (see table 6).  
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To conclude this section, we observe that, although RED implementations are intrinsically 

not capable of providing performance guarantees, indeed a proper parameter setting allows to 

achieve reasonably better than best effort performance. For example, with a threshold set to 

10 packets, table 6 shows that, in very high (unrealistic) load conditions, the 99th delay is still 

lower than one second (although the link has already been congested, as proven by the link 

load fluctuations, of the order of 15% of the link capacity, and leading to temporary link 

overload, as shown in figure 35). Notably, with the same 10 packets thresholds, the 99th delay 

percentile drops down to less than 150 ms when light overload conditions are considered. 

Such degree of QoS support might be considered sufficient in a short-term perspective, where 

current AF implementations might be utilized to support admission control.  

§3.3.3 Performance of GRIP over MBAC-aware AF PHB 

In this section we firstly show that performance effectiveness is achieved by means of 

non-traditional configuration of the forwarding mechanisms. The performed measures have 

the goal to confirm the results obtained trough simulation on GRIP and to prove the efficiency 

of this mechanism under real environments. We evaluate the performance of a more general 

RED-like dropping profile enforced on the AFx2 packet class. Specifically, when the load is 

below a thmin threshold, all the AFx2 packets are forwarded, while they are all dropped if the 

load is above a thmax threshold. Between these two thresholds, a linear dropping probability is 

enforced, i.e., being B the measured load, the dropping probability on the AFx2 packets is:  

(19) 
minmax

min

thth
thBPdrop −

−
= ; with ].[ maxmin ththB ∈ . 

B is conveniently obtained as a smoothed version of the instantaneous load. In particular, a 

typical  numerical implementation that is widespread adopted consists of a discrete time scale, 

with sample time T = 100 ms, and, at each time step k, the smoothed offered load B(k) is 

updated as follows: 

(20) ( ) ( ) ( ) ( )kMkBkB αα −+−= 11 ; 

where  M(k) is the traffic load, in bps, attempting to enter the link buffer during the time slot 

k. By choosing α=0.99, a time constant of about 10 s time is obtained for the filter memory.  



 
89

 
figure 36 -  Measurement driven piece-wise linear dropping function 

As illustrated in the following, the additional AFx3 drop level available in the AF-PHB 

specification may be optionally used (with an associated additional dropping profile) instead 

of AFx2 when a more congestion-sensitive probing is needed, i.e., when a connection requires 

a greater amount of resources.  

§3.3.3.1 Simulated performance 

Our simulation results have been obtained with a proprietary C++ event-driven simulator 

developed by our self. The simulation time was divided into 101 intervals: a first warm-up 

100 minutes interval followed by other 100 intervals in which statistics are computed. For 

simplicity, as in many other admission control works [21], [47], the network model consisted 

of a single bottleneck link. The link capacity was set equal to 2 Mbps, and an infinite buffer 

size was considered.  Since we used an infinite buffer size QoS is characterized by the delay 

experienced by data packets rather than packet loss as in [65]. 99th delay percentiles have been 

considered as delay performance metric (the same considerations apply as in §2.2.4). 

Simulation experiments were obtained in a dynamic environment consisting of randomly 

(Poisson) arriving flows. We have considered two different traffic scenarios. In the first 

scenario, flows are homogeneous. Each traffic source is modeled as variable bit rate (VBR) 

source, alternating heavy-tailed On/Off periods. While in the On state, a source transmits at a 

Peak Constant Rate (PCR) randomly generated in the small interval 31 to 33 Kbps. (to avoid 

source synchronization effects at the packet level). Conversely, while in the Off state, it 

remains idle. The mean value of the On and Off periods have been set, respectively, equal to 

1.0 s and 1.35 s. To stress the system with long range dependent traffic, the duration of the On 
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and Off periods have been drawn from two Pareto distributions, with the same shaping 

parameter c = 1.5 (infinite variance). The same On/Off profile has been considered in the 

second scenario, but the peak-rate of the sources has been uniformly generated in the range 20 

to 80 Kbps.  

In this second scenario, we have additionally considered the possibility to adopt, as probe 

label, the AFx3 packet marking for flows whose PCR was greater than 40 Kbps. 

Conformingly, we have set a more restrictive drop profile for the AFx3 drop level. The 

rationale behind this choice is that a flow with higher peak rate is more critical, in terms of 

resource consumption, than a flow with small peak rate. However, the described GRIP 

operation is not able to distinguish, during flow setup, flow with different peak rates 

(signaling is implicit - no traffic specification parameters are notified to the router). By using 

an additional AFx drop level, we are able to differentiate flows during their probing phase. In 

particular, the router has been configured so that a (high peak rate) flow that probes the 

network via an AFx3 packet will be blocked in advance with respect to a low peak rate flow. 

The duration of an accepted flow is taken from a lognormal distribution [16] with mean 

300 s and standard deviation 676 s, but connection duration is extended to the end of the last 

On or Off period. Because of this, the real connection lifetime exhibits longer mean (320 s) 

and infinite variance. The flow arrival process is Poisson with arrival rate λ connections per 

second. For convenience, we refer to the normalized offered load ρ, as already defined in 

equation (9). Depending on the simulation experiment, the arrival rate ranges from underload 

conditions (less than 20% of the link capacity) to severe overload conditions (up to 650%). 

The specific MBAC implementation uses a discrete time scale, with sample time T = 100 

ms. The connection is admitted with a probability 1-Pdrop, in accordance with (18) and using 

estimated bandwidth B(k), as in (19) with α = 0.99. By tuning the parameters in (18) (i.e., 

thmin and thmax)  performance figures can be obtained for various accepted load conditions. 

figure 37 shows the different impact of homogeneous peak rate connections (~32 Kbps) 

on the system performance (leftmost plot), with respect to the heterogeneous peak rate case 

(PCR from 20 to 80 Kbps, rightmost plot). In both simulations the offered traffic is 90% of 

the link capacity. In the heterogeneous scenario, a visible degradation of performance occurs. 

There is an increase in  bandwidth utilization variability, with instants of time in which the 

offered load is even higher than the link capacity.  
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figure 37 - 10000 seconds temporal behavior comparison between uniform (~32 Kbps)  and 

multiple peak rate sources (20 to 80 Kbps) 
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figure 38 - Offered load: 20% to 90%; source peak rate: ~ 32 Kbps 

The throughput/delay performance of the adopted admission control scheme is evaluated 

in figure 38 to figure 42, for various packet dropping algorithm configurations, and 99th delay 

percentiles have been considered as delay performance metric. The figure 38 shows the 

sensibility of the admission control scheme as the dropping profile changes. The thmax 

threshold is fixed to 95%, while the thmin ranges from 50% to 95%. For each threshold 

configuration, different points are obtained by tuning the offered load from 20% to 90%. 

Better delay performance are achieved when the minimum and maximum thresholds (figure 

36) are distant from each other. As a reference comparison, the figure reports also results 

obtained by assuming that a standard - parameter based - admission control mechanism is 
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adopted. The fact that PBAC performs worse than a mechanism based on run-time measures, 

when traffic is LRD, has been thoroughly discussed and motivated in [11] and in the previous 

chapter. The performance of different threshold settings has been evaluated also in figure 39. 

This figure differs from the previous one in two fundamental aspects: firstly, the offered load 

has been set very high (about 650%); secondly, different throughput values have been 

obtained by suitably translating the thresholds, while maintaining their relative distance 

constant. Clearly a given setting performs better when, for a same carried load, the delay is 

lower. In figure 40 and figure 41, the same performance investigation is carried out 

considering sources with peak rate in the range from 20 to 80 Kbps. The AFx3 probe marking 

has been adopted for sources whose peak rate is greater than 40 Kbps.  

The figure 40 reports results for various AFx2 dropping profiles configured with the thmin 

and thmax thresholds indicated in the label. The AFx3 dropping profile has been kept fixed 

with parameters thmin = 50%, thmax = 95%. In figure 41 the AFx3 dropping profile is obtained 

from the one of AFx2, by shifting back the thmin and thmax thresholds of 10%. Results are very 

different from the corresponding figure 39, and show that it is preferable to set the minimum 

threshold equal to the maximum one. The reason stays in the augmented traffic variance, due 

to the peak rate variability, which wastes the improved accuracy of the measurement based 

operation when separate thresholds are adopted. Instead, by setting tight thresholds, in very 

high load (650% in figure 41), the probability that a source with high peak rate gets accepted 

dramatically reduces, and thus the system achieves better performance. 
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figure 39 - Offered load: 650%; source peak-rate: ~32 Kbps 
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figure 40 - Offered load: 30% to 130%; source peak rate: 20 to 80 Kbps; sources with peak 

rate greater than 40 Kbps use AFx3 probes 
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figure 41 - Offered load: 650%; source peak rate: 20 to 80 Kbps; sources with peak rate 

greater than 40 Kbps use AFx3 probes 

Finally, the beneficial effects coming from the use of a double level of probing, AFx2 and 

AFx3, is  highlighted in figure 42. In this figure we consider a very high offered load and 

sources emitting at a peak rate in the range from 20 to 80 Kbps. The leftmost curve in figure 

42 considers a scenario in which AFx2 packets are used for every probing attempt. 

Conversely, the rightmost curve has been obtained by using AFx3 probe packets for flows 

with peak rate greater than 40 Kbps. Results show the clear superiority of this second 

approach.  
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figure 42 - Comparison between AFx2 probing and AFx3+AFx3 probing with  spread peak-

rate distribution (20-80 Kbps) and very high offered load (650%) 

§3.4 API for network traffic regulation  

Distributed per-flow admission control is a promising solution for DiffServ networks. Its 

deployment in DiffServ domains requires the ability to suitably configure, in each network 

router, low-level packet forwarding mechanisms, such as packet dropping algorithms driven 

by traffic measurements. Hence, we propose a modular Application Program Interface (API) 

that allows to flexibly and adaptively configure the forwarding/dropping behavior associated 

to a router output queue, well beyond the traditional RED active queue management schemes.  

This section presents a DiffServ router architecture capable of supporting advanced traffic 

control functions. We show that our API allows the support for a distributed admission 

control function which relies on a measurement based admission control mechanism running 

at the router site. Numerical results, obtained via simulation, show the effectiveness of the 

router configurations in achieving enhanced quality of service in various operational 

conditions. 

§3.4.1 Characteristics of the API 

Despite the generality of the AF-PHB specification, it is frequently assumed that the AF-

PHB will be implemented at each core router as a RED mechanism. As a consequence, most 

current implementations [26], [32] are based on a monolithic approach. The queue is seen as a 

single entity, where measurement mechanisms (filtering and smoothing of the queue 

occupation) are tightly integrated with packet dropping functions, and both are indivisible 
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entities from the pure buffering capabilities of the queue. The only way to marginally operate 

on such an implementation is via the specific RED configuration thresholds and parameters. 

However, the apparently consolidated scenario described above does not account for 

novel ways to use low-level mechanisms. Hence, it emerges the need for more flexible and 

modular node-level APIs, that allow the deployment of non traditional low-level 

forwarding/dropping mechanisms, specifically devised for admission control purposes. 

Clearly, the same APIs would find application in the deployment of improved Active Queue 

Management schemes. 

Such a middleware level should be designed with the following concepts in mind16 [83]: 

• Flexibility: the router must be plug-driven, i.e., if a module configuration (a dropper, a 

meter, etc.) must be changed, or a new module has to be loaded, this operation must be 

performed on-the-fly, with no impairments on the run-time router operation. 

• Programmability: it must be possible to add new variations for supported components 

(droppers, schedulers, counters, etc), as well as program the interaction among various 

components; for example, an adaptive active queueing management mechanism may 

require a dropper to be adaptively driven by statistics collected from one or more queues, 

and suitably filtered according to ISP-specific algorithms (which can differ depending on 

the QoS provisioning level). The identification of elementary components, as well as rules 

for their interfacing, gives us the ability to dynamically reconfigure the router and rapidly 

adapt it to completely different operational conditions.  

• Openness: there is the need for standardized application program interfaces (APIs) that 

allow multi-vendor independent development and rapid deployment of value-added 

functionalities, which, when installed, can allow to achieve new behaviors from the same 

device. The openness of the router will permit independent developers to focus on the 

system architecture rather than on the specific device. 

                                                 
16 These ideas are the foundation of the European research project POLLENS, whose specific goal is to “propose 
a flexible and dynamic middleware platform enabling to explicitly program novel traffic control solutions and 
scheduling mechanisms, to configure network architectures on the fly and add intelligence to the IP routers in 
order to support future value-added services still to be developed today”. 



 
96

queue implementation (monolithic)

packets packets
Queue occupancy

smoothing & filtering
RED/RIO dropper

Smoothing
parameter

minimum
threshold(s)

maximum
threshold(s)

Pmax
value(s)

  
figure 43 - Monolithic queue implementation: the queue management mechanisms are 

indivisible from the queue kernel module 
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figure 44 – Modular queue implementation   
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figure 45 - Architecture implementation. Three basic elements and their interconnection are 

shown: droppers, data processors, queues  
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§3.4.2 Packet dropping mechanisms for distributed AC support 

We demonstrated through performance simulations that the RED-like approach to active 

queue management has to be changed in order to support MBAC mechanisms, without 

violating the DiffServ philosophy. Now we describe a possible implementation of the solution 

proposed in a theoretical fashion at the beginning of this chapter, in which the packet 

dropping probability behaves like in figure 36. This approach particularly applies to AFx2 and 

AFx3 packets. In fact, what makes GRIP compatible with DiffServ is the use of probe 

dropping/forwarding (i.e., implicit signaling, rather than explicit signaling), to convey a 

reject/accept information at the sender node. In order to change the behavior of the packet 

buffering, some changes are required to the traditional scheme proposed in figure 43, where a 

monolithic approach is depicted. The aim of figure 44 is to show a new modular queue 

implementation scheme, where buffering functions, measuring and dropping modules are 

independently instantiated and configured. This allows to easily change the behavior of each 

single module, or even to replace an entire module without turning off the overall system.  

§3.4.3 The packet-level traffic control API 

The discussion carried out in section §3.4.2 has shown that packet dropping mechanisms 

implemented at core routers may have a complete different goal versus the traditional ones. In 

the context of admission control support, new low-level packet forwarding/dropping 

mechanisms should be implemented at the network routers. Hence, there is the need for node-

level programming interfaces that allow to build these mechanisms on top of the hardware 

router implementation. This is in conflict with the traditional queue kernel module 

implementation, illustrated in figure 43. To overcome this problem, we have developed a 

modular architecture, devised to allow the implementation of different packet-level 

dropping/forwarding mechanisms. Our architecture is composed of the following basic 

building blocks (see figure 45): queue, data-processor, and dropper. Each module exposes an 

API that provides supplementary services, as explained in the following.   

Other than buffering packets, the queue provides additional services the other modules can 

access to: en-queue entry point: it provides to the registered modules an asynchronous signal 

that notifies the arrival of a packet. Besides, supplementary information is carried to the data 

processors, such as packet size, specific header fields, etc; de-queue entry point: same as 

above, but for a packet departure. The idea is that the whole system works as an event driven 

system, that reacts to the events of packet en-queue/de-queue. Concerning implementation, 
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the de-queue event will be generated by an external entity when the packet must leave the 

queue, e.g., when the packet must be sent to the Network Interface Card. Specifically, such 

event is generated by the packet scheduler that decides which, among the available queues, 

must be selected to send the next packet. Symmetrically the en-queue event is generated by 

another entity that decides when the packet is ready to be en-queued. It must be pointed out 

that we are not interested in what these entities are and how they generate the signals; we only 

know that the queue must handle them. 

The dropper is a module that provides a decision, generally consisting in 

dropping/forwarding a packet. The architecture of the dropper is illustrated in figure 46. A 

dropper is bound to the en-queue (or de-queue) hook of the queue. When an en-queue (de-

queue) signal is generated, this signal is passed to the dropper, which responds with an action 

list. This can be as simple as a packet dropping/forwarding decision, or a complex list of 

actions (e.g. “forward the current packet, and drop the one at the head of the queue”). 

An action list is selected based on: 

• the default available action lists - every dropper has a built in default action list. The 

minimal set of action lists is drop-packet and forward-packet; 

• the user selected action list - At module instantiation, or at run time, the user can select a 

different set of actions for the dropping and/or forwarding decision; 

• state information - based on measurements taken on the system, and provided by a data 

processor bound to the dropper; since the state information is, in general, 

multidimensional, such an information will be passed via a vector Phi, where Phi=phi1, 

phi2, phi3,., phin, with n arbitrary; 

• reference parameters -  such as thresholds, probabilities, etc. 

 
figure 46 - Dropper architecture 
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figure 47 - Data Processor architecture 

We have called data processor the module that manages measurements and system states. 

A data processor uses the en-queue and/or de-queue signals to collect a number of statistics: 

offered load (packets/second, bytes/second), carried load, queue occupation. A supplementary 

task of the data processor is to filter the collected running statistics, where the filter 

parameters can be eventually modified during run-time operation. As shown in figure 45, note 

that more than one data processors can be instantiated on the same queue (for example, to 

provide measures at different time scales). The architecture of the data processor is shown in 

figure 47. While the role of the dropper is completely realized into the kernel space, i.e., it is a 

pure element that have been moved out by the modularization process of the queue, we 

propose a more interesting role for the data processor. In fact, an important role of the data 

processor is the capability of exposing the collected and processed data up to the user space. 

In particular, it may be essential to expose suitable traffic measurements and filtered queue 

congestion state to external applications (middleware applications, management applications, 

etc). This can be done easily by binding a data processor to the en-queue/de-queue event, 

without connecting it to any dropper. In this case we distinguish these classes of data 

processors as the passive ones (since they do not take part into the decision process). 
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Another important relationship we want to point out, is how the data processors and the 

queue can be connected. In most cases it is natural to associate one data processor to one 

queue, but it can be interesting to connect one data processor to two or three queues, and 

correlate events coming from them, as well as relate measures.  

The idea behind the developed modules is to allow the implementation of new traffic 

management mechanisms by simply binding the modules together17. Modularity enables us to 

reuse already developed droppers or data processor in different scenarios. Moreover, by 

differently connecting the same modules, it is possible to change or extend the router 

functionalities. To build a valid system, the user firstly instantiates a mandatory queue 

module, then instantiates additional data processor and the dropper objects. Finally the 

modules may be interconnected according to the following rules: 

1. The abstract queue provides two entry points: 

a. The en-queue entry point will be activated in response to the en-queue packet 

request of the operating system (or any form of underlying layer) 

b. The de-queue entry point will be activated in response to the de-queue packet 

request of the operating system (or any form of underlying layer) 

2. Zero or more data processors can be bound to the en-queue/de-queue event hook 

3. Zero or one droppers can be bound to the en-queue/de-queue event hook 

4. The dropping decision can be taken only fetching the dropper decision accumulator, in 

case one dropper is bound to the en-queue (de-queue) event. The event sequence is: 

a. The en-queue (de-queue) packet request has been received by the queue 

b. The packet is notified to the en-queue (de-queue) registered data processors 

c. The data processors elaborate the Phi vector, and they send it to the registered 

droppers (for each data processor) 

d. The dropping decision is fetched from the en-queue (de-queue) registered 

dropper. The dropper is responsible to respond to the fetch decision request 

generated by the queue. 

e. One or more actions are taken by the queue, as to the dropping decision 

5. A data processor can be bound to one or more queues 

6. A data processor can be bound to zero (or more) droppers 

7.  One dropper can be bound to one (and only one) queue 

                                                 
17 Clearly, the introduced flexibility has a price in terms of code optimization. A goal of the ongoing research 
activity is to understand the scalability limits of the proposed software platform. 
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8. En-queue data processors and de-queue droppers can be mixed (and vice versa). So for 

example an en-queue data processor can be bound to a de-queue dropper, but the user 

must always consider that the dropping decision will be fetched when a de-queue 

event will occur. Anyway, mixing en-queue and de-queue modules is not 

recommended. 

§3.4.3.1 Examples of traffic control schemes implementations 

Traffic management mechanisms can be implemented by suitably binding the described 

modules together18. A mechanism is implemented by first instantiating a mandatory queue 

module, and then binding eventual data processors and droppers. The dropping decision can 

be taken only fetching the dropper decision accumulator, in case one dropper is bound to the 

en-queue (de-queue) event. In particular the event sequence is: i) the en-queue (de-queue) 

packet request has been received by the queue; ii) the packet is notified to the en-queue (de-

queue) registered data processors; iii) the data processors elaborate the state vector Phi, and 

send it to the registered droppers (for each data processor); iv) the dropping decision is taken 

and enforced on the corresponding packet (i.e., the dropper is responsible to respond to the 

“fetch decision” request generated by the queue, which then takes the specific 

dropping/forwarding action). 

Here we show how to implement the GRIP router described in section §3.4.2 with one 

data processor and two simply droppers (two instantiations of the same dropper template). We 

recall that the router measures AFx1 traffic, and drops AFx2 and AFx3 packets according to a 

dropping profile illustrated in figure 36. The figure 48 shows the proposed GRIP architecture. 

The data processor has the task of measuring the incoming traffic, before it is actually offered 

to the queue (part of this traffic might be lost during congestion). The dropping actions are 

taken by the en-queue/de-queue droppers according to the Phi state information provided 

them. During congestion,  they drop both AFx2 and AFx3 packets entering the queue, as well 

as AFx2 and AFx3 packets exiting the queue. The role of the Phi vector, in this specific case, 

is to select the right dropping function via the color parameter, and refresh the decision stored 

in the decision accumulator. As shown in figure 49, the traffic data collected and filtered by 

the data processor are sent to the dropping functions via the vector parameters, phi2 and phi3. 

                                                 
18 While modularity allows reusing already developed modules, as well as changing the forwarding behavior by 
simply composing modules in a different manner, the introduced flexibility has a price in terms of code 
optimization. A goal of the ongoing research activity is to understand the scalability limits of the proposed 
software platform. 
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We set phi3=phi2 due to the simple fact that we want to discard the probe packets simply 

setting a more aggressive threshold in the AFx3 case. Finally, note that AFx1 packets should 

never be dropped, and thus the dropper is fed with a constant state parameter fictitiously 

meaning that no congestion is encountered (e.g., phi1=0). 

As a second example, to show the possibility of module reuse, we provide an 

implementation of RIO. In figure 50 it is shown a solution for the dropping mechanism 

presented in [29]. The IN meter must collect data regarding the incoming in-packets and 

compute the avgin, while the OUT one computes the avgtotal, which takes in account both the 

in-packets and out-packets. The droppers are exactly the same ones presented in the GRIP 

implementation, but this time the dropping piecewise linear dropping function has been set as 

RED-like one. This can be done during module instantiation or even at run time. 
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figure 48 – A simple GRIP implementation 
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figure 49 -  A closer look at the data processor and dropper implementations 
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figure 50 - A proposed RIO implementation 

§3.5 Performance of GRIP over a real test bed 

A set of Application Program Interfaces (API), has been actually implemented over a 

Free-BSD system. As discussed in section §3.4, the  particular API is meant for advanced 

traffic regulation issues, even though it is a widely general set of tools that allow the 

regulation of very simple, in principle, low level components. In fact, API proposed in section 

§3.4 basically affects the behavior of network interfaces while queuing and marking packets. 

Additionally, the use of API permits a dynamic control of service classes, including the 

possibility of adjusting service characteristics while running. API allows the deployment of 

GRIP in a light and quite natural shape, while leaving space to different implementations. 

This means that GRIP and many other mechanisms can be implemented using the proposed 

API, and they could be easily modified, reconfigured or upgraded in some other new 

operational behavior. Together with the definition and design of our API, a great effort has 

been dedicated to the validation of the API operation, and GRIP was the natural test 

application to be used in a real test bed. Thus we report here some performance obtained in 

real network where GRIP, API, MBAC-endowed core routers and many other DiffServ 

compliant mechanisms (especially as regards the policy functions to be enforced at the edge 

of the DiffServ domain), run under real traffic condition, and sometime in very uncommon 

overloading conditions. A part of the simulation scenarios presented through Chapter II and 

Chapter III, was reproduced in such a real network, and some performance figures are here 

reported to summarize the results we have obtained. 
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§3.5.1 The real test bed and relative GRIP performance 

In this section we briefly report and discuss some tests that were really performed by 

implementing DiffServ AF PHB and GRIP with measurement based admission control 

support over a prototypal open routing platform19. Firstly a presentation of the test bed, used 

for experimentation and performance measurements, is given in what follows: 

• A traffic generator acts like a GRIP source, i.e., it generates GRIP compliant connections. 

Each connection is unidirectional and it is modeled as a Brady’s On/Off flow with 

exponential distribution for both On and Off periods. Moreover the packets are 

distinguished by means of a label, so that it is possible to identify each connection easily. 

This node runs over a PC with Intel Pentium II processor at 800 MHz, and 512 MByte 

RAM. 

• A traffic sink, the GRIP destination, where GRIP connections are addressed. This is used 

only for packet reception, but for the GRIP feedback to be sent towards the traffic 

generator. Since this node has not particular hardware requirements, a PC with Pentium II 

– 266 MHz, and 64 MByte RAM is employed. 

• The sniffer have the task to record and store incoming and outgoing traffic, avoiding 

synchronization problems (e.g., Network Time Protocol).  We have used customized 

tools20, so that we can calculate for each packet various statistical properties and aggregate 

them in terms of 95th and 99th  percentiles. The hardware adopted for the sniffer is a PC 

with 1,7 GHz Intel Pentium IV processor and 512 MByte RAM. 

• Two hubs are employed in order to let traffic and signaling packets to reach the sniffer 

without affecting the normal network operation. In fact, hubs simply forward each packet 

received from a port over any other port in the hub. 

• A PDP, i.e., a policy decision point, is used to remotely tune the GRIP router behavior. 

This node does not perform any CPU-consuming operation, so that we used a PC with a 

Intel Pentium II at 266 MHz and 64 MByte RAM.   

• A GRIP router endowed with GRIP and measurement based packet dropping algorithms 

tunable through API. This router runs over a PC with 1,7 GHz Intel Pentium IV processor 

and 512 MByte RAM (the same as for the sniffer). 

                                                 
19 Some performance evaluation of the real GRIP behavior has been carried out in the frame of the EU founded 
ITEA POLLENS project, in collaboration between University of Palermo and CRES.  
20 The adopted virtual statistic wire for statistics collection and elaboration has been developed in the frame of 
ITEA POLLENS project, in CRES laboratories. 
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• Two ethernet segments with different bandwidth capacity, i.e., 100 Mbps in the link 

between the traffic generator and the GRIP router, and 10 Mbps between GRIP router and 

traffic destination. The adoption of different ethernet segments is meant to allow the 

network overload before the GRIP router, while the admission control is in charge of 

reject connection requests when the link between the GRIP router and the GRIP 

destination reaches an utilization target.   

 
figure 51 – Test bed architecture  

 
figure 52 – Packet delay vs. sequence number (one connection)  
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figure 53 – Delay distribution function 

The first performance figure reported here is about the packet delay versus the experiment 

time, expressed as the sequence number associated to the packet for a particular connection. 

The network load, offered by the traffic generator is about 110% of the bottleneck capacity, 

i.e., the link to the GRIP destination, which would be not able to sustain that traffic neither if 

it were a single constant bit rare (CBR) flow. The dropping algorithm is tuned with the 

following parameters: Pmax = 1, thmin = 25%, thmax = 75%. As shown in figure 52, the delay 

experienced by packets varies over time, as the network load varies too, but it is strictly bound 

to few milliseconds. In any case, this behavior implies that more effective performance 

figures have to consider statistics as the mean values, the distribution function and some 

relevant distribution percentiles. Thus a statistic description of the performance shown in 

figure 52 over time, is given in figure 53, where the empiric delay distribution function is 

represented for the same test. From the figure it is clear that most of the values are within the 

range from 0 to 10 ms, while the probability that delay outcomes that threshold cumulates a 

very small area. Note also that, even though the figures evidence the system is working as 

expected in term of qualitative behavior, some packets can very seldom experience a bad 

service. 

We also want to show the experimental numerical results obtained by varying minimum 

and maximum thresholds in the dropping scheme, while the offered load remains fixed to the 

110% of the receiver link capacity. Results reported in table 7, show that network 

performance can be suitably tuned by means of the fine tuning of the dropping thresholds in 

the measurement based GRIP admit/reject decision. It is worth noting that the proposed 

operation makes the network provider able to limit the delay as well as the throughput, no 

matter the load offered by external nodes. Obviously, delay and throughput are not 
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independent, meaning that very low delays can be maintained only by limiting the throughput 

to not overcoming 50% of network capacity. However, the experimental results reported here 

for significantly limited admitted traffic are in conformance with simulative results, and this 

leads to expect an analogous behavior also in case of high accepted traffic, i.e., in case of 

utilization targets of the order of 80-90% of the bottleneck. 

thmin - thmax 99th delay percentile Throughput 

0-1 6.50±0,08 0.404±0,038 

0,1-0,9 7,30±0,07 0,442±0,005 

0,5 - 0,5 6,15±0,06 0,499±0,001 

0,25 –0,75 6,70±0,03 0.420±0,002 

0,40 – 0,60 7,80±0,06 0,481±0,038 

table 7 – End-to-end performance of GRIP controlled application with 110% offered load 

§3.6 Conclusions 

This chapter introduced to GRIP functionalities and application fields, even though other 

scenarios can suit with GRIP operation and some other applications will be considered in the 

following of this thesis. In particular, in this chapter we have shown that the problem of 

provisioning a DiffServ domain can be transformed into the problem of configuring packet 

discarding algorithms in core routers, in conjunction with the support of a distributed 

admission control function based on probing (i.e., GRIP). We have also shown that the 

standard DiffServ AF PHB is already semantically capable of supporting the GRIP as a 

stateless and scalable admission control mechanism. The driving idea is that accept/reject 

decisions  are  taken at  the  edge  of  the network on the basis of probing packet  losses,  

being probes tagged with a different AF level than packets generated by accepted traffic. In 

turn, these losses are driven by the dropping algorithm adopted in the specific AF 

implementation running at each network router. It is important to understand that, following 

the spirit of DiffServ, the above described operation does not aim at providing a quantified 

level of assured QoS, but, in conformance with PHB and PDB specifications, it provides a 

reference framework over which quantitative performance specification may be deployed. 

The key to QoS guarantees is left to each specific implementation, i.e., it is left to the 

implementation-dependent quantification of the notion of congestion, which triggers the gate 

mechanism for AFx2 packet discarding. Each administrative entity is in charge of arbitrarily 

determine the optimal throughput/delay operational point it wants to support. 
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The AF PHB implementations so far considered in the literature, based on (RED) 

thresholds set on the queue occupancy, do not affect the described endpoint operation and 

thus may be considered to support admission controlled traffic. Hence, we proposed an 

evaluation of performance relative to such an admission control function for various router 

configurations. An important result is the understanding that, when probes originating from 

different flows are mapped on different drop levels, significant performance enhancements 

can be achieved. Moreover, an additionally important contribute of our work was to prove 

that RED implementations are definitely not capable of achieving tight QoS support, 

regardless of their parameter settings. In fact, the measurement mechanism adopted is overly 

simple, and this translates into a poor QoS support, but still much better than best effort, since 

admission control is still enforced on setting up connections. Conversely, significantly better 

results was obtained by replacing the legacy queue occupancy measurement module with a 

run-time traffic estimator, even when this module simply operates a traffic sampling and 

computes an auto regressive filtering over sampled data.   

 As shown in the second part of the chapter (sections §3.3 and §3.4) and especially in 

performance figures, the application of packet dropping mechanisms to the new context of 

admission control requires the deployment of new packet-level traffic control functions, very 

different from the traditional approaches based on RED/RIO queues. To this purpose, we have 

proposed and tested a packet-level traffic control API, based on three components: queue, 

droppers, and data processors. Each component is implemented in a modular and flexible 

fashion, and it is open to be configured and tuned while running. Further research issues 

include the understanding whether the overhead, given by the introduction of the 

modularization process, will lead to scalability problems in the routers. 
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Chapter IV  

DiffServ/GRIP QoS-aware extensions for signaling 

interoperability and multicast 
This chapter complements the discussion carried out in Chapter III, where the basics of 

GRIP and its implementation was proposed. From the discussion above, GRIP emerges as a 

powerful tool that provides a kind of connection blocking service, whose performance are 

strongly dependent on the actual implementation of some low level services, like packet 

marking, dropping and forwarding mechanisms. Hence, we demonstrated that GRIP works 

very well in a stateless network domain, and the only required feature the GRIP relies on is 

the possibility to differentiate the packet dropping algorithms that operate on probe packets 

and data (information) packets respectively. In turn, GRIP requires also to suitably label 

packets in at least two groups: probes and data. The nature of the GRIP service seems to be 

tailored on unicast and unidirectional applications, with a single sender and a quasi-passive 

receiver. This resembles to be somehow true, at least as regards its origins. However, GRIP 

has been also proposed for bidirectional unicast applications, with an approach that recalls to 

the full duplex communication operation obtained through two paired half duplex 

transmissions: a sender opens a GRIP session and the receiver responds with an additional 

GRIP section over the inverse path, so that the endpoints start transmitting data only upon the 

completion of both GRIP sessions. Unluckily, this first extension does not account for two 

fundamental issues: i) the interaction with some other reservation protocol and admission 

control scheme that could run in some network segment between endpoints; ii) the support to 

QoS for multicast applications. As to point i), it makes sense to exploit all available network 

capabilities instead of limiting the scope of the GRIP action to endpoints and MBAC modules 

located in a part of network routers. Moreover, if a connection path traverses multiple stateful 

(non-GRIP) and stateless (GRIP-enabled) domains, the GRIP solution cannot provide any 

affordable connection blocking services, since it is not able to recover any knowledge of the 

congestion state of routers located in the stateful domains. Hence, it looks better to limit the 

GRIP scope to GRIP-enabled domains, while inter-domain signaling extensions are required 

to make different QoS protocols (e.g., GRIP and RSVP) to interoperate. As to point ii), all 

considerations previously carried out apply, but for the additional need to extend the 
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connection blocking service to multicast groups when requesting to be joined to a given 

multicast router with QoS requirements. 

The following of the chapter firstly introduces to signaling interoperability issues (section 

§4.1), with particular attention to the GRIP-RSVP interworking and a general signaling 

interoperability approach proposed by the IETF NSIS Work Group. Secondly, multicast 

extensions of GRIP operation are proposed in section §4.2. Eventually, section §4.3 briefly 

summarizes and concludes the chapter. 

§4.1 Signaling interoperability 

The Internet scenario is characterized by heterogeneous networks and deeply different 

administrative domains. Given a specific data path, it is very frequent that a significant 

number of nodes belonging to that path are not QoS aware. Furthermore, while access 

network segments are often QoS-aware and stateful, it is very common to go across stateless 

network domains in the core part of the network. Additionally, there are multiple possible 

approach to the QoS in the IP network. In Chapter I we introduced two possible frameworks, 

IntServ and DiffServ in order to provide service differentiation and somewhat defined levels 

of QoS. In comparison with the Best Effort IP networking, that can be considered suitable 

only for traditional Internet applications, IntServ introduces two services that result adequate 

for different levels of multimedia applications such as IP telephony, audio or video streaming 

which are very sensitive to delay caused by network congestion. IntServ relies on a 

reservation protocol like RSVP or similar, and needs for stateful routers to be deployed in the 

network. This turns in a sometime unacceptable network overload and scarce scalability. On 

the contrary, the approach proposed by DiffServ is much more soft and sometime 

evolutionary then the IntServ one. It is definitely scalable and permits a strong customization 

in the services, including the relevant possibility of endowing the network with additional 

QoS aware tools. The main drawback of DiffServ is that no service guarantees are provided, 

but the protection of some classes with respect to other classes, until the network traffic does 

not overwhelm the network capacity.  

However, other different kind of solutions exist for IP networks, so that it is possible that 

a flow has to traverse multiple heterogeneous domains, with totally different QoS approaches 

and QoS tools, which are very difficult to coordinate. In general, it does not appear possible to 

allow a flow reservation to be performed over such a multiplicity of adjacent networks. 

Nonetheless, some protocols operate separately in each domain with a local semantic but with 
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similar purpose [22]. In this framework, it is emerging a new idea proposed by the IETF NSIS 

Work Group. The proposal focuses on the possibility to provide some means to allow the 

interoperability of different QoS signaling protocols across heterogeneous networks. NSIS is 

a group that deals with Next Step In Signaling in the framework of IP networks, and its 

members are now debating on the way to obtain a scalable and light extension for signaling 

application features over a generic heterogeneous networks interconnection. Te basic idea is 

that a general purposes protocol should adapt to each specific network domain property, thus 

acting as an envelop able to transport any kind of domain specific signaling protocols, with 

the additional capability of translating protocols and signaling message format while hopping 

from a domain to another. 

NSIS capabilities are developed in three types of entity (NSIS Entities - NE), which are 

the functions within a node, which implements an NSIS protocol. Note that NEs can be 

located in the data path or elsewhere in the network, but for the case of path-coupled 

signaling, because of NEs have to stay on the data path. The NSIS entities are: 

• NSIS Initiator (NI): NSIS entity envisioned to initiate the NSIS signaling in order to setup 

or manipulate network state. 

• NSIS Responder (NR): NSIS entity where NSIS signaling is terminated and that can 

optionally interact with applications as well. 

• NSIS Forwarder (NF): NSIS entity between a NI and NR, which may interact with local 

state management functions in the network. It also propagates NSIS signaling further 

through the network. 

§4.1.1 The use of GRIP for signaling interoperation purposes  

The driving motivation of our work, is that some network domains, e.g. based on DiffServ 

data-plane, might not explicit support a per-router and/or per-domain admission control rule 

[10]. Hence, for such domains, explicit signaling is not a viable approach. To partially solve 

this issue, we suggest to adopt a GRIP paradigm devised to provide implicit signaling via 

data-plane packet delivery operation. In this case, the implicit signaling should decide to 

locally admit a new flow to cross the DiffServ domain upon the successful and timely 

delivery, through the domain, of probe packets independently generated by an entity located 

at edge router, e.g., by a NSIS initiator (NI) entity. The key idea is to use failed receptions of 

probes to discover that a congestion condition occurs in the network segment between a 

(NSIS) initiator and a (NSIS) responder, and to abort a reservation procedure. Since GRIP is 
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not able to communicate per-flow traffic and QoS parameters, in principle it cannot exert a 

QoS control as tight as in the case of explicit mechanisms. However, it is important to notice 

that GRIP can indeed operate in a differentiated manner on the basis of traffic and QoS 

parameters, by tuning parameters like:  

• Marking of probes, to be performed in compliance with the flow traffic and QoS 

requirements; 

• The dropping behavior enforced for marked probes; 

• The estimate of traffic in the core routers, aimed at controlling the probe dropping. 

It is relevant to highlight the differences between this work and the QoS framework 

depicted in [23]. The goal of [23] is to deploy end-to-end, quantitative QoS by applying the 

IntServ service models (CLS and GS) end-to-end across a network containing one or more 

DiffServ regions. To accomplish this task, [23] discusses the interoperability of the IntServ 

signaling protocol (RSVP) with custom signaling implemented in a non RSVP-aware 

DiffServ domain. In other words, signaling interoperability is only a secondary issue in the 

context of [23], while the primary focus is to provide an end-to-end IntServ support model 

across DiffServ domains. Conversely, we are interested in developing tools that allow the 

Internet to be equipped with a pure “connection blocking service”, regardless of the QoS 

provisioning level within each administrative domain. These tools are used by QoS-aware 

applications running at endpoint and/or border router side, and represent a solution for end-to-

end IntServ support as well as for any other kind of reservation framework. 

A number of mechanisms can be used in order to enable a service provider to offer 

support for QoS in a stateless network domain, even though, by definition, no states can be 

handled nor maintained in such a kind of networks. As a consequence,  signaling 

interoperation entities (e.g., NEs) can only be placed at the edge of the stateless domain, and 

no resource reservations can be performed over internal nodes. This means that, in a stateless 

domain, core routers are not able to set apart resources for a specific flow, nor manage it 

separately from the others. Conversely, core routers can be endowed with GRIP features, with 

the aim of providing a connection admission control in a sort of virtual link between two 

edges of a stateless domain.  

From a NSIS perspective, this means that no NFs can be placed in the core of a stateless 

domain, but NI and NR can be embedded in edge nodes. Following the approach proposed in 

[49], the NSIS protocol suite is split into a signaling transport layer and a signaling 

application layer. The former (NTLP) is a generic transport protocol, and it is signaling 
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independent, since no correlations arise with specific signaling methods. The latter (NSLP), 

on the contrary, contains mechanisms specific of a signaling application. A different NSPL is 

needed to support each specific signaling application, while a single NTLP gives support to 

any kind of NSLP. QoS mechanisms are specific of NSLP protocols, while NTLP provides a 

simple message transfer service. Thus, the complexity of the signaling is mainly located in the 

NSIS signaling application layer. In the GRIP case, the role of NSLP stays in the management 

of GRIP procedures for probing purposes and local node measurements, and in the 

appropriate marking of NTLP packets in the DiffServ domains (or equivalent operation for 

any other kind of stateless domains).  

In what follows we will focus on RSVP, as a practical example, and we will show how 

RSVP messages are useful to provide an admission control service into the DiffServ domain 

using the measurement based criteria proposed with GRIP. This QoS guarantees are provided 

to network customers, although non–QoS-aware domains have to be crossed during packet 

exchange. Moreover this approach is able to merge the scalability of GRIP/MBAC scheme in 

core networks, plus the advantages of RSVP policy in access networks. A further goal is to 

show how this framework (and in particular border router interface) can be easily 

implemented and introduced in a real access scenario, without a relevant cost for the 

provider21.  

With the aim of supporting RSVP and GRIP interworking, the GRIP implementation to be 

deployed has to take into account more that two QoS levels. In other words, there is the 

necessity for separate sets of paired (data and probe) packet labels per each pre-determined 

QoS level, in order to independently manage the related decision criteria. Specifically, when 

the source node wants to setup a flow, it firstly selects the domain QoS level Qi, which best 

matches the flow QoS requirements. Then, it proceeds by sending a packet marked as probe 

for the QoS level Qi. Each router manages a separate pair of queues22 for each QoS level, and 

exerts a dropping behavior on probes for the QoS level Qi on the basis of the measurements 

taken on the relevant aggregate traffic for QoS level Qi. For instance, the four available AF 

classes could be adopted for four different GRIP-enabled QoS classes. Additionally, a more 

interesting issue is related to the extension of the proposed approach to manage traffic flows 

with highly different bandwidth requirements. In fact, the described GRIP implicit signaling 

operation does not require a core router to be able to parse the contents of a probing packet. 
                                                 
21 The key could be the use of a programmable router, whose API must satisfy some defined criteria. As 
landmark we refer to the active router developed in the European founded POLLENS project (ITEA if0001a). 
22 At least, two virtual queue in the same physical queue are required (see the RIO approach).   
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Hence, in terms of router operation, the decision whether to admit or reject a flow does not 

take into account the amount of resources (e.g., peak or average bandwidth) required by the 

incoming flow. However, we have already shown that it is possible, in the hypothesis that AF 

classes are selected for GRIP operation, to partially transfer the semantics of the admission 

control request down to the data-plane by using a differentiated set of probes for different 

traffic profiles. In general, the idea is to use, for a given QoS level Qi, a single DSCP for 

admitted traffic, and multiple DSCP marks for probes. In section §3.3.3 and in [9] we have 

detailed the case in which three DSCPs are reserved for the implicit signaling operation 

(where the value three is related to the number of drop levels available in a DiffServ AF 

class). Traffic whose peak (or average) bandwidth requirements is above a given value use a 

different DSCP label for their probes. Consistently, network routers start dropping these latter 

probes in advance with respect to the “normal” probes. The rationale is that flow whose 

bandwidth requirements are “large” need to be blocked in advance with respect to traffic 

whose bandwidth requirements are “small”. 

Clearly, the obvious drawback of the described approach is that the number of packet 

labels supported by a domain might be extremely small with respect to the large variety of 

possible traffic descriptors. However, the described approach at least provides a rough 

mechanism to take into account different traffic profiles, without abandoning the advantages 

provided by the GRIP approach. 

§4.1.2 Edge-to-edge and cross-domain implicit signaling operation 

The implicit signaling description given for GRIP was based on the simplified assumption 

of end-to-end admission control operation, where the end points of the admission control 

procedure were the two end hosts, and where the core routers involved in the admission 

control procedure were considered to belong to the same network domain. To make GRIP 

deployable, a necessary extension is to localize the GRIP operation into the network domains 

that are not expected to deploy alternative state-based admission control forms, meanwhile 

allowing to extend the implicit signaling concepts to make them compatible with explicit 

signaling approaches adopted in network domains involved in the admission control 

operation. A general framework which allows coexistence of implicit and explicit signaling is 

to decouple the admission control in the following elements: 

• Intra-domain resource reservation mechanisms. These mechanisms should be limited to 

provide admission and congestion control functions whose scope is limited to a single 
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administrative domain, and whose design is related to the specific requirements of the 

considered domain (e.g., a radio access network, a core backbone, a small campus LAN, 

etc). The degree of QoS support provided within each domain will depend on the tightness 

of control that the edge to-edge mechanism will be capable to support. Schemes ranging 

from explicit per-flow resource reservation mechanisms (such as RSVP), down to 

aggregate forms of traffic control (e.g., via measurement based mechanisms, such as the 

one of GRIP) should be allowed to independently operate in different domains. The 

ultimate goal is that each domain should be placed in the ideal condition of determining 

the suitable throughput/QoS support tradeoff within the domain. 

• Inter-domain signaling mechanisms. To allow heterogeneous domains to exchange basic 

control information, a cross-domain signaling procedure should be deployed. Our view of 

such a cross domain signaling exchange is twofold: 

o one possibility is to deploy a novel standard for cross-domain information 

exchange. The drawback of such a solution is that the format and the contents of 

these control packets needs to be standardized, and this may limit the timely 

deployment of this cross-domain mechanism. 

o A much more simple, and appealing possibility, is to allow the coexistence of the 

above mentioned cross-domain signaling protocol under development with an 

implicit cross-domain signaling scheme, based on drop of signaling packets and 

thus usage of the principle of packet loss as a way to notify congestion. The 

rationale is that QoS provisioning in the Internet should be outlined following an 

evolutionary approach, so that each individual domain could independently and 

asynchronously upgrade its network schemes to provide support for QoS. 

 
figure 54 - A multi-domain scenario 
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Note that intra-domain and inter-domain resource reservations are both in the scope of 

NSIS signaling layer protocols (NSLP). In both cases, a common NTLP should provide 

common transport facilities to NSIS entities, while different NSLPs should be suitably used, 

and possibly nested by NFs, in different scenarios (note that, as to the nested protocol, a NF 

triggering the intra-domain procedure can also be considered a NI, as well as the NF 

connecting with the following domain, would act like a NR). NSLP translation will be needed 

in order to setup a reservation through a path crossing several administrative domains, with 

possibly different network architectures. Note that the case of a stateless domain can be seen 

by NFs like a single virtual link between two NSIS nodes: the NSLP is aware of the behavior 

of such a virtual link and operates in a suitable way (e.g., a DiffServ cloud can be seen like a 

link to probe with GRIP signaling mechanisms - a similar approach was considered also in the 

IntServ operation across DiffServ [23]). 

§4.1.2.1 Explicit-to-Implicit signaling mapping 

Consider, as a concrete example, the scenario depicted in figure 54. Here, the source to 

destination path comprises three different domains, namely A, B, and C, each running a 

possibly different intra-domain reservation protocol (namely RP1, Implicit Signaling, and 

RPX). Each reservation protocol has its own scheme. For simplicity of presentation, we 

assume that domain border routers coincide (e.g. R2 functionally acts as a edge router for both 

Domain A and B - though in practice these functionalities will be split in the two involved 

edge routers). 

The distinction between inter-domain and intra-domain resource reservation mechanisms 

is particularly effective in the case of Implicit Signaling. In fact, a source node which wants to 

setup a QoS flow sends an admission control request to the node, in the first domain, in 

charge of processing the reservation request (in the example, node R1 in Domain A). The 

semantics related to the request (traffic specification, QoS requirements) are contained in the 

signaling packet. This signaling packet carries both application-level information to be used at 

the destination node, as well as information upon which intra-domain reservation protocols 

rely on to perform their reservation tasks. Node R1 converts these QoS semantics in 

procedures supported by the specific intra domain resource reservation mechanism, and 

triggers the specific edge-to-edge reservation mechanism RP1 running through Domain A. At 

the end of the reservation procedure, if the domain is capable of admitting the flow, then the 

signaling packet is forwarded out of the domain by the egress node and forwarded to edge 
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node R2 in the adjacent domain. Otherwise, it is dropped. Assume that Domain B does not 

support any intra-domain explicit signaling mechanism, but it is capable to support the 

implicit signaling operation described in the previous sections (e.g, GRIP). Edge node R2 is 

thus in charge to: 

• read the contents of the explicit signaling message; 

• find the best match according to the QoS requirement and to the traffic specification, with 

the probe tagging supported in the domain; 

• tag the signaling message as a probe and send it across the network domain; 

• in case of successful delivery, edge router R3 will intercept the signaling packet. It will 

send a feedback packet to R2 in order to complete the implicit signaling exchange, and 

will invoke the intra-domain resource reservation mechanism for Domain C (if any).  

Note that, if the end-to-end signaling path is expected to provide an ack on the same 

forwarding path, router R2 may wait for ack reception and for piggybacked feedback 

information necessary for the completion of the Implicit Signaling loop over the end-to-end 

ack. In the same fashion, RP1 procedures could be completed with a feedback coming from 

R2 after the Implicit Signaling is completed (i.e., signaling procedures could be nested). 

Task of the Domain B administrator is to determine a proper matching between the 

information delivered into the inter-domain signaling packet and the marks - probe(s) and data 

- used inside the domain. Finally, the signaling packet arrives at the ingress node of Domain 

C. Here, the ingress node recognizes that the packet is for signaling, but it finds that the 

packet does not carry information useful for the reservation protocol RPX (i.e., the packet and 

even the relevant marks are incompatible with this domain inner procedures). Therefore, 

Domain C can decide to:  

• run a generic (e.g., un-parameterized) edge-to-edge signaling procedure; 

• drop the packet (i.e., drop the entire flow); 

• simply forward the packet, with no admission control, on a best effort basis.    

In case of end-to-end reservation procedures with receiver-initiated resource reservation 

(e.g., this is the case of RSVP, in which resources are reserved by means of a Resv message, 

sent by the destination node as a feedback for the Path message sent by the source node), the 

implicit signaling operation can also be triggered by the reception of the message carrying the 

reservation indication (e.g., the Resv message in the RSVP example) in the upstream 

direction. In this case, R2 could transparently forward uplink signaling messages; then R2 
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should parse upstream signaling, store end-to-end signaling messages and start a probing 

phase with (possibly dummy) probe packets in the downstream direction. If this independent 

intra-domain signaling session succeed, then the stored end-to-end signaling message is 

forwarded inside Domain A. Although the above example is very loose, and several problems 

need a thorough investigation, nevertheless it appears that a GRIP-like tool and its implicit 

signaling can be the “glue” for the coexistence of highly heterogeneous edge-to-edge 

reservation mechanisms. Moreover, note that the outlined approach allows the coexistence of 

domains running a reservation protocol with Best Effort domains. Clearly, the QoS 

provisioned to the considered end-to-end flow will be bottlenecked by the worst case domain. 

But in the same time, domains that run a reservation mechanism are capable of limiting the 

traffic admitted, and thus locally guaranteeing QoS support. 

A thorough understanding of this latter issue is of importance. The cross-domain 

reservation scheme described above is not necessarily aimed at providing an end-to-end QoS 

support or performance guarantees. Conversely, it is devised to guarantee each domain that 

the performance encountered by packets crossing the given domain are kept under control 

(depending on the degree of tightness of the reservation protocol adopted). In other words, our 

view of the performance provided is domain-centric, rather than an end-to-end guaranteed 

performance view. Possibly, suitable routing schemes and SLAs can find a path that 

comprises only QoS aware domains. Note that this is line with the way of operation of other 

functions in the Internet (e.g., routing), which allow different domains to adopt different 

schemes. 

§4.1.2.2 Implicit-to-Implicit signaling mapping 

Mostly interesting is the case of two adjacent domains, both relying on some form of 

implicit signaling. In fact, to extend the per-flow implicit signaling approach, it is sufficient to 

provide a mark to mark matching (e.g., DSCP to DSCP, if DiffServ is aimed at) at the 

interconnection node. Specifically, consider the case illustrated in the figure 55, and assume 

that the QoS classes supported in Domains A and B are different, either in their number as 

well as in the supported QoS levels. Via external agreements (where the QoS level semantics 

are considered), Domain B may determine a best matching between probe labels used in 

Domain A and corresponding probe labels used in Domain B. A corresponding matching for 

information labels is also provided. In DiffServ, this translates into a simple DSCP to DSCP 

table,  according  to  which  packets  incoming  from  Domain A  are  labeled when forwarded 
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figure 55 - Implicit-to-Implicit Signaling mapping 

through Domain B. If performed properly, this marking matching has several important 

properties. Firstly, probes in Domain A remain probes also in Domain B. This implies that a 

per-flow admission control request in Domain A is propagated, with no need to parse the 

content of the signaling packet, also through Domain B. This allows to extend per-flow 

admission control even through domains connected at gigabit speed, with no need to invoke 

higher layer entities which would be hardly scalable. Secondly, the domain administrators 

may rely on a loose matching between QoS levels across different domains. This implies that 

the QoS model internally deployed in each domain does not need to be the same across 

different domains. In other words, the extension of the GRIP-like implicit signaling does not 

automatically implies an extension of the same QoS semantics (which are agreed offline) 

across different domains. 

§4.1.3 Deployment considerations 

As discussed in section §3.2, implicit signaling is suited to be deployed over DiffServ 

network by using the AF specification and GRIP. However, commercial routers do not 

typically allow to configure the dropping behavior of AF drop levels via bandwidth 

measurements. In fact, they typically determine the dropping probability via (filtered) 

measurements of the queue size and RED/RIO policies. The results reported in section §3.3.3 

highlight the effectiveness of GRIP over available AF implementations, and much more over, 

AF router endowed with bandwidth measurement tools. Furthermore, protecting implicit 

signaling from possible route changes, due to the eventual dynamics of routing protocols, is a 

task of signaling interoperation protocols such as the NSIS transport layer protocol (see the 

General Internet Messaging Protocol for Signaling proposed in [89]); we can think to enhance 

NSLP protocols with additional  probing  features,  in order to periodically  send  packets over  
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figure 56 - IntServ-DiffServ scenario 

NTLP after the setup of a flow to refresh both the inter-domain and end-to-end path. On the 

other side, DiffServ will be probably deployed in the core network where forwarding 

mechanisms such as MPLS, will limit the frequency of route changes below typical session 

duration. 

§4.1.4 RSVP transparent signaling across GRIP-DiffServ domains 

In this section we will focus on a scenario similar to the one dealt with in §4.1.2. More in 

detail, the following represents a possible application of the concept presented in §4.1.2. Two 

alternative solutions for RSVP and GRIP interoperability are then reported. 

§4.1.4.1 RSVP over GRIP 

Let's consider an RSVP-handled connection between two hosts (SRC and DST – see 

figure 56), and suppose that the path between the  two endpoints traverses three different 

administrative domains. Domain A and Domain C use a stateful IntServ network architecture, 

while Domain B is a stateless DiffServ domain.  

When the source SRC needs to setup a flow to the destination, it opens an RSVP session by 

sending a Path messages, that semantically operates like a probe injected in the network. 

Then, the sender waits for a Resv message, which semantically operates like a feedback. The 

Path signaling packet injected in the network carries application-level information to be used 

at the destination node, DST; these information can be read by any RSVP router along the 

path. Of course, this is not the case of routers inside Domain B, where DiffServ is deployed. 

When the Path message firstly reaches the ingress node of Domain A (i.e. R1), this node 

recognizes, in the order, that the packet is a signaling packet, and it contains information 

usable by RSVP reservation protocol. This signaling packet is meant for end-to-end 

reservation between SRC and DST (or between R1 and R4, if, for security reasons, 
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reservation is operated by the network provider, once given a user request). Anyway, the Path 

packet triggers the specific edge-to-edge reservation mechanism (RSVP) through Domain A. 

If routers in the path segment between R1 and R2 have resource enough to accommodate the 

connection, then the Path message is forwarded out of the domain by the egress node. In 

Domain B, instead of RSVP, GRIP over AF PHB is used. In this case the original Path 

message is simply labeled as a probe packet and forwarded from ingress router R2 to egress 

router R3. If multiple paired PHBs are available in Domain B for different QoS classes, a 

SLA between IntServ and DiffServ domains establishes the mapping between the IntServ 

requested service and DiffServ PHBs. If congestion is not present in Domain B, Path message 

is not dropped and can be further forwarded to Domain C, where it is recognized as an RSVP 

signaling message. Thus the RSVP reservation procedure is started also in Domain C, and the 

connection request can eventually be delivered to DST. Finally, if DST accepts the 

connection, it sends a Resv message to the sender (or it triggers R4 to generate such a 

message). The RSVP Resv message crosses back Domain C, then enters Domain B where is 

labeled as a feedback and not parsed by DiffServ core routers. If this message reaches the 

egress router R2 before the timeout adopted by the GRIP expires, then the GRIP entity 

located at R2 forwards the message to Domain A, and reservation procedure for DiffServ 

domain is completed. Otherwise the Resv message is dropped and SRC will not receive a 

feedback for its connection request. In case that the admission control in the DiffServ domain 

gives a positive outcome, the Resv message is parsed by RSVP routers in Domain A and 

finally by the source. If the reservation procedure gives positive response separately in each 

domain, then SRC activate the flow by emitting information packets.  In case the signaling 

feedback  (Resv) does not arrives back in due time, the flow setup is aborted. The flow 

message chart relative to the described operation is reported in figure 57. 

As to NSIS terminology, SRC acts like a NSIS Initiator (NI), DST acts like a NSIS 

Responder (NR), while edge routers and RSVP routers operate the NSIS forwarding (NF). 

Furthermore, edge routers run NSLP translation (from RSVP support to GRIP signaling and 

vice versa). 
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figure 57 - Message sequence chart for RSVP over Implicit Signaling    

§4.1.4.2 RSVP plus GRIP 

Here we propose an alternative solution to the case depicted in the previous subsection. Let's 

consider again an RSVP-handled connection between two hosts (SRC and DST – see figure 

56), and suppose that the path between the two endpoints traverses three different 

administrative domains. Domain A and Domain C use a stateful IntServ network architecture, 

while Domain B is a stateless DiffServ domain. When the source SRC needs to setup a flow 

to the destination, it opens an RSVP session by sending a Path messages (or it triggers R1 to 

do it). Then, the sender waits for a Resv message. The Path signaling packet injected in the 

network carries application-level information to be used at the destination node, DST; these 

information can be read by any RSVP router along the path. Of course, this is not the case of 

routers inside Domain B, where DiffServ is deployed. R2 does not affect the transmission of 

new IntServ flow requests. When a RSVP Path is received by R2 from the IntServ area 

(sender), this message is labeled with a suitable DSCP (e.g., Best Effort) and forwarded to the 

final destination, across the DiffServ domain. The same is for Resv message generated by the 

receiver, when the connection is accepted by the destination: RSVP Resv messages coming 

from the IntServ area are simply labeled with a default PHB and forwarded to the destination, 

i.e., the IntServ sender. R2 operation starts as soon as an RSVP Resv message arrives from 
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the receiver, upon the Resv message has crossed the DiffServ core area. When RSVP carries a 

IntServ reservation requests, the RSVP packet payload specifies the receiver traffic 

specification (RSpec) and the class of service to be started. Based on these data the router 

selects the PHB group better suited to accommodate the flow, when/if accepted. The 

semantics of such a logical mapping are not specific part of the proposed signaling 

interoperation function, and are based on either end-to-end QoS arguments, as well as internal 

DiffServ domain administrative management issues. One possible mapping may be 

implemented as follows: based on the flow descriptor in the RESV message, the R2 selects 

the PHB group, among the available classes, with the goal of  supporting, within a PHB 

Group, flows with RSpecs as much similar as possible (e.g., maps incoming flows with peak 

rate in a given range on the same PHB Group; if a class is not available, the connection is 

blocked). This operation makes it easier to configure, for a given AF PHB group, the 

congestion threshold within each core router. After the selection of the appropriate PHB 

group, R2 starts a GRIP session in the scope of the DiffServ domain, towards R3. In the 

meantime R2 removes the RESV message from the network and stores it in memory, together 

with the selected DSCP chosen. A GRIP probe is sent and a GRIP timer starts running. When 

R3 intercepts a probe coming from R2, it invokes the GRIP connection decision criterion and 

eventually acknowledges the probe packet with a GRIP ack in the reverse path, towards R2. If 

this ack message does not arrive at R2 within the probing phase timeout, the R2 assumes that 

the probe has been dropped because of congestion, and thus that the flow setup procedure 

needs to be aborted. Unlike R2, the R3 node does not need to store any additional state/table 

other than the standard RSVP state. R3 simply needs a default DSCP to label incoming Resv 

messages. Thus, if R2 receives a GRIP ack before the GRIP timer expires, the previously 

stored RSVP Resv is forwarded to its final  destination, in the IntServ area. An entry is added 

in the R2 mapping  table, according to information stored with the intercepted Resv message. 

Such a mapping associates the  flow ID (sender/destination, IP/port pairs) to the selected PHB 

group (specifically, the set of DSCP values used by the DiffServ domain to support the PHB 

Group). Then the Resv message is processed by the RSVP part of R2, and delivered to the 

sender, which starts transmitting data packets. Afterwards, as data packets arrive at router R2, 

they are marked according to the DSCP value reserved for data packets stored in the relevant 

mapping table.  
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figure 58 - Messages for RSVP plus GRIP. An IntServ service is mapped on an AF PHB 

The flow message chart relative to the described operation is reported in figure 58. Again, 

as to NSIS terminology, SRC acts as NI, DST ply the role of NR, while edge routers and 

RSVP routers operate the NSIS forwarding (NF). Furthermore, edge routers run NSLP 

translation from RSVP support to GRIP probe/feedback and vice versa. 

§4.1.4.3 Service mapping 

Internet access providers usually differentiate their customers on the base of a subscribed 

contract that specifies both characteristics of the service to be provided and the data flow 

constraints. What we suppose is that any consumer receives and experiences a QoS level that 

is consequence of the billing rate. Requests for IntServ services must be mapped into the 

underlying capabilities of the DiffServ network region. Aspects of the mapping include: 

• selecting an appropriate PHB, or set of PHBs, for the requested service; 

• performing appropriate policing at the edges of the DiffServ region; 

• exporting IntServ parameters from the DiffServ region (e.g., for the updating of AdSpec); 
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figure 59 – QoS vs. PDR in a DSCP mapping table 

• performing admission control on the IntServ requests that takes into account the resource 

availability in the DiffServ region. 

When a new flow asks for resources on the DiffServ network, the interrogated border 

router (BR) has to decide the class to associate to the flow. This decision is based on the 

identity of the client and the requested amount of resources. It can also decide to map the flow 

to Best Effort class or to block that flow. Typical criteria to decide the DSCP to use are peak 

(mean) data rate, and burst size. Issues to be considered are in the associated Service Level 

Agreement (SLA). If we define a metric to evaluate a level of service and a metric to evaluate 

the amount of requested resources we can map the DSCP decision on a two-dimensional 

plane whose axes are the aforesaid parameters. In  figure 59, it is qualitatively shown the 

result of these operations. In the table reported, each point is univocally identified by a QoS 

level (that represents SLA) and peak data rate (PDR); the color of the point is the DSCP that 

will be used. The domain administrator must fill a similar table and store it in a repository. 

Once a decision were due, the border router would access the repository and check the color 

(i.e. DSCP) associated to a point (i.e. flow load). 

§4.2 The multicast case 

In this section we show an application of GRIP in a quite unexpected framework. In fact 

here we focus on multicast in DiffServ network. The idea to adapt GRIP-like algorithms to 

support QoS multicast services was envisioned while considering that stateless IP networks 

architectures are not provided with QoS mechanisms for the differentiation of QoS levels in a 
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multicast application23. However, the QoS model envisioned in the DiffServ architecture 

leaves the network provider free to enforce additional tools, and a widespread discussion is 

still open in the Internet arena as regards the QoS support in unicast and multicast DiffServ 

scenarios. Since the DiffServ model looks very promising due to its scalability and flexibility, 

and considering that DiffServ is now assuming a great importance and, as a matter of fact, it 

represents the new research direction for the QoS field, we decided to dedicate our effort in 

the provisioning of an efficient mechanisms endowed with capabilities that support different 

levels of QoS in a DiffServ network. Hence, it has been proposed a mechanism that copes 

with the DiffServ architecture design and, at the same time, proposes an evolutionary 

implementation of a QoS-aware multicast protocol, guaranteeing backward compatibility with 

existing network architectures and multicast protocols and approaches. A particular 

implementation of the proposed approach over Linux operative system where DiffServ plus 

proprietary implicit signaling protocols have been deployed, is also shown in the conclusive 

part of this chapter. This implementation allows to differentiate two QoS levels for multicast 

delivery groups: the Best Effort users group, and the QoS users group, as in a premium 

service strategy. The two main issues in the study and in the real implementation are: 

• the differentiation of users inside the same multicast transmission; 

• the support of Quality of Service by means of mechanisms able to verify the resource 

availability before allowing new users to join a QoS group.  

It comes into play the problem of supporting dynamic joining of any users to a multicast 

group while requesting a QoS-aware service, and avoiding multicast resources reservation in 

compliance with DiffServ principles. However, some additional features can be exploited 

from the presence of multicast routers, which are a minority, and have to afford some stateful 

operations. Our solution inherits some ideas from GRIP and combines two ideas: firstly, 

resource availability along a new QoS path is verified via a probe-based approach; secondly, 

QoS is maintained by marking replicated packets with a special DSCP value, before 

forwarding them on the QoS path. 

§4.2.1 Multicast applications in DiffServ network and related work 

Internet applications extend over a very broad range, with very significantly different 

burden for the network infrastructures. In particular, as network resources grow and access 

                                                 
23 The activity presented here was in part founded by the Italian Government in the frame of the FIRB VICOM 
project. 
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networks speed up, the interest for new and much more bandwidth consuming application 

augments. The results is that we are now witnessing the emergence of several Web-based real 

time multimedia and multicast applications, such as video conferencing, staggered multimedia 

information retrieval, etc. Among the huge number of proposals that have appeared in the 

literature in the area of QoS multicast (see [94] and [95]), most of the works concern to the 

development of multicast QoS routing protocols, as clearly shown in [25], [91] and references 

therein contained. Instead of solely considering protocols that select multicast paths under 

QoS constraints, we argue that the issue of endowing current multicast protocols with 

resource reservation and admission control mechanisms has to be deeply dealt with. 

Conversely, many works tend to confine these themes to mere and somehow straightforward 

extension of related unicast protocols. For example, [41] proposes a reservation mechanism 

for multicast traffic based on a reference Internet model very similar to that proposed in the 

IntServ approach. In addition, the RSVP protocol specification [18] has been devised to 

efficiently support multicast traffic. Again, we argue that novel problems arise in QoS 

multicast when the reference unicast QoS architecture is not based on explicit and stateful 

resource reservation protocols, like in the case of  the DiffServ framework [14]. The potential 

problems, and the complexity of supporting multicast in a DiffServ environment are sketched 

in [14] and, in greater details, in [15], [94], [106] and therein contained references. In 

particular, [15] highlights the following issues. 

• Firstly, dynamic addition of new members to a multicast group can adversely affect 

existing traffic, if resources are not explicitly reserved after each join, since replicated 

packets get the same DSCP [14] of the original packet and thus experience the relevant 

treatment consuming unreserved resources.  

• Secondly, resources should be reserved separately for each multicast tree associated to a 

given sender, to allow simultaneous sending by multiple sources, with QoS constraints.  

• Thirdly, it appears difficult to support heterogeneous multicast groups, i.e., groups in 

which different users have different necessities.  

More into details, as regards the last point, participants who can cope with a Best Effort 

service should coexist with participants needing specified and different levels of QoS 

assurances, so that the same multicast group can deliver differentiated services. For instance, 

a user could browse a multicast multimedia session in Best Effort mode and then decide to 

switch to a QoS mode (possibly by paying for it). The paper [94] proposes a solution for QoS 

support in DiffServ based on tunneling mechanisms (multicast packets encapsulated in 
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DiffServ), which, in coherence with Internet principles, pushes the complexity to the borders 

of the DiffServ domains. The work presented by paper [107] devises a solution which 

succeeds in maintaining the integrity of negotiated SLA by means of weighted traffic 

conditioning and receiver-initiated marking schemes; admission control operations are 

performed by suitably signaling network management entities (e.g., Bandwidth Brokers, or 

suitable functionality within ingress routers). In turn, this solution also supports 

heterogeneous requirements within a multicast group by encapsulating the markings for each 

of the branches with such heterogeneous QoS requirements in the packet header, at the ingress 

router of the domain.  

In the following of the present chapter it is our intention to propose a QoS-aware multicast 

solution ready to be deployed in DiffServ IP networks, even though some additional features 

could be upgraded later on. The goal of our proposed solution is twofold: 

• to provide flexible QoS support with respect to heterogeneous multicast groups, and 

• to maintain compatibility with currently deployed multicast protocols, with specific 

reference to PIM (Protocol Independent Multicast) [35], [40].  

Furthermore, our solution aims at furnish: 

• QoS guarantees to the final user; 

• benefits for service providers, in terms of both traffic reduction (e.g., by avoiding flow 

duplication) and management tools (e.g., service  negotiation with the user); 

• open source implementation over Linux routers.   

§4.2.2 The PIM-SM multicast protocol and QoS extensions 

First of all it has to be defined a multicast protocol that could be used in a DiffServ 

network. Thus, as a starting point for the introduction of QoS features for multicast, we have 

selected PIM (Protocol Independent Multicast), in the Sparse Mode (SM) version [35], [40], 

as the reference multicast routing protocol. The advantages of PIM stay essentially in its 

independency on the underlying unicast routing protocols, and in the fact that it allows several 

different configurations of the multicast distribution tree: central core router configuration are 

possible, where a unique group has at its disposal a shared distribution tree; in alternative, 

different distribution trees can be used per specific source sending to a group; the coexistence 

of shared and source-specific trees for the same group is also permitted. Moreover, PIM-SM 

is suitable in order to introduce QoS as an incremental addition to existing multicast 

protocols, allowing backward compatibility; PIM-SM can also be adopted without relevant 
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modification in the DiffServ router operation and in the underlying routing protocols, 

resulting in a flexible solution with respect to heterogeneity of users within a group, and of 

source/core-based distribution trees. 

To provide QoS multicast over DiffServ, two important issues need to be addressed, and it 

must be done by simply applying different forwarding disciplines to packet aggregates, based 

on their DSCP value [14]. The first issue is how to differentiate the service level supported on 

different paths inside the multicast distribution tree. The second one is how to provide an 

admission control function in order to support dynamic joins, from QoS-enabled users. To 

solve the first issue, the authors of paper [15] suggest to add an additional field in the 

Multicast Routing Table (MRT), which specifies the DSCP(s) to be used for each output link. 

It is thus possible to specify whether the next hop is QoS-enabled (i.e., mark packets with a 

specified DSCP, corresponding to a negotiated QoS level), or not (i.e., mark packets with the 

Best Effort DSCP). This solution allows heterogeneous users to share the same multicast 

distribution tree, as well as it allows deployment of several different QoS levels in the 

network. Our solution inherits from [15] this marking strategy. However, this handy tool is 

not sufficient by itself to provide QoS-aware and differentiated services in a multicast 

environment. In our proposal, we combine a marking strategy very similar to that proposed in 

[15] with a data-plane DiffServ-compliant admission control function, i.e., the GRIP 

mechanism presented above, that can be adapted within the PIM-SM framework.  

By assuming PIM-SM as the multicast protocol, a router, called Rendezvous Point (RP), 

is used for traffic sources S, as the root of the distribution tree for the multicast group. Hosts 

Hi access Designated Routers (DRi) on their LAN, which act on behalf of those hosts as far as 

the PIM-SM protocol is concerned. In other words, the DR manages, on one side, all local 

group management information (e.g., via the IGMP protocol), and, on the other side, it emits 

PIM join/prune messages towards the RP. We assume that all routers are DiffServ capable, 

while a few routers (A, B and C in figure 60) additionally support PIM. Intermediate DiffServ 

routers, indicated in figure 60 with the label “R”, are transparent to the multicast protocol. 

Multicast routers are the node of the multicast tree, thus replicating each packet received, in 

order to deliver it to every multicast destination. Routing information are provided by the PIM 

protocol operation (see [40]) and stored in a table called Multicast Routing Table (MRT). Of 

course, multicast routers are stateful, according to the standard multicast protocols, while 

DiffServ routers are stateless. In this scenario, scalability derives from the fact that only a 

fraction (possibly small) of the network routers should be multicast capable.  
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figure 60 – Example network scenario 

Following [15], we also assume that each MRT stores, for each router output interface 

(oif), an additional entry. This entry represents the DSCP value, which is used to mark 

replicated packets that are forwarded along the considered interface. The figure 60 shows, in 

the leftmost column, labeled “Only H1+H2”, the MRT states for routers A, B, and C, in the 

assumption that only hosts H1 (QoS-enabled) and H2 (Best-Effort) are members of the 

multicast group. In the figure we adopted the label “BE” to denote a best effort service, and 

the label “QoS” to denote a service with pre-defined QoS requirements. For the sake of 

simplicity, in what follows we assume that the network provides a single QoS level, in 

addition to the best effort service. Again, by looking at figure 60, we see that the MRT of 

router A marks packets directed to host H1 (interface oif 2) with a QoS marking, while it 

labels packets forwarded to interface 1 as BE. In the MRT of router B, clearly, only the 

interface 1 is active, while router C has no multicast state, at the moment. Let us now discuss 

what happens when, firstly the BE host H3, and then the QoS host H4, join the multicast 

group.  

In the case of H3, we adopt a standard PIM join operation. The Designated Router of H3, 

DR3, sends a PIM Join(G) message towards the RP. When a multicast router receives this 

message, it adds a new entry to its multicast routing table (MRT), with a BE value, for the 

associated DSCP marking field. This state will indicate that future datagrams destined for 

group G must be marked as BE, and forwarded on the interface where the join message came 
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from. The Join(G) message is regenerated upstream along what we define as the Branching 

Path. This is the path from the requesting DR to the first router that already has a Join(G) state 

for that group, which is called Branching Router. Eventually the Branching Router could 

coincide with the RP itself. In the specific case of figure 60, the Branching Path goes from 

DR3 to router B, which is the Branching Router, since it already has a Join(G) state created by 

the Join message coming from host H2, by way of DR2. The second column of figure 60, 

labeled “H3 joins”, shows the modified multicast routing tables in routers A, B and C after a 

successful join of the BE host H3. In the case of QoS-host H4, a fundamental difference is the 

extent of the Branching Path. If the Designated Router DR4 were to send a standard Join(G) 

message, the Branching Router would have been router C, since it already has a Join(G) state. 

However, when a QoS host wants to join the group, it needs to send a modified24 join 

message, hereafter referred to as QJoin(G) message, which explicitly carries the QoS level the 

host is requesting. This QJoin(G) message travels upstream until it either reaches the RP, or a 

router with a QJoin(G) state (i.e., a state that instructs a router to send QoS marked traffic 

over at least one of its interfaces). We define QoS Branching Path the path from the 

Designated Router to the first router that already has a QJoin(G) state for that group. We 

name such a router as QoS Branching Router (note that it may be the RP itself). In figure 60, 

the QoS Branching Router for host H4 results to be router A. The rightmost column of figure 

60, labeled “H4 joins”, shows the modified multicast routing tables in routers A, B and C after 

a successful join of the QoS host H4.  

As a side comment, note that now the distribution tree has a QoS path from RP to DR4. 

Therefore, hosts H2 and H3 will receive a BE service only on the last hop of their path. In 

other words, the fact that some members of the multicast groups require QoS, indirectly 

brings benefits also to BE users, even if they are not paying for such benefits. 

§4.2.3 Integration of GRIP-like operation 

Joining a QoS group requires a QoS-aware procedure to be run over the path where the 

QoS service has to be extended, i.e., the new QoS Branching Path. Provisioning of QoS in 

DiffServ networks is frequently assumed to be accomplished via static over-provisioning (i.e., 

over-dimensioning of core network links with respect to the expected offered traffic). When 

dynamic provisioning of DiffServ domains is considered, the traditional approach is to rely on 

                                                 
24 The new PIM messages considered, QJoin(G), Confirm(G), QPrune(G), can be built upon the PIM message 
format specifications, as extensions. In fact, PIM defines only height different packets, while a four-bit packet 
type field (i.e., sixteen possibilities) is available. 
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centralized control entities, often referred to as Bandwidth Brokers (BB). A BB is an agent 

that has sufficient knowledge of resource availability and network topology to make 

admission control decisions. Border routers use control protocols to interact with this agent. 

The existence of BBs has been assumed in [15], [107] to manage multicast traffic handling 

strategies. Conversely, we have shown that per-flow admission control can be supported on 

stateless DiffServ domains, with no need of managing per-flow states within each core router.   

With reference to the example discussed in figure 60, in our presentation we focus on the 

establishment of QoS on the QoS Branching Path from router A as a starting point, to 

designated router DR4 as a destination point25. Our proposal consists in adapting GRIP to the 

multicast case. Although we remark that the GRIP router operation can be extended to support 

several levels of QoS and different traffic classes, here we require that GRIP router support at 

least three different DSCP values: BE packets, QoS information packets, and QoS probing 

packets. Let us look back at figure 60 remembering that we want to establish QoS, 

considering the network router A as a starting point and the designated router DR4 as a 

destination point. When the QoS Branching Router A firstly receives a QJoin(G) message, it 

sends a GRIP probe down on the multicast tree. As reviewed above, the probe is a normal 

packet, which is distinguished from information packets via a special DSCP marking. 

Specifically, if QoS packets are marked with DSCP value, say X1, GRIP probes are marked 

with a different DSCP value, say X2, which is logically associated to X1. For each QoS level, 

a different pair of DSCPs should be reserved. All network routers support a DiffServ PHB 

which consists in letting packets marked as X2 go through only, for instance, if the load run-

time measured on X1-marked packets is lower than a given threshold. The result of this 

operation is that a GRIP probe is received at the destination DR4 only if all the routers along 

the path are found in an non-congested state, defined with a suitable criterion. When the GRIP 

probe arrives at DR4, a Confirm(G) message is sent back as a feedback packet, to notify the 

sender node A that all the routers along the QoS Branching Path can accept a QoS connection. 

When the Confirm(G) message is finally received at router A, the multicast data can be 

forwarded on the new path with QoS guarantees. As discussed in the previous section, 

subsequent replicated packets are marked according to the DSCP value specified in the 

Multicast Routing Table. 

                                                 
25 We assume that QoS on the last hop DR4  H4 is provided by some layer-2 mechanism, or, in other words, 
that when the host H4 wants to join the multicast tree with QoS, a local admission control function on the last 
hop segment has been already performed with positive answer. 
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This basic operation appears a straightforward extension of GRIP. However, there are 

several details than need to be clarified. A first problem is that, although the aim of the GRIP 

probe is to check whether the point-to-point communication from A to DR4 can support QoS, 

in practice it is necessary to route the GRIP probe as a multicast packet. In fact, the GRIP 

probe needs to follow the same path of the multicast data packets. This problem can be solved 

by using a multicast packet type, for the GRIP probe, and by updating the multicast state 

within each multicast node so as to route the GRIP probe down to the appropriate output 

interfaces only. This is accomplished by extending the PIM-SM state machine associated to 

each multicast router interface, to manage some additional states per QoS class. A simplified 

version of the extended PIM-SM finite state machine is represented in figure 61, where the 

four relevant states are reported. The semantic of the plot reporting the PIM-SM finite state 

machine is explained as follows: 

• Idle state: this is the default state for a service, and it denotes the absence of joined users 

in the branching path departing from the router itself. If not refreshed, any other state is 

switched to Idle after a timer expires. However, explicit transitions to Idle state can be 

enforced by means of pruning messages.   

• Join state: if one or more users join a multicast group in the path which the router belongs 

to, the router switches in this state. Information packets are replicated and forwarded by 

the router in the appropriate interface, in a BE fashion. The Join state is reached upon the 

reception of a Join message, or if a probing attempt does not succeed, or also if a QPrune 

message asks for the downgrade of a QoS group.   

• Probing state: when a multicast router output interface is in the Probing state, it means 

that a QJoin message has been received, but no Confirm message has been received yet. 

The PIM-SM also enters this state upon an already joined user asks for QoS upgrade: the 

probing procedure is performed as in the Probing sate, while going on experiencing a BE 

multicast service; if a Confirm is received within a timeout, the multicast delivery is 

enhanced to the requested QoS level, i.e., the PIM-SM enters the QoS Join state described 

below. Otherwise, the PIM-SM switches back to the Join state. 

• QoS Join state: this state is activated after a Confirm message, and it implies that the 

router output interface is QoS-enabled. When in the QoS Join state, the multicast routing 

table is set as described in the previous section. 

It is worth noting that, upon probing phase is started and not yet confirmed nor aborted, 

multicast traffic packets are forwarded according to the following rules: 
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figure 61 – PIM-SM extended finite state machine 

• Packets labeled as information packets are replicated and forwarded according to the 

existing Multicast Routing Table. With reference to the example of figure 60 while host 

H4 is joining the multicast group (i.e., before a Confirm(G) has arrived), routers A and B 

continue to operate according to the previous MRT (central column in figure 60), i.e., they 

replicate and forward packets labeled as BE, while router C does not replicate multicast 

data packets on the output interface 2. 

• Probes are recognized based on their special DSCP value. They are forwarded only 

toward interfaces whose state is Probing. With reference to the considered example, a 

probe packet is generated at router A and forwarded only on interface 1, while the same 

probe packet is forwarded only on interface 2 at both routers B and C.  

The extended PIM-SM finite state machine is illustrated in figure 61, in the assumption of 

a single QoS class. In case of more QoS classes, each class will have its own Probing and 

QoS Join state. Moreover, for convenience of illustration, we have omitted the PIM-SM Prune 

Pending state, and a similar QoS Prune Pending state necessary to handle the QoS class.  

Entrance in this state occurs when a Prune(G) message or, in the case of QoS, a QPrune(G) 

message is received. The system remains in this state until a timeout expires, or a Join(G), or 

QJoin(G) in the case of QoS, is received to refresh the multicast state. In fact, we recall that 

multicast states are “soft” i.e., as long as a group G is active on a router interface, the router 

will periodically receive Join(G) or QJoin(G) messages in order to refresh the relevant states. 

When information transfer for this group is no longer desired, the requiring entity should stop 

sending joins for that group, so that the relevant state expire. In alternative, an explicit PIM 

Prune(G) messages can be sent towards the RP for that multicast group. Furthermore, any 

Join or QoS Join state is absorbed in the Idle state if not timely refreshed.   
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§4.2.4 A real test bed implementation 

A real implementation of the theoretically proposed QoS-aware multicast scenario has 

been provided26, in accordance with the description given in the sections above. The 

implementation of multicast protocols and QoS modules over DiffServ routers is performed 

by means of PCs equipped with Linux Red Hat 9.0 operating system, and by tackling four 

main points:  

• managing QoS-joining/pruning procedures in a dynamic way - this requires a new joining 

method for QoS users; 

• enforcing admission control over those branches of the multicast tree that do not 

accommodate QoS traffic, but that are requested to accommodate QoS traffic for a new 

user - this requires the introduction of a GRIP-like mechanism in the multicast routers; 

• extending PIM-SM signaling and messages, in order to distinguish BE and QoS requests - 

in doing this, we have to introduce new PIM-SM messages, without modifying the 

existing ones; furthermore, the PIM-SM  finite state machine has to be upgraded, 

including pending state while probing the path; 

• marking packets and router interfaces in order to differentiate between BE and QoS traffic 

and output router interfaces where packets have to be accordingly marked. 

In this scope, the PIM-SM has been enhanced with a new module for QoS, whose purpose is 

the dynamic creation and maintenance of the QoS-aware interfaces in the multicast tree. This 

Q-module, as depicted in figure 62, operates in parallel with legacy PIM-SM modules. The Q-

module creates a multicast tree for QoS transmission, also referred to as QTree, while the 

PIM-SM creates the legacy multicast tree for best effort services. The Q-module handles 

some additional messages, for QoS joining and pruning, plus the probing message: 

• Probe: the GRIP-like message tagged with a low priority DSCP, and injected in the 

multicast tree by a QoS branching router;  

• QJoin: this message is generated by a DR, which is a leaf in the multicast tree, and it 

climbs up the multicast tree until a QoS-enabled router is found (the QoS branching 

router); QJoin signals the will of a DR to begin part of the QTree; 

• QPrune: as for QJoin, but for pruning purposes; it is meant to downgrade the service from 

the QoS to BE level. 

                                                 
26 The test bed has been realized in collaboration between University of Palermo, Italy  and CRES (Monreale, 
Palermo – Italy) end it was partially founded by the Italian FIRB VICOM project 
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figure 62 - A schematic representation of the extended PIM software 

Additionally, the Q-module introduces some new internal states, that are combined with the 

existing PIM-SM states; thus the states previously mentioned and depicted in figure 61 are 

generated. The PIM-SM module soft states are: 

• Idle state: no users are joined to the multicast group;   

• Join state: one or more users joined a multicast group, and a Join(G) message crossed the 

router;  

The additional Q-module soft states are:  

• QoS request: a probe has been generated or has crossed the router, and the probing phase 

is still active; this state corresponds with the Probing state of the overall system; 

• Probe waiting: when a DR generates a QJoin(G) message, it starts waiting for a probe 

from the nearest QoS branching router; this is also embedded in the Probing state of the 

overall system, since the router has been crossed by a QJoin(G) message (the one that the 

DR router generated in order to contact a QoS branching router); 

• Confirm waiting: this is the state in which the QoS branching router switches upon the 

reception of a QJoin (G) and a probe has been sent back to the DR that originated the 

joining message; Again, this state is embedded in the Probing state of the extended PIM-

SM finite state machine, since it is generated upon the reception of a QJoin(G) message;  

• QoS Join: this corresponds to the Join state, but data belonging to the group are handled in 

a higher priority class with respect to BE packets; the QoS Join state is reached after a 

Confirm message crosses the node while in Probing state. The Join and QoS Join state are 

differentiated by means of a boolean flag, which name is QOS_SET: if the flag is true, the 

state is QJoin, otherwise it is simply Join.  

PIM-SM modifications and integrations are possible thanks to the adoption of an open 

source software from University of Southern California: Pimd v.2.1.0. This is a standalone 

implementation of PIM-SM v.2.0 protocol, in compliance with [35]. Pimd installs in a Linux 
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router a daemon interacting with the Linux kernel through system calls, and it is in charge of 

creating, managing and maintaining the multicast tree, both in the case of source-based tree 

and shared multicast tree. PIM and IGMP messages are managed by the Pimd software, as 

well as routing mechanisms, multicast routing tables and virtual interfaces. 

Some schemes representing different configurations of our test bed are proposed in figure 

63 to figure 65. There are: a Rendezvous point (RP), representing the root of the multicast 

tree; two multicast router (R), operating as branching points in the middle of the multicast 

tree; two designated routers (DR), each collecting joining/pruning requests from a LAN and 

relying multicast traffic in the same LAN. Finally, three hosts (H1, H2 and H3) represent the 

multicast user population. Additionally, not reported in the figures, a multicast server is 

connected to the RP router and generates multicast traffic for hosts H1, H2 and H3. Each router 

in the test bed is provided with Pimd software. Hosts require to join a multicast group  using a 

common IGMP message reaching the DR the host is attached to. BE and QoS-aware  

multicast command are provided with a suitable DiffServ marking. In particular two DSCP 

are used (plus one for probing), with different priority in the DiffServ semantic. Packets 

belonging to QoS sessions are labeled with the high priority label. In the same fashion, QoS 

requests in each LAN are differentiated from BE requests with the same mechanisms. In what  

follows we comment the operation of each element in the test bed, while reporting some 

operating examples. 

Firstly, the correspondence between the multicast tree and the QTree built up by legacy 

PIM-SM modules and Q-module respectively, is depicted by means of an example in figure 

63. The nodes involved in the two trees are the same, but in the QTree some node can be 

temporarily deactivated.  

With reference to the multicast tree of figure 63, in figure 64 the three phases of the QoS-

aware joining process is reported. At the beginning the multicast topology is the one proposed 

in the leftmost side of figure 63. In the first window of figure 64, the one labeled as “QoS 

request messages”, a user under the scope of DR1 asks for the joining to the G group. It 

additionally asks for QoS by suitably marking the IGMP packet conveying the request with 

the IP header field TOS = 40, which is the TOS value we selected for QoS purposes. Then, 

the router DR1 switches to the Probing state, and in particular in the Probe waiting mode. In 

the meantime, DR1 creates a QJoin(G) message and sends it upstream in the multicast tree. 

While crossing multicast routers, the QJoin(G) message enforces the Probing state in each 

multicast node. The QJoin(G) message is eventually sunk by the first router that is QoS-
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enabled, i.e., the QoS branching router, which in the example corresponds to the Rendezvous 

point.  

Then the second window in figure 64 comes into play. In fact, upon the QJoin has fulfilled 

its task, a probing phase is originated by the QoS branching node RP in the downstream 

direction. Meanwhile,  RP enters the Confirm waiting mode. The case in which the probe 

reaches the destination (DR1) is shown in the figure. If it is not the case, the setup procedure 

aborts after a timeout, and each node crossed by the QJoin(G) transits in the Join state for 

group G, on the opportune interface. When the probe is received by DR1 before the timeout 

expires, this router switches from the Probe waiting mode to the QoS Join state, since the 

request is locally accepted. Furthermore, as shown in the third windows of figure 64, DR1 

sends a Confirm(G) to the QoS branching router, and each multicast node that sees the 

Confirm(G) (before a local timeout expires) switches to the QoS Join state. This message is 

eventually received by the QoS branching router who sinks the message and removes the 

Confirm waiting mode.  

 
figure 63 - Logical splitting of normal multicast tree and its QoS subset 
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figure 64 - Messages used for an accepted QoS request: 1)QoS IGMP request and QJoin; 2) probing 

phase; 3) the confirm messages 

Finally, a pruning example is proposed in figure 65 in case of group G1 has to be removed 

in a branch of the QTree. The leftmost part of the plot represents a multicast tree with QoS 

enabled groups G1 and G2, in the branch including routers RP to DR1. Suppose that user H1 

is the only participant in group G1, and that H1 wants to leave the QoS multicast reception, 
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and switch to a BE service (e.g., this could be done to save money in a traffic based billing 

framework, or in the case that H1 has not enough resources available for the handling of a 

QoS stream). In the rightmost part of the picture it is shown how H1 sends an IGMP packet 

conveying a QoS prune message (a prune IGMP that is suitably labeled in accordance with 

the DiffServ paradigm). Upon the reception of the IGMP request, the Q-module in DR1 turns 

into “false” the QOS_SET flag and sends a QPrune(G1) message upstream. Thus, each 

multicast router encountered  by  this  message  sets  QOS_SET = FALSE.  At the end,  the 

QPrune(G1  message reaches the QoS branching router for group G1 and the QoS multicast 

transmission is definitely stopped over the entire branch (RP to DR1, in the example). Note 

that the multicast state for other groups than G1 is not modified in any router. 

§4.3 Conclusions 

In this chapter, we have defined a framework to extend per-flow signaling across a 

stateless domain, by means of a scalable connection blocking service (section §4.1). Our 

approach requires the stateless domain (e.g., DiffServ) border routers to accomplish the 

following tasks: i) assign a mark set to incoming requests, based on its QoS specification and 

the QoS provisioned within the domain (for DiffServ, assign PHBs); ii) tunnel signaling 

packets through the stateless domain. Our solution does not require the presence of 

centralized entities as bandwidth brokers, but the edge-to-edge adaptation of the GRIP 

mechanisms. It is worth noting that, being based on pure data-plane operation (versus control-

plane operation), our solution does not violate the DiffServ paradigm. Thus, to provide a more 

detailed presentation, the investigation has specifically considered the interoperation between 

RSVP and DiffServ. However, the key ideas of our proposal can be easily applied to any 

other hop-by-hop signaling which can be considered in the ongoing IETF activity about 

signaling (NSIS). 

In the second part of the chapter (section §4.2), we proposed a modular approach to 

develop a QoS multicast solution for DiffServ domains, starting from DiffServ and GRIP. Our 

multicast solution is built on top of existing multicast protocols (PIM) and allows support for 

both Best Effort and QoS multicast streams The possibility to upgrade or downgrade the 

service while running is additionally provided. In order to deal with QoS-related issues, we 

defined a complementary module for PIM-SM, and we called it Q-module. The details of the 

resulting finite state machine was provided, jointly with the new procedures and messages 

needed by our solution. However, we remark that our solution could be deployed starting also 
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from other existing multicast models, such as Core Based Tree and Source Specific Multicast. 

Eventually, a real system has been deployed and tested, based on Linux operating system and 

Pimd software. A number of possible issues deserving future research include the extension 

to: i) the support of multiple QoS levels, especially those appearing when different PHBs are 

simultaneously operating on the same link; ii) the support of the so-called Limited Effort (LE) 

PHB, to protect already existing traffic (including BE) from new users joining the multicast 

tree; iii) end-to-end, inter-domain issues, in accordance with the signaling extension 

procedure reported in section §4.1; iv) fault tolerance. 

figure 65 - Example of pruning from a QoS Group G1 
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Chapter V  

Streaming and interactive traffic in Vehicular Area Networks 
In this chapter we change the perspective from which QoS issues are analyzed. We switch 

from the admission control point of view to the resource sharing one. In the chapters above 

we dealt with the problem to decide whether a new service can be admitted to the network, 

now we focus on the way an already admitted service has to be supported by the network. In 

fact, active services has different requirements and can suffer in different ways the possibly 

changing connection conditions. Additionally, admission control schemes can hardly deal 

with fluctuations in the available bandwidth, as in the case that wireless connections come 

into play. Thus, an important role is played by adaptive techniques that allow active 

applications to fairly share the overall amount of resource available at a given time instant. 

Consider, for instance, a mobile user that accesses two IP network services in parallel, let’s 

say that the user tries to retrieve a file from a repository, and in the meantime it wants to listen 

to its favorite radio program which is broadcast also over IP. If the wireless access network 

are enough to accommodate both services, the mobile user can start to receive the requested 

file and the broadcast program. However, if the user moves to an area in which the wireless 

connectivity degrades, it can happen that one or both the services could experience bad 

performance. But, while the file download could go on with a reduced amount of bandwidth, 

the real time service significantly declines its performance if a minimum amount of 

bandwidth is not guaranteed. Of course, the problem becomes harder and harder as the 

amount of data to be dealt with grows, as in the case of (high definition) TV broadcast. In this 

occurrence it would be fine to exploit the potentialities of a bandwidth manager located close 

to the user, or in the user itself, that allows to redistribute the resource share ratio between 

active applications, also taking into account the nature and the priority of concurrent services. 

In the previous examples, a solution should be to reduce as much as possible the bandwidth of 

the file transfer process, while leaving to the real time stream at least the minimum bandwidth 

required to avoid annoying noise effects in playing the received stream. Hence, in this chapter 

we will analyze the effect of bandwidth sharing schemes on service performance. In particular 

we will focus on the improvements due to the adoption of a proxy-based VAN scenario, 

where network resources are handled by proxies which are also endowed with caching and 

pre-fetching mechanisms that permit to decouple the service in two segment: the user asks for 
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a service to the proxy that, upon having collected any user requests, asks for data to the 

remote server, through a wireless access network. Additionally, the proxy is in charge of 

enforcing an elastic packet buffering before delivering data to users: the effects of the elastic 

buffer, as explained in what follows, go well beyond the simple delay smoothing envisioned 

in traditional schemes.  

The chapter is organized as follows. In section §5.1 we introduce to vehicular area 

network issues and to our proxy-based networking proposal. Then, in section §5.2 a 

presentation of service to be supported over VANs is given, together with the introduction of 

a new bandwidth management scheme to be adopted by proxies located in the VANs. The 

third part of the chapter (section §5.3) explains how we tested the proposed approach, in a 

simulative fashion, while section §5.4 is devoted to a thorough performance evaluation of the 

proposed approach. Eventually, conclusions are given in section §5.5 

§5.1 VAN networking  

Mobile networking not only tackles the problem of providing a networking infrastructure 

for mobile customers, but also includes the ability of managing moving networks. This is the 

case of Vehicular Area Networks (VANs). These networks are formed by customers located 

on the same moving vehicle, e.g. a moving train or bus. The moving network is 

interconnected to the terrestrial network via one or more wireless links. Satellite links are 

frequently considered as an important candidate technology in practical deployment scenarios 

(see for example [2], [26], [44], [79], and [104], encompassing public trains, ships, airplanes, 

buses, etc. But emerging wireless technologies for metropolitan high speed networks, such as 

IEEE 802.16 [53], [56] and IEEE 802.20 [55], may become in the near future important 

technologies in the vehicular area networking arena.  

Consider that wireless technologies and multimedia world tend to be integrated in a 

worldwide mobile telecommunication environment, in which mobile customers want to 

experience multimedia service even while moving or traveling. On the other side, it is 

possible to recognize that a greater and greater number of entertainment systems are based on 

multimedia and network content retrieval. Thus it can be easy to foresee the interest of entities 

like railway operators, or air companies, in the development of effective mobile multimedia 

servers, able to entertain passengers while reaching their destinations.  

A suitable architectural solution is proposed here, consisting in a satellite content server 

that relays files to a local proxy, which in turn is responsible of storing data and forwarding 
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the requested files to the right customer. The scenario considered is that of a VAN in which 

users connectivity to the rest of the network is managed by a specialized on-board gateway. 

The role of this gateway is to provide internetworking between the internal network and the 

wireless technology adopted for connecting to the terrestrial network. For sake of simplicity, 

in this paper we assume that such a connection is accomplished through a single high-capacity 

wireless link (e.g., a satellite link or a WiMax [102] connection), hereafter referred to as 

wireless backbone. The network architecture deployed within the VAN can be built either on 

wireless or wired local area networking technologies, its implementation details being out of 

the service support issues addressed in this thesis, and depending on the considered vehicular 

network application scenario. In addition to internetworking functions, the gateway may act 

as proxy server. As such, it may provide local storage capabilities to support caching and/or 

pre-fetching algorithms. These mechanisms are meant to support video and interactive stream 

[85], [90], as well as multimedia with quality of service [86], [98]. These mechanisms are also 

devised to maximize the probability that a customer requesting an object to download (e.g., a 

web page or a video segment) may find it stored into a repository associated to the proxy, thus 

improving the retrieval performance, and reducing the traffic load on the wireless backbone. 

Effective caching and pre-fetching mechanisms for streaming services, which may be applied 

with minimal or null modification to the VAN scenario considered in this work, have been 

thoroughly studied in [30], [99] and [66], also considering pre-fetching located on the edge of 

the backbone network, in edge routers, where micro-cell or overlying network are present, as 

in [61].  

A problem typical of the VAN scenario is the possible outage of the wireless backbone. 

Such an outage, hereafter referred to as “channel outage”, may occur while the vehicle crosses 

areas characterized by severe fading conditions, as in the case of going through tunnels. This 

is a very critical issue when dealing with streaming services, which experience possibly long 

(order of several seconds) interruptions, thus causing highly negative performance 

impairments (service disruption) in terms of the end customer point of view. In what follows 

we well refer to the event of service interruption as “connection outage”. The proxy solution 

is also suitable in order to avoid the end user dealing with handover issues, since the mobile 

proxy could be made able to take care of eventually needed handover (this is still not true in 

the case of satellite, but in general it could be true if one uses wireless MAN connectivity 

standards [53], [54], [102]); for example proxy could implement techniques devised in [92], 

where pre-fetching issues are also addressed. Now, we argue that, other than traditional 
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caching and pre fetching mechanisms, a further role of the proxy is to support mechanisms 

devised to hide channel outage periods to the final user, thus reducing the impact of channel 

outages in terms of resulting connection outage. This can be accomplished by decoupling, 

from a service level point of view, the delivery service provided inside the moving network, 

from that enforced on the wireless backbone. Specifically, the presence of an on-board proxy 

enables the network manager to split the streaming service into two independent parts. Within 

the moving network, the stream is delivered to the end user at its natural playout speed. For 

convenience of presentation, in what follows, we well assume a constant playout rate27. 

Conversely, the multimedia information may be retrieved on the wireless backbone at a 

variable speed, eventually higher than the playout rate: the resulting excess information 

retrieved is accumulated into a proxy buffer for future playout. Hence, the per-stream proxy 

buffer can be seen as an “elastic” buffer that empties at constant rate and is filled at variable 

rate: although during a channel outage no information can be retrieved, this does not 

automatically lead to connection outage, as long as sufficient information has been previously 

stored in the buffer. 

§5.1.1 Proxies and elastic buffers 

A number of works dealing with file download issues can be found in the specialized 

literature. Basically the problem can be separated into two parts: the retrieval of a file and its 

physical download. The former problem is related to content network architectures 

deployment in terms of content discovery algorithms, and it is out of the scope of this work, 

while the latter part is related to capacity allocation issues, local storage and replicas 

management and hardware performance like memory access speed. Since the aim of the 

present work is the minimization of connection outage probability while downloading a 

multimedia stream, this work deals with local storage issues and optimized server-proxy 

connections. 

Proxy is a well know approach, meant to mitigate problems like high packet loss rates and 

long delays, as shown in [66], where different caching and pre-fetching algorithms are tested. 

These techniques consist in caching on the proxy data that are frequently required, even if 

there is not any user actually requesting those data. The pre-fetching approach allows a higher 

                                                 
27 In fact, the basic ideas proposed here do not require a constant playout rate. However, the detailed design of 
the resource management algorithm on the wireless backbone may slightly differ in the case of variable rate 
streaming services, as it might be optimized to further take advantage from the knowledge of the traffic flow 
statistical description. 
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bandwidth utilization efficiency. In fact, pre-fetched data can be cached only once in 

correspondence with many download requests. Moreover different caching and pre-fetching 

strategies has been proposed in order to optimize other performance parameters as: network 

bandwidth utilization [99] and delay playout, as in [90] where only a file prefix is pre-fetched 

on the proxy memory; in [86] and [72] layered-encoded multimedia are also considered in 

pre-fetching algorithms, where incremental layers can be timely stored on the proxy; the hit 

ratio, i.e., the probability that a requested file matches an object stored on the local proxy, is 

the aim of the work presented by Reissline et al. in [85]. The role of a proxy-assisted delivery 

schemes is focused by B. Wang et al. in [98], where the authors show how a relative small 

amount of data is needed to be pre-fetched in order to experience very low start-up delays 

with relative low network costs. Finally an insight in cost-based pre-fetching replacement 

schemes can be found in [106] and [97]. We face the proxy and pre-fetching problem from a 

different point of view, that is from the perspective of QoS in terms of connection outage 

probability. The main contribution of this chapter consists in the definition of a new 

bandwidth allocation algorithm for the wireless backbone link. The proxy operates a 

dynamical allocation of the satellite bandwidth in order to maintain a certain minimum buffer 

level for each active connection. In fact we argue that the proxy is able to minimize the 

connection outage probability by simply control the buffer size associated to each connection.  

Moreover, a well known solution to speed-up any client download, is the connection 

splitting  between the content server and the client, by interposing a proxy node able to 

quickly download files from server and also acting as a speed-buffer for the client. In fact, 

client applications typically need a reduced amount of bandwidth with respect to the server 

capacity. Splitting the download connection, using elastic buffering strategies on a proxy, 

allows network provider to better use available resources, decoupling the transmission speed 

[12] and it also prevents the client applications to be stopped due to a temporary server 

outage.  

Elastic buffering is a proxy management technique devised to decouple the multimedia 

information retrieval rate on the network backbone from the playout streaming rate at the user 

terminal. It has been shown in the past that the application of elastic buffering mechanisms in 

terrestrial networks brings significant advantages in terms of network effectiveness [13]. Here 

we show that elastic buffering is an extremely effective mean to reduce, or even eliminate, 

streaming service outages due to intermittent backbone connectivity. Moreover, we show that 
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elastic buffering is not only a technique suitable for multimedia information retrieval services, 

but it can be effectively applied to artificially delayed real time services. 

Before tackling the issue of moving networks, let us first review the fundamental 

performance advantages provided by the adoption of elastic buffering mechanisms in the 

support of streaming services. This theme is quite new, and it was firstly proposed in our early 

works [12] and in diffusive terms in [71]. The basic idea that we propose is very simple. 

Without proxy, a multimedia streaming session is setup directly between the end user and a 

remote streaming server. In the assumption of limited buffering capabilities at the receiver, 

the delivery rate of the multimedia information is of course equal to its playout rate at the 

receiver. Let’s now insert, in this delivery process, an intermediate dynamic storage 

capability, i.e., a buffer, placed on a proxy between the receiver and the video server. It is thus 

possible to split the streaming connection in two parts. From the proxy to the end user, the 

multimedia information will be delivered at its natural playout speed. But from the server to 

the proxy, it is possible to retrieve the multimedia information at a rate higher than the playout 

rate. The excess information downloaded from the satellite is in fact temporarily buffered in 

the storage resources available at the proxy. This operation leads to a significant improvement 

in terms of network utilization. As shown in Section V of [12], such a performance advantage 

can be analytically quantified in the assumption of infinite buffer size, and by considering a 

simplified network scenario composed of a single network link, in what follows named 

backbone, connecting the proxy to the server. In fact, let b bit per second be the playout speed 

of the multimedia streaming sessions (assumed homogeneous). Let B bit per second be the 

backbone capacity. For convenience, let B be multiple of b. Hence K=B/b represents the 

maximum number of simultaneous streaming sessions that can be supported on the backbone. 

Assume Poisson arrival process of the streaming session requests, with rate λ requests/s, and 

let E[T] be the mean playout duration of the multimedia streams (what follows hold for 

general distribution of the stream duration, depending only on the mean value E[T]]). Let r = 

λE[T]. Then (in stable conditions, i.e., r < K): 

• without proxy buffer, the number of simultaneous streams carried on the backbone 

obviously follows a Poisson distribution, i.e. the probability of finding n streams on the 

backbone is:  

(21) 
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• with the intermediate proxy buffer, the backbone can instead be modeled as an M/G/1-PS 

processor sharing queuing system, where the probability of finding n streams on the 

backbone is:  
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In [12] a comparison between these two cases is given in terms of backbone blocking 

performance28, assuming that an admission control rule is deployed on the backbone so that 

no more than K concurrent sessions can be simultaneously admitted. Without proxy buffer, 

the request blocking probability is readily computed via the Erlang-B formula B(r,K). With 

proxy buffer, the blocking probability is computed as the drop ratio of an M/M/1/K finite size 

queuing system: 
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The elastic buffer solution outperforms the standard streaming approach (for a numerical 

example, the reader may easily compute that, when r = 85 and K = 100, the blocking 

probability experienced by the users reduces from about 10-2 to about 10-8 in the case of 

elastic buffer. Simulation results obtained with finite buffer size [13] show that significant 

performance advantages can be obtained even with fairly limited storage availability. Finally, 

more efficient buffer management policies, integrating elastic buffering with traditional 

caching, are presented in [12]. 

§5.2 Services 

To date, vehicular network users suffer for a very limited access to network resources. 

They can use local wireless connectivity provided by GPRS, EDGE and UMTS, and they 

could experience highly variable link conditions, also relative to the speed of the vehicle, and 

                                                 
28 We remark that the discussion carried out in that paper was focused on an ATM transport network scenario, 
being such a technology extremely actual at the moment of writing that paper. In the ATM framework, it was 
natural to deploy the proposed approach on the Available Bit Rate (ABR) service, set the Minimum Cell Rate 
(MCR) to the playout rate of the stream, and evacuate the performance in terms of connection blocking. The 
performance insights given in this section suggest to push towards the deployment of elastic buffering 
mechanisms also for streaming service support over the Internet, by using TCP on the network core rather than 
constant-rate streaming over RTP/UDP. Of course, unlike the case of ATM, an admission control rule suitable 
for this scenario and, therefore, acting on TCP flows is harder to deploy. 
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to the number of connected users. However, the bandwidth available can range from few units 

to some hundreds of Kbps, and it is often not enough to support application such as video 

streaming. Even though new technologies provided with higher bandwidth will be soon 

available, and UMTS systems will be more efficiently deployed, the adoption of a bandwidth 

sharing strategy remains the mostly important issue to be addressed. In fact, network 

providers aim at furnishing video telephony, video and multimedia on demand, real time 

applications and, in general, a set of bandwidth consuming products. Additionally, the offered 

service will include traditional Internet applications such as e-mail, file transfer and web 

browsing, plus new location services to support vehicular mobility and to entertain users with 

information about local attractions and opportunities.  

The majority of bandwidth consuming applications can be classified into Multimedia-on-

Demand (MoD) and Real Time (RT) applications. We can further distinguish inside MoD and 

RT group. As regards MoDs, they include various types of streaming services, like video and  

audio, and the mostly employed MoD application is Video-on-Demand (VoD). As to real time 

services, they are commonly thought as direct streams of audio and video associated to an 

event to be broadcast. We also include in the RT group those applications that introduce an 

artificial playout delay before sending the stream or before playing it. These are the so called 

Delayed Real Time (DRT) services. The adoption of a playout delay has implication on the 

reliability of the application. In fact, the gap between the real time and the playing time allows 

the system to recover some transmission errors and, mostly common, to compensate the delay 

jitter experienced by data packets. It is worth noting that real time applications, and a number 

of video streaming applications, generally adopt UDP transport protocols, or another 

connectionless transport protocol. Thus no segment retransmissions occur after a delivery 

failure or upon a not recoverable error in the bit stream. This approach works fine when the 

failure rate is very low and no consecutive losses are experienced by the receiver. 

Unfortunately, in a VAN scenario the failure probability is highly variable and it can assume 

relevant values. In particular, VAN connectivity tends to behave as an On/Off process, where 

On and Off periods are strictly related to the location of the vehicle. Thus we will show that it 

makes sense to enforce some elastic buffering mechanisms also for real time application, and 

adopt DRT services instead of normal RT streaming. The artificial gap introduced in real time 

transmission should be long enough to allow users to asks for and obtain the retransmission of 

long sequences of lost data, e.g., after having gone through a tunnel. 
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In following subsections (§5.2.1 and §5.2.2) we describe the requisite of services similar 

to Video-on-Demand and Delayed Real Time, while in subsections §5.2.3 and §5.2.4 we will 

present the solution we envision for the management of concurrent VoD and DRT 

applications in the same VAN. 

§5.2.1 VoD Services  

Since Multimedia-on-Demand services are easily illustrated by the Video-on-Demand 

services subset, in the following we will refer to the behavior of VoD-like services. The basic 

idea of VoD functionalities is very simple. Each active client has a dedicated buffer on-board 

of proxy, in which client data are stored. The goal is to make the system robust to the 

uncertain behavior of the server-to-proxy link. In fact, the satellite-to-proxy link is 

characterized by a wideband, high-performing channel, but it requires a line-of-sight (LOS) 

connection. When no line-of-sight is available, the proxy stops receiving data from server, 

while clients connected to the proxy continue to receive data until their buffer, located on the 

proxy, goes empty too. Similar considerations apply if the satellite link is replaced with a 

different wireless access network; in that case, a more generic shadowing effect has to be 

considered instead of lack of LOS. The key of our approach consists in a suitable algorithm, 

namely A2M, for the allocation and sharing of the available bandwidth in the link between 

server and proxy. In this scenario, the file transfer is split into two sub-connections:  

• the server to the proxy, where files can be relayed with a high rate, but the actual 

connection rate is an On/Off function of wireless backbone connectivity29;  

• the proxy to the client, where the file transfer occurs with  tangible rate reduction, but the 

link (either radio or wired) shows very high performance.  

Data pertaining to a VoD flow are transferred within a sequence order, and as a 

consequence of packet losses, application and/or transport protocols use retransmission 

techniques. The adopted mechanism is similar to TCP, where out-of-order packets can be 

received within a specific transmission window; this means that the occurrence of long term 

outages implies a pause in the transmission of new segments while lost data are retransmitted. 

In our study, we consider an application layer control that enforces the retransmission of lost 

data before going on with the file transfer, even in the case of not reactive and connectionless 

                                                 
29 This consideration especially applies when satellite access networks come into play, while for terrestrial 
wireless connectivity, the bandwidth available in the access network can be at least modeled as a process with a 
finite number of states ranging from zero to the maximum supported bandwidth of the system. 
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transport protocols (e.g., UDP). In conclusion, a very important role is played by the strategy 

adopted to transfer the requested files from the content server to the proxy, and by the value 

added services offered by the proxy, which can be able to retain in its cache memory a certain 

amount of highly requested data (on accordance with the an empirical computed hit ratio).  

§5.2.2 DRT Services  

The Delayed Real Time services functionalities are more complex then the VoD 

functionalities because in real time streaming any piece of data is strictly connected with the 

time in which it will be delivered to users. In what follows, the locution “Real Time Stream” 

is referred to a multimedia content that is delivered to users in an exact time. Moreover, real 

time data considered here are delayed before to be delivered, so that we talk about Delayed 

Real Time services. It is similar to recording, but the content will be delivered exactly in a 

date and not when users ask for it. Nonetheless, users can look for real time transmission and 

are made able to join an ongoing broadcast delivery. It works exactly as in the case of TV 

broadcast channels, that users can select but cannot control. The difference is that users 

receive data after an additional delay, and they can ask for selected retransmission within a 

limited time interval.  

As in the case of VoD flows, each active Real Time content (named “channel”) has a 

dedicated buffer on-board of proxy. This buffer will store data when the proxy receives it; the 

data delivery takes place with a fixed delay with respect to the real time broadcast (the so-

called playout delay). When the proxy is unable to receive data it will leave a blank space and 

continue to receive following data. In fact, original data are broadcast, and they are out of the 

user control. When a consistent packet loss occurs, the proxy is made able to ask for particular 

retransmissions, on behalf of users. The recovery procedure has to be completed within an 

interval time not greater than the playout delay, that is the time at which delayed data are 

delivered to the user. In other words, the system can receive a packet within a playout interval 

after the original transmission, otherwise the packet id definitely lost. Thus the recovery 

procedure can last, at most, as much as the artificial playout delay, and if the system does not 

add any delay, no packet loss will be recovered. This kind of application requires the logical 

division of available bandwidth in two parts: 

• a fixed rate will be statically assigned to the retrieval of the latest data (i.e., the broadcast); 

• the remaining bandwidth will be used to fill  windows of not received data. 
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figure 66 - Vehicular Area Network scenario 

Studies will be focused on the definition of an optimal restoring algorithm and on the 

definition of analytic criteria to decide the number of supported channels and the length of the 

buffer associated to channels. 

§5.2.3 Adaptation of elastic buffering to moving networks 

In addition to the role, discussed in the previous section, of improving the network 

performance, in the rest of the section we show that, in a moving network scenario, elastic 

buffering brings additional significant advantages. In figure 66 it is illustrated the concept of 

Vehicular Area Network (VAN). In traditional wireless networks, each user sitting on a 

moving vehicle connects independently to the terrestrial network. Conversely, in a VAN 

scenario, a network - typically a LAN or Wireless LAN - is deployed inside a moving vehicle. 

End-user connectivity to the terrestrial network (i.e., the Internet) is managed through a 

specialized on-board gateway that we propose to endow proxy functionalities. In what 

follows, we illustrate how a VAN can take advantage of an elastic buffer mechanism 

implemented on the on-board proxy. As long as some minimum requirements are met, the 

described ideas do not specifically depend on the networking technology employed inside the 

VAN, on the wireless backbone technology, and on the applications scenario. However, to 

provide a more concrete presentation, we will expose our basic ideas with reference to a 

particular application scenario, namely a train network connected to the terrestrial network 

through a satellite link. The goal of our approach is to make the system robust to the uncertain 
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behavior of the satellite link. In fact the satellite link is characterized by a wideband, high-

performing channel, but it requires a LOS connection. During a satellite link outage, which 

may last for several seconds, all communications are interrupted since no information can be 

received at the on-board gateway and, in turn, routed toward the relevant end user30.  

Let’s first focus on VoD services (the extension to DRT services will be tackled in the 

next section §5.2.4). By enforcing an elastic buffer management in the on-board proxy, 

multimedia streaming sessions may remain active even during satellite outage periods, 

provided that a sufficient amount of information has been buffered in the proxy local storage. 

The streaming session presents outage (connection outage) only when both the satellite link is 

in outage and the buffered information exhausts. We well show in the following subsection 

that a very important role is played by the strategy adopted in managing the satellite link 

capacity. Specifically, a uniform allocation of the extra available bandwidth to the concurrent 

downloads, while effective in the case of wired networks  results to be a poor strategy in the 

VAN scenario (as reviewed in section §5.4). 

§5.2.3.1 The All-To-Min resource sharing algorithm 

The described operation gives raise to an elastic buffer, which is filled during the periods 

in which the satellite link is active, and whose buffered data is consumed at a fixed rate given 

by the playout speed for each streaming session, multiplied by the number of concurrent 

streaming sessions. For the sake of simplicity, assume that the multimedia information 

repository is directly placed at the terrestrial satellite gateway. Let us consider the eventuality 

that an on-board customer requests a file. Once the streaming request is received at the proxy, 

it firstly checks if the requested stream is locally cached. If this is not the case, the request is 

forwarded to the remote server, provided that satellite resources are available (i.e., after a 

positive response of an admission control decision based on the number of already active 

streaming sessions on the satellite link). All the satellite link capacity is shared between all 

active sessions so that the multimedia information is retrieved on the satellite link at the 

maximum possible rate. The figure 67 describes two different resource sharing policies that 

can be enforced on the satellite link. The simplest approach is to fairly share the satellite 

resources among all the concurrent multimedia information retrievals.  This policy is referred  
                                                 
30 Indeed, this is the application scenario tackled in an European Community funded IST project, called FIFTH - 
Fast Internet for Fast Train Hosts. Other VAN application scenarios are nowadays being considered, either in 
research projects (e.g., ships are tackled in the IST project MOBILITY) or in commercial deployment (airplanes 
and buses). But the case of trains and buses is the one that presents major challenges at the data link and network 
layer, due to the occurrence of tunnel crossing - which is not applicable in the cases of ships and  airplanes. 
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figure 67 - A2M vs. ED Operation 

to as “Equally-Distributed” (ED). figure 67 illustrates the ED operation (solid lines) by 

reporting the per-session proxy buffer occupancy level versus time. It is assumed that at time 

0, a new connection, session #1, starts. Let C be the satellite channel capacity, and let R the 

streaming playout rate (supposed equal for all sessions). Since a single session is offered to 

the satellite link, the channel capacity C is reserved to download information. This 

information is, in turn, played-out at rate R. We conclude that the buffer-level grows linearly 

with time, being 

(24) B1(t1)=(C- R)t1  [bits] 

the buffer-level at time t1. Assume now that at time t1 session #2 starts. At time t2 the buffered 

data for this latter session will amount to 

(25) B2(t2)=(C/2-R)(t2- t1) [bits] 

while the level of the buffer occupation for session #1 will have reached 

(26) B1(t2)= (C-R)t1+(C/2-R)(t2- t1) [bits] 

In general, when n session share the link, each is granted a retrieval rate equal to C/n. If no 

channel outage is assumed to occur, a reasonable admission control rule is to admit a new 

session as long as C/n remains greater or equal than R (ED is in fact the policy assumed 

through the discussion carried out in section §5.1, and this was the related admission control 

rule). A closer look to figure 67 allows us to underline a major limit of the ED policy. In fact, 

whenever a channel outage occurs (in the figure, from time toutage to time tend), the most 
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recently admitted sessions are the first ones for which connection outage occurs. In turn, the 

buffer level reached by the first admitted flow is unnecessarily high. In other words, a fair 

resource sharing on the channel yields an unfair share of the proxy buffer space, and increases 

the probability that connection outage occurs during a channel outage period. In the case of 

channel outage, the buffer level represents the margin before an outage occurs. For this reason 

we will use also the term “outage margin”. More generically, the outage margin represents the 

time before an outage occurs if connectivity goes down. It naturally comes out that an 

effective resource sharing approach is to devise a policy targeted to converge as fast as 

possible to a situation in which all sessions have the same outage margin. 

We refer to such a new policy with the name “All to Minimum” (A2M). The A2M 

operation is designed to dynamically reserve all the channel resources to the session(s) with 

lower buffer level. This operation is implemented at the proxy, which can access the 

information regarding the per-flow buffered data. In turn, the proxy dynamically signals 

(through Layer 2 signaling mechanisms - e.g., satellite-specific mechanisms) to the terrestrial 

gateway the identity of the sessions which suffer of minimum buffer level, so that this latter 

gateway is able to properly schedule the information download. The A2M operation is 

exemplified in figure 67 (dashed lines). At time 0, the A2M algorithm operates as the ED one, 

since a single session is admitted on the channel. The differences start from the instant of time 

t1 in which session #2 starts. In fact, from time t2, all the channel capacity is reserved to 

session #2. Hence, its buffer-level grows at rate C-R. Conversely, since no channel resources 

are assigned to session #1, its buffer level decreases at rate R. This would last until the two 

buffer levels would become the same. If, in the meantime, a new session #3 starts (time t2 in 

the figure), it will receive all the channel resources until it reaches the same buffer level of 

session #2 (this occurs at time t3 in the figure). Then, the channel capacity C will be equally 

shared between sessions #2 and #3, so that their buffer level grows with rate C/2-R while the 

buffer level of session #1 still decreases with rate R. Once all the n (three in the example) per-

session buffered data have reached the same level (time t4), a uniform share C/n of the 

channel capacity will be again enforced. As apparent from the figure, the A2M mechanism 

minimizes the probability that a connection outage occurs during a channel outage period. 

The price to pay is that, in the case a connection outage occurs, this is likely to simultaneously 

involve all the admitted sessions. 

The A2M algorithm can be easily extended to a framework where streaming sessions are 

characterized by different data rates. The only difference is that the per-session buffer level 
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has to be measured in terms of playout time, i.e., in terms of time to reproduce a content on a 

user terminal. The following Figure 68 and figure 69 depict the flow chard diagrams that 

explain ED and A2M operation upon a connection request arrives. In table 8 the two 

algorithm are reported in pseudo-code.  

ED A2M 
1 - client requests a file to proxy; 
2 - proxy checks if file is pre-fetched; 
3 - if(file not pre-fetched) 
        3a - proxy requests the file to the server; 
        3b - n = # active connections  
        3c - proxy starts receiving file from server 
               at rate C/n 
                                     && 
               proxy starts the delivery phase 
               at rate R; 
      else 
         3d - proxy starts the delivery phase; 
4 - if(n changes to n’) 
         4a – set all download rate to C/n’ 
 

1 - client requests a file to proxy; 
2 - proxy checks if file is pre-fetched; 
3 - if(file not pre-fetched) 
        3a - proxy asks for the file to the server; 
        3b - proxy starts receiving file from server 
               at a full rate C; 
      else 
         3c - proxy starts the delivery phase; 
4 - while (file not completely on proxy):      
         4a - proxy searches stream(s) with lower 
                outage margin; 
         4b - all bandwidth resources assigned to  
                 stream(s) with lower outage margin;  

table 8 – ED and A2M algorithms 

 
Figure 68 – Simplified ED flow chart diagram 
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figure 69 – Simplified A2M flow chart datagram  

§5.2.4 Adaptation to Delayed Real Time streaming services 

VoD and MoD services are hardly supported in a scenario characterized by a very large 

number of customers, such as the train passengers, and a fairly limited wireless backbone 

bandwidth, such as the satellite link. In fact, the satellite link may support only a limited 

amount of simultaneous streams, and thus only very few customers may receive service. 

Conversely, the seamless support of broadcast streaming services (such as digital television 

channels) on moving networks is an extremely appealing challenge for a public vehicle 

operator. Of course, due to the presence of tunnels, it is possible to compensate channel 

outage for real time streams only if their delivery inside the train is delayed of a time greater 

than the crossing time of the longest tunnel along the train path. In other words, if an event is 

scheduled to be broadcast at a given time t, the on-board delivery will start at time t+D, and 

the proxy will buffer all the information related to the D seconds of delay introduced. Delayed 

playout can be accomplished by simply using fixed buffers whose size is exactly equal to the 

one needed to store D seconds of broadcast video. Of course, when an outage lasting δ>D 

seconds occurs  on  the satellite link,  the proxy will be able to playout only the first  D 
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seconds  of  the considered stream, while connection outage will occur for the remaining δ-D 

seconds. However, a closer look to this problem reveals that an initial playout delay greater 

than the crossing time of the longest tunnel along the train path is not sufficient by itself to 

avoid outage. This is evident considering the example depicted in figure 70. This figure 

reports the real time streaming as received from the satellite (solid line) and the DRT 

streaming delivery occurring on-board (dashed line). The x-axis reports the elapsed time. As 

shown in the figure, the delayed playout starts with an initial offset equal to D. Two channel 

outage periods are illustrated in the figure: one occurring in the range [t1, t2] and the other in 

the range [t3, t4]. If no action is taken, it is evident that, during an outage period, a fraction of 

the original stream (referred to as sub-stream #1 and #2 in the figure) will not be stored in the 

proxy buffer. Hence, after a delay D, this outage will be experienced also within the train, and 

specifically in the time ranges [D+t1, D+t2] and [D+t3, D+t4]. In other words, the difference 

with respect to the multimedia information retrieval scenario stays in the fact that, during a 

channel outage, the satellite broadcasting goes on and hence the missing (not received) sub-

streams cannot be temporarily stored in the buffer for subsequent playout. In this case, the 

outage margin defined for VoD-like services can be re-defined as the length of the first 

continuous block available in the buffer, i.e., the time distance from the first “hole” to be 

filled.   
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figure 70 - Connection outage after multiple channel outages 
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We propose to solve the above problem by treating each sub-stream as an independent 

special case of multimedia information retrieval session. As soon as an outage period ends, 

the proxy buffer uses extra bandwidth available on the satellite channel to recover the sub-

stream, and thus refill the buffer “hole” caused by the channel outage. This implies that, to 

effectively support DRT services, the channel capacity must be split in two parts: one used to 

transmit the real time streams, and the other used for the described sub-stream recovery 

procedure. It will be shown in the numerical results section that the extra bandwidth made 

available to DRT services must be quite large. Since, in addition, this extra bandwidth is used 

only at the end of a channel outage, and generally for a short time (i.e., in a very bursty 

mode), it is convenient to let the sub-stream recovery procedures share the same bandwidth 

reserved to Video/Multimedia-on-Demand streaming sessions. In doing this, it is worth noting 

that the A2M algorithm can be adopted to manage this extra bandwidth, i.e., no distinction is 

in principle needed between sub-stream recovery procedures and normal on-demand 

multimedia streaming support. 

To better understand how connection outage may arise, consider again the example 

illustrated in figure 70. We have here reported a scenario in which recovery of multiple not 

received sub-streams may occur. In fact, the recovery phase for sub-stream #1 starts at time t2, 

right after the end of the relevant outage period. However, due to scarce extra bandwidth 

availability in the time interval [t2, t3], and/or too short time range [t2, t3] elapsing before 

outage #2 occurs, it is possible that only a part of sub-stream #1 is recovered. As illustrated in 

the figure, at time t4, the recovery procedure for the sub-stream #1 restarts (in fact, following 

the A2M rules defined in section §5.2.3.1, the outage margin for the sub-stream #1 is lower 

than the margin for sub-stream #2). Hence, all the available bandwidth is assigned to sub-

stream #1 until its complete recovery. But, in turn, this delays the start for the recovery 

procedure of sub-stream #2. In other words, even if the outage margin after channel outage #2 

was large enough to allow full recovery of the sub-stream #2, the presence of an additional 

sub-stream to be recovered leads to connection outage. 

An important parameter is the ratio K between the spare bandwidth made available for 

recovery and the delayed streaming service rate. This parameter can be intended as the 

amount of video seconds that will be recovered in a second. In practice, when K>1, 

connection outage can occur only when the train is in a tunnel. But K>1 means that more than 

50% of total bandwidth is allotted to recovery operations; this is a poor efficiency in link 

utilization. When K<1, the time needed to recover a sub-stream is longer than the sub-stream 
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itself; this means that it cannot be recovered while delivering it, and an outage occur. Suppose 

K<1, and let M(tx) be the outage margin at time tx, Ts1(tx) the duration of the first sub-stream 

to be recovered at the same instant, and R the normal download rate31. Then, the given sub-

stream can be recovered if and only if the following conditions are satisfied: 

• the outer network is reachable in the time interval 
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• the margin limit remains greater or equal to zero in I(tx):  
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Since our aim is to define an admission control rule, we are interested in the minimum value 

of K that as to be provided in the interval I(tx): 
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Under these conditions, the system assures the recovery of the first sub-stream. If multiple 

sub-stream need to be recovered, the procedure can be iterated over each time interval that 

relates to a single sub-stream, considering that each sub-stream is characterized by a 

potentially different rate Ri (since a different number of transmission can be defeated in each 

different outage period), and assuming as starting time  
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where K(I(ti-1)) is the value of K adopted in the previous time interval, and as outage margin 
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31  I.e., for sake of simplicity, we suppose a constant playout rate, R. 
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where the last term Tr, is the time elapsed between outage #(i-1) and outage #i, thus 

representing normally received data from the broadcast channel.  

§5.3 Simulative approach 

A great effort was carried out, in order to solve the problem of coverage of  shadowed 

areas like indoor railway stations or tunnels. In this framework we propose a solution able to 

overcome the problem without deploying additional repeaters and ground antennae. Our 

approach was thought with tunnel occurrence in mind, and pure traffic engineering 

mechanisms have been considered. The evaluation of proposed solutions, as discussed before, 

has been carried via simulation. Specifically, VoD-like services and DRT-like services are 

taken into account in order to develop an ad-hoc, event-driven, fluidic  C++ simulator. 

The proposal is based on the use of a few elements: a proxy server located on the vehicle, 

a smart buffer handling aboard the proxy server, a service-oriented resource sharing 

management. The proxy is in charge of decoupling users connection into two parts:  

• An inner link, used in order to connect user terminal to the gateway. This could be a wired 

link or a WiFi service available on trains or other vehicles. 

• An outer link, used by the proxy in order to connect to the satellite and hence to the rest of 

the outer network (Internet). 

The proxy server is provided with a storage area available for both offline pre-fetching of 

files and streams, and temporary caching as well as stream buffering. This storage use is of 

fundamental impact, since it allows to decouple the speed retrieval of files between inner and 

outer links: in the inner part, users are served at the natural playout speed of a specific stream, 

while in the outer part, the proxy is made able to take advantage of the higher network speed; 

the excess information retrieved can be temporary cached in the proxy, and network resources 

can be fully devoted to other operations. Finally, it is also needed a resource sharing 

mechanisms, since proxy has to manage streams in a smart way, since the proxy is in charge 

of dynamically distribute satellite bandwidth between active connection. That is the 

simulation framework adopted.  

The rationale of the proposed approach is that outer network resources could be suitable 

employed to fill in advance proxy buffers, as long as it is possible before forwarding data to 

the final users, and so eventually long outer link outages should be made transparent to the 

traveling user. The elastic buffering solution and the resource sharing algorithm, has been 

taken into account in the definition and implementation of A2M. In the simulation work, we 
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focused on the evaluation of such a mechanism, also performing a comparison with a 

traditional approach that we named ED. Objective of the simulation was to test and explore 

the functionalities of A2M, evaluating its pros and eventually stressing its cons with respect to 

traditional operation.  Moreover, each simulation is segmented in a transient phase, in which a 

simulation of network “warm-up” is performed, and a certain number of simulation runs 

(typically 50 or 100, but higher value are used when collected statistic do not show 

appropriate confidence level). Overall statistics are refreshed each time a simulation run 

exhausts, while data collected in the transient are discarded. The request process is modeled 

as a Poisson arrival processes for both VoD and DRT. Frequency of requests ranges in a wide 

spectrum, from very low load condition to infinite request rate. In particular, in a great 

number of simulation runs, we adopted very severe load condition, namely a “saturation” load 

was offered to the VoD server and/or to the real time video broadcast source. For saturation 

load we mean that connection requests are ready to be delivered each time an old connection 

expires. As to real time services, the system was stressed by considering a single everlasting 

real time flow to be delivered to vehicular users.  

VoD streams are characterized by length (fixed or exponentially distributed) and natural 

rate (randomly selected in a user-given range). Date pertaining to VoD streams are sent in a 

strict temporal sequence, if losses arise, retransmissions are suddenly requested by the proxy, 

and no new data are sent until recovery procedures are complete. Real time streams are 

broadcast over a dedicated channel, by means of a user defined rate. Thus these data are 

received by the proxy in temporal sequence. During recovery procedure, real time services 

shares the same resources with VoD active streams.  

We have modeled the satellite connectivity with an On/Off process with both On and Off 

periods exponentially distributed. The simulator user can set the average duration of On and 

Off periods. The only source of transmission errors in the simulation is the occurrence of an 

Off period, since no effect of attenuation, distortion in the propagation path nor elaboration 

errors at terminal level are considered. In other words, we are issuing only very long burst 

error, due to temporary lack of outer connectivity, and there is not any Forward Error 

Correction (FEC) technique that could suitably fit with such a long loss . 

We assumed that satellite resources can be managed in a dynamic way, and very fast 

management procedure are used in comparison with outage durations. Finally, streams to be 

retrieved by the proxy and to be forwarded to final users, are modeled as fluidic flows that 
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flush in the network links. No packet/message issues, transport layer features nor data link 

behavior were addressed in the current work.  

§5.4 Performance evaluation 

The evaluation of the effectiveness introduced by the A2M approach, as compared to the 

ED mechanism, is evaluated in this section. Specifically, sections §5.4.1 and §5.4.2 deal with 

VoD services, while the case of DRT services is discussed in §5.4.3. Additionally, simulation 

results taken from a train scenario currently under deployment are presented in section §5.4.4. 

Eventually, subsection §5.4.5 shows some effects of the concurrency of VoD and DRT 

services. 

Here we describe most important parameters and models considered in the evaluation 

process, as listed below: 

• requests statistics; 

• file size distribution; 

• admission control scheme; 

• download protocol adopted; 

• channel characterization; 

• proxy buffering; 

• proxy pre-fetching strategy. 

Firstly it is relevant the statistical characterization of the way an object is requested by a 

client. By analyzing proxy server tracks and content distribution network statistics, it is 

possible to see that web objects are requested according to a Zipf-like distribution [108]. The 

Zipf law was originally formulated in terms of popularity of words in a text, and it states that 

ranking by decreasing popularity each object, the frequency of the ith object is:  

(34) 
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Zipf law has been generalized as follows: 
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where α assumes the value 0.986 for web object popularity32. Moreover we assume a file 

request process is a Poisson arrival process, i.e., the inter-request time is exponentially 

distributed. A second aspect is related to the file size distribution. It has been shown that the 

distribution of file size for web downloads fits a heavy-tailed distribution function (see [30], 

in which lognormal and Pareto distributions are used). Since we consider essentially a video 

retrieval scenario, a mostly uniform file size distribution can be a reasonable adoption. 

Admission control schemes and transport protocol selection affect QoS performance in terms 

of reliability and download times. In fact, according to the selected admission control scheme 

it is possible to prevent congestions and optimize the channel utilization, while the transport 

protocol determines the effective file download rate. For instance a standard TCP protocol 

could severely affect the transmission over a satellite link, while an UDP protocol should 

maximize the data rate at the expense of reliability, since no delivery checks are performed. In 

a VoD scenario the client download rate is almost fixed, while the proxy can store bytes at a 

variable rate. This implies that different protocols could be used on the server-to-proxy 

connection and on the proxy-to-client one; this is a further advantage of using a split 

download connection. As regards the channel characterization, the satellite transmits data over 

a reliable channel, using a suitable transmission power and adopting an appropriate coding 

scheme for error correction. Anyway the satellite transmission requires a line-of-sight 

between sender and receiver. When server and receiver (i.e., the proxy) are out-of-sight a 

channel outage occurs. The statistic of such events is related to the mobile behavior of the 

proxy. In particular a channel outage occurs when the train, with proxy on-board, enters a 

tunnel. Thus the channel outage probability is route-dependent. For the sake of simplicity we 

consider the line-of-sight/out-of-sight alternation as an On/Off process with both On and Off 

periods exponentially distributed. Finally the proxy caching and buffering strategy is 

responsible for channel usage optimization and for client connections outage prevention, as 

previously shown in section §5.2.3. Note that the channel capacity C and the user data rate R 

are not significant parameters  as to their standalone meaning. In fact, due to the fluidic 

approximation adopted here, performance results will vary in accordance with the ratio C/R 

that represents the number of connections that can be admitted in parallel. 

                                                 
32 In our work we have mainly adopted a Zipf-like model for file requests; moreover we tested also different 
distribution laws, in particular the uniform and geometric distributions. It is clear that the distribution law 
adopted determines the behavior of the system especially for what regards the optimal amount of data to be pre-
fetched, but this is out of the scope of this work and no comparisons are reported here. 
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§5.4.1 Video-on-Demand services 

We have considered a scenario characterized by homogeneous VoD streaming sessions, 

each requiring a constant playout rate equal to R = 2 Mbps. The wireless backbone capacity 

has been set to C = 32 Mbps, so the C/R parameters is equal o 16 connections. We assume 

that each streaming session lasts for an amount of time fixed to 1800 s (this is the time needed 

for internal network to complete the stream delivery, i.e., 1800 s is the stream duration at its 

playout time). To stress the wireless backbone, we have assumed a load regime. In what 

follows, this regime is also referred to as “saturation load”. Specifically, the number of 

simultaneous retrievals on the wireless backbone has been enforced not to overcome a 

maximum threshold (eight retrievals, in the simulation runs considered in this paragraph). As 

soon as a retrieval terminates, we assume that a new streaming request is immediately 

available. We remark that this is a special case of dynamic network operation, where new 

requests arrive at a very high (infinite) arrival rate. Numerical results obtained for Poisson 

arrival of requests and finite rate, are dealt with in the following subsection §5.4.2 for 

convenience of presentation, and will show that the saturation load represents the worst-case 

condition in terms of wireless backbone performance. We also remark that the number of 

users served, in average, in the saturation load conditions is actually greater than the above 

mentioned threshold, as a new streaming session starts as long as the previous streaming 

session has completed the information retrieval (but this can happen well before the stream 

delivery in the internal network ends). We have assumed outage periods (tunnels) to have an 

exponentially distributed duration, with mean value 180 s. The duration of the On periods is 

set depending on the channel outage probability target 

(37) 
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In the simulation, resource management on the wireless backbone is assumed to be 

instantaneous. The proxy buffer space is assumed to be infinite (though, in practice, its 

occupation level always remains bounded). In a satellite network scenario, resource allocation 

will be managed at the data link layer, and additional management delays arise. However, we 

remark that, even for geostationary satellites, such signaling delays are negligible when 

compared with the time needed to cross a tunnel. Firstly, figure 71 shows the ED and A2M 

performance in terms of connection outage probability versus channel outage probability. In 

particular, we recall that the connection outage probability (Pco-out) is defined as the 

probability that a connection outage occurs for at least one time during the stream duration.  
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As shown in the figure, if no proxy were employed, this probability would rapidly 

converge to 100% as the channel outage probability grows. We see that the improvement 

provided by elastic buffering is remarkable. A2M significantly outperforms ED in all cases. 

As to buffer consumption, it is interesting, and perhaps not intuitive, to note that the buffer 

space needed on the proxy is very limited. Numerical results obtained during the 50% channel 

outage probability simulation run show an average buffer occupancy of about 2500 s (i.e., less 

than 1 and a half stream size), while this value decreases to as low as 500 s in the 75% 

channel outage probability case (clearly, the more severe the outage, the less loaded the 

buffers is). 
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figure 71 - Video-on-Demand: connection outage probability vs. channel outage probability  
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To demonstrate that the proposed proxy management scheme can be efficiently run in 

conjunction with a caching or pre-fetching mechanism, the figure reports the performance of 

the ED and A2M schemes (labeled as ED-St and A2M-St) in the assumption that 30% of the 

incoming requests match files preloaded in the proxy memory for half of their size (see [66], 

[90] for insights in partial pre-fetching schemes). As expected, pre-fetching leads to a 

performance improvement, but what is interesting from our point of view is that A2M shows 

a further relative advantage over ED. 

Drawings in figure 71 are limited to present the probability than at least one outage 

occurs. To complement these results, figure 72 reports the probability distribution of the 

number of outages experienced by a single stream. A 25% channel outage probability, and the 

A2M mechanism, are considered in this figure. As shown by the figure (note the y-axis log 

scale), the probability that a stream experiences two or more outages is very low.  

§5.4.2 Further results for VoD-like services 

As in the previous subsection, for the sake of simplicity, simulations considered here do 

not take into account transport protocols and downloading files simply behaves as constant bit 

rate (CBR) application, eventually stopping and resuming after a failure. A lot of the reported 

performance results have been obtained for Poisson modeled offered traffic, in very high load 

conditions, i.e., with a very high request rate, similar to “continuous load” when the Poisson 

arrival rate diverges ( ∞→λ ). This turns in a framework in which the accepted load is always 

to the maximum admissible by the admission control algorithm. Even if this is not the real 

case, the high load assumption is intended to stress the A2M mechanism in order to show its 

robustness to traffic load. Moreover, the continuous load assumption allows the study of the 

intrinsic beneficial effects of A2M, since the Pco-out performance is a function of the caching 

scheme instead of both proxy caching and variable accepted load conditions. In any case, this 

section also report some performance figures attained with a reduced value of λ.  

As a starting point, figure 73 shows the relation between download failure (connection 

outage probability, Pco-out), the channel outage probability (Pch), and the max number of 

admitted connections in high overload conditions (λ=100 requests/s) when A2M algorithm is 

adopted. No pre-fetching is considered and a uniform distributed frequency request rate is 

adopted. In the same simulation conditions, figure 74 shows how the connection outage 

probability reacts to the variations of the accepted load, in terms of maximum number of 

admitted connections. It is remarked that with a small channel outage probability (5%), the 
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connection outage probability becomes intolerable as the number of admitted connections 

grows and approaches the maximum (i.e., C/R = 16 connections). In terms of overall 

download time experienced by clients, figure 75 shows that downloading a file takes a time 

ranging between a minimum time (equal to the ratio between the file size S = 105 Kbyte, and 

the user rate R = 2 Mbps, so that S/R = 409 s) for low load and low channel outage 

probability, and almost twice that value, for download in high load and outage probability. 
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figure 73- Connection outage probability vs. channel outage probability with uniform content 

requests distribution and without pre-fetching 
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figure 74 -  Connection outage probability vs. proxy utilization with uniform content requests 

distribution and without pre-fetching 
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figure 75 - Behavior of normalized client download time as a function of the channel outage 

probability for several target utilizations 

In the remaining figures a Zipf-like distribution law is adopted and pre-fetching effects are 

also evaluated. The file population is set to 10000 units, and α=0.986. Both figure 76 and 

figure 77 give a performance comparison between A2M and ED operation effects when a first 

half of the files characterized by the highest hit ratio is cached. As reported in the figure keys, 

a fraction of the mostly requested 100 files is pre-fetched, representing a cumulative request 

probability of about 51.3%. In particular figure 76 is related to low request rate conditions 

(λ = 0.02 requests/s), while figure 77 reports simulation results obtained in an quasi-

continuous load framework (λ = 100 requests/s). Each figure plots four curves, two for A2M 

and two for ED simulations; for each bandwidth allocation scheme, the two curves represent 

simulations with and without pre-fetching.  

It is obvious that pre-fetching algorithms improve outage performance, due to the 

probability that a client request matches a (partially) pre-fetched file. Moreover simulation 

results show that using exactly the same pre-fetching algorithm, A2M performance looks 

better than ED. A2M performance is well below the ED one, especially in low load conditions 

(figure 76), but this is still true also in high load conditions (figure 77). It is stressed that, 

using A2M, it is possible to obtain a connection outage that is less than a half of the 

probability experienced in traditional ED framework. 
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figure 76 - Connection vs. channel outage probability with max 8 connections in low load 

 

figure 77- Connection vs. channel outage probability with max 8 connections in high load 

The pre-fetching gain is also clearly shown in figure 78 to figure 80. In these figures a 

partial pre-fetching scheme is proposed, as before. Different curves have been obtained by 

varying the pre-fetching fraction, the load and the accepted load. Firstly, in figure 78 the case 

that only eight connections are simultaneously admitted is considered, while the overall 

request rate is quite high. A small pre-fetching fraction as large as 10% of 100 among the 

most frequently requested files, allows a notable reduction of connection outage probability of 

one order of magnitude. Additional pre-fetch (as to the 50%, shown in the third curve of 

figure 78) further improve the performance, but with higher costs in terms of memory 
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requirements. Note also that the benefic effect due to pre-fetched data, saturates as the pre-

fetched grows, so that the advantage coming from additionally augmenting the pre-fetching 

rate rapidly disappears. On the other side, considering figure 79, using all the possible proxy-

client connections (i.e., 16) yields a smaller gain using pre-fetching, i.e. a greater pre-fetching 

fraction is needed in order to obtain the same performance as before, even if the offered load 

is well reduced with respect to the case shown in figure 80. Obviously, the more the proxy is 

loaded, the more storage resources are required. This is clear from the consideration of curves 

depicted in figure 80, where a λ = 100 request/s is adopted, instead of λ = 0.02 request/s used 

in figure 79. 

 
figure 78 - Connection outage vs. channel outage probability with max 8 connections 

admitted and high offered load 

 
figure 79 - Pre-fetching gain in low request rate conditions 
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figure 80 - Pre-fetching gain in very high request rate conditions 

 
figure 81 - Connection outage probability as a function of request rate and pre-fetching gain 

for a 10% channel outage probability. 

Finally figure 81 and figure 82 give a direct insight of the dependence between offered 

load, in terms of λ, and the connection outage probability Pco-out, given a pre-fetching setting 

and a channel outage probability. When the channel outage probability is reasonable (see 

figure 81) the A2M approach, with a light form of pre-fetching, appears to be robust to λ 

fluctuations. With a full loaded proxy (16 connections), and a 10% pre-fetch scheme as 

described above, a satellite channel outage  probability equal to 10% yields a connection 

outage probability of about 0.3% whatever the value of λ. Even though large error bars are 
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reported in figure 81, the gain obtained through the pre-fetch approach is remarkable but not 

indispensable, since the system adopting A2M seems to be robust to relative low channel 

outage probabilities. Conversely, if we consider significant values of Pch, it arises the 

necessity to use pre-fetch schemes as longer as possible. Curves plotted in figure 82 

demonstrates that, in high loss condition, a small amount of pre-fetched data are scarcely 

useful.      

§5.4.3 Delayed Real Time services 

Performance results concerning the support of DRT services are reported in figure 83. 

Results were obtained using DRT streams instead of the VoD ones. The wireless backbone 

was loaded with a single everlasting broadcast transmission at 2 Mbps. In order to present 

cleaner results, we have not included VoD sessions in this scenario. The two major design 

parameters to be considered in such simulations are: 

• the playout delay to be adopted before delivering a stream to the end user, 

• the amount of extra bandwidth resources that are reserved to recovery procedures.  

The percentage of real time stream lost as a consequence of connection outage (not recovered 

data), versus the recovery bandwidth, i.e., the extra-bandwidth with respect to the natural real 

time broadcast rate, is reported in figure 83. Two initial playout delays are considered: 300 s 

and 720 s. The channel outage has been modeled by assuming exponentially distributed 

outage periods lasting, in average, 180 s, and exponentially distributed visibility periods with 

mean value 1620 s (i.e., a 10% channel outage probability). 

 
figure 82 - Connection outage probability as a function of request rate and pre-fetching gain 

for a 50% channel outage probability  
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figure 83 - Delayed Real Time stream: fraction of  not recovered (lost) data 

The figure shows that as long as the recovery bandwidth increases, the performance 

improves. The amount of lost fraction of the stream converges to an asymptotic value which 

simply represents the probability that a single tunnel (i.e., an outage period) lasts more than 

the initial playout delay: in such a case, a fraction of the stream will be lost regardless of an 

eventually unlimited extra bandwidth available. A sharp improvement in the performance is 

suddenly encountered when the extra bandwidth available is equal to the stream rate. This 

operational point corresponds to K=1, as defined in section §5.2.4. In fact, for 1≥K , the 

recovery bandwidth is greater or equal than the stream rate, and thus a connection outage can 

occur only inside a tunnel. Conversely, when K<1, the recovery rate (the rate at which the 

proxy buffer is filled) is lower than the stream rate (the rate at which the proxy buffer is 

emptied), and thus connection outage may occur outside a tunnel, as long as the buffered 

information exhausts (see also figure 70). Note that in figure 83, when the recovery 

bandwidth (normalized to the broadcast flow bandwidth) grows, DRT-flow loss decreases, 

and an asymptote is shown, that depends of the playout time. In fact the connection outage 

probability (with infinite recovery bandwidth) is equal to the probability of a channel outage 

longer than the playout time. Using exponential distribution with mean µ = Toff, if D  is the 

playout delay adopted, T the overall simulated time, and Pch-out the channel outage probability, 

then the mean number of tunnel per simulation is: 

(38) 
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While the mean outage time per tunnel is:  
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In figure 83, horizontal asymptotes are computed according to the previous formula, and they 

only depends on the adopted playout, being µ = 180 s and Pch-out = 10%. 

§5.4.4 FIFTH Train scenario: Italian railways 

In this section, we present performance results taken from the reference deployment 

scenario tackled in the European Community IST project FIFTH (Fast Internet for Fast Train 

Hosts). The goal of this project was to deploy satellite communication for providing Internet 

and multimedia streaming services aboard of high speed trains. The following figures report 

results for a deterministic tunnel pattern, taken on the railways path between the Italian cities 

Rome and Florence (covered in about 1.5 hours by high speed trains). About 23% of this path 

is covered by 44 tunnels, the longest one lasting for about 180 s. The average crossing time 

for a tunnel is 24 s, although the tunnel sizes show a bursty pattern, and tunnels appear to 

cluster.  

Results for VoD services are presented in figure 84. It assumes eight streams in saturation 

load, and shows the relationship between the extra-bandwidth to be made available on the 

satellite channel, versus the extra-time needed to complete the vision of the streams. We have 

reported such a performance figure as it provides a thorough insight in terms of exploitation: 

during a connection outage, advertising might be delivered to the customers, and the figure 

may be intended to quantify how much advertising overhead a customer shall suffer versus a 

given satellite bandwidth dimensioning. From the figure, it appears that a small extra-

bandwidth assignment is able to drastically reduce the download time. For example, a 20% 

extra sizing of the satellite bandwidth leads to about an extra 13% of the stream delivery time. 

However, the figure shows that, to achieve a marginal completion time overhead, a 

considerable satellite bandwidth over-provisioning (up to 70% and more) is required.  
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Eventually, figure 85 reports results for a delayed broadcast (in real time) stream. Here, 

the obvious service requirement for deployment purposes is to provide a seamless support of 

the broadcast channel, i.e., design the system so that no outage periods would occur. The plot 

reported in the figure shows the initial playout delay (y-axis) and the extra bandwidth sizing 

(x-axis) necessary to achieve an uninterrupted service (zero-loss). The figure clearly shows 

that initial playout delay can be traded off with extra bandwidth. It also shows that a minimum 

initial playout delay equal to the longest involved tunnel (about 180 s) is necessary to provide 

an uninterrupted service support.  
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figure 84 - Rome-Florence railways path: Video-on-Demand performance 
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§5.4.5 Mixed VoD and DRT services evaluation 

In this section we report simulated results about the coexistence of VoD and DRT services 

sharing the same bandwidth over the satellite link. Simulations was carried out mainly 

following two approaches: performance are considered as a function of the number of VoD 

flows, or as a function of the channel outage probability. In both cases, the overall satellite 

bandwidth was set to 2048 Kbps, each VoD flow requires 128 Kbps at user side, a single 

broadcast channel is considered at 1024 Kbps. Note that different C/R values apply for VoD 

and DRT services, and that is the reason why we specified the relative data rates. Playout 

delay simulated for DRT services was set to 300 s, while each VoD flow, if no interruptions 

occur,  lasts exactly 1800 s. Tunnels average duration is 180 s. As performance figures we 

have selected: i) the probability that a VoD flow fails; ii) the extra-time to completely deliver 

a VoD flow to the final user, in percentage; iii) the amount of data, in  percentage, pertaining 

to a broadcast transmission, and that the system was not able to deliver to the final user. 

Firstly figure 86 depicts performance of the system reported in the assumption that an ED 

sharing scheme is adopted. Eight VoD flow are admitted simultaneously, and a saturation load 

is offered, thus the number of active VoD flows is, in practice, stuck to eight. This mean that 

half resources are requested by the VoD service, and 1024 Kbps left for DRT (i.e., K=1, in 

this specific case). 
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figure 86 - ED performance using both VoD and RT services vs. channel outage probability 



 
178

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Channel outage probability

A2M - #VoD=8 ( 128 kbps), #RT=1 ( 1024 kbps), BW = 2048 kbps

RT lost time
VoD extratime

VoD Pout

 
figure 87 - A2M performance using both VoD and RT services vs. channel outage probability 
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figure 88 - A2M and ED performance using VoD and RT services vs. number of allowed 

VoDs 

DRT performance result reasonable for a large range of channel outage probability values: 

let say that a 30% of channel outage probability can be recovered by using a 300 s playout 

delay; when outages are more frequent, a greater initial delay is needed for DRT stream 

delivery. VoD performance looks pretty in terms of extra-time requested in order to complete 

the download, but if one has a look to the probability that a VoD flow stops during its 

execution, it is clear that a great number of interruptions occurs if the channel outage 

probability overcome a threshold of about 10%. 
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In comparison with performance illustrated in the previous figure, A2M is evaluated in 

figure 87. It is possible to say that DRT performance do not improve deeply, while VoD 

service enhancement is remarkable, and can be quantified in a 10% gain in terms of 

sustainable channel outage probability. 

Afterwards, if we consider the relation between services performance and number of 

allowed flow, in the same condition of above, figure 88 shows a comparison between ED and 

A2M performance. As to the scenario simulated in such a figure, a 25% channel outage 

probability is enforced, and no particular differences arise in terms of overall time needed in 

order to definitely convey a video to the final user. It is not reported here, but, as to VoD 

services, the great gain due to the use of A2M consists in the reduction of outage occurrence, 

as shown in other cases reported before. On the other hand, as to the DRT services, a quite 

interesting results can be highlighted in figure 88: A2M is useful and provide better 

performance than ED, but this is not still true if the number of admitted VoD flows grows too 

much. In fact, since we adopted a saturation load, using n VoD flows implies that, in average, 

only 2048-128*n Kbps can be available for DRT recovery procedures, and this, in turn, makes 

the equivalent value of K decrease. In the selected case, the maximum number of VoD 

connections should be set to 12 (i.e., K = 0.5) if A2M beneficial effects have to be granted. 

Note also that when resources allotted to VoD overcome one half of the overall satellite 

resources, DRT performance drastically falls both in case of ED and A2M usage. 

Nonetheless, in that transition the system behaves much more robustly to VoD load if A2M is 

adopted. 

Finally, figures figure 89 and figure 90 illustrate the behavior of the system in case of 

contemporary usage of both VoD and DRT services when the real path between Rome and 

Florence is considered as in figure 84 and figure 85. In particular, both pictures refer to a 

scenario with a single everlasting broadcast stream at 1024 Kbps and eight VoD flows at 128 

Kbps, 1800 s lasting, with saturation load. In the case of VoD performance, a 720 s playout 

was fixed for DRT services. In those pictures, in correspondence with service whose 

performance is reported, the percentage in the x-axis represents the available resource in 

comparison, respectively,  with the DRT (figure 89) and VoD (figure 90) requirements, once 

subtracted the nominal amount of resource that could be needed by the other service, i.e., 

VoD and DRT respectively. In other words, the point corresponding to 100% is that of a 

system that can accommodate twice the bandwidth of permitted VoDs or all VoDs plus a 

complete and continuous retransmission of the broadcast channel. 
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figure 90 - Rome-Florence: performance of VoD in presence of a RT stream @1024 Kbps, 

720s playout 

With respect to performance obtained using only one service at a time, a degradation can 

be noticed both for DRT and VoD, but a reduction in the overall bandwidth consumption can 

be obtained if we consider that the sum of services requires less than the sum of resources 

separately required by each service. As a matter of fact, the presence of a service acts as a 

reduction of resources available for the other service, but the same performance reported in 

figure 84 and figure 85 can be obtained by using less and less than twice the resources needed 
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when using separate channels for DRT and VoD services. However, the system can be 

suitably tuned as before, and quality can be guaranteed by means of extra-bandwidth usage 

and reasonably long playout delay to be used for DRT services. 

§5.5 Conclusions 

In this chapter we have reviewed the advantages provided by the adoption of elastic 

buffering in the support of multimedia streaming. Elastic buffering relies on a proxy devised 

to split data flows into two parts. The proxy to client stream is delivered at the natural playout 

rate. Conversely, the stream is downloaded from the remote server to the proxy at a rate 

possibly higher than playout.  

We considered VAN users attempting to download multimedia contents from the outer 

network, relying on a proxy. VoD/MoD and DRT services have been taken into account, and 

a suitable bandwidth sharing algorithm, A2M, has been proposed to confer reliability to both 

kinds of service. Excess retrieved information is temporarily stored in the proxy buffer for 

future delivery. Simulation results show the effectiveness of elastic buffering to compensate 

intermittent connectivity occurring during outage periods. Moreover, they show the 

superiority of the proposed A2M mechanism with respect to a traditional approach in which 

the bandwidth on the wireless backbone is equally shared among the active streams. This 

work leaves open the issue of how to deploy the proposed mechanisms over the Internet. Such 

a deployment requires the thorough investigation of signaling mechanisms between the proxy 

and the remote server for the dynamic support of play/still/resume functions implemented at 

the proxy side, and their application on top of a transport session between proxy and remote 

server to achieve information download at a speed higher than the natural streaming playout.  

The basic ideas proposed in this chapter was developed within the frame of the European 

Community funded IST FIFTH project, which employs a bidirectional communication 

between a GEO satellite and a traveling train equipped with an auto-seeking on-board 

parabolic antenna. The investigation carried out for this scenario has assumed a dedicated 

satellite link for the moving train, as this was the project demonstration target. Other wireless 

access frameworks were also addressed by the Italian VICOM project. Next steps in research 

mainly relate to the transport protocol influence, and the implementation of an admission 

control scheme, taking advantage from the amount of pre-fetched data in the proxy. Further 

performance insights are needed to understand the effectiveness of the proposed approach in a 

scenario where a fleet of trains, sharing the same satellite link, needs to be networked. 
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Chapter VI  

QoS using interactive DVB satellite systems 
In the first part of Chapter IV we gave some insight in the interoperation of different 

signaling protocols, and in particular on the interaction between GRIP and RSVP deployed, 

respectively, in a DiffServ and an IntServ domain. Signaling extensions represent a key factor 

for the spreading of IP networking capabilities that allow to support QoS-aware applications. 

Hence we have shown that heterogeneous systems can be made compatible for end-to-end 

QoS-aware cooperation. This turns in the possibility to deploy integrated scenarios with 

heterogeneous value added features to be harmonized in a shared fashion. As long as 

resources managed issues are represented by bandwidth consumption, queue length design, 

dropping algorithm implementation, scheduling approach to priorities, packet marking, 

network policing, and so on, network devices can be configured to handle IP traffic in the 

proper way, e.g., following the IntServ approach, the DiffServ strategy or the legacy Best 

Effort scheme. The network provider could experience the necessity to upgrade its devices 

with new additional features for the management of low level mechanisms such as AQM and 

marking, as discussed in Chapter III and Chapter IV. It could be also needed to introduce 

some smart bandwidth and resources handling tools, as discussed in Chapter V.  

However, the envisioned IP-layer (or network-layer, in general) mechanisms rely on 

heterogeneous data link technologies over definitely different physical infrastructures. Thus 

an important point for the provision of QoS support in a network, is the interaction between 

protocols that run in the network-layer or above, and lower layers protocols. Note that this is 

not a novel approach to QoS, since other approaches to reservation, like RSVP, are envisioned 

to collaborate with QoS-aware Layer 2 devices. The point is that lower layer capabilities 

sometimes can hardly be summarized in terms of bandwidth and processing delay, since they 

could additionally include different kind of elaborations as packet encapsulation, fragmenting 

or packing, and also data link-level priority schemes. Therefore a mapping of Layer 3 services 

to Layer 2 services is often required, even though a complete study of this mapping has not 

been carried out for every kind of data link technologies, in particular for satellite, where 

gateways are commonly envisioned between terrestrial and flying nodes, and satellite 

segments have been considered standalone networks. Satellite technologies are going to be 
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particularly relevant in this days, because of the novel possibility to use them as bidirectional 

gates to remote destination, also suitable for interactive multicast applications.  

The knowledge of underlying means and physics details permits a finer tuning of network, 

transport and application parameter. One of the mostly relevant case is precisely represented 

by satellite networks, where considerable bandwidth resources are typically available, but 

severe impairments are due to remarkable delays in the transmission path. For instance, the 

support of reactive applications (e.g., using TCP) over geostationary satellites has been 

thoroughly investigated, and a number of proposals has been produced in order to modify the 

behavior of TCP and other transport/application protocols to cope with the satellite link 

characteristics as in [2], [33], [44], [79] and [101]. The same is for IP interoperability with 

satellite transport mechanisms [62]. In this chapter we conclude the discussion about the 

network support for QoS applications by analyzing the impact of geostationary satellite 

network nodes on DiffServ and IntServ IP architectures. The DVB-RCS satellite transmission 

system is adopted as a reference scenario, where GRIP for admission control and signaling 

extension issues will be reconsidered, as well as DiffServ and IntServ capabilities. The 

problem of providing QoS support in DVB-RCS satellite networks is also addressed and 

observed from an integration perspective with the deployed IP architecture.  

Hence the present chapter is organized in the following way: section §6.1 describes a 

scenario in which DVB-enabled satellites are integrated in a network with IntServ and 

DiffServ nodes. In section §6.2 it is shown the interoperability between QoS models provided 

by IntServ, DiffServ and DVB-RCS. Section §6.3 describes a concrete case and provides a 

mapping between IntServ services and DiffServ classes, and, in turn, between DiffServ 

classes and DVB-RCS Profile Classes. Eventually, §6.4 proposes some conclusive remarks. 

Further information about satellite releases of DVB systems can be found in ISO and ETSI 

standards, [36], [37], [38], [39], [59], [60] and therein reported references.  

§6.1 DiffServ and IntServ in a satellite DVB-RCS system  

In this section we consider a network in which an internal link is implemented via a GEO 

satellite hop provided with DVB-RCS technology. Thanks to the adoption of DVB-S and 

DVB-RCS standards, the satellite node can be used as a common asymmetric link, in 

particular the RCS standard allows any users to send data from ground to satellite using the 

same antenna adopted for the signal reception. To date, flying DVB-RCS satellites are 

provided with transparent payload, so that they simply act as bent pipes, particularly suited for 
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long distance communications. The upload pipe is shared among different users by means of a 

frequency and time division multiple access technique. However, additional capabilities are 

envisioned for a short term evolution of satellite payload, and regenerative payload systems, 

endowed with packet switching facilities, will be soon available for common usage.  Hence, 

the intelligence of actually deployed DVB-RCS satellites is concentrated on specialized 

ground stations:  

• a Network Control Center (NCC) is responsible for the generation of a Terminal Burst 

Time Plan (TBTP) compatible with the on-board switching requirements and the signaling 

procedures for the resource allocation in a MF-TDMA shape; it is also responsible for 

satellite connections establishment; 

• a Satellite Terminal (ST) is responsible for the selection and the fine scheduling of the 

data to be transmitted, the QoS support and the initiation of resource requests for each 

application. 

Interworking between terrestrial and satellite QoS architectures is mostly a matter of 

Layer 3 to Layer 2 translation rules. The optional support to mesh connectivity in a multi spot 

beam communication scenario additionally requires mesh control signaling implemented by 

ground segment entities in the control-plane. Ad hoc interoperation between this satellite 

signaling and the Layer 3 IP signaling for QoS is required in addition to Layer 3 to Layer 2 

translation rules; finally, a full flagged support for packet switching operation will require an 

enhanced satellite on-board processor, capable of several QoS related functions, such as QoS-

aware switching, QoS-aware buffering and buffer management, QoS-aware scheduling. The 

requirements on the NCC and the ST will be  somehow relaxed as far as the satellite air 

interface is concerned, but the overall capability in terms of end-to-end QoS support will 

increase also in view of strong cooperation between the overall QoS capabilities of the 

satellite system and those of terrestrial segments. 

The optimization of terrestrial and satellite terminals interoperation is driven by the IP 

QoS component characterization. To this goal the following issues are worth being 

considered: 

• the end user shall adopt a signaling scheme to notify its quantitative traffic and 

performance requirements, as derived by the invoked application. IntServ architecture 

with RSVP and its possible alternatives and evolutions represent a suitable references and 

the satellite system should be able to interoperate effectively with them, by means of a 

local admission control for satellite resources allotting. This is due to correctly managing 
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the traffic packets in terms of DVB-RCS capacity categories at MAC level, and for a 

proper forwarding of the signaling packets, also considering the internal mesh connection 

control signaling. 

• Different implementations exist of the DiffServ architecture, examples being a static 

provisioned approach, or a dynamic solution as the one proposed in this thesis by means 

of the GRIP mechanism. The satellite system should be able to interoperate effectively 

with each of them, by translating the relevant signaling (e.g., GRIP probes and similar 

implicitly conveyed signaling messages) and DSCP codes to the most appropriate DVB-

RCS capacity category at MAC level. 

• The end-to-end delivery system is a sequence of domains, each one presenting its own 

specific QoS architecture (if any). Adjacent domains interoperate on the basis of SLAs 

which adapt the QoS categories on the two sides of the sub-network edge. 

A number of possible scenarios stem from the application of these concepts to the DVB-RCS 

link configurations. For the sake of simplicity we selected a particular scenario able to 

highlight the main configuration issues in such a kind of network. Hence we decided to focus 

on a network framework where IntServ is deployed as to access network, i.e., at the edges of 

the overall network. DiffServ is then employed in the core of the network, and a DVB-RCS-

enabled satellite is located in the core, i.e., inside the DiffServ sub-network.  

In this selected scenario, the satellite sub-network does not provide any QoS related 

function or capability in addition to standard DVB-RCS features supported by MAC and 

mapping/translation between the MAC and the IP QoS that applies to the domain which the 

satellite belongs to. The described scenario is depicted in figure 91: a hybrid IP QoS 

architecture is proposed, and a DiffServ sub-network is nested in an IntServ-to-IntServ as 

end-to-end service provisioning system. RSVP is adopted in IntServ, while the core DiffServ 

QoS issues are addressed by the GRIP mechanism. Note that RSVP messages have to be 

encapsulated in GRIP procedures, and, in turn, GRIP probes have to be handled by the DVB-

RCS module in the satellite hop. This is a basic segment, which is unaware of network QoS, 

but it has local QoS mechanisms and it can be suitably configured to deal with GRIP probes 

in the proper way. The satellite is only requested to respect the GRIP semantic, so enforcing a 

performance downgrade in the service experienced by probing packets (with respect to the 

DiffServ class the label carried by the probe belongs to). The figure also reports DVB-RCS 

signaling between satellite terminals and network control center.  
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figure 91 – The adopted end- to-end integrated scenario 

More into details, the following considerations applies as to signaling messages,: 

• end-to-end RSVP signaling is conveyed transparently in the payload and it is processed by 

the leaf routers only (one on the terrestrial side, which the service providers attaches to, 

the other one the satellite side, inside the DVB-RCS terminal); 

• if the pure DiffServ QoS architecture is upgraded with GRIP support, per domain GRIP 

signaling is conveyed between the leaf router on the terrestrial side and the leaf router in 

the DVB-RCS terminal; this signaling is processed by these leaf routers and the router in 

the NCC, which operates similarly to a hub; 

• the router in the hub maps between DiffServ/GRIP and DVB QoS; 

• the router in the DVB-RCS terminal maps between i) RSVP and DiffServ/GRIP (cross-

domain operation) and between ii) DiffServ/GRIP and DVB QoS (cross-layer operation); 

• the NCC handles DVB-RCS MAC signaling for the on-demand assignment of capacity 

resources; 

• satellite admission control is performed by the NCC in the hub on the basis of a 

measurement based solution; 
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• the mapping between RSVP and GRIP is performed by the ST as to end-to-end 

connection requests that ask to traverse the satellite hop in the satellite return channel 

direction (i.e., upstream from an ST to the NCC); conversely, in the opposite direction, 

RSVP enters the GRIP area in a common terrestrial router; 

• a connection blocking service is provided by GRIP at the edge of the DiffServ are, hence, 

in the ST also; 

• satellite connections, related to Layer 2 connection establishment, are dealt with by NCC, 

but they can be triggered by ST requests. 

The figure above depicts the referenced scenario without pointing out to the specific on-

board payload architecture. In fact, this issue is relevant in terms of the ST/NCC-to-satellite 

payload signaling to drive on-board QoS decisions, but it is not suitably depicted in the 

graphical form chosen in this section, which is instead oriented to stress the points of 

mapping/translation between QoS architectures and the types and boundaries of the signaling 

flows that traverse each single domain.  

In the following of the section we report an overview of the QoS-related parameters of 

both the IntServ/RSVP model and DiffServ model and a brief presentation of the defined 

DVB-RCS network Profile Classes and the correspondent QoS parameters. Examples of 

mapping will be furthermore addressed in the following sections. 

§6.1.1 IntServ service model 

The IntServ/RSVP model includes two sorts of service targeted towards real time traffic 

applications: GS and CLS. In parallel with these two services the default BE service has to be 

considered for mapping purpose. GS is intended to support real time applications with tight 

delay requirements. The QoS provided by a GS implies: assured level of bandwidth 

(guaranteed throughput), mathematically bounded end-to-end delay (guaranteed maximum 

delay) and no queuing losses for conforming packets. The applications which require a GS 

specify both the traffic characteristics (TSpec) and reservation characteristics (RSpec); non 

conforming traffic is treated as BE. The CLS is intended to support a broad class of 

applications which have been developed for use in today’s Internet but are highly sensitive to 

overload conditions. Important members of this service class are the adaptive real time 

applications with loose delay requirements. The QoS offered by a CLS is similar to those 

achievable by a BE service in an unloaded network. The CLS does not accept or make use of 

specific target values for control parameters such as delay or loss. The applications which 
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require a CLS specify only the traffic characteristics (TSpec) while the reservation 

characteristics (RSpec) are not required; again, non conforming traffic is treated as BE. 

§6.1.2 DiffServ service model 

The DiffServ model presently defines three PHBs. The class selector PHB replaces the IP 

precedence field of the former TOS byte. DiffServ additionally offers two relative forwarding 

priorities: 

• the EF PHB guarantees that packets will have a well-defined minimum departure rate 

which, if not exceeded, ensures that the associated queues are short or empty. EF is 

intended to support services that offer tightly bounded loss, delay and delay jitter; 

• the AF PHB group offers different levels of forwarding assurances for packets belonging 

to an aggregated flow. Each AF group is independently allocated forwarding resources. 

Packets are marked with one of three drop precedences, the ones with highest drop 

precedence are dropped with greater probability than those marked with the lowest drop 

precedence. DSCPs are recommended for four independent AF groups, although a 

DiffServ domain can have more or fewer AF groups. 

Eventually, the BE level is also considered as a default PHB with no priority at all (BE PHB).  

§6.1.3 DVB-RCS service model 

Traffic offered to a DVB-RCS is transported accordingly to specific Profile Classes (PCs) 

that perform differently as to delay and loss characteristics. Actually, this is the only QoS 

support offered by a DVB-RCS segment in addition to the admission control functions. The 

different PCs are meant to provide significantly different levels of service, and the envisioned 

applications range from e-mail to tight real time video and voice applications.    

In particular, three QoS parameters are considered, and six PCs are identified for the 

DVB-RCS satellite network on the basis of significant combinations of the QoS parameters. 

The parameters are:  

• the maximum packet transfer delay (MPTD), computed as the time due to move a packet 

between the extremities of the satellite link;  

• the peak-to-peak delay variation (PtPDV), expressed as the maximum jitter experienced in 

the satellite link;  

• the packet loss ratio (PLR). 
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Profile 

Class 

MPTD (One Way) PtPDV PLR Application example 

1 highly sensitive 

(some hundreds ms) 

highly sensitive 

(some tens ms) 

Loosely sensitive

(≤ 10-3) 

Voice-based 

2 Sensitive (≤ 1 sec) highly sensitive  

(some tens ms) 

Sensitive 

(≤ 10-4) 

Real time TV-cast, 

Interactive TV 

3 Sensitive (≤ 2 sec.) Loosely or not 

sensitive 

highly sensitive 

(≤ 10-6) 

Real Time Transaction Data 

4 loosely sensitive 

(few seconds) 

not sensitive 

(no upper bound) 
Sensitive (≤ 10-4) Web Browsing, Interactive 

Games 

5 loosely sensitive 

(some seconds) 

not sensitive 

(no upper bound) 

highly sensitive 

(≤ 10-6) 

File transfer 

6 not sensitive 

(no upper bound) 

not sensitive 

(no upper bound) 

not sensitive 

(no upper bound) 

e-mail, Fax 

table 9 - DVB-RCS network Profile Classes 

The six Profile Classes are characterized in table 9 following an approach related to the 

sensitiveness of each PC to the QoS parameters. Of course, delay are accounted for a duration 

of the order of hundreds of milliseconds or also seconds, since the adopted satellite is in a 

geostationary orbit, and it takes about 120 milliseconds to traverse the radio channel. 

There are basically two high performance Profile Classes (PC1 and PC2) which are 

particularly suited for real time applications offering a great amount of traffic. PC number 3 

offers intermediate performance for real time applications and interactive applications 

requiring a small amount of data to be transferred, but which need higher protection against 

packet loss. Pleasurable support for web surfing is offered by PC4, as well as for instant 

messaging applications with slow rate video and interactive games. PC5 is definitely not 

suited for interactions and real time needs, but it suits for a better that best effort service, 

useful for file transfer or slow rate Internet browsing. A BE service is actually provided by the 

PC6, without any kind of guarantees and bound for QoS parameters.  

§6.2 QoS-aware interworking of DiffServ, IntServ and DVB system  

This section is devoted to the mapping between QoS service model presented in the 

section above. Let’s consider the occurrence that an IP architecture endowed with QoS-aware 

mechanisms includes a satellite hop. With reference to the IP architecture envisioned in this 
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thesis and the location of the satellite hop in the network, the issues to be addressed are 

essentially three: i) how to map IntServ services and RSVP on DVB-RCS Profile Classes; ii) 

how to map DiffServ classes and GRIP on DVB-RCS Profile Classes; iii) how to support 

network signaling extensions in accordance with rules defined in section §4.1 and therein 

reported sub-sections. The first point occurs when the satellite hop is under the direct control 

of  the IntServ domain. The second point refers to a scenario in which the DiffServ sub-

network also exploits the capabilities offered by the DVB-RCS connectivity. This point also 

applies to the integration scenario proposed in section §6.1, as long as the satellite segment is 

embedded in the DiffServ domain. The third issue, again,  applies to the previously reported 

scenario. In fact, in section §6.1 we envisioned an end-to-end integrated scenario with IntServ 

at both network edges and DiffServ in the middle, covering the satellite area and much more. 

However, it is worth noting that the need for signaling extensions for GRIP and RSVP (or 

similar approaches) also requires the knowledge of mapping techniques for both IntServ to 

DVB-RCS and DiffServ to DVB-RCS QoS features, as soon as the implicit signaling 

mechanism coming into play (i.e., GRIP) is in charge of managing the satellite link. In fact, it 

could be hopeful to harmonize the QoS behavior along with the overall network, so that the 

DiffServ features have to be adapted to both IntServ services and DVB-RCS capabilities. 

Additionally, as a matter of fact, the DiffServ on DVB-RCS mapping should be driven by the 

hypothetical direct IntServ on DVB-RCS mapping that would take place in a all-IntServ 

network, instead of providing abstract service classes uncorrelated with the service running in 

its surrounding areas. Recall that DiffServ with GRIP capabilities for signaling extensions 

does not operate for itself, but it provides flexible means to extend the scope of some other 

powerful (but neither flexible, scalable nor stateless) protocols. 

In definitive, as to our intents, the third issues listed above implicitly requires to 

preliminarily address the remaining two issues. That is the reason why we have selected 

exactly that scenario.    

§6.2.1 QoS-related mapping between IntServ/RSVP and DVB-RCS  

In this section, mappings in terms of Profile Classes (including QoS parameters) and 

traffic parameters between IntServ/RSVP service model and DVB-RCS service model are 

provided. There are two possible mappings for GS: Profile Class 1 and Profile Class 2, 

because of the real time support required by GS. In DVB-RCS domain, the main difference 

between Profile Class 1 and Profile Class 2 is the maximum packet transfer delay value 
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assured by DVB-RCS bearer service, that is some hundred of ms for Profile Class 1 targeted 

towards conversational applications and less than 1 s for Profile Class 2 targeted towards 

streaming and interactive TV services. Consequently a GS is proposed to be mapped into the 

DVB-RCS Profile Class 1 or Profile Class 2 according to the requested maximum packet 

transfer delay: if the requested maximum packet transfer delay is in the order of some 

hundreds of ms, then the GS is mapped into the Profile Class 1, otherwise if the requested 

maximum packet transfer delay is less than 1 s the GS is mapped into the Profile Class 2. 

Anyway, PC1 could be enough for every GS services. Conversely, Profile Classes from 3 to 6 

are not applicable matches for GS. These classes do not provide stringent delay bounds and 

cannot guarantee consistently low delay for every packet. 

Guaranteed Service is mapped into DVB-RCS Profile Class 1 and Profile Class 2 which 

require that only PDR traffic parameter is specified. The latter will result from the following 

RSVP/DVB-RCS mapping formula: 

Rate R, if the DVB-RCS ingress point has a burst buffer 

(41) PDRDVB-RCS =  

Max (R, p), with little or no burst buffering33 

where R is the rate specified in the RSpec parameters and selected to obtain bandwidth and 

delay guarantees and p is the Peak Data Rate specified in the TSpec parameters. 

There are three possible mappings for CLS: Profile Class 3, Profile Class 4 and Profile 

Class 5. In DVB-RCS domain, the main difference between Profile Class 3 and Profile Class 

4 and 5 is the maximum packet transfer delay requirement which is specified (even if it is not 

stringent) in the Profile Class 3 and not specified in Profile Class 4 and 5. Considering that the 

applications (with loose delay requirements but which are highly sensitive to overload 

conditions) which require a CLS specify only the traffic characteristics (TSpec) while the 

reservation characteristics (RSpec) are not required, the choice among Profile Class 3, 4 and 5 

can be made on the basis of the requested TSpec, the available resources or according to the 

predefined correspondence rule which associates classes of applications to the Profile Classes. 

The Profile Class 6 does not provide enough capability for CLS as it does not envisage any 

delay or loss requirement, therefore it is used only to support BE traffic. 

                                                 
33 The burst buffering refers to the token bucket burst parameter b specified in the TSpec parameters. The 
requirement - little or no burst buffering - resemble the zero-buffer case.  
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Controlled Load Service is mapped into DVB-RCS Profile Class 3, Profile Class 4 and 

Profile Class 5 which require that PDR,  SDR and MBS traffic parameters are specified. 

These traffic parameters will result from the following RSVP/DVB-RCS mapping formulas: 

PDRDVB-RCS = p 

SDRDVB-RCS = r 

MBSDVB-RCS = b 

where p is the Peak Data Rate, r is the Sustainable Rate and b is the Token Bucket Size 

specified in the TSpec parameters. 

Eventually, table 10 summarizes the proposed mapping between IntServ/RSVP classes 

and DVB-RCS Profile Classes. It can be noted that, even if all of the Profile Classes have the 

capability to carry Best Effort service, the natural Profile Class is the DVB-RCS Profile Class 

6 which does not envisage any delay or loss bound. As to BE services, there is no traffic 

description and a default value is typically set by the network operator. 

DVB-RCS Profile Classes 
 IP Classes

1 2 3 4 5 6 

GS √ √     IntServ 

Classes CLS   √ √ √  

 BE      √ 

table 10 - Mapping of IntServ/RSVP classes to DVB-RCS Profile Classes 

§6.2.2 QoS-related mapping between DiffServ/GRIP and DVB-RCS 

In this section, guidelines to mapping in terms of Profile Classes (including QoS 

parameters) and traffic parameters between DiffServ/GRIP service model and DVB-RCS 

service model are provided. As to traffic parameter mapping, it is worth noting that in a 

DiffServ domain, only traffic aggregates can be managed. As a consequence, predefined 

traffic parameters have to be considered, and the network operator furnishes default values. 

One solution consists in distributing the available bandwidth between DiffServ classes, 

following a predefined percentage repartition. This repartition depends on the number and the 

types of implemented DiffServ classes. In alternative, once a new connection has to be 

established, each terminal can use a different, but locally predefined, set of connection 

parameters. Subsequent parameter renegotiation should be allowed. In every cases, the only 
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required parameter to signals is the bandwidth, and a one-to-one relationship is set between a 

DSCP and a DVB-RCS PC: a DSCP corresponds to one and only one PC. 

EF PHB should be considered the equivalent of GS in IntServ. As a consequence, there 

are two possible mappings for EF PHB: Profile Class 1 and Profile Class 2, because of the 

real time support and stringent delay requirements. as already seen, in DVB-RCS domain, the 

main difference between Profile Class 1 and Profile Class 2 is that the first allows to obtain 

few hundreds of ms as to maximum packet transfer delay, while using the second a delay 

smaller than 1 s is guaranteed.  Since in DiffServ is not allowed to distinguish between EF 

streams, we propose to map EF PHB on Profile Class 1. This adoption is also suitable, since it 

leaves more room to AF mapping, consisting of many different QoS levels. 

AF PHB corresponds to CLS: one can think to use Profile Class 3, Profile Class 4 and 

Profile Class 5, plus Profile Class 2 not used by EF. In turn, this leaves room for a level 

differentiation between up to four AF classes, even though up to three levels inside each AF 

class should be required. This implies that up to twelve PC values should be needed instead of 

the four available values. Hence, two approaches, or a combination of both of them, are 

envisioned:  

• operate a superposition of DSCPs over corresponding PCs; 

• reduce the number of DSCP in use in the DiffServ domain. 

Note that an AF aggregate could be mapped on a single PC, since internal AF differentiation 

occurs at network layer. However, a further differentiation at MAC layer could be useful, 

especially for implicit signaling purposes. 

A further mapping between IntServ/RSVP and DiffServ is needed to specify the AFx class 

to be used in accordance with the IntServ operation in adjacent domains. In particular, one can 

determine the DiffServ-IntServ class correspondences off-line, using the following rules: 

• map RSVP messages on EF PHB (or BE, but not AF, which requires a separate semantic); 

• determine DVB-RCS PC from IntServ/RSVP to DVB-RCS mapping table, obtaining a 

given PC, say PCx; 

• look-up at DiffServ to DVB-RCS mapping table and return nearest DSCP between EF, 

AF11, AF21, AF31, AF41, and BE; in this way a DiffServ class is detected between EF, 

AF1, AF2, AF3, AF4, and BE. 

IntServ BE has to be mapped on DiffServ BE. In turn, even if all of the PCs could carry Best 

Effort service, the natural Profile Class for BE PHB is the DVB-RCS Profile Class 6 which 
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does not envisage any delay or loss bound. Moreover, as for BE services, there is no traffic 

description and a default value is typically set by the network operator. 

A “Terminal Interworking and Coordination function”, proper of the ST, determines the 

IP QoS level of an incoming flow by analyzing the information contained in the DSCP field. 

After processing of the DSCP field, the ST knows the type pf service requested by a new flow 

and it may determine a suitable associated Profile Class. Some exemplificative DiffServ 

mapping are proposed in this paragraph. In table 11 and table 12 we take into account every 

possible AFxy DSCP, plus EF and BE DSCPs. Note that a single AF class is mapped onto 

two PCs: one for AFx1 and one for both AFx2 and AFx3. Using such a mapping,  the network 

is provided for supporting: 

• delay sensitive, low loss requiring streams in AF1 class; 

• slightly delay sensitive, very low loss requiring streams in AF2 class; 

• loosely delay sensitive, low loss requiring streams in AF3 class; 

• very loosely delay sensitive, very low loss requiring streams in AF4 class.      

The difference between mappings presented in table 11 and table 12 is that, in the latter table, 

AFx3 are not taken into account. Moreover, in table 13 an alternative mapping is proposed, 

and only two AF classes are dealt with: 

DiffServ Classes DVB-RCS Profile Classes
Class Prec. 1 2 3 4 5 6 

EF  √      

AF1 1  √     
AF1 2   √    

AF1 3   √    

AF2 1   √    

AF2 2    √   

AF2 3    √   

AF3 1    √   

AF3 2     √  

AF3 3     √  

AF4 1     √  

AF4 2      √ 

AF4 3      √ 

BE       √ 
table 11 - A possible mapping of DiffServ classes to DVB-RCS Profile Classes 
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• very delay sensitive, low loss requiring streams in AF1 class; 

• loosely delay sensitive, very low loss requiring streams in AF2 class; 

As an example of relation between IntServ services and DiffServ classes, let’s consider 

the mapping proposed in table 12 and a CLS service mapped as in table 10. There are three 

possible mappings onto PC3, PC4 or PC5. Suppose that a stream in CLS is not delay 

sensitive, but it is loss sensitive, since PC4 is selected. In table 12,  AF22 and AF31 DSCPs 

correspond to PC4, thus AF3 class is suitable for carrying data pertaining to that specific 

stream. In conclusion, data will be carried as AF31 mapped onto PC4, while AF32 probes will 

be used (when needed) mapped on PC5. On the other hand, RSVP signaling, when to be 

forwarded transparently (see subsection §4.1.4), will be mapped onto EF PHB and PC1. 

DiffServ Classes DVB-RCS Profile Classes
Class Prec. 1 2 3 4 5 6 

EF  √      

AF1 Data/Ack  √     

AF1 Probe    √    
AF2 Data/Ack   √    

AF2 Probe     √   

AF3 Data/Ack    √   

AF3 Probe      √  

AF4 Data/Ack     √  
AF4 Probe       √ 
BE       √ 

table 12 - A first alternative mapping of DiffServ/GRIP classes to DVB-RCS Profile Classes 

DiffServ Classes DVB-RCS Profile Classes
Class Prec. 1 2 3 4 5 6 

EF  √      
AF1 Data/Ack  √     
AF1 Probe    √    
AF2 Data/Ack    √   
AF2 Probe      √  
BE       √ 

table 13 – An additional alternative mapping of DiffServ/GRIP classes to DVB-RCS Profile 

Classes, using a minimal DiffServ set 

§6.2.3 Interoperation of DiffServ and DVB-RCS satellite networks 

In this section we show Satellite Terminals, implementing DVB-RCS standards, and 

Satellite Gateway, including Hub and NCC, dealing with IP packets when the end-to-end 
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integrated scenario of figure 91 is considered. The description is carried out using and 

commenting the flow chart diagrams reported in the following pages. DiffServ, GRIP and 

eventually RSVP/GRIP mapping are solely considered here.  

Firstly, for the sake of clarity we recall some preliminary terms. By definition, given a ST 

(i.e., a DVB-RCS earth station), with the term outgoing IP traffic we will refer to IP 

datagrams leaving the ST and routed towards the satellite network (to be carried over satellite 

links), whereas with the term incoming IP traffic we will refer to IP datagrams entering ST 

and coming from the satellite network (carried over satellite links). Moreover, given a ST we 

will label as IP layer the Internet network layer interfacing terrestrial networks, whereas 

towards the satellite network a peer S-IP layer will enclose the necessary IP interworking 

functions dealing with satellite issues. GRIP interworking functions are managed by a GRIP  

interworking layer logically overlying both IP and S-IP layer, while DiffServ functions 

remains in the scope of  Layer 3 (as well as IP and S-IP). 

§6.2.3.1 Gateway/hub/NCC side 

In this scope outgoing datagrams are datagrams directed to the satellite, while incoming 

datagrams are leaving the satellite air interface to enter the satellite terminal. As to the 

gateway terminal (a hub with a NCC aboard) the provided flow chart diagrams will show the 

logical operations flow for the handling of: 

• Outgoing IP datagrams, classified as: 

o Outgoing GRIP probes, 

o Outgoing AFx1 and AFx3 datagrams, 

o Outgoing EF and BE datagrams. 

• Incoming IP datagrams, classified as: 

o Incoming GRIP probes, 

o Incoming AFx1 and AFx3 datagrams, 

o Incoming EF and BE datagrams. 

The provided diagrams are valid in the in the frame of the following hypotheses: 

1. only point-to-point unidirectional terminal initiated connection control procedures will be 

taken into account; 

2. only the connection setup phase of GRIP sessions and satellite connections will be 

considered; a complete finite state machine is necessary to describe the overall lifecycle of 

a satellite connection at Layer 2; 
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3. GRIP interworking function receives reassembled datagrams from the Layer 2; 

4. for the sake if simplicity, we assume that once a Layer 2 connection is opened, no needs 

of parameters re-negotiation arises; 

5. the RSVP/GRIP interworking function adopts the operation described in §4.1.4.2 (RSVP 

plus GRIP), i.e., the signaling extension is performed on the basis of the information 

conveyed by the RSVP Resv message. 

Firstly, figure 92 to figure 98 illustrate the IP flow handling related to IP traffic pertaining 

to the satellite hub. In figure 92 it is shown that datagrams are classified in: i) S-IP datagrams, 

that is traffic offered from the satellite to the hub, and ii) IP datagrams, coming from the 

terrestrial link. IP and S-IP datagrams are classified by means of the SAP where datagrams 

came from. Both for outgoing and incoming datagrams, a DiffServ classification is operated 

in order to separate AF datagrams and other (EF and BE) traffic. Finally, AF traffic is further 

decomposed in GRIP probes (labeled as AFx2) and any other AF traffic (labeled as AFx1 and 

AFx3). The overall classification is performed by means of a single parameter, that is the 

DSCP label in IP datagrams. The rationale of such a classification come from the adopted 

end-to-end integrated scenario. In fact, the satellite hub represents a node in the core of a 

DiffServ domain, so that nor GRIP sources neither GRIP destination endpoints have to run 

over satellite hub, but the local GRIP admission control criterion has to be enforced. In other 

words, the satellite hub acts like a gate for GRIP probes, and the state of that gate (accept or 

reject) has to be computed based on the traffic measures locally performed. Thus the hub has 

to distinguish between three kind of datagrams: 

• AFx2 datagrams, carrying GRIP probes and triggering MBAC; 

• AFx1 and AFx3 datagrams, to be forwarded in the satellite air interface only after a AFx2 

GRIP probing has been positively acknowledged; 

• every other IP traffic (EF and BE DiffServ datagrams). 

The gate behavior is shown in figure 93, as to the outgoing datagrams, and in figure 96, as 

to the incoming datagrams. In figure 93, after an outgoing GRIP probe is received, the hub 

checks whether the destination subnet is connected with an active AFx class or not:  

• if yes, a measurement of the traffic generated in that class is taken, and the local GRIP 

admission control is run. At this moment: 

o the probe is accepted and forwarded, or 

o the probe is dropped.  
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• if not, a connection admission control (Layer 3) and an eventual setup procedures (Layer 

2) are performed in order to setup AFx1, AFx2 and AFx3 connections towards the 

destination subnet. 

o In case of positive CAC outcome, the probe is forwarded; 

o In case of negative CAC outcome, the probe is discarded. 

Note that the DVB-related CAC phase (i.e., the procedure to admit a ST to join the satellite 

network) has to be performed only the first time a probe has to be forwarded to a specific sub-

network, since an AFx relation has a pre-determined amount of resource to be allotted in the 

output interface of a core DiffServ router. In fact, in this exemplificative approach, there is no 

need to resize the resources allotted to an AF connection. The DVB-related CAC has not to be 

confused with the per-flow based GRIP CAC procedure to be performed for each new flow in 

a given AF class. 

 
figure 92 - IP packet flow handling at Hub 
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figure 93 - IP packet flow handling at Hub – GRIP probes to be sent to satellite 

AFx1 and AFx3 outgoing datagrams are handled following the logic operation depicted in 

figure 94: firstly,  the destination subnet is determined, and an eventually check is performed 

about the existence of an open AFx connection (that is a triple AFx1, AFx2, and AFx3 

connection at Layer 2). Negative responses cause the datagram dropping, otherwise datagrams 

are forwarded to the satellite.  

A difference can be noticed between AFx1/AFx3 and EF/BE outgoing-traffic handling. In 

figure 95, after a preliminary DVB PC computation, the same checking as above is performed 

over destination subnet connected with the determined PC. Where positive outcome is given, 

datagrams are forwarded; but if a connection already set is not available, the hub tries to open 

a new one, instead of simply dropping datagrams. As already mentioned when describing the 

AFx setup procedure, EF and BE connection need to be open only once per destination 

subnet, and no resource reallocation is needed. In figure 96, a simpler GRIP probe handling is 

shown as regards the incoming datagrams. 
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figure 94 - IP packet flow handling at Hub – Other outgoing AF datagrams 

 
figure 95 - IP packet flow handling at Hub – EF and BE traffic going to satellite 
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Moreover, when an AFx connection is still active in the return link,  a traffic measurement 

is taken over the incoming AFx traffic and a GRIP measurement based CAC is performed, 

affecting the behavior experienced by AFx2 probes in the upstream direction. However, if no 

open AFx-enabled Layer 2 connections are available in the return link, it has to open such a 

connection in order to accommodate GRIP acks in the return path. If this procedure fails, 

GRIP probe should be dropped, since no acknowledgement will be allowed.  

Finally figure 97 and figure 98 report IP forwarding of AFx1, AFx3, EF and BE traffic 

coming from satellite and to be forwarded over a terrestrial DiffServ link, without any further 

action to be taken.  

 
figure 96 - IP packet flow handling at Hub – Received GRIP probes 

 
figure 97 – IP packet flow handling at Hub – AF non-GRIP- probes leaving satellite area 
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figure 98 – IP packet flow handling at Hub – EF and BE traffic leaving satellite area 

§6.2.3.2 Satellite Terminal side 

Now we consider a generic DVB-RCS satellite terminal working in the same scenario as 

above for the satellite hub/NCC. Again, recall that in this scope outgoing datagrams are 

datagrams directed to the satellite, while incoming datagrams are leaving the satellite air 

interface to enter the ST. Moreover, the entire DiffServ domain proposed in the scenario is 

accessible from the terminal side only through the satellite gateway. As a consequence, a 

satellite terminal has to connect with only one destination satellite node (the hub/gateway). 

On the contrary, a gateway should establish multiple connections with other satellite 

terminals. The provided flow chart diagrams will show the logical operations flow for the 

handling of: 

• Outgoing IP datagrams: 

o Outgoing AF datagrams, 

o Outgoing EF and BE datagrams. 

• Incoming IP datagrams: 

o Incoming RSVP Resv  messages, 

o Incoming EF and BE datagrams, 

o Incoming GRIP acks, 

o Incoming GRIP probes.  

The provided diagrams are valid in the in the frame of the following hypotheses: 

1. only point-to-point unidirectional terminal initiated connection control procedures will be 

taken into account; 

2. only the connection setup phase of GRIP sessions and Layer 2 satellite connection will be 

considered; a complete finite state machine is necessary to describe the complete lifecycle 

of a satellite connection; 
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3. diagrams refer to the owner side of a DVB-RCS link, that is they specify how the 

aforementioned kinds of datagrams have to be filtered and handled by the interworking 

functions of the terminal which controls connections the diagram pertains to; 

4. the satellite terminal logon phase is assumed to be already performed; 

5. the satellite terminal is provided a Probing Table, maintaining a list of user connections 

attempting to perform GRIP admission control and waiting for a GRIP ack; a separate 

process will be in charge of timely refresh such a table when GRIP timeouts exhaust; 

6. reassembly of IP datagrams is assumed to be already performed at Layer 3 before the 

GRIP interworking function process the datagram; 

7. for the sake if simplicity, we assume that once a Layer 2 connection is opened, no needs 

of parameters re-negotiation arises; 

8. the RSVP/GRIP interworking function adopts the operation described in §4.1.4.2 (RSVP 

plus GRIP), i.e., the signaling extension is performed on the basis of the information 

conveyed by the RSVP Resv message. 

In this scenario a ST is located at the edge of a DiffServ domain, so that the ST is in 

charge of performing IntServ/RSVP to DiffServ/GRIP mapping and vice versa. In this scope, 

a ST has to parse both GRIP messages and RSVP signaling crossing the border between 

DiffServ and IntServ domains. Furthermore, GRIP sender and receiver endpoint operation 

plus the local decision criterion for CAC purposes have to be implemented on-board of such a 

terminal. 

The flow charts in figure 99 to figure 105 propose the IP flow handling related to IP traffic 

pertaining to a ST. Furthermore, figure 106 and figure 107 introduce two procedures called by 

the flow handling schemes. As to the logic operation to be performed at satellite terminal side, 

figure 99 shows that IP and S-IP datagrams are separated by means of the Service Access 

Point (SAP), and a following classification is also performed both in incoming and outgoing 

branches of the figure. As to outgoing datagrams, the first action taken by the satellite 

terminal consists of a mapping from IntServ to DiffServ classes, accordingly to a predefined 

SLA adopted at the edge of IntServ and DiffServ domains. Eventually, outgoing datagrams 

are classified in AF datagrams and EF/BE datagrams. On the right side of the flow chart 

diagram, the branch dealing with incoming traffic operates a first classification based on a 

DSCP filtering and AF datagrams are set apart from non-AF datagrams (BE and EF). AFx2 

datagrams are finally separated from other AF traffic, while non-AF traffic is parsed in order 

to look for embedded RSVP Resv messages, to be also separated from any other datagrams. 
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The rationale of such a classification come from the adopted scenario. In fact, the satellite 

terminal represents an edge-node in the DiffServ domain, so that GRIP session initiator and 

the GRIP receiver entities have to be activated over satellite terminal. Furthermore, since the 

terminal is located at the edge of a DiffServ and an IntServ domain, semantic 

IntServ/DiffServ translations have to be managed and performed in both directions, while 

RSVP Resv messages have to be parsed in order to trigger GRIP admission control in the 

DiffServ domain.  

In figure 100 outgoing AF datagrams are shown: the AFx class activation is checked and, 

• in presence of a pre-established AFx connection at Layer 2, the right DVB PC is 

computed and datagrams are forwarded towards the satellite; 

• if no AFx connections are available at Layer 2, datagrams are dropped. 

 
figure 99 - IP packet flow handling at Satellite Terminal 
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figure 100 - IP packet flow handling at Satellite Terminal – AF traffic entering satellite 

 
figure 101 - IP packet flow handling at Satellite Terminal– EF and BE traffic entering 

satellite 
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Note that a generic AFx packet is not able to trigger an AFx class setup connection at Layer 2. 

On the contrary, EF and BE outgoing datagrams are firstly mapped on their specific DVB 

PCs, as depicted in figure 101, and then: 

• if a Layer 2 connection is ready to transport EF/BE datagrams, those are forwarded; 

• if a Layer 2 connection is not available, the satellite terminal is in charge of attempting to 

open the desired connection, with the appropriate PC value; 

o if the connection is accepted, datagrams are forwarded; 

o otherwise datagrams are dropped or re-routed if any default terrestrial link is available.  

 
figure 102 - IP packet flow handling at ST – Incoming DiffServ–tunneled RSVP Resv message 

 
figure 103 - IP packet flow handling at Satellite Terminal – EF and BE traffic leaving satellite 
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The figure 102 describes logical operations carried out when incoming RSVP Resv 

messages are intercepted. These are messages generated outside the DiffServ domain they 

have completely crossed, and they are now leaving. ST can only perform a connection 

admission control before forwarding the Resv messages to the next RSVP router in the 

terrestrial network. So, the terminal determines the opportune AF class to be probed (in 

compliance with the SLA and the resource requirements reported in the payload of the RSVP 

Resv message), and then: 

• if a pre-configured AFx connection is available at Layer 2 in the return link, Resv 

message is blocked and locally stored, in the meanwhile a GRIP probe is generated and 

sent to the opposite DiffServ edge node (see figure 106, for a detailed description of 

“Store & Probe” procedure referenced in figure 102); 

• if that is not the case, a CAC procedure is invoked, checking for resource in order to 

accommodate every precedence level AFxy datagrams; 

o In case of positive CAC outcome, a Layer 2 connection is open for AFx, and the 

previously mentioned “Store & Probe” procedure is invoked. 

o In negative case, the RSVP Resv has to be dropped or, if possible, re-routed. 

The ST actions to be enforced after receiving a BE or a EF datagram from the satellite is 

drawn in figure 103: it has simply to be forwarded in the IntServ domain. In fact, while 

crossing a DiffServ domain, packets are not changed but in the TOS field in the IP header. 

Since TOS is unused in IntServ, datagrams leaving a DiffServ domain, are already in the 

IntServ format, and do not require any additional elaboration.  

Let’s now analyze incoming GRIP datagrams. The flow chart in figure 104 concerns with 

GRIP acks and data (AFx1 for acks and normal data, AFx3 for low priority data). At the 

beginning, AFx3 datagrams are filtered and forwarded, while AFx1 datagrams are further 

analyzed, in order to check if they represent acks or normal data. When an incoming AFx1 is 

received, it needs to look-up at the Probing Table, in order to verify whether the node was 

waiting for that specific GRIP ack or not: 

• if the ack was expected, the previously stored RSVP Resv, correlated with the GRIP ack, 

is forwarded to its final destination. The correspondent entry in the Probing Table is 

deleted and the GRIP ack is removed; finally a connection setup is possibly performed in 
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he return link for every kind of AFx traffic34, if not yet available; 

• if non expected, the datagram has to be normally forwarded to the IP layer.  

Finally, in figure 105, incoming GRIP probes are taken into account. These are datagrams 

signaling a connection attempt, and the satellite terminal has to give back an 

acknowledgement (GRIP ack) if and only if the incoming AFx traffic is not overwhelming the 

satellite terminal capacity. Thus a measurement based decision criterion is adopted by the 

GRIP entity. Upon the decision is taken, the following rules apply: 

• if the stream (Layer 3) is accepted, and an active AFx connection is available in the return 

link (Layer 2), a GRIP ack is generated, as reported in the “GRIP ack (probe, class)” 

procedure in figure 107; 

 
figure 104 - IP packet flow handling at Satellite Terminal – GRIP acks from DiffServ core 

                                                 
34 Receiving the ack, implicitly signals that satellite network has room for that stream, thus no additional NCC 
CAC is needed. The same is true for the satellite terminal, since ack is generated only after a probe, and a probe 
is sent only if local resources are available. 
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figure 105 -  IP packet flow handling at Satellite Terminal – GRIP probes from DiffServ core 

• otherwise, if the stream is accepted but an Layer 2 AFx connection is not available, a 

connection admission control procedure in the return link is invoked in order to setup the 

connection; 

o if the Layer 2 connection can be established, GRIP ack procedure is invoked; 

o if not, Layer 3 connection attempt is aborted by not replaying, and GRIP probe is 

removed; 

• if the stream is not accepted, GRIP probe is removed and no feedback is sent, so that the 

new stream is implicitly not admitted (after a timeout expires). 

For completeness, we now briefly comment figure 106 and figure 107 in which to relevant 

GRIP procedures are logically reported. The first figure represents the “Store &  
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figure 106 - Predefined procedure flow chart diagram: Store & Probe (datagram, class) 

 
figure 107 - Predefined procedure flow chart diagram: GRIP ack (class) 

Probe(message, class)” procedure, in which a RSVP Resv path and a suitable AFx class 

identifier are used as parameters. The procedure consists in storing in the local storage area 

the complete Resv message, while recording it in a new entry in the Probing Table. Then a 

GRIP probe is  arranged  and marked  with an  AFx2  DSCP  tag.  Finally,  the probe is sent 
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using as destination the egress DiffServ router the Resv came from. The last procedure, 

“GRIP Ack(probe_pointer, class_id)” is depicted in figure 107. A pointer to the probe 

originating the procedure is passed as first parameter (probe_pointer), and also in this case, a 

suitable AFx class identifier is needed (class_id), since the procedure generates a GRIP ack 

with an AFx2 tag, and then the datagram is forwarded in the return link. The GRIP probe 

datagram is finally deleted.   

§6.2.3.3 Control-plane interworking 

From the description given above, it is clear that GRIP mechanisms rely on pure data-

plane operation. Nonetheless, GRIP message exchanges give rise to a  set of control-plane 

actions, both operated at NCC and satellite terminal side. Assuming this perspective, GRIP 

messages play the role of a QoS signaling protocol which allows the satellite system to 

perform a dynamic admission control in a transparent payload scenario. The interworking 

layer, in the control-plane, is in charge of translating GRIP QoS signaling into DVB QoS 

messages. Furthermore a differentiation between satellite gateway and satellite terminal 

control operation is due because of the different roles played in the DiffServ architecture: the 

NCC is inside the DiffServ domain, while the ST is at the edge of the DiffServ domain and it 

is interfaced with an IntServ domain.  

At gateway side, where a NCC is present, both in forward and return links GRIP probes 

have to be parsed, as already shown in section §6.2.3.1. As to the forward link, the NCC 

intercepts GRIP probes (labeled with an AFx2 DSCP) originated by the terrestrial DiffServ 

endpoints and, if the GRIP decision criterion returns a positive response, the AFx class is 

mapped on three correspondent DVB Profile Classes. Under the assumption that in a AF 

class, say AFx, AFx2 (probes) and AFx3 (potentially useful for advanced solutions) traffic is 

negligible, the NCC has to check whether in the satellite forward link there is room enough 

for a new AFx1-labeled stream. If AFx2 plus AFx3 traffic is relevant, NCC should take into 

account the aggregate statistics of AFxy traffics, y=1,2,3. Note that, since DiffServ 

mechanisms are not supported over flying satellite devices, each AFx traffic aggregate is 

subdivided into three subclasses, AFx1, AFx2 and AFx3, and up to three different satellite 

connections could be activated in order to strengthen the service differentiation between AF 

precedence levels.  

AF connections from the gateway to a single satellite should be opened only once per 

satellite terminal, until the satellite terminal logs-off. In fact, when the connection is 
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established, admission control should be performed by GRIP operation. This is still true also 

for EF and BE connections, since EF, BE and AFx classes follow predefined PHBs, whose 

resources should be pre-allocated in each DiffServ node. Of course, when a DiffServ class 

(PHB) does not use its resources, other classes are temporary allowed to use them, and this 

mechanism is natively adopted by DVB-S and DVB-RCS MAC, using, for instance, the 

automatic Free Capacity Assignment mechanism. In the proposed solution, DVB-RCS 

connections (Layer 2) are opened  in the forward link only in occurrence of the first datagram 

requesting to be forwarded towards a destination subnet,  i.e., addressed to a satellite terminal 

not yet supporting the requested DiffServ class in  that direction. Moreover, an AFx class 

setup will be required in the forward link as long as a GRIP probe crosses the gateway while 

in the accept state, even though the GRIP probe is an incoming datagram, since the 

correspondent GRIP ack will be accommodated in the forward link. By taking into account 

that DiffServ classes parameters are predefined, the signaling payload in a GRIP probes 

datagram consists of its DSCP label.  

Satellite connections in the forward link are established by means of NCC-initiated MAC 

signaling procedures. As regards the return link, the NCC interacts with the satellite terminal, 

which generally invokes the setup procedure for a new Layer 2 connection. Nonetheless, NCC 

parses GRIP probes originated by the satellite terminal and implicitly communicates its 

decision about new streams accommodation via GRIP edge-to-edge mechanisms: this could 

require an explicit request to the ST in order to open a satellite connection in both forward and 

return link, to accommodate GRIP messages. Thus, connections in the return link could be 

setup by means of both NCC- or satellite terminal-initiated MAC signaling procedures. 

At terminal side only GRIP datagrams plus RSVP Resv messages (encapsulated in IP 

datagrams) coming from satellite have to be parsed and only signaling messages addressed to 

the return link are managed. As regards the return link, a new AF stream connection-attempt 

triggers the generation of a GRIP probe, upon a Resv message entries the ST from the forward 

link. This probe signals the stream requirements by means of a suitable DSCP in the AF range 

by identifying the AFx class to be used, so that a Layer 2 connection for AFx class has to be 

setup, if not yet available. Local admission control is operated based on the AFx class and the 

traffic load statistics that the node has meanwhile collected, if any. Connections in the return 

link should be opened only once per logon. In fact, once the terminal is logged, all the traffic 

towards the satellite pertains to EF, BE or AFx aggregates (x=1,2,3,4) which has a predefined 
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amount of resources allotted in the return link. Summarizing, the terminal operates a 

connection setup only in correspondence with: 

• the first BE datagram is received from terrestrial network; 

• the first EF datagram is received from terrestrial network; 

• the first RSVP Resv message requesting AFx class is received from the satellite; 

• the first AFx1 GRIP ack has to be sent as positive feedback after an AFx2 GRIP probe is 

received (this could be optionally triggered by the NCC). 

These are events that cause MAC signaling between ST and NCC, and they are initiated by 

the ST, but for the last point, where signaling could be initiated by ST or NCC. Moreover, we 

want to stress that dynamic stream admission is supported only for AF PHBs, while BE and 

EF traffic is generated at domain edge, in accordance with the adopted SLA. As regards 

forward link, explicit MAC signaling messages are exchanged with NCC, but they are 

exclusively NCC-initiated when the gateway wants to connect with the terminal. 

In conclusion, note that given an AFx class, no other parameters are required in order to 

perform local or network admission control procedures. A suitable RSVP/GRIP mapping is 

still needed; in fact, GRIP selects the AFx class in accordance with the traffic parameters 

specified in the payload of an incoming RSVP Resv message.  

§6.3 A concrete example of cross-layer interoperation 

A very critical issues is represented by the NSLP translation in a NSIS-like framework 

(see section §4.1), whose functionalities can also be extended to the interaction with QoS 

handlers mechanisms in a specific node. This issue (not stressed in the examples presented in 

subsection §4.1.4) is addressed in the following example. Here we consider a scenario similar 

to the one presented before in subsections §4.1.2 and §4.1.4, but a specific component of the 

intermediate domain is highlighted: a satellite DVB-RCS segment with the six Profile Classes 

and their corresponding behaviors as already defined and commented in §6.1.3 and table 9. 

For the sake of simplicity, in this example we consider the scenario depicted in figure 108, 

where SRC and DST endpoints are RSVP-capable. The operation described in subsection 

§4.1.4.1 (RSVP over GRIP) is adopted. Hence the RSVP signaling extension is triggered by 

the Path messages entering the DiffServ domain (at router R2, in the figure). Additionally, we 

highlight the case of IntServ services to be mapped on AF PHBs, since in this case the 

proposed GRIP signaling extensions apply.  
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figure 108 - IntServ-DiffServ-Satellite scenario 

IntServ Class Application requirements/priority DiffServ PHB 

GS High priority, low loss EF 

High priority and high rate AF1 

High priority and low rate AF2 

Low priority and high rate AF3 
CLS 

Low priority and low rate AF4 

BE Best effort BE 

table 14 - IntServ-DiffServ mapping 

In order to start a new connection, a Path message is sent from SRC and accordingly dealt 

with in Domain A. If RSVP routers in Domain A have room enough to accommodate the 

requested connection, R2 starts an implicit signaling admission control procedure in the scope 

of Domain B, via GRIP probing operation.  

To that aim, RSVP Path messages has to be previously mapped on a specific DiffServ 

class. In fact, GRIP probing has to be performed solely in the class that is candidate to 

accommodate the flow, if established. A possible IntServ to DiffServ mapping is reported in 

table 14, where the CLS service is split in four sub-classes, in correspondence with the four 

AF PHBs. The mapping takes into account traffic priorities and application requirements, as 

reported in the second column of table 14. Actually, table 14 can be seen as the combination 

of the two following tables reported below for IntServ and DiffServ mapping on DVB-RCS 

PCs. 

Hence, router R2 parses the payload conveyed in the Path message and selects the 

correspondent service, which, in turn, corresponds to a DiffServ PHB. If the selected PHB 
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falls in the range of AF classes, the GRIP procedure begins, otherwise packets are forwarded 

in EF PHB (for GS service) or BE PHB (for IntServ BE service). Upon an AF DiffServ PHB 

is selected, the Path message is accordingly labeled with a probing DSCP, and forwarded 

towards the GW node, that is a satellite gateway located at the edge of a DiffServ domain. In 

the assumption that DVB-RCS technology is adopted, the signaling message can be 

forwarded to the satellite, but it is needed to map the DiffServ code point on DVB-RCS PCs. 

An example of such a mapping is reported in table 15. After the satellite hop, the RSVP Path 

message (which was labeled as a probe and forwarded within a specific DVB-RCS profile 

class) is injected by TR (the terrestrial satellite terminal) in the following IntServ domain, and 

it is parsed by RSVP routers and finally by DST, that possibly generates the Resv message. 

Of course, the Path message encapsulated in the probe packet could be dropped by the edge 

router R2, the GW, and also by the DVB-RCS terminal TR, in accordance with the GRIP 

decision criterion adopted. If the packet is not dropped, TR provides the de-encapsulation 

function before to be forwarded to DST.   

DVB-RCS approach allows the system to use the satellite link in the reverse path, so that 

the RSVP response possibly sent by DST, i.e., the Resv message, will be forwarded back to 

Domain B through the return satellite link, and RSVP to DVB-RCS mapping has to be 

performed by TR. As a reference, one could consider the mapping presented in table 16 where 

the IntServ CLS has been decomposed in four different services, in accordance with the traffic 

priorities and data rates of applications. Note that the mapping in table 16 slightly differs from 

mapping reported in table 10, since the DVB-RCS PC2 is now devoted to host high 

performance CLS applications instead of a low level GS applications. This alternative 

approach is twofold: in this way the number of CLS services matches the number of AF 

PHBs; moreover, application requiring real time compatible performance, are clustered in a 

single group, which is more easily to deal with. However, we recall that the mapping 

proposals presented in this thesis can be adopted as a generic guideline for a real 

implementation, and multiple solutions should be available to meet the manifold operating 

circumstances that a network provider could encounter. 

Hence, RSVP Resv packets are mapped accordingly to the requesting service, as reported 

in the table 16, while the right DSCP to be used when entering the Domain B is chosen in 

accordance with the actual DVB-RCS PC (which corresponds to a IntServ service) and based 

on the combination of mapping functions reported in table 15 and table 16, which explain the 

nature of table 14. For instances a RSVP Path message relative to a CLS with low delay 
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constrains and high bandwidth requirements corresponds to be behavior granted by PC3 in 

table 16, and this turns in a DSCP = AF11 in table 15 for data and GRIP feedbacks, while 

probes will use AF12. Thus, when a Path leaves the node TR with a given AFx2 tag, an entry 

is added in the TR mapping table, in order to accordingly accommodate the subsequent Resv 

message with an AFx1 tag. The rest of the network operation follows the behavior already 

shown in subsection §4.1.4.1. 

DiffServ PHB DVB-RCS profile class 

Class Precedence 1 2 3 4 5 6 

EF --- √      

AF11 – Data/Feedback  √     

AF12 – Probe   √    AF1 

AF13    √   

AF21 – Data/Feedback   √    

AF22 – Probe    √   AF2 

AF23     √  

AF31 – Data/Feedback    √   

AF32 – Probe     √  AF3 

AF33      √ 

BE       √ 

table 15 - DiffServ-DVB-RCS mapping 

DVB-RCS profile class 
IntServ class 

1 2 3 4 5 6 

GS √      

High priority, high rate  √     

High priority, low rate   √    

Low priority, high rate    √   
CLS 

Low priority, low rate     √  

BE      √ 

table 16 - IntServ-DVB-RCS mapping 

Finally, note that these mapping strategies have to be straight managed by NSLP protocols 

with the support of NTLP. In fact, NTLP is in charge of preserving signaling messages while 

traversing the network, while NSLP locally adapts reservation procedures with priorities and 
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QoS mechanisms resident on the local domain and on the local machine too. Thus, flow 

priorities and state information have to be dealt with by the NTLP protocol, while NSLP has 

to be compliant with lower level QoS features, and drive it like in the case of DVB-RCS 

satellite links. 

§6.4 Conclusions 

In this chapter we focused on the cross-layer interworking between Layer 3 and Layer 2 

(MAC) protocols for an optimized QoS support for applications. The necessity for new 

network architectures and for the internetworking of reservation and connection control 

protocols running in heterogeneous domains has been presented in previous chapters of this 

thesis. Moreover, here we explained how a third level of support comes from the 

interoperation of network protocols and MAC-layer mechanisms. In particular we focused on 

the DVB-RCS technology for satellite bidirectional connections, and we proposed multiple 

examples for the mapping of DiffServ and IntServ classes and services on the underlying 

satellite MAC facilities. Eventually we have shown that it is possible to harmonize the 

interaction of DiffServ endowed with GRIP implicit signaling, and IntServ with RSVP 

protocol for resource reservation, also taking into account a QoS-enabling mapping of 

network features and services on DVB-RCS Profile Classes.  

The mapping of services, that is carried out through the pages of the chapter, mostly 

concerns three focus topics: i) map GS, CLS and BE IntServ services on DVB-RCS PCs; ii) 

map EF, AF and BE DiffServ PHB on DVB-RCS PCs; iii) map IntServ services on DiffServ 

PHBs while mapping DiffServ PHBs and GRIP semantic on DVB-RCS PCs. We propose 

some guidelines to sharply draw new mapping tables in addition to the mapping 

exemplification reported through the sections of this chapter.     

As to the case of nested mapping issues proposed in point iii), a thorough study of the 

modified DVB-RSC transport function level behavior was proposed. In particular, the 

characterization of the operation performed by DVB-RCS nodes (Satellite Terminal or 

Gateway/Hub node with NCC embedded) is reported in the flow chart diagrams of section 

§6.2, and a concrete network example is described in section §6.3. This example concludes 

the chapter and, in turn, the thesis by adopting a scenario in which the following aspects are 

addressed: DiffServ and IntServ networking for QoS-aware network design; RSVP-like 

resource reservation; GRIP-like unicast connection blocking function based on run time 

network load estimate (distributed edge-to-edge measurement based admission control); 
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interoperation of QoS-enabling mechanisms for stateless and stateful networks (respectively, 

RSVP and GRIP mechanisms adopted by IntServ and DiffServ networks); cross-layer 

internetworking (network and MAC layers). Actually, the last example summarizes almost all 

the issues faced in the entire thesis, with the exception of multicast-related issues and 

bandwidth sharing issues. It also proposes a concrete example of implementation of the 

variously proposed approaches in a real network scenario, and it has been proposed as part of 

an Internet Draft [70] in the frame of the NSIS ongoing discussion. The effectiveness of such 

an integrated vision is not given in this chapter, but for the evidence that mechanisms and 

protocols theoretically provided through the pages of this and previous chapters go well 

beyond the perspective of pure research. Conversely, ideas proposed in this thesis meet 

concrete networking requirements.   
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Conclusive remarks 
Internet has resource enough to support applications that require quality of service to 

suitably run at user side. In order to actually permit an effective exploitation of such a 

capability, the major issue to be addressed is the control of resource usage. Firstly is necessary 

to introduce some new features to the IP architecture, because the traditionally employed Best 

Effort model does not provide any means to differentiate data flows and protect some high 

priority traffic. Secondly, given a model in which multiple services can be distinguished, the 

network is responsible of the control of traffic admitted to services. In fact, each service could 

be easily reserved a fixed or variable amount of resources, more difficult is to control the 

usage of allotted resources, that is useful because performance experienced by packets 

depends on parameters like the offered load and the traffic burstiness. Networks should be 

endowed with tools that operate by limiting the load and smooth as much as possible the 

variability of the aggregate traffic behavior. Due to the complexity of traffic control and due 

to the unfeasibility of a full fledged reservation approach in the core network, the majority of 

QoS-enabling schemes should rely on edge-to-edge operations in which the complexity is 

bound to the network edge and to the endpoints. Thirdly, upon a customer connection is 

admitted to a service, the network or service provider has to honor the service level specified 

in a somehow defined service level agreement. Additionally, if a user, or a group of users 

represented by a proxy, is admitted to a set of services sharing the same resources, it is 

interest of the customer to smartly share the available resources among active applications. 

Thus, the active monitoring and control of allotted resources usage represents a value added 

tool that improve the level of quality experienced by applications. Eventually, some recent 

approaches to QoS go above the legacy interoperation between network layer entities and 

propose a cross-layer interoperation to harmonize the effort of Layer 2 and Layer 3 protocols 

to support services with QoS.  

With reference to the four points outlined before, in this thesis we discussed the following 

arguments. Firstly we introduced the DiffServ and IntServ IP architectures and their pros and 

cons in real network implementations. Secondly, we discussed the admission control features 

and in particular the capabilities of measurement based admission control schemes, which can 

be joined with the flexibility of endpoint admission control schemes in a simple but powerful 

connection blocking mechanism called GRIP. The approach proposed in the thesis is 

integrated in a DiffServ network scenario, even though it is a more general approach to light, 
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flexible, scalable and stateless per-flow admission control. It also solves the problem of 

performance impairments due to traffic bursts by compensating the variability of traffic 

emitted by flows with the variability of the number of concurrent sources admitted to a 

service. We proposed admission control variants for unicast, and multicast applications, and 

we proposed to use the GRIP approach to verify the availability of resources through a 

stateless domain inserted in the path composed by RSVP-compliant nodes: the stateless 

domain can be seen as a virtual link between two consecutive stateful routers, and the QoS in 

the virtual link can be provided by the GRIP admission control rules. As to the third point, we 

proposed an effective proxy-based approach to bandwidth sharing between concurrent 

multimedia applications. The effectiveness of the scheme is due to the elastic buffer behavior 

enforced by the proxy, with the suitable possibility to decouple the usage of network accesses 

from the delivery of data to the end users. The proxy retrieves data as fast as possible, and it is 

in charge of allotting the available bandwidth to active applications, trying to equate the 

amount of pre-fetched data for all concurrent applications. This approach aims at exploiting 

network resources when they are available, and not simply in correspondence with user 

requests. The proposed solution is particularly attractive in the case of time variant condition 

in the network access channel, and the concrete example of satellite link connecting proxies 

located on mobile vehicles is given. However, this treatment also applies to terrestrial 

broadband wireless technologies. Eventually, we closed the thesis with an example of cross-

layer interoperation between IntServ, DiffServ and DVB-RCS system, in which QoS support 

to application is the product of an harmonized mapping between IntServ classes, RSVP 

messages, DiffServ DSCPs and GRIP messages over appropriate DVB-RCS Profile Classes. 
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