
A simple testbed for stability analysis of quantum
dissipative systems

Thierry Goudon∗1 and Simona Rota Nodari†1

1Université Côte d’Azur, Inria, CNRS, LJAD,
Parc Valrose, F-06108 Nice, France

Abstract
We study a two-state quantum system with a nonlinearity intended to describe

interactions with a complex environment, arising through a nonlocal coupling term.
We study the stability of particular solutions, obtained as constrained extrema of the
energy functional of the system. The simplicity of the model allows us to justify a
complete stability analysis. This is the opportunity to review in details the techniques
to investigate the stability issue. We also bring out the limitations of perturbative
approaches based on simpler asymptotic models.
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1 Introduction
In this work, we consider a simple quantum system characterized by a single degree of freedom
which can take only two values, hereafter referred to as 0 and 1. The quantum system interacts
with its environment, the description of which is embodied into a vibrational field, oscillating in
some abstract direction z P Rn. Therefore the evolution of the system is governed by the ODE
system

i
d
dtu0ptq “ u0ptq ´ u1ptq ` u0ptq

ˆ
Rn
σpzqψ0pt, zq dz,

i
d
dtu1ptq “ u1ptq ´ u0ptq ` u1ptq

ˆ
Rn
σpzqψ1pt, zq dz,

(1)
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coupled to the wave equations
ˆ

1
c2 B

2
t ´∆

˙

ψ0pt, zq “ ´σpzq|u0ptq|
2,

ˆ

1
c2 B

2
t ´∆

˙

ψ1pt, zq “ ´σpzq|u1ptq|
2.

(2)

These equations are completed by initial data

pu0, u1, ψ0, Btψ0, ψ1, Btψ1q
ˇ

ˇ

t“0 “ pu0,init, u1,init, ψ0,init, $0,init, ψ1,init, $1,initq. (3)

Throughout the paper, we assume the coupling function z P Rn ÞÑ σpzq to be nonnegative, smooth,
with fast enough decay (say compactly supported to fix ideas). The free problem (σ “ 0) reduces
to

d
dt

ˆ

u0
u1

˙

“
1
i

ˆ

1 ´1
´1 1

˙ˆ

u0
u1

˙

. (4)

We infer that the system oscillates with frequency 2 around a constant state: the solutions of (4)
read

ˆ

u0ptq
u1ptq

˙

“
1
2

ˆ

1 1
1 ´1

˙ˆ

pu0,init ` u1,initq
pu0,init ´ u1,initqe

´2it

˙

.

Hence, we are wondering how the coupling (σ , 0) impacts this simple dynamics. It is also worth
considering the large speed regime cÑ8 which leads to the following nonlinear ODE system

d
dt

ˆ

u0
u1

˙

“
1
i

ˆ

1´ κ|u0|
2 ´1

´1 1´ κ|u1|
2

˙ˆ

u0
u1

˙

(5)

where
κ “

ˆ
Rn
σpzqp´∆q´1σpzq dz “

ˆ
Rn

|pσpξq|2

|ξ|2
dξ
p2πqn ą 0. (6)

It will be interesting to compare the behavior of the asymptotic model (5) with (1)-(2); in partic-
ular we are going to point out the limitations of a perturbative approach that would try to deduce
properties of (1)-(2) from the analysis of (5).

According to the ideas of quantum mechanics, the |uj |2’s represent the probability of being in
the state labelled by j; in turn, the total probability should be one: we always have

|u0ptq|
2 ` |u1ptq|

2 “ 1. (7)

If this property holds initially, we check that it holds forever. Moreover, the equations describe
the energy exchanges between the quantum system and the environment which translates into
an additional conservation property, namely, we have (detailed computations can be found in
Appendix A, but the result also directly follows from the symplectic form of the problem, exhibited
below, combined with Noether’s theorem)

for (1)-(2): d
dt

ˆ

|u0 ´ u1|
2

2 `
1
4

ˆ
Rn

´ 1
c2 p|Btψ0|

2 ` |Btψ1|
2q ` |∇ψ0|

2 ` |∇ψ1|
2
¯

dz

`
1
2

ˆ
Rn
σpψ0|u0|

2 ` ψ1|u1|
2q dz

˙

“ 0
(8)
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which becomes
for (5): d

dt

ˆ

|u0 ´ u1|
2

2 ´
κ

4 p|u0|
4 ` |u1|

4q

˙

“ 0 (9)

for the asymptotic model (5). These conservation properties play a central role in the analysis of
the equations.

The question we address comes from the modeling of quantum open systems. The motivation,
inspired from the seminal work of Caldeira and Leggett [6], is to understand how the interactions
with the environment induce some kind of dissipative effects. The intuition is that the quantum
system exchanges energy with the vibrational field, and the energy is eventually evacuated “at
infinity” in the z-direction; this mechanism can be interpreted as a sort of friction acting on the
quantum system. For the sake of concreteness, the energy transfer mechanisms at work between
the quantum system and the environment with the model (1)-(2) are illustrated in Figure 1 which
show typical evolutions of the different contributions, wave and particle, to the total energy: albeit
these curves are suggestive, in fact, they correspond to very different behaviors of the system, as
we shall discuss below. Such an issue has been studied in details for the case of a single classical
particle in [5], where the dissipation mechanisms are explicitly exhibited: the particle comes to a
state at rest for large times. This situation has been further investigated in [1, 10, 11, 33, 26];
we also refer the reader to [24] or [25] for different, but related, viewpoints on the dynamic of a
classical particle coupled to a complex environment. Dealing with many classical particles leads
to considering Vlasov-like equations [9, 17], and the Landau damping effect exhibited in [19] can
be interpreted as the result of the dissipation effects induced by the coupling, even if such a result
remains weaker than the frictional behavior neatly identified in [5] for a single particle. In any case,
the dissipation mechanisms are intimately related to the dispersion properties of the wave equation
that need to be strong enough, an effect driven by the condition n ě 3 on the z-direction, that will
be assumed throughout the paper. In particular, it can be noticed that it guarantees the quantity
defined by (6) to be finite. We refer the reader to [19] for detailed comments about this assumption.
Coming back to quantum particles, one is led to systems coupling the Schrödinger equation with a
wave equation: the model

iBtu`
∆x

2 u “ Φu,

Φpt, xq “
ˆ
σ1px´ yqσpzqψpt, y, zq dz dy,

´ 1
c2 B

2
tψ ´∆zψ

¯

pt, x, zq “ ´σpzq

ˆ
σ1px´ yq|upt, yq|

2 dy,

(10)

is the quantum analog of the equation introduced in [5] (other quantum frameworks are discussed
for instance in [2, 12, 23]). The equation is analysed when the variable x lies in Rd in [20] and
ground states can be identified by variational approaches. However, the stability analysis of the
ground states is delicate because of the nonlocal definition of the self-consistent potential, and the
arguments developed for NLS (Φ “ ´|u|2 in the first equation of (10)) or Schrödinger-Newton
(Φ “ 1

|¨|
‹ |u|2 with d “ 3) do not adapt directly (note at least that here the coupling has a more

dynamical nature). The attempt in this direction presented in [20], completed by the numerical
investigation in [18], relies on a perturbative approach, inspired from [27]. However, it induces
some restrictions which are not completely satisfying. In order to understand this difficulty, we have
studied the simpler framework of plane waves (x lies in the torus Td) in [16], where the Hamiltonian
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structure is further exploited, in the spirit of the pioneering work [21], see also the recent overview
[3]. It allows us to identify fundamental differences between (10) and its asymptotic counterpart
as c Ñ 8; in particular, the coupling with the wave equation induces spectral difficulties which
make perturbative arguments inoperative. We wish to explore in further details these issues by
considering the simpler systems (1)-(2)and (5).
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Figure 1: Evolution of the “Wave contribution” 1
4
ř1
j“0
´
Rn

`

|Btψj |
2

c2 ` |∇ψj|2
˘

dz and the
“Particle contribution” |u0´u1|2

2 ` 1
2
ř1
j“0
´
Rn
σψj|uj|

2 dz to the Total Energy (8) associated
to (1)-(2). The simulations correspond to various cases that will be discussed in details
below: (a) τ “ `1 and large κ, (b) τ “ ´1, (c): τ “ `1 and small κ

In what follows, we pay attention to solutions of (1)-(2) or (5), where the quantum particles
distribution has the specific form eiωtpU˚0, U˚1q, with U˚0, U˚1, fixed complex numbers. These so-
lutions can be classified in terms of extrema of the energy. The question we address is about the
stability of these specific solutions. At first sight, the problem under consideration can be seen as a
discrete version of the nonlinear Schrödinger equation: we roughly interpret u0´u1 and u1´u0 as
the discrete laplacian p∆duq0 “

´u´1`2u0´u1
2 , p∆duq1 “

´u0`2u1´u2
2 endowed with periodic condi-

tions u´1 “ u1, u0 “ u2 ! Stability analysis relies on the properties of the energy functional which
can be used as a Lyapounov functional, and establishing coercivity properties is key for proving
the orbital stability of the ground state, see [37, 38] and the recent review [36]. A quite general
framework has been set up in [21, 22], see also [3, 4], intended to cover the analysis of a wide class of
Hamiltonian systems. However, the coupling with a vibrational environment lead to difficulties of a
different nature, which are not covered by the abstract framework of [21, 22] since the nonlinearity
has the form Φu, where the potential Φ is nonlocal both “in space” (here it means that it mixes
the two states 0 and 1) and in time, with some kind of memory effects, so that the arguments of
[21, 22] do not apply.

The interest of the two-level model is to be both simple enough to allow us to perform many
explicit computations, and rich enough to exhibit interesting phenomena; in turn

• we are able to provide a complete stability analysis for the models (1)-(2) and (5);

• we review in full details the techniques for investigating such systems, and explain how they
can be adapted to handle the nonlocal coupling;
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• it allows us to clarify where are the main difficulties and it provides valuable hints to study
more complex models. We expect this work to provide useful ideas to go back to the more
challenging problem (10).

The paper is organized as follows. In Section 2, we discuss the Hamiltonian structure of the
problem and make the connection appear between extrema of the energy functional and specific
solutions with the form uptq “ eiωtpU˚0, U˚1q. Section 3 is devoted to the analysis of the asymptotic
system (5), which is a mere ODE system. In Section 4, we discuss the system (1)-(2). Throughout
the paper, numerical simulations illustrate the obtained statements.

2 Hamiltonian formulation, extrema of the energy and
traveling-wave-like solutions

Throughout the paper, we split a complex number u “ q ` ip, where q, p are real valued. Coming
back to the unknown describing the quantum state, it makes the following correspondance appear

U “

ˆ

u0
u1

˙

P C2 ÐÑ X “

¨

˚

˚

˝

q0
p0
q1
p1

˛

‹

‹

‚

P R4. (11)

2.1 Analysis of the asymptotic model
We start with the simpler system (5). Let us introduce the function

H : pu0, u1q P C
2 ÞÝÑ

|u0 ´ u1|
2

2 ´
κ

4 p|u0|
4 ` |u1|

4q.

We have observed that t ÞÑ H pu0ptq, u1ptqq is conserved by the differential system (5). This
property can be interpreted as a consequence of the following reformulation of the problem, in
terms of the real valued quantities defined by (11). The conserved quantity becomes

H pXq “
|q0 ´ q1|

2

2 `
|p0 ´ p1|

2

2 ´
κ

4 p|q0|
2 ` |p0|

2q2 ´
κ

4 p|q1|
2 ` |p1|

2q2, (12)

and (5) can be cast in the symplectic (i.e. Hamiltonian) form

d
dtX “ J∇XH pXq, (13)

with J the skew-symmetric matrix

J “

¨

˚

˚

˝

0 1 0 0
´1 0 0 0
0 0 0 1
0 0 ´1 0

˛

‹

‹

‚

.

5



We are interested in specific solutions of (5) having the special form peiωtU˚0, e
iωtU˚1q where U˚0 “

Q˚0 ` iP˚0, and U˚1 “ Q˚1 ` iP˚1 are fixed complex numbers. We are led to the relation

´ ωX˚ “ ∇XH pX˚q “

¨

˚

˚

˝

Q˚0 ´Q˚1 ´ κpQ
2
˚0 ` P

2
˚0qQ˚0

P˚0 ´ P˚1 ´ κpQ
2
˚0 ` P

2
˚0qP˚0

Q˚1 ´Q˚0 ´ κpQ
2
˚1 ` P

2
˚1qQ˚1

P˚1 ´ P˚0 ´ κpQ
2
˚1 ` P

2
˚1qP˚1

˛

‹

‹

‚

, (14)

which also arises when searching for the extrema of H under the constraint of fixed L2 norm
|U˚0|

2 ` |U˚1|
2 “ 1 with ω being interpreted as the associated Lagrange multiplier. We thus focus

on this optimization viewpoint.
We write uj “ rje

iθj “ qj ` ipj , with rj ě 0 and θj P r0, 2πq, and we realize that the only term
depending on the angles θj in the expression of H pu0, u1q is

|u0 ´ u1|
2 “ r2

0 ` r
2
1 ´ 2r0r1 cospθ1 ´ θ0q

so that
pr0 ´ r1q

2 ď |u0 ´ u1|
2 ď pr0 ` r1q

2

holds. The inequalities are saturated when θ1 “ θ0 modp2πq (left) or θ1 “ θ0 modpπq (right).
If pu0, u1q minimizes H over the unit sphere of C2, we deduce from H pr0, r1q ď H pu0, u1q and
r2

0`r
2
1 “ 1, that pr0, r1q P r0, 1sˆr0, 1s is a minimizer too. Furthermore, if pq0, q1qminimizes H over

the unit sphere of R2, then, for any uj “ rje
iθj , with r2

0 ` r
2
1 “ 1, we get H pq0, q1q ď H pr0, r1q ď

H pu0, u1q so that pq0, q1q minimizes H over the unit sphere of C2. A similar equivalence holds for
maximizing H .

Therefore, all extrema can be described by restricting first to the case p0 “ p1 “ 0, and then,
from the obtained (real valued) optima pq0, q1q, by setting u0 “ eiθ0q0, u1 “ eiθ0q1, θ0 P r0, 2πq.
Moreover, we should also bear in mind the conservation of the L2 norm, so that we are actually
interested in extrema over the sphere tpq0, q1q P R

2, |q0|
2 ` |q1|

2 “ 1u. Accordingly, we can
reinterpret the problem as a single-variable optimization problem for

θ P r0, 2πq ÞÝÑH1pθq “
pcospθq ´ sinpθqq2

2 ´
κ

4 pcos4pθq ` sin4pθqq.

For the reader’s convenience, graphs of θ ÞÑ H1pθq are plotted for several values of κ in Fig. 2. We
have

H 1
1 pθq “ ´pcos2pθq ´ sin2pθqq ` κ cospθq sinpθqpcos2pθq ´ sin2pθqq “

κ

2 cosp2θq
ˆ

sinp2θq ´ 2
κ

˙

.

It vanishes when θ “ π
4 which yields the solution q0 “ 1{

?
2, q1 “ 1{

?
2, or θ “ 3π

4 , which yields
the solution q0 “ 1{

?
2, q1 “ ´1{

?
2. If the smallness condition 0 ă κ ă 2 holds, this completely

describes the extrema of the function H1. When κ ą 2, we can find other solutions by setting
θ “ arcsinp2{κq

2 P p0, π{4q and θ “ π
2 ´

arcsinp2{κq
2 P pπ{4{, π{2q. We have

H 2
1 pθq “ κ

ˆ

cos2p2θq ´ sinp2θq
ˆ

sinp2θq ´ 2
κ

˙˙

.

Therefore, we distinguish the following cases:
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• if 0 ă κ ă 2, θ “ π{4 minimizes the energy (H 2
1 pπ{4q “ κ

2 p
2
κ ´ 1q ą 0) and θ “ 3π{4

maximizes the energy (H 2
1 p3π{4q “ ´κ

2 p
2
κ ` 1q ă 0): we have H1pπ{4q “ ´κ

8 ď H1pθq ď
H1p3π{4q “ 1´ κ

8 ;

• if κ ą 2, θ`κ “
arcsinp2{κq

2 , θ´κ “ π
2 ´

arcsinp2{κq
2 minimize the energy (H 2

1 pθ
˘
κ q “ κ cos2p2θκ˘q ą

0), θ “ π{4 is a local maximum of the energy (H 2
1 pπ{4q “ κ

2 p
2
κ ´ 1q ă 0) and θ “ 3π{4

maximizes the energy (H 2
1 p3π{4q “ ´κ

2 p
2
κ ` 1q ă 0); we have H1pθ

˘
κ q “

1
2p1´κ{2´ 1{κqq ď

H1pθq ďH1p3π{4q “ 1´ κ
8 and H1pπ{4q “ ´κ

8 P pH1pθ
˘
κ q,H1p3π{4qq.
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Figure 2: Graphs of θ ÞÑ H1pθq for several values of κ (κ P t1.2, 1.5, 2.1, 2.5, 2.8, 4uq. The
circles correspond to pπ{4,H pπ{4qq and p3π{4,H p3π{4qq: κ “ 2 is the threshold at which
the convexity at π{4 changes.

Assuming the smallness condition
0 ă κ ă 2, (15)

we thus denote
eiωtU˚ “

eiωt
?

2

ˆ

1
τ

˙

, τ “ ˘1 (16)

the obtained solution of (5), with τ “ 1 corresponding to the state of minimal energy, and τ “ ´1
corresponding to the state of maximal energy. Equivalently, we can consider

X˚ “
1
?

2

¨

˚

˚

˝

1
0
τ
0

˛

‹

‹

‚

(17)
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so that, given the extended rotation matrix

Rpθq “

¨

˚

˚

˝

cospθq ´ sinpθq 0 0
sinpθq cospθq 0 0

0 0 cospθq ´ sinpθq
0 0 sinpθq cospθq

˛

‹

‹

‚

,

RpωtqX˚ defines a solution to (13).
When κ ą 2, (16) are still solutions of (5), but for τ “ 1 the solution does not achieve the

minimal energy. Moreover, in this situation we find two additional solutions

eiωtU˚κ,˘ with U˚κ,˘ “
ˆ

sinpθ˘κ q
cospθ˘κ q

˙

and θ`κ “
1
2 arcsin

´2
κ

¯

, θ´κ “
π

2 ´
1
2 arcsin

´2
κ

¯

. (18)

Since 2
κ ą 0, both sinpθ˘κ q and cospθ˘κ q are positive. Using the elementary relation sin2pθq “

1´cosp2θq
2 , we can write

sinpθ`κ q “
c

1´ cosparcsinp2{κqq
2 “

d

1´
a

1´ p2{κq2
2 “

1
2

´

a

1` 2{κ´
a

1´ 2{κ
¯

,

and
cospθ`κ q “

b

1´ sin2pθκq “
1
2

´

a

1` 2{κ`
a

1´ 2{κ
¯

,

. Using sinpπ{2´θq “ cospθq and cospπ{2´θq “ sinpθq, we can rewrite the solution U˚κ,˘ as follows

U˚κ,` “
1

2
?
κ

ˆ ?
κ` 2´

?
κ´ 2

?
κ` 2`

?
κ´ 2q

˙

, U˚κ,´ “
1

2
?
κ

ˆ ?
κ` 2`

?
κ´ 2

?
κ` 2´

?
κ´ 2q

˙

.

The corresponding solution for (13) reads

RpωtqX˚, X˚ “

¨

˚

˚

˝

sinpθ˘κ q
0

cospθ˘κ q
0

˛

‹

‹

‚

“
1

2
?
κ

¨

˚

˚

˝

?
κ` 2´ τ

?
κ´ 2

0
?
κ` 2` τ

?
κ´ 2

0

˛

‹

‹

‚

, τ “ ˘1. (19)

Going back to (14), we find the Lagrange multiplier ω associated to all these solutions. Namely
we get

´ωU˚0 “ U˚0 ´ U˚1 ´ κ|U˚0|
2U˚0, ´ωU˚1 “ U˚1 ´ U˚0 ´ κ|U˚1|

2U˚1.

Adding these relations and using |U˚0|
2 ` |U˚1|

2 “ 1, we are led to

2pω ` 1q ´ κ “ U˚1
U˚0

`
U˚0
U˚1

“
1

U˚1U˚0
.

Hence, we conclude that

for (16) ω “
κ

2 ` τ ´ 1 “
"

κ{2, if τ “ `1,
´2` κ{2, if τ “ ´1, (20)

for (18) ω “ κ´ 1. (21)
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2.2 Analysis of the coupled model
Writing uj “ qj ` ipj and $j “

Btψj
2c2 , the energy functional (8) casts as

H pXq “
|q0 ´ q1|

2 ` |p0 ´ p1|
2

2 `

ˆ
Rn

ˆ

c2 `|$0|
2 ` |$1|

2˘`
1
4
`

|∇ψ0|
2 ` |∇ψ1|

2˘
˙

dz

`
1
2

ˆ
Rn
σpψ0p|q0|

2 ` |p0|
2q ` ψ1p|q1|

2 ` |p1|
2qq dz, (22)

where X is the shorthand notation for pq0, p0, q1, p1, ψ0, $0, ψ1, $1q. Repeating the arguments used
for the asymptotic model, we realize that extrema of H can be found by considering only the case
p0 “ p1 “ 0 and, taking into account the constraint of normalized norm, |u0|

2 ` |u1|
2 “ 1, we are

led to investigate the extrema of

H1pθ, ψ0, $0, ψ1, $1q “
| cospθq ´ sinpθq|2

2 `

ˆ
Rn

ˆ

c2 `|$0|
2 ` |$1|

2˘`
1
4
`

|∇ψ0|
2 ` |∇ψ1|

2˘
˙

dz

`
1
2

ˆ
Rn
σpψ0 cos2pθq ` ψ1 sin2pθqq dz,

where θ lies in r0, 2πq. At the extrema, by computing the derivatives B$jH1 and BψjH1, we infer
that

$0 “ $1 “ 0
together with

´∆ψ0 “ ´σ cos2pθq, ´∆ψ1 “ ´σ sin2pθq.

The latter relation leads to
´
Rn σψ0 dz “ ´

´
Rn σp´∆q´1σ dz cos2pθq “ ´κ cos2pθq, and similarly´

Rn σψ1 dz “ ´κ sin2pθq. Eventually, computing BθH1 yields

´pcos2pθq ´ sin2pθqq ´
1
2

ˆ
Rn
σpψ0 ´ ψ1q sinp2θqdz.

Therefore, at the extrema we obtain

κ

2 cosp2θq
ˆ

2
κ
´ sinp2θq

˙

“ 0.

Hence, we find the same extrema as for the asymptotic model.
In particular, we set Q˚0 “

1?
2 , P˚0 “ 0, Q˚1 “

τ?
2 , P˚1 “ 0, Ψ˚0 “ Ψ˚1 “ ´

p´∆q´1σ
2 ,

$˚0 “ $˚1 “ 0, and the energy is made minimal (resp. maximal) when τ “ `1 with 0 ă κ ă 2
(resp. τ “ ´1 without condition on κ). This analysis provides specific solutions of (1)-(2), having
the special form peiωtU˚0, e

iωtU˚1,Ψ˚0,Ψ˚1q where U˚0, U˚1 are fixed complex numbers and Ψ˚0,Ψ˚1
are fixed functions in L2pRnq. This leads to the relations

´ωU˚0 “ U˚0 ´ U˚1 ` U˚0

ˆ
Rn
σΨ˚0 dz, ´ωU˚1 “ U˚1 ´ U˚0 ` U˚1

ˆ
Rn
σΨ˚1 dz,

´∆Ψ˚0 “ ´σ|U˚0|
2, ´∆Ψ˚1 “ ´σ|U˚1|

2.

Let Γ denote the solution of ´∆Γ “ σ, which can be alternatively defined by means of Fourier
transform

Γ “ F´1
ξÑz

ˆ

pσpξq

|ξ|2

˙

.

9



Hence, we get
Ψ˚0pzq “ ´|U˚0|

2Γpzq, Ψ˚1pzq “ ´|U˚1|
2Γpzq,

so that U˚0, U˚1 are required to satisfy

pω ` 1qU˚0 ´ U˚1 ´ κ|U˚0|
2U˚0 “ 0 “ pω ` 1qU˚1 ´ U˚0 ´ κ|U˚1|

2U˚1,

together with the physical normalisation

|U˚0|
2 ` |U˚1|

2 “ 1.

With the extrema discussed above, we have |U˚0| “ |U˚1| “
1?
2 and for the system

ˆ

ω ` 1´ κ{2 ´1
´1 ω ` 1´ κ{2

˙ˆ

U˚0
U˚1

˙

“ 0

to admit nontrivial solutions, the dispersion relation (20) should be fulfilled. Given this condition,
we conclude that

u0ptq “
eiωt
?

2
, u1ptq “ τ

eiωt
?

2
, ψ0pt, zq “ ´

Γpzq
2 , ψ1pt, zq “ ´

Γpzq
2 (23)

satisfies (1)-(2).

If κ ą 2, we find two extra solutions which minimize the energy

Q˚0 “ sinpθ˘κ q, Q˚1 “ cospθ˘κ q, P˚0 “ P˚1 “ 0,

U˚ “

ˆ

Q˚0
Q˚1

˙

,Ψ˚0 “ ´|Q˚0|
2Γ, Ψ˚1 “ ´|Q˚1|

2Γ. (24)

With ω still given by (21), we conclude that

u0ptq “ eiωtQ˚0, u1ptq “ eiωtQ˚1, ψ0pt, zq “ Ψ˚0, ψ1pt, zq “ Ψ˚1 (25)

satisfies (1)-(2).
Finally, we observe that the system can be expressed in the Hamiltonian formulation

BtX “

ˆ

J 0
0 J

˙

∇XH pXq, J “

¨

˚

˚

˝

0 1 0 0
´1 0 0 0
0 0 0 1
0 0 ´1 0

˛

‹

‹

‚

.

We shall see later on a more adapted formulation that is more convenient for the stability analysis.
For the time being, this formulation makes a parallel between the structure of the two models and
brings out the role of energy minimization in classifying the traveling-wave-like solutions described
above.
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2.3 Statement of the results
Let us collect here the main statements that will be obtained (definitions of the notions of stability
will be made precise later on).

Theorem 2.1 (Stability analysis for (5)) Let us assume one of the following cases:

i) τ “ ´1,

ii) τ “ `1 with 0 ă κ ă 2,

iii) κ ą 2.

We consider the reference solution of (5) given by (16) for i) and ii) or by (18) for iii). Then, the
reference solution is spectrally and orbitally stable.

Theorem 2.2 (Instability result for (5)) Let κ ą 2. Then, the state eiωtp1{
?

2, 1{
?

2q is a
spectrally and orbitally unstable solution of (5).

Theorem 2.3 (Stability analysis for (1)-(2)) Let τ “ `1 with 0 ă κ ă 2. Then, the reference
solution (23) of (1)-(2) is spectrally and orbitally stable. Let κ ą 2. Then, the reference solution
(24)-(25) is spectrally and orbitally stable.

Theorem 2.4 (Instability result for (1)-(2)) Let τ “ 1 with κ ą 2 or τ “ ´1. Then the
reference solution (23) is spectrally and orbitally unstable.

These results are in line with the analysis performed in [16] for plane waves solutions for the PDE
system (10) and its asymptotic Hartree-like counterpart. It confirms that the asymptotic model has
more stable solutions than the original model, and that the dynamic coupling (2) induces intricate
and rich selection mechanisms. We expect this study will provide fruitful ideas to come back to
(10) set for x P Rd, and will allow us to fill a gap in the understanding of open quantum systems.

3 Stability analysis of the asymptotic model (5)
3.1 Spectral and linearized stability
We start by linearizing (5) about the solutions (16). We search for solutions of (5) on the form

uj “ eiωtpU˚j ` vjq.

Using |u ` h|2 “ |u|2 ` 2Repuhq ` |h|2, the dispersion relation (20), and neglecting the nonlinear
terms, one is led to the following linearized system

i
d
dtv0 “ τv0 ´ v1 ´ κRepv0q, i

d
dtv1 “ τv1 ´ v0 ´ κRepv1q. (26)

We write vj “ qj ` ipj , with qj , pj real-valued. The unknown is now represented by the vector
X “ pq0, p0, q1, p1q; we get

d
dtX “ LX, L “

¨

˚

˚

˝

0 τ 0 ´1
κ´ τ 0 1 0

0 ´1 0 τ
1 0 κ´ τ 0

˛

‹

‹

‚

.
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The stability of this ODE system is related to the spectral analysis of the matrix L: spectral
stability means that the real part of the eigenvalues of L are all nonpositive; linearized stability
means that any solution of this linear system remains uniformly bounded for any t ě 0.

Proposition 3.1 If τ “ ´1, the system (26) is spectrally stable; if τ “ `1, the system (26) is
spectrally stable under the condition (15). Moreover, in these situations, if Repv0 ` τv1q

ˇ

ˇ

t“0 “ 0,
then the solution of (26) remains uniformly bounded for any t ě 0. If τ “ `1 with κ ą 2, the
system is spectrally unstable.

Proof. We observe that 0 is an eigenvalue of L. Indeed, LX “ 0 leads to the independent relations
"

τp0 “ p1,
τp1 “ p0

and
"

pκ´ τqq0 “ ´q1,
pκ´ τqq1 “ ´q0.

Since τ2 “ 1, the former yields a nontrivial solution, while the latter in general (pκ´τq2´1 “ κpκ´
2τq , 0) has only the solution q0 “ q1 “ 0. Hence we find the eigenspace KerpLq “ Spantp0, 1, 0, τqu.
Note however that L has a Jordan block associated to the eigenvalue 0, since the kernel of

L2 “

¨

˚

˚

˝

κτ ´ 2 0 2τ ´ κ 0
0 κτ ´ 2 0 2τ ´ κ

2τ ´ κ 0 τκ´ 2 0
0 2τ ´ κ 0 τκ´ 2

˛

‹

‹

‚

is spanned by tp0, 1, 0, τq, p1, 0, τ, 0qu. This leads to solutions of (26) with norms that can grow
linearly. Next, let λ , 0, X , 0 satisfy LX “ λX. Since τ2 “ 1, we observe that τq0 “ ´q1.
Therefore, we obtain λp0 “ q1 ´ τq0 ` κq0 “ p´2τ ` κqq0, together with λp1 “ q0 ` p´τ ` κqq1 “
p2´ τκqq0. It yields λq0 “ τp0´ p1 “ ´

`

τ 2τ´κ
λ ` 2´τκ

λ

˘

q0. A nontrivial solution q0 exists provided
λ satisfies

λ2 “ ´4` 2τκ.
If τ “ ´1, we find λ “ ˘2i

a

1` κ{2. If τ “ 1, we find λ “ ˘2i
a

1´ κ{2, assuming the smallness
condition (15); otherwise, λ “ ˘2

a

κ{2´ 1 and the system admits a positive eigenvalue.
In fact, the problem (26) can be easily solved by hand. On the one hand, we have

d
dtpq0 ` τq1q “ 0, d

dtpp0 ` τp1q “ κpq0 ` τq1q

so that
pq0 ` τq1qptq “ C1, pp0 ` τp1qptq “ C2 ` C1κt.

On the other hand, the pair pq0´τq1q and pp0´τp1q solves a linear system associated to the matrix
ˆ

0 2τ
κ´ 2τ 0

˙

which is diagonalizable with eigenvalues satisfying λ2 “ ´4p1 ´ τκ{2q ă 0. The analysis of the
linearized system is therefore complete.

Similar computations can be performed with the solutions (18). The linearized system now
reads

i
d
dtv0 “ p1`ω´κα2qv0´ v1´ 2κα2Repv0q, i

d
dtv1 “ p1`ω´κβ2qv1´ v0´ 2κβ2Repv1q, (27)

12



with

U˚κ,˘ “

ˆ

α
β

˙

, α “

?
κ` 2´ τ

?
κ´ 2

2
?
κ

“ sinpθτκq, β “

?
κ` 2` τ

?
κ´ 2

2
?
κ

“ cospθτκq.

Let us set
A “ 1` ω ´ κα2, B “ 1` ω ´ κβ2.

Elementary manipulations lead to

A “
κ

2 ` τ
?
κ2 ´ 4

2 , B “
κ

2 ´ τ
?
κ2 ´ 4

2 , AB “ 1, κα2 “ B, κβ2 “ A. (28)

The matrix associated to the linearized system thus reads

L “

¨

˚

˚

˝

0 A 0 ´1
´A` 2B 0 1 0

0 ´1 0 B
1 0 ´B ` 2A 0

˛

‹

‹

‚

.

In turn, it can be checked that

KerpLq “ Spantp0, 1, 0, Aqu.

Next, let pλ,Xq be an eigenpair of L, with λ , 0. We observe that λAq1 “ ApBp1 ´ p0q “ ´λq0,
which implies Aq1 ` q0 “ 0. It follows that

λp0 “ p´A` 2Bqq0 ` q1 “ p´A` 2Bqp´Aq1q ` q1 “ ApA´Bqq1

and
λp1 “ p´B ` 2Aqq1 ` q0 “ p´B ` 2Aqq1 ´Aq1 “ pA´Bqq1,

which lead to
λq1 “ Bp1 ´ p0 “ B

A´B

λ
q1 ´

ApA´Bq

λ
q1 “ ´

q1
λ
pA´Bq2.

Therefore, we obtain

λ2 “ ´pA´Bq2 “ ´pκ2 ´ 4q “ ´κ2 ` 4 ă 0.

We deduce that λ P iR.

Proposition 3.2 The system (27) is spectrally stable. Moreover, if Repv0`Av1q
ˇ

ˇ

t“0 “ 0, then the
solution of (27) remains uniformly bounded for any t ě 0.

Proof. The spectral stability has just been established above, all eigenvalues of L being with a
nonpositive real part. Next, we introduce the vectors

Ψ “ p1, 0, A, 0q, Ψ1 “
´

0, ´τ

2
?
κ2 ´ 4

, 0, κτ `
?
κ2 ´ 4

4
?
κ2 ´ 4

¯

.

They satisfy
LᵀΨ “ 0, LᵀΨ1 “ Ψ.
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Let X satisfy d
dtX “ LX. We observe that d

dtX ¨ Ψ “ d
dtpq0 ` Aq1q “ X ¨ LᵀΨ “ 0, and

d
dtX ¨Ψ1 “ X ¨LᵀΨ1 “ X ¨Ψ. HenceXptq¨Ψ “ Xinit¨Ψ is conserved andXptq¨Ψ1 “ Xinit¨Ψ1`tXinit¨Ψ
grows at most linearly. Assuming Xinit ¨ Ψ “ 0 prevents the linear growth. Finally, the pair
pAp0 ´ p1, Aq0 ` q1q satisfies the 2ˆ 2 system governed by the matrix

ˆ

0 B ´A
A´B 0

˙

whose eigenvalues are clearly purely imaginary. These observations completely characterize the
solution of the linear system (27).

Propositions 3.1 and 3.2 are illustrated in Fig. 3 where we perform simulations of the different
scenario: the stable case ((a)-(b)) requires a condition on both the coefficients (τ , κ) and the data;
when the orthogonality condition of Proposition 3.1 is violated, one observes a linear growth of the
L2 norm ((c)-(d)); when the condition on the data is not fulfilled, one observes an exponential blow
up ((e)-(f)).

System (5) is a mere finite dimensional differential system. As far as one is concerned with the
stability of equilibrium solution of differential systems in finite dimension, spectral stability implies
nonlinear stability, see e. g. [35, Prop. 1.41], [34, Th. 1.1 & 1.2]. Here, we are dealing with the
notion of orbital stability, and the reference solutions remains time-dependent which induces some
subtleties. We shall detail approaches which do not use properties specific to the finite dimensional
framework, having in mind more complicated couplings.

3.2 Orbital stability
Let us set F pXq “ |X|2

2 “
Q2

0`Q
2
1`P

2
0`P

2
1

2 and introduce the functional

E pXq “H pXq ` ωF pXq

with H defined by (12). This quantity is thus conserved by the dynamical system (13), being the
sum of two conserved quantities. We observe that (14) can be reformulated as

∇E pX˚q “ 0 (29)

and L corresponds to the Hessian of E evaluated at X˚. Inspired by the strategy described in [3],
we introduce the level set of the solutions of (13) associated to X˚,

S “ tX P R4, F pXq “ F pX˚q “ 1{2u.

We wish to establish a coercivity estimate, on a certain subspace, for the quadratic form X ÞÑ

LX ¨X. This is a crucial property for establishing the orbital stability, an idea that dates back to
[37, 38] for Schrödinger equations, see [3, 21, 36].

With X˚ given by (17), the tangent set to the level set is given by

TS “ tX P R4, ∇F pX˚q ¨X “ 0u “ tpq0, p0, q1, p1q P R
4, q0 ` τq1 “ 0u.
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Figure 3: Simulation of the linearized asymptotic model (26). The circled points indicate
the initial state, the cross indicate the final state. (a)-(b): stable case κ “ 1.4 and τ “ `1;
phase portrait at T “ 250 (a) and evolution of the L2 norm (b) for a well-prepared data.
The solution remains in a bounded domain. Similar results can be obtained when τ “ ´1 or,
with κ ą 2, for the linearized problem (27). (c)-(d): κ “ 1.4 and τ “ `1 with ill prepared
data; phase portrait at T “ 100 (c) and evolution of the L2 norm (d); the L2 norm of the
solution grows linearly. (e)-(f): instable case κ “ 2.4 and τ “ `1; phase portrait at T “ 50
(e) and evolution of the L2 norm (f).
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The orbit associated to X˚ is given by

O “

! 1
?

2
pcospθq, sinpθq, τ cospθq, τ sinpθqq, θ P R

)

and we get
pTOqK “ tpq0, p0, q1, p1q P R

4, p0 ` τp1 “ 0u.

The reference solution associated to X˚ is said to be orbitally stable if, for any ε ą 0, there exists
δ ą 0, such that, for any solution t ÞÑ Y ptq of (13), |Y p0q´X˚| ď δ implies that distpY ptq´Oq ď ε
holds for any t ě 0.

Remark 3.3 Bearing in mind the transformation (11), multiplying the components of U P C2

by eiθ is equivalent to applying the (extended) rotation Rpθq to X P R4, which leaves the energy
H pXq, as well as E pXq, invariant. The identity H pRpθqXq “H pXq yields Rpθqᵀ∇H pRpθqXq “
∇H pXq and we observe that Rpθq´1R1pθq “ ´J . These observations allow us to derive directly
the linearized system: with d

dtX “ J∇H pXq and Xptq “ RpωtqpX˚ ` X̃ptqq, we get

d
dtX̃ “ ωJ pX˚ ` X̃q `J∇H pX˚ ` X̃q.

Assuming the perturbation to be small, at leading order the right hand side reads

J pωX˚ `∇H pX˚qq `J pωX̃ `D2H pX˚qX̃q “ 0`J L X̃ “ LX̃.

In order to investigate the orbital stability of the system, we recast the linearized system by
using the symplectic form

L “

¨

˚

˚

˝

0 1 0 0
´1 0 0 0
0 0 0 1
0 0 ´1 0

˛

‹

‹

‚

loooooooooomoooooooooon

“J

¨

˚

˚

˝

τ ´ κ 0 ´1 0
0 τ 0 ´1
´1 0 τ ´ κ 0
0 ´1 0 τ

˛

‹

‹

‚

loooooooooooooooomoooooooooooooooon

“L

,

with L “ D2E pX˚q symmetric.

Lemma 3.4 The spectrum of the matrix L is σpL q “ t0,´κ, 2τ, 2τ´κu with eigenspaces spanned
respectively by

X0 “ p0, 1, 0, τq, X´κ “ p1, 0, τ, 0q,
X2τ´κ “ p1, 0,´τ, 0q, X2τ “ p0, 1, 0,´τq.

Hence, we get

LX ¨X “ pτ ´ κqpq2
0 ` q

2
1q ´ 2q1q0 ` τpp

2
0 ` p

2
1q ´ 2p1p0.

As a matter of fact, when τ “ 1, it recasts as

LX ¨X “ |p0 ´ p1|
2 ` |q0 ´ q1|

2 ´ κpq2
0 ` q

2
1q.
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Restricting to the subspace TS X pTOqK, we have q0 “ ´τq1 and p0 “ ´τp1, so that, still for
τ “ 1, we get

LX ¨X “ 4|p0|
2 ` 2p2´ κq|q0|

2 ě p2´ κq|X|2.

This coercivity estimate is key in establishing the orbital stability [21, 22, 3, 4]. Surprisingly, the
case τ “ ´1 is simpler. We now work with

E pXq “ ´H pXq ´ ωF pXq.

We still have ∇E pX˚q “ 0 and D2E pX˚q “ ´L . The spectral decomposition of L implies that
´L is coercive on pKerpL qqK “ pTOqK. This allows us to justify the orbital stability.

We turn to the case where κ ą 2 and X˚ “ pα, 0, β, 0q is given by (19). Now, we look at

L “

¨

˚

˚

˝

0 ´1 0 0
1 0 0 0
0 0 0 ´1
0 0 1 0

˛

‹

‹

‚

L “

¨

˚

˚

˝

A´ 2B 0 ´1 0
0 A 0 ´1
´1 0 B ´ 2A 0
0 ´1 0 B

˛

‹

‹

‚

.

The equations for the eigenpairs uncouple since we get

pA´ λqp0 “ p1, pB ´ λqp1 “ p0,
pA´ 2B ´ λqq0 “ q1, pB ´ 2A´ λqq1 “ q0.

The former leads to
λpλ´ pA`Bqq “ λpλ´ κq “ 0,

and the latter gives

pB´ 2A´λqpA´ 2B´λq´ 1 “ λ2`λpA`Bq` pA´ 2BqpB´ 2Aq´ 1 “ λ2`λκ´ 2pκ2´ 4q “ 0.

This gives the eigenelements of L .

Lemma 3.5 We have

σpL q “

!

0, κ, ´κ`
?

9κ2 ´ 32
2 ,

´κ´
?

9κ2 ´ 32
2

)

,

where only the last value is negative, with eigenspaces spanned respectively by

X0 “
´

0, 1, 0, κ2 ` τ
?
κ2 ´ 4

2

¯

, Xκ “

´

0, 1, 0,´κ2 ` τ
?
κ2 ´ 4

2

¯

,

X` “
´

1, 0, τ 3
2
a

κ2 ´ 4´ 1
2
a

9κ2 ´ 32, 0
¯

, X´ “
´

1, 0, τ 3
2
a

κ2 ´ 4` 1
2
a

9κ2 ´ 32, 0
¯

.

Establishing the orbital stability amounts to check the coercivity of L on TS X pTOqK, where,
now,

TS “
 

X “ pq0, p0, q1, p1q P R
4, X ¨X˚ “ αq0 ` βq1 “ 0

(

,

and
pTOqK “

 

X “ pq0, p0, q1, p1q P R
4, αp0 ` βp1 “ 0

(

.
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We have
LX ¨X “ pA´ 2Bqq2

0 ´ 2q0q1 ` pB ´ 2Aqq2
1 `Ap

2
0 ´ 2p0p1 `Bp

2
1.

Since AB “ 1 and α
β “ B, on TS X pTOqK, it reduces to

LX ¨X
ˇ

ˇ

TSXpTOqK
“

`

A` pB ´ 2AqB2˘q2
0 `

`

A`B3 ` 2B
˘

p2
0.

A tedious, but elementary, computation yields

LX ¨X
ˇ

ˇ

TSXpTOqK
“
κ´ τ

?
κ2 ´ 4

2 ppκ2 ´ 4qq2
0 ` κ

2p2
0q,

hence the desired coercivity estimate holds.

3.3 Symplectic formulation and further comments about spectral
stability

Let us focus on the spectral stability issue. For the problem (5), the spectrum of L “ J L is
completely determined, as seen above, and we have directly a full understanding of the linearized
problem. However, for more intricate system, like (1)-(2), we do not have a direct access to the
spectrum of L. The strategy is to deduce information about stable/instable modes from the study
of L which could be easier (in particular because L is symmetric). To this end, according to
[7, 28], we introduce the auxilliary operators

M “ ´J L J , A “ PMP,

where P is the orthogonal projection on pKerpL qqK. We also introduce

K “ PL ´1P.

The counting of the eigenvalues of L is based on the following considerations. We are interested in
the coupled system

MX “ ´λX̃, L X̃ “ λX. (30)

It turns out that this problem (30) admits nontrivial solutions iff ˘λ are eigenvalues of L. Next,
(30) admits nontrivial solutions with λ , 0 iff the generalized eigenvalue problem

AX “ µKX (31)

(which recasts as MX “ µX̃, L X̃ “ X, with X P pKerpL qqK) admits nontrivial solutions with
µ “ ´λ2. The spectral stability means that the spectrum of L is contained in iR. This can be
reformulated as saying that all the eigenvalues of the generalized eigenproblem (31) are real and
positive. In order to count the eigenvalues µ of the generalized eigenvalue problem, we define the
following quantities:

• N´n , the number of negative eigenvalues,

• N0
n, the number of zero eigenvalues,

• N`n , the number of positive eigenvalues,
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counted with their algebraic multiplicity, the eigenvectors of which are associated to nonpositive
values of the the quadratic form X ÞÑ pKX|Xq “ pL ´1PX|PXq. Moreover, let NC` be the
number of generalized eigenvalues µ P C of (31) with Impµq ą 0. As said above, the eigenvalues
counted by N´n and NC` correspond to cases of instabilities for the linearized problem. We now
use the counting argument of [7, Theorem 1] (see also the review [28]) which asserts that

N´n `N
0
n `N

`
n `NC` “ npL q,

the number of negative eigenvalues of L . Let us check how this counting machinery works for (5).

Let us begin with the case where X˚ is given by (17). We use the notation of Lemma 3.4. For
further purposes, we remark that

JX´κ “ ´X0, JX2τ´κ “ ´X2τ .

In particular, for τ “ ´1, L has three negative eigenvalues; for τ “ `1 and assuming (15), there
are two positive eigenvalues and one negative eigenvalue but if τ “ `1 and (15) is violated, there
are one positive eigenvalue and two negative eigenvalues. Note that

e1) the eigenvectors X0, X´κ, X2τ´κ, X2τ form a orthogonal basis of R4;

e2) with X˚ “ 1?
2p1, 0, τ, 0q “

X´κ?
2 the reference solution, we have

X˚ ¨X0 “ X˚ ¨X2τ´κ “ X˚ ¨X2τ “ 0;

e3) and X˚ ¨X´κ “
?

2 ą 0.

We start by showing N0
n “ 1. We have seen that KerpL q is spanned by X0 “ p0, 1, 0, τq. Hence,

we have to solve L X̃0 “ Y0 with Y0 “ ´JX0 “ p´1, 0,´τ, 0q and X̃0 P pKerpL qqK. This leads
to X̃0 “

1
κp1, 0, τ, 0q which yields KY0 ¨ Y0 “ L ´1Y0 ¨ Y0 “ X̃0 ¨ Y0 “ ´

2
κ ă 0 and thus N0

n “ 1.
Next, solving the generalized eigenvalue problem amounts to solving

´q̃1 ` τ q̃0 ´ κq̃0 “ q0, τq0 ´ q1 “ µq̃0,
´q̃0 ` τ q̃1 ´ κq̃1 “ q1, τq1 ´ q0 “ µq̃1,
τp0 ´ κp0 ´ p1 “ µp̃0, τ p̃0 ´ p̃1 “ p0,
´p0 ` τp1 ´ κp1 “ µp̃1, τ p̃1 ´ p̃0 “ p1,

with X “ pq0, p0, q1, p1q, X̃ “ pq̃0, p̃0, q̃1, p̃1q P pKerpL qqK. We set

Mκ “

ˆ

τ ´ κ ´1
´1 τ ´ κ

˙

. (32)

The q and p equations decouple and we have, on the one hand

Mκ

ˆ

q̃0
q̃1

˙

“

ˆ

q0
q1

˙

, M0

ˆ

q0
q1

˙

“ µ

ˆ

q̃0
q̃1

˙

,

and, on the other hand

Mκ

ˆ

p0
p1

˙

“ µ

ˆ

p̃0
p̃1

˙

, M0

ˆ

p̃0
p̃1

˙

“

ˆ

p0
p1

˙

.

19



It amounts to say that pq̃0, q̃1q and pp̃0, p̃1q are eigenvectors for µ ofM0Mκ andMκM0, respectively.
Here, we get

MκM0 “

ˆ

2´ τκ κ´ 2τ
κ´ 2τ 2´ τκ

˙

“M0Mκ,

the eigenvalues of which being 0 and 4p1 ´ τκ{2q. We thus obtain the solutions X̃1 “ p1, 0,´τ, 0q
and X̃2 “ p0, 1, 0,´τq, associated to X1 “ L X̃1 “ p2τ ´κ, 0, κτ ´2, 0q, X2 “ L X̃2 “ p0, 2τ, 0,´2q
which both belong to pKerpL qqK. We compute L ´1X1 ¨ X1 “ X̃1 ¨ X1 “ 2p2τ ´ κq, which is
negative when τ “ ´1 and has the sign of 2 ´ κ when τ “ `1, and L ´1X2 ¨X2 “ X̃2 ¨X2 “ 4τ .
Therefore, we can verify the counting formula in the following three cases

• τ “ ´1: npL q “ 3 and N0
n “ 1, N`n “ 2, N´n “ 0, which yields NC` “ 0 and indeed

we found that L has two purely imaginary eigenvalues, there is no exponentially unstable
solution to the linearized system;

• τ “ 1 and κ ą 2: npL q “ 2 and N0
n “ 1, N`n “ 0, N´n “ 1, which yields NC` “ 0 and indeed

we found that L has two real eigenvalues, we can find exponentially unstable solutions to the
linearized system;

• τ “ 1 and 0 ă κ ă 2: npL q “ 1 and N0
n “ 1, N`n “ 0, N´n “ 0, which yields NC` “ 0

and indeed we found that L has two purely imaginary eigenvalues, there is no exponentially
unstable solution to the linearized system.

We can perform similar computations for the solution (19). We now use the notation of
Lemma 3.5. We have seen that KerpL q is spanned by X0 “ p0, 1, 0, Aq. We start by solving
L X̃0 “ Y0 with Y0 “ ´JX0 “ p´1, 0,´A, 0q so that X̃0 “

1
2pA´Bqp´1, 0, A, 0q which yields

X̃0 ¨ Y0 “ KY0 ¨ Y0 “ ´A
2 ă 0, and thus N0

n “ 1. Solving the generalized eigenvalue problem
amounts to solve

M

ˆ

q̃0
q̃1

˙

“ µ

ˆ

q̃0
q̃1

˙

, Mᵀ

ˆ

p̃0
p̃1

˙

“ µ

ˆ

p̃0
p̃1

˙

,

M “

ˆ

A ´1
´1 B

˙ˆ

A´ 2B ´1
´1 B ´ 2A

˙

“

ˆ

A2 ´ 1 A´B
B ´A B2 ´ 1

˙

,

the eigenvalues of M being 0 and κ2 ´ 4 ą 0 (thus N´n “ 0). We thus obtain the solutions
X̃1 “ p1, 0,´B, 0q and X̃2 “ p0, 1, 0, Bq. Accordingly, we get X1 “ L X̃1 “ pA ´ B, 0, 1 ´ B2, 0q,
and X2 “ L X̃2 “ p0, A ´ B, 0, B2 ´ 1q, so that X̃1 ¨X1 “ X̃2 ¨X2 “ A ´ 2B ` B3 “ pB2´1q2

B ą 0
and N`n “ 0. Since we found npL q “ 1, we conclude that NC` “ 0: and there is no exponentially
unstable solution to the linearized system (which is indeed consistent with the fact that L has two
purely imaginary eigenvalues).

3.4 Instability
For τ “ `1, the status of the solution X˚ given by (17) changes as κ overtakes the threshold 2:
being a minimizer of the energy when 0 ă κ ă 2, it becomes a local maximum when κ ą 2. We
have also seen that the Morse index of L switches from 1 to 2. In this case, we can adapt the
arguments presented in [21, 29] to justify the instability of the reference solution when κ ą 2 (see
Figure 4). To prove this statement, we need a series of preparation lemmas, which exploit the
algebraic properties of L and its spectral decomposition.
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(a) (b) (c)

Figure 4: Simulation of the nonlinear asymptotic model: phase portrait at T “ 100, with
κ “ 1.4 and τ “ ´1 (a), with κ “ 1.4 and τ “ 1 (b), with κ “ 2.4 and τ “ 1 (c). The circled
points indicate the initial states, the cross indicate the final states.

Lemma 3.6 We can find a constant c ą 0 such that for any X P R4 verifying X ¨X˚ “ X ¨X2´κ “
X ¨X0 “ 0, we have LX ¨X ě c|X|2.

Proof. Since pX0, X´κ, X2´κ, X2q forms an orthogonal basis of R4 and X˚ “ X´κ{
?

2, the vector
we are considering is in fact proportional to X2: from X “ aX2, we deduce that

LX ¨X “ a2LX2 ¨X2 “ 2a2|X2|
2 “ 2|X|2.

It is convenient to split X˚ “ pX˚0, X˚1q, with X˚0 “ X˚1 “
1?
2p1, 0q and to consider the

rotation matrix in the plane

Rpθq “

ˆ

cospθq ´ sinpθq
sinpθq cospθq

˙

.

We shall use the same notation for V “ pV0, V1q P R
2 ˆ R2, RpθqV “ pRpθqV0, RpθqV1q.

Lemma 3.7 Let ε ą 0 and set

Uε “

!

V “ pV0, V1q P R
4, inf

θ
|RpθqV ´X˚|

2 ď ε
)

.

For any V P Uε, there exists θ˚pV q P r0, 2πq such that

inf
θ
|RpθqV ´X˚|

2 “ |Rpθ˚pV qqV ´X˚|
2.

Moreover, the following relations hold

piq @θ1θ˚pRpθ
1qV q “ θ˚pV q ´ θ

1, piiq ∇Vjθ˚pV q “
R1pθ˚pV qq

ᵀ
X˚j

Rpθ˚pV qq
ᵀX˚j ¨ Vj

.

Proof. The standard argument [21, 29] relies on an application of the implicit function theorem.
Here the construction can be made fully explicit. Indeed, given V P R4, the 2π-periodic function

θ ÞÝÑ F pθq “ |RpθqV ´X˚|
2 “ |RpθqV0 ´X˚0|

2 ` |RpθqV1 ´X˚1|
2
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admits a minimizer on r0, 2πs, characterized by

F 1pθq “ 2pRpθqV0 ´X˚0q ¨R
1pθqV0 ` 2pRpθqV1 ´X˚1q ¨R

1pθqV1 “ 0,

where
R1pθq “

ˆ

´ sinpθq ´ cospθq
cospθq ´ sinpθq

˙

.

Since
pR1pθqq

ᵀ
Rpθq “

ˆ

0 1
´1 0

˙

the relation becomes
F 1pθq “ ´2X˚0 ¨R

1pθqV0 ´ 2X˚1 ¨R
1pθqV1 “ 0. (33)

Let Vj “ pQj , Pjq. Using the specific expression of X˚j , we obtain

sinpθqpQ0 `Q1q ` cospθqpP0 ` P1q “ 0,

which eventually determines the minimizer by

tanpθ˚pV qq “ ´
P0 ` P1
Q0 `Q1

.

Differentiating (33) with respect to Vj and using R2pθq “ ´Rpθq yield

pR1pθ˚pV qqq
ᵀ
X˚j ´ pRpθ˚pV qqq

ᵀ
X˚j ¨ Vj∇Vjθ˚pV q “ 0

and thus
∇Vjθ˚pV q “

pR1pθ˚pV qqq
ᵀ
X˚j

pRpθ˚pV qqq
ᵀX˚j ¨ Vj

.

Finally, from Rpθ ` θ1q “ RpθqRpθ1q, we infer, for any θ, θ1,

|Rpθ˚pV q ´ θ
1qRpθ1qVj ´X˚j | “ |Rpθ˚pV qqVj ´X˚j | ď |Rpθ ` θ

1qVj ´X˚j | “ |RpθqRpθ
1qVj ´X˚j |

which means θ˚pV q ´ θ1 “ θ˚pRpθ
1qV q.

We observe that we can move from X˚ in a specific direction so that the energy decreases.

Lemma 3.8 Let κ ą 2 and set Vs : s P p´1{
?

2, 1{
?

2q ÞÑ Vs “
?

1´ 2s2X˚ ` sX2´κ. Then,
there exists 0 ă s˚ ă 1{

?
2 such that for any s P r´s˚, s˚s, we have |Vs| “ 1 and E pVsq ă E pX˚q.

Proof. We compute

|Vs|
2 “ p1´ 2s2q|X˚|

2 ` s2|X2´κ|
2 ` s

a

1´ 2s2X˚ ¨X2´κ “ 1´ 2s2 ` 2s2 ` 0 “ 1.

Next, owing to (29), we get the following Taylor expansion

E pVsq “ E
`

X˚ ` sX2´κ ` p
a

1´ 2s2 ´ 1qX˚
˘

“ E pX˚q `
s2

2 LX2´κ ¨X2´κ ` s
2εpsq,
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where limsÑ0 εpsq “ 0. The conclusion follows from the fact that

LX2´κ ¨X2´κ “ p2´ κq|X2´κ|
2 ă 0.

We are going to use the specific directions identified in Lemma 3.8 to construct unstable solu-
tions. The instability will be characterized by working on a suitable functional framework which is
adapted to the structure of the dynamical system. Let us now consider the functional

A : V P Uε ÞÝÑ ´X2 ¨Rpθ˚pV qqV “ pV1 ´ V0q ¨

ˆ

sinpθ˚pV qq
cospθ˚pV qq

˙

,

bearing in mind X2 “ ´JX2´κ. By using Lemma 3.7-(ii), we get Rpθ˚pRpθqV qqRpθqV “

Rpθ˚pV q ´ θqRpθqV “ Rpθ˚pV qqV so that ApRpθqV q “ ApV q. Next, we get

∇VApV q “ ´Rpθ˚pV qq
ᵀ
X2 ´ pX2 ¨R

1pθ˚pV qqV q∇V θ˚pV q.

For V “ X˚, we have θ˚pX˚q “ 0 and thus X2 ¨R
1pθ˚pX˚qqX˚ “

X2¨X0?
2 “ 0 and

∇VApX˚q “ ´X2, J∇VApX˚q “ ´JX2 “ ´X2´κ. (34)

Eventually, since
ˆ

Rpθq 0
0 Rpθq

˙

J “ ´

ˆ

R1pθq 0
0 R1pθq

˙

and J 2 “ ´I, we observe that

∇VApV q ¨J V “ ´Rpθ˚pV qq
ᵀ
X2 ¨J V ´ pX2 ¨R

1pθ˚pV qqV qp∇V θ˚pV q ¨J V q

“ ´Rpθ˚pV qq
ᵀ
X2 ¨J V ` pX2 ¨R

1pθ˚pV qqV q
´R1pθ˚pV qq

ᵀ
X˚ ¨J V

Rpθ˚pV qq
ᵀX˚ ¨ V

“ X2 ¨R
1pθ˚pV qqV ` pX2 ¨R

1pθ˚pV qqV q
´X˚ ¨Rpθ˚pV qqV

X˚ ¨Rpθ˚pV qqV
“ 0.

The estimate of Lemma 3.8 can be strengthened as follows.

Lemma 3.9 Let κ ą 2, set
PpV q “ ∇VApV q ¨J∇V E pV q

and let Vs be defined as in Lemma 3.8. Then, there exists 0 ă s˚ ă 1{
?

2 such that for any
s P r´s˚, s˚s, we have

0 ă E pX˚q ´ E pVsq ă ´sPpVsq.

Proof. The proof is again based on Taylor expansion. In what follows, we denote by %psq the
reminder, whose expression might change from line to line, but such that limsÑ0 %psq “ 0. Since
Vs looks like X˚ ` sX2´κ, we get, by virtue of (29) and (34),

PpVsq “ sp∇VApX˚q ` sD2
VApX˚qX2´κq ¨JD2

V E pX˚qX2´κq ` s%psq
“ ´sX2 ¨J LX2´κ ` s%psq “ sLX2´κ ¨X2´κ ` s%psq “ sp2´ κq|X2´κ|

2 ` s%psq.

Accordingly, we obtain

E pX˚q ´ E pVsq ` sPpsq “
s2

2
`

p2´ κq ` %psq
˘
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which thus remains negative for s small enough.

Note that PpV q “ ∇VApV q ¨J∇V H pV q since ∇V F pV q “ V and ∇VApV q ¨J V “ 0 for all
V P R4. The motivation for introducing the functional A and P comes from the fact that, for X
solution of (13), we have

d
dtApXptqq “ ∇UApXptqq ¨

d
dtXptq “ ∇UApXptqq ¨J∇H pXptqq “PpXptqq. (35)

Lemma 3.10 Let κ ą 2 and ε ą 0 be sufficiently small. Let V P Uε be such that |V | “ |X˚| and
E pX˚q ´ E pV q ą 0. Then, we actually have

E pX˚q ´ E pV q ă ´ΛpV qPpV q

where
ΛpV q “ Rpθ˚pV qqV ¨X2´κ

|X2´κ|2
. (36)

Proof. For V P R4, set
MpV q “ Rpθ˚pV qqV ´X˚ ´ ΛpV qX2´κ, (37)

so that MpV q ¨X2´κ “ 0. Moreover, we have

MpV q ¨X0 “ Rpθ˚pV qqV ¨X0 “
?

2p´JR1pθ˚pV qV q ¨ p´JX˚qq “
?

2R1pθ˚pV qqV ¨X˚ “ 0,

by definition of θ˚pV q, see (33). As a consequence,MpV q lies in the orthogonal space of SpanpX0, X2´κq
and it can be written

MpV q “ apV qX˚ ` M̃pV q, where M̃pV q P SpanpX2q. (38)

Lemma 3.6 tells us that L M̃pV q ¨ M̃pV q ě c|M̃pV q|2.
We start by proving

PpV q “PpRpθ˚pV qqV q. (39)

Derivating H pRpθqV q “H pV q and using Lemma 3.7-(i), we get

Rpθq
ᵀ∇H pRpθqV q “ ∇H pV q, Rpθq

ᵀ∇θ˚pRpθqV q “ ∇θ˚pV q,

while
Rpθq

ᵀ
“ Rp´θq “ Rpθq´1,

ˆ

R1pθq 0
0 R1pθq

˙

“ ´J

ˆ

Rpθq 0
0 Rpθq

˙

.

Therefore, we obtain

PpRpθqV q “ ∇UApRpθqV q ¨J∇H pRpθqV q “ ∇UApRpθqV q ¨JRpθq∇H pV q.

where

∇ApRpθqV q “ ´Rpθ˚pRpθqV qq
ᵀ
X2 ´ pX2 ¨R

1pθ˚pRpθqV qqRpθqV q ∇θ˚pRpθqV q
“ ´Rpθ˚pV q ´ θq

ᵀ
X2 ´ pX2 ¨R

1pθ˚pV q ´ θqRpθqV q Rpθq∇θ˚pV q
“ ´RpθqRpθ˚pV qq

ᵀ
X2 ` pX2 ¨JRpθ˚pV qqRp´θqRpθqV q Rpθq∇θ˚pV q

“ Rpθq
“

´Rpθ˚pV qq
ᵀ
X2 ´ pX2 ¨R

1pθ˚pV qqV q ∇θ˚pV q
‰

“ Rpθq∇ApV q.
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Hence, (39) holds.
Let V P Uε. The definition of ΛpV q in (36), MpV q in (37) and apV q, M̃pV q in (38) leads to the

estimates

|ΛpV q|2 “ |Rpθ˚pV qqV ¨X2´κ|
2

|X2´κ|4
“
|pRpθ˚pV qqV ´X˚q ¨X2´κ|

2

|X2´κ|4
ď
|Rpθ˚pV qqV ´X˚|

2

|X2´κ|2
ď
ε2

4 ,

|MpV q| ď |Rpθ˚pV qqV ´X˚| ` |ΛpV qX2´κ| ď 2ε,

|apV q| ď |MpV q| ď 2ε,

|M̃pV q| ď |MpV q| ` |apV q| ď 4ε.

Now, we perform a Taylor expansion on

PpV q “PpRpθ˚pV qqV q “PpX˚ ` ΛpV qX2´κ ` apV qX˚ ` M̃pV qq,

based on the fact that %pV q “ ΛpV qX2´κ ` apV qX˚ ` M̃pV q is of the order of ε. Hence, we get

PpV q “ ∇ApX˚ ` %pV qq ¨J∇H pX˚ ` %pV qq
“ p∇ApX˚q `D2ApX˚q%pV qq ¨JD2H pX˚q%pV q ` Opε2q
“ ∇ApX˚q ¨J L %pV q ` Opε2q “ ´L J∇ApX˚q ¨ %pV q ` Opε2q
“ LX2´κ ¨ pΛpV qX2´κ ` apV qX˚ ` M̃pV qq ` Opε2q
“ p2´ κqΛpV q|X2´κ|

2 ` Opε2q.

Accordingly, we have

´ ΛpV qPpV q “ ´p2´ κqΛpV q2|X2´κ|
2 ` Opε3q. (40)

Similarly, we go back to the difference of energies

0 ă E pX˚q ´ E pV q “ E pX˚q ´ E pX˚ ` %pV qq “ ´
1
2L %pV q ¨ %pV q ` Opε3q

“ ´
1
2L pΛpV qX2´κ ` apV qX˚ ` M̃pV qq ¨ pΛpV qX2´κ ` apV qX˚ ` M̃pV qq ` Opε3q

“ ´
1
2
`

p2´ κqΛpV qX2´κ ´ κapV qX˚ `L M̃pV q
˘

¨ pΛpV qX2´κ ` apV qX˚ ` M̃pV qq ` Opε3q

“ ´
2´ κ

2 ΛpV q2|X2´κ|
2 `

κ

2 |apV q|
2 ´

1
2L M̃pV q ¨ M̃pV q ` Opε3q.

We now need to refine the estimate on apV q “MpV q ¨X˚ “ pRpθ˚pV qqV ´X˚q ¨X˚. To this end,
we use the elementary relation

0 “ |V |2 ´ |X˚|2 “ |Rpθ˚pV qqV |
2 ´ |X˚|

2 “ |pRpθ˚pV qqV ´X˚q `X˚|
2 ´ |X˚|

2

“ |Rpθ˚pV qqV ´X˚|
2 ` 2pRpθ˚pV qqV ´X˚q ¨X˚

“ |Rpθ˚pV qqV ´X˚|
2 ` 2apV q,

which yields |apV q| ď ε2

2 . We are thus led to

0 ă E pX˚q ´ E pV q “ ´
1
2p2´ κqΛpV q

2|X2´κ|
2 ´

1
2L M̃pV q ¨ M̃pV q ` Opε3q

ď ´
p2´ κq

2 ΛpV q2|X2´κ|
2 ` Opε3q

25



since L M̃pV q ¨ M̃pV q ě 0. In particular, this implies that ΛpV q does not vanish. We conclude by
going back to (40).

We argue by contradiction to establish Theorem 2.2. We assume that X˚ given by (17) is an
orbitally stable solution of (13), meaning that for any ε ą 0, we can find δ such that Xinit P Uδ

implies Xptq P Uε for any t ě 0. Then, as an initial data we pick Xinit “ Vs as defined in
Lemma 3.8 with s ă 0 small enough (see Lemma 3.9) so that |Vs| “ |X˚|, E pX˚q ´ E pVsq “ ε˚ ą 0
and PpVsq ą 0. Let t ÞÑ Xptq be the associated solution. By using the conservation properties of
the equation, we obtain

0 ă ε˚ “ E pX˚q ´ E pXptqq ă ´ΛpXptqqPpXptqq.

Since PpVsq ą 0 and |ΛpXptqq| ď ε
2 , we get PpXptqq ě Cε˚ for a certain C ą 0. We now use (35).

Consequently, there holds

Cε˚t ď

ˆ t

0
Pprq dr “

ˆ t

0

d
dtApXprqq dr “ ApXptqq ´ApVsq.

This contradicts the stability assumption tXptq, t ě 0u Ă Uε which implies that ApXptqq remains
bounded. Indeed, |ApXptqq| ď |X2| |Rpθ˚pXptqqqXptq| ď |X2|p|Rpθ˚pXptqqqXptq ´ X˚| ` |X˚|q ď
|X2|pε` |X˚|q.

4 Stability analysis for the coupled system (1)-(2)
4.1 Linearized equations
4.1.1 Linearization about the solution (23)

We search for solutions of (1)-(2) on the form of a perturbation of (23):

uj “ eiωtpU˚j ` vjq, ψj “ Ψ˚j ` φj, Ψ˚j “ ´|U˚j|
2
p´∆q´1σ.

Using |u ` h|2 “ |u|2 ` 2Repuhq ` |h|2 and the dispersion relation (20), we arrive at the
following linearized system

i
d
dtv0 “ τv0 ´ v1 `

1
?

2

ˆ
Rn
σφ0 dz,

i
d
dtv1 “ τv1 ´ v0 `

τ
?

2

ˆ
Rn
σφ1 dz,

´ 1
c2B

2
t ´∆

¯

φ0 “ ´
?

2σRepv0q,

´ 1
c2B

2
t ´∆

¯

φ1 “ ´τ
?

2σRepv1q.

It is convenient to introduce new unknowns. On the one hand, we expand the complex
unknown and consider its real and imaginary parts uj “ qj ` ipj; on the other hand, for the
wave equation, we set

ϕj “ p´∆q1{2φj, $j “
Btφj
c
.

26



We use a block decomposition of the unknown:

X “

ˆ

S
W

˙

, W “

ˆ

W0
W1

˙

, S “

ˆ

S0
S1

˙

, W “

ˆ

W0
W1

˙

, Sj “

ˆ

qj
pj

˙

, Wj “

ˆ

ϕj
$j

˙

.

(41)
Therefore, X has 8 components pq0, p0, q1, p1, φ0, $0, φ1, $1q and is valued in R4ˆpL2pRnqq4.
With these notations, the problem casts as

BtX “ LX,

where

LX “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

τp0 ´ p1

´τq0 ` q1 ´
1
?

2

ˆ
Rn
σp´∆q´1{2ϕ0 dz

´p0 ` τp1

q0 ´ τq1 ´
τ
?

2

ˆ
Rn
σp´∆q´1{2ϕ1 dz

cp´∆q1{2$0
´cp´∆q1{2ϕ0 ´ c

?
2σq0

cp´∆q1{2$1
´cp´∆q1{2ϕ1 ´ c

?
2τσq1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The following statements bring out the basic spectral properties of L and makes the sym-
plectic structure appear. In terms of stability analysis, it implies that the linearized system
is stable provided σpLq Ă iR. However, the identification of the eigenvalues of L is now
not as direct as the asymptotic problem. The symplectic structure will be crucial to decide
whether or not the equation is spectrally stable.
Proposition 4.1 Let us denote by X̌ the vector constructed from X by changing the compo-
nents pj and $j into ´pj and ´$j. Let pλ,Xq be an eigenpair of L. Then, p´λ, X̌q, pλ,Xq
and p´λ, X̌q are as well eigenpairs of L.

Moreover, we can write L “ J L with J a skew-symmetric operator and L a self-
adjoint operator.

Proof. The first part of the claim follows by direct inspection and using the fact that L
has real coefficients. Next, we introduce the following block-wise operator J and its formal
inverse J̃

J “

¨

˚

˚

˝

JS 0 0 0
0 JS 0 0
0 0 JW 0
0 0 0 JW

˛

‹

‹

‚

, J̃ “

¨

˚

˚

˝

J̃S 0 0 0
0 J̃S 0 0
0 0 J̃W 0
0 0 0 J̃W

˛

‹

‹

‚

(42)

where

JS “

ˆ

0 1
´1 0

˙

, J̃S “

ˆ

0 ´1
1 0

˙

,

JW “ 2c
ˆ

0 p´∆q1{2
´p´∆q1{2 0

˙

, J̃W “
1
2c

ˆ

0 ´p´∆q´1{2

p´∆q´1{2 0

˙

.
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We obtain

LX “ J̃ LX “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´q1 ` τq0 `
1
?

2

ˆ
Rn
σp´∆q´1{2ϕ0 dz

τp0 ´ p1

´q0 ` τq1 `
τ
?

2

ˆ
Rn
σp´∆q´1{2ϕ1 dz

´p0 ` τp1
1
2ϕ0 `

1
?

2
p´∆q´1{2σq0

1
2$0

1
2ϕ1 `

τ
?

2
p´∆q´1{2σq1

1
2$1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (43)

We can readily check that pLX|X 1q “ pX|LX 1q holds for the inner product pX|X 1q “
ř1
j“0 qjq

1
j ` pjp

1
j `
´
Rn
pϕjϕ

1
j `$j$

1
jq dz.

The change of unknowns ensures that L is self-adjoint and, moreover, that the product
pLX|Xq does not involve derivatives of ϕj or $j, a property that will be useful later on (see
Section 4.4).

A natural attempt to locate the eigenvalues of L would rely on a asymptotic argument
from the simplified problem (26). However, this program faces severe difficulties. We have
seen that the eigenvalues of the asymptotic problem lie in iR; we would like to decide whether
the eigenvalues of the coupled problem with finite wave speed c stay on the imaginary axis
or split into branches with nonzero real parts. The coupling with the wave equation induces
obstructions to asymptotic arguments (as for instance in [13]) that can be described as
follows. Let us introduce the function

ε ě 0 ÞÝÑ κε “

ˆ
Rn

|pσpξq|2

ε` |ξ|2
dξ
p2πqn .

We have 0 ă κε ď κ and, by applying the Lebesgue theorem, we can check the continuity
of ε ÞÑ κε. However, it fails to be differentiable in general since d

dε
|pσpξq|2

ε`|ξ|2
“ ´

|pσpξq|2

pε`|ξ|2q2
is not

integrable when ε “ 0 without introducing further restriction on the dimension n (as ξ Ñ 0
it behaves like p

´
σpxq dxq2
|ξ|4

). This explains why the expansion of the eigenvalues as power series
of 1{c is misleading. Let us go back to the function

λ “ a` ib P C ÞÝÑ κλ “

ˆ
Rn

|pσpξq|2

λ2 ` |ξ|2
dξ
p2πqn “

ˆ
Rn

|pσpξq|2

2iab` a2 ´ b2 ` |ξ|2
dξ
p2πqn .

that we now define on the complex plane. The definition makes sense, except on the imagi-
nary axis a “ 0. Let us set A “ a2 ´ b2 and B “ 2ab. Since σ is radially symmetric, we are
led to consider the function

P pA,Bq “

ˆ 8

0

Σprq
iB ` A` r2 dr,
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with Σprq “ |pσprq|2rn´1. It is well-defined for B “ 0, and A ě 0, and for any B , 0, A P R;
the difficulty is to deal with B “ 0 and A “ ´µ ă 0. The lack of continuity near the
imaginary axis is illustrated by the following Plemelj-like formula: for A ă 0 fixed, the limits
B Ñ 0˘ do not coincide. It reflects the jump discontinuity in the resolvent function of ´∆
at the spectrum.

Lemma 4.2 Let µ ą 0. Then, we have

lim
BÑ0˘

P p´µ,Bq “ P.V.
ˆ `8

0

Σprq
pr ´

?
µqpr `

?
µq

dr ¯ i
πΣp?µq

2?µ .

For the sake of completeness, the detailed proof is provided in Appendix B. The statement
can be expressed by means of the limited absorption principle for the wave equation. This
difficulty we are facing can indeed be explained by coming back to the the wave equation,
which has an essential spectrum lying all along the imaginary axis. As we shall detail below,
we need to discuss Helmholtz-type equation pλ ´ ∆qu “ f . The equation perfectly makes
sense provided λ P Czp´8, 0s. For negative λ, in dimension n “ 3, this leads to consider
u˘pxq “

´
e˘i

?
´λ|x´y|

|x´y|
fpyq dy which both define solutions of the Helmholtz equation, with a

different behavior at infinity. These solutions can be obtained as the limits of pλ˘ iε´∆q´1f
as εÑ 0. Hence the resolvent operator is not well-defined, and the functional integrals that
one would like to apply as in [13] are misleading.

Let us further illustrate how the difficulty shows up. Searching for eigenvalues of L, we
are led to the following nonlinear equation for λ P C (see the detailed computations in (56)
below)

λ2
` 4´ 2τκλ2{c2 “ 0. (44)

We wonder whether or not there exists a solution λ “ a` ib with positive real and imaginary
parts. Hence we set A “ a2 ´ b2 and B “ 2ab. The latter is supposed to be , 0 and we are
thus led to investigate the zeros of the function

F : pA,Bq P R2
ÞÝÑ

¨

˚

˚

˝

A` 4´ 2τc2
ˆ
Rn

pA` c2|ξ|2q|pσpξq|2

pA` c2|ξ|2q2 `B2
dξ
p2πqn

1` 2τ
ˆ
Rn

|pσpξq|2

pA` c2|ξ|2q2 `B2
dξ
p2πqn

˛

‹

‹

‚

.

We do not find explicit solutions for the relation F pA,Bq “ 0, but the problem can be inves-
tigated numerically, based on the Newton algorithm. Note however that the Jacobian matrix
∇F pA,Bq becomes singular as B tends to 0, making the problem stiffer as the solution λ
is getting close to the imaginary axis. Fig. 5 displays the zeros of F in the pA,Bq-plane,
for several values of the wave speed c. As c becomes large, we see that the zeros tend to
the eigenvalue of the asymptotic problem, which lies on the horizontal axis. It confirms the
intuition that the eigenvalues of L for the coupled problem do have a real part, thus leading
to instability, and they should converge as cÑ 8 to the purely imaginary eigenvalues of the
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Figure 5: Numerical identification of the zeros of F for several values of the wave speed
c (κ “ 0.5604 and τ “ ´1). The cross on the horizontal axis indicates the coordinates
corresponding to the eigenvalue of the asymptotic problem.

asymptotic problem.

For these reasons, we are going to deduce spectral properties on L from the spectral
analysis of L , as proposed in [7]. Indeed, the spectral analysis of the operator L is easier;
at least we know that the spectrum embeds into R due to the self-adjointness character of
L . The spectral properties of the operator L are summarized in the following statement.
Note that, due to the coupling with the wave equation on the whole Rn, there is a non-empty
essential spectrum. From now on, we denote by 0 “ p0, 0, 0, 0q.

Theorem 4.3 Let L be the operator defined by (43). Then, the following assertions hold:

1. KerpL q “ SpanpX0q, with X0 “ pS0,0q, S0 “ p0, 1, 0, τq;

2. σesspL q “ t1{2u;

3. If τ “ `1 and 0 ă κ ă 2, L has one negative eigenvalue, associated to a one-
dimensional eigenspace; if τ “ `1 and κ ą 2, L has two negative eigenvalues, as-
sociated to one-dimensional eigenspaces; if τ “ ´1 L has three negative eigenvalues
associated to one-dimensional eigenspaces;

4. Given Y0 a solution of L Y0 “ ´JX0, we have p´JX0|Y0q ă 0.

Proof. The operator L being self-adjoint, its spectrum lies in R. Let us study the solutions
of LX “ λX.
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In particular, we have λ$j “ $j{2. Hence, when λ “ 1{2, any X “ p0,W q, with
W “ p0, π, 0, 0q or p0, 0, 0, πq, π P L2pRnq, lies in KerpL ´ 1{2q. Furthermore, we also have

´

λ´
1
2

¯

ϕ0 “
1
?

2
p´∆q1{2σq0,

´

λ´
1
2

¯

ϕ1 “
τ
?

2
p´∆q1{2σq1.

Next, we can write
ˆ
Rn
σp´∆q´1{2ϕj dz “ 1

p2πqn

ˆ
Rn

pσxϕj
|ξ|

dξ “
ˆ
Rn
p´∆q´1{2σϕj dz.

Hence, when λ “ 1{2, any X “ p0,W q, with W “ pϕ, 0, 0, 0q or p0, 0, ϕ, 0q, ϕ P L2pRnq
orthogonal to p´∆q´1{2σ, lies in KerpL´1{2q. Therefore, for λ “ 1{2, we have fully identified
the eigenspace which is infinite-dimensional. Reasoning by a contradiction argument, based
on Weyl’s criterion, we can show that there is no other values in the essential spectrum of
L , see [16].

From now on, we suppose λ , 1{2. It allows us to infer $0 “ $1 “ 0 and

ϕ0 “
p´∆q´1{2σq0
?

2pλ´ 1{2q
, ϕ1 “ τ

p´∆q´1{2σq1
?

2pλ´ 1{2q
.

Consequently, bearing in mind
´
σp´∆q´1σ dz “ κ, we obtain the following 4ˆ 4 system for

S “ pq0, p0, q1, p1q,

λS “

¨

˚

˚

˚

˚

˚

˚

˝

τ `
κ{2

λ´ 1{2 0 ´1 0

0 τ 0 ´1

´1 0 τ `
κ{2

λ´ 1{2 0

0 ´1 0 τ

˛

‹

‹

‹

‹

‹

‹

‚

S.

We remark that the relations for pq0, q1q and pp0, p1q are uncoupled. We start by observing
that λp0 “ τp0 ´ p1 and λp1 “ ´p0 ` τp1 which admit nontrivial solutions provided

pλ´ τq2 ´ 1 “ λpλ´ 2τq “ 0.

Hence, 0 and 2τ are eigenvalues for L with Spanp0, 1, 0, τ,0q Ă KerpL q, and Spanp0, 1, 0,´τ,0q Ă
KerpL ´ 2τq, respectively. We turn to the equations for pq0, q1q which admit nontrivial so-
lutions provided

´

λ´ τ ´
κ{2

λ´ 1{2

¯2
´ 1 “

´

λ´ τ ´
κ{2

λ´ 1{2 ´ 1
¯´

λ´ τ ´
κ{2

λ´ 1{2 ` 1
¯

“ 0.

This holds iff pλ´1{2qpλ´ τ ´1q´κ{2 “ 0 or pλ´1{2qpλ´ τ `1q´κ{2 “ 0. We distinguish
the two cases:
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• If τ “ `1, we get pλ´ 1{2qpλ´ 2q ´ κ{2 “ 0 or pλ´ 1{2qλ´ κ{2 “ 0;

• If τ “ ´1, we get pλ´ 1{2qλ´ κ{2 “ 0 or pλ´ 1{2qpλ` 2q ´ κ{2 “ 0.

In both cases, with the second order equation pλ ´ 1{2qλ ´ κ{2 “ λ2 ´ λ{2 ´ κ{2 “ 0, we
find the following eigenvalues of opposite signs

λ “
1{2˘

a

1{4` 2κ
2 P σpL q.

Moreover, from pλ´ 1{2qpλ´ 2τq ´ κ{2 “ λ2 ´ p1{2` 2τqλ` τ ´ κ{2 “ 0, we find

λ “
1{2` 2τ ˘

a

p1{2´ 2τq2 ` 2κ
2 P σpL q.

Hence, when τ “ `1 with 0 ă κ ă 2, this gives two positive eigenvalues; when τ “ ´1 or
τ “ `1 with κ ą 2 we obtain two eigenvalues of opposite signs.

Finally, ´JX0 reads p´1, 0,´τ, 0,0q. It is orthogonal to KerpL q “ SpanpX0q and it
makes sense to consider the equation L Y0 “ ´JX0. Imposing Y0 P pKerpL qqK, we find

Y0 “
1
κ

´

1, 0, τ, 0,´
?

2p´∆q´1{2σ, 0,´
?

2p´∆q´1{2σ, 0
¯

.

Accordingly, we get p´JX0|Y0q “ ´
2
κ
ă 0. (This product is left unchanged by adding to

Y0 any element of KerpL q.)

4.1.2 Linearization about the extra solutions when κ ą 2

Let us now assume κ ą 2. We use the same notation as in (28). Considering a perturbation
of the solution given by (24)-(25), the linearized equations read

iBtv0 “ Av0 ´ v1 ` α

ˆ
Rn
σφ0 dz,

iBtv1 “ Bv1 ´ v0 ` β

ˆ
Rn
σφ1 dz,

1
c2B

2
t φ0 ´∆φ0 “ ´α2σRepv0q,

1
c2B

2
t φ1 ´∆φ1 “ ´β2σRepv1q.

With the change of variables

pvj,“ qj ` ipj, φjq Ñ
´

qj, pj, ϕj “ p´∆q1{2φj, $j “
Btφj
c

¯

,

we get
BtX “ LX
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with

LX “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ap0 ´ p1

´Aq0 ` q1 ´ α

ˆ
Rn
p´∆q´1{2σϕ0 dz

´p0 `Bp1

q0 ´Bq1 ´ β

ˆ
Rn
p´∆q´1{2σϕ1 dz

cp´∆q1{2$0
´cp´∆q1{2ϕ0 ´ 2cασq0

cp´∆q1{2$1
´cp´∆q1{2ϕ1 ´ 2cβσq1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We set L “ J L , with J defined by (42) and

LX “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Aq0 ´ q1 ` α

ˆ
Rn
p´∆q´1{2σϕ0 dz

Ap0 ´ p1

Bq1 ´ q0 ` β

ˆ
Rn
p´∆q´1{2σϕ1 dz

´p0 `Bp1
ϕ0

2 ` αp´∆q´1{2σq0
$0

2ϕ1

2 ` βp´∆q´1{2σq1
$1

2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (45)

We readily obtain the following analog to Proposition 4.1.

Proposition 4.4 Let us denote by X̌ the vector constructed from X by changing the compo-
nents pj and $j into ´pj and ´$j. Let pλ,Xq be an eigenpair of L. Then, p´λ, X̌q, pλ,Xq
and p´λ, X̌q are equally eigenpairs of L.

Moreover, we can write L “ J L with J a skew-symmetric operator and L a self-
adjoint operator.

The next step consists in studying the spectrum of the self-adjoint operator.

Theorem 4.5 Let L be the operator defined by (45). Then, the following assertions hold:

1. KerpL q “ SpanpX0q, with X0 “ pS0,0q, S0 “ p0, 1, 0, Aq;

2. σesspL q “ t1{2u;

3. L has one negative eigenvalue, associated to a one-dimensional eigenspace (npL q “

1);
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4. Given Y0 a solution of L Y0 “ ´JX0, we have p´JX0|Y0q ă 0.

Proof. The proof of the second item follows exactly the same lines as in Theorem 4.3. We
also readily check that KerpL q “ Spantp0, 1, 0, A,0qu. We have ´JX0 “ p´1, 0,´A, 0q
and solving L Y0 “ ´JX0 with Y0 P pKerpL qqK yields

Y0 “
1

2pA´Bqp´1, 0, A, 0, 2αp´∆q´1{2σ, 0,´2Aβp´∆q´1{2σ, 0q, (46)

and thus we get pY0| ´JX0q “ ´
A
2 ă 0.

We now study the eigenvalues λ < t0, 1{2u of L . We arrive at the matrix system
¨

˚

˚

˚

˚

˚

˝

A`
B

λ´ 1{2 0 ´1 0

0 A 0 ´1
´1 0 B `

A

λ´ 1{2 0

0 ´1 0 B

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˝

q0
p0
q1
p1

˛

‹

‹

‚

“ λ

¨

˚

˚

˝

q0
p0
q1
p1

˛

‹

‹

‚

.

The equations for pp0, p1q and pq0, q1q uncouple. The former leads to the relation

λpλ´ A´Bq “ 0

which gives the eigenvalues 0 and A`B “ κ. The latter leads to the relation

0 “
ˆ

A`
B

λ´ 1{2 ´ λ
˙ˆ

B `
A

λ´ 1{2 ´ λ
˙

´ 1

“
1

p2λ´ 1q2
`

4λ4
´ 4pA`B ` 1qλ3

` λ2
` p4A2

` 4B2
` A`Bqλ´ 2pA´Bq2

˘

“
1

p2λ´ 1q2
`

4λ4
´ 4pκ` 1qλ3

` λ2
` p4A2

` 4B2
` κqλ´ 2pA´Bq2

˘

“
1

p2λ´ 1q2P pλq

with P a fourth order polynomial. Descartes’ rule of sign then tells us that P has exactly
one negative root, see Fig. 6. We have thus proved the third item in Theorem 4.5.

4.2 Spectral and linearized stability
We start with the study of the spectral stability of the solution (23) of (1)-(2). Let L be
defined by (43). According to [7], we introduce the operator

M “ ´J L J , A “ PMP,

where P is the orthogonal projection on pKerpL qqK, and we set

K “ PL ´1P.
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Figure 6: Graph of the polynomial function z ÞÑ P pzq for several values of κ (κ P

t2.01, 2.1, 2.3, 2.4, 2.5uq.

We are interested in the generalized eigenvalue problem

MX “ µX̃, L X̃ “ X.

Recall that X has to belong to pKerpL qqK and we need to compute the product pKX|Xq “
pX̃|Xq, which is thus left unchanged by adding to X̃ an element in KerpL q. Hence, X̃ can
be chosen in pKerpL qqK. Solving the generalized eigenvalue problem amounts to solving

τq0 ´ q1 “ µq̃0, τp0 ´ p1 ` c
?

2
ˆ
Rn
σ$0 dz “ µp̃0,

´ q0 ` τq1 “ µq̃1, ´ p0 ` τp1 ` τc
?

2
ˆ
Rn
σ$1 dz “ µp̃1,

2c2
p´∆ϕ0q “ µϕ̃0, 2c2

p´∆$0q ` c
?

2σp0 “ µ$̃0,

2c2
p´∆ϕ1q “ µϕ̃1, 2c2

p´∆$1q ` τc
?

2σp1 “ µ$̃1,

coupled to

τ q̃0 ´ q̃1 `
1
?

2

ˆ
Rn
σp´∆q´1{2ϕ̃0 dz “ q0, τ p̃0 ´ p̃1 “ p0,

´ q̃0 ` τ q̃1 `
τ
?

2

ˆ
Rn
σp´∆q´1{2ϕ̃1 dz “ q1, ´ p0 ` τ p̃1 “ p1,

ϕ̃0

2 `
1
?

2
p´∆q´1{2σq̃0 “ ϕ0,

$̃0

2 “ $0,

ϕ̃1

2 `
τ
?

2
p´∆q´1{2σq̃1 “ ϕ1,

$̃1

2 “ $1.
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This leads to the following relations
´

´
µ

c2 ´∆
¯

$0 “ ´
1

c
?

2
σp0,

´

´
µ

c2 ´∆
¯

$1 “ ´τ
1

c
?

2
σp1,

and
´

´
µ

c2 ´∆
¯

ϕ̃0 “ ´
?

2p´∆q1{2σq̃0,
´

´
µ

c2 ´∆
¯

ϕ̃1 “ ´τ
?

2p´∆q1{2σq̃1.

When µ ă 0, these equations can be solved by means of the Fourier transform and we
get

p$0pξq “ ´
1

c
?

2
pσpξq

|µ|{c2 ` |ξ|2
p0, p$1pξq “ ´

τ

c
?

2
pσpξq

|µ|{c2 ` |ξ|2
p1,

xϕ̃0 “ ´

?
2|ξ|pσpξq

|µ|{c2 ` |ξ|2
q̃0, xϕ̃1 “ ´

τ
?

2|ξ|pσpξq
|µ|{c2 ` |ξ|2

q̃1.

It follows that

1
?

2

ˆ
Rn
σp´∆q´1{2ϕ̃0 dz “ ´q̃0

ˆ
Rn

|pσpξq|2

|µ|{c2 ` |ξ|2
dξ
p2πqn

looooooooooooomooooooooooooon

“κ
|µ|{c2

,
τ
?

2

ˆ
Rn
σp´∆q´1{2φ̃1 dz “ ´q̃1κ|µ|{c2 ,

c
?

2
ˆ
Rn
σ$0 dz “ ´p0κ|µ|{c2 τc

?
2
ˆ
Rn
σ$1 dz “ ´p1κ|µ|{c2 .

With the matrices defined in (32), we are thus led to

M0

ˆ

p̃0
p̃1

˙

“

ˆ

p0
p1

˙

, Mκ
|µ|{c2

ˆ

p0
p1

˙

“ µ

ˆ

p̃0
p̃1

˙

,

together with
Mκ

|µ|{c2

ˆ

q̃0
q̃1

˙

“

ˆ

q0
q1

˙

, M0

ˆ

q0
q1

˙

“ µ

ˆ

q̃0
q̃1

˙

.

Since Mκ
|µ|{c2M0 “ M0Mκ

|µ|{c2 , we deduce, like for the asymptotic model, that µ ă 0 should
be such that detpM0Mκ

|µ|{c2 ´ µIq “ 0. This condition leads to

0 “ p2´ τκγ ` γc2
q
2
´ pκγ ´ 2τq2 “ p2´ τκγ ` γc2

´ κγ ` 2τqp2´ τκγ ` γc2
` κγ ´ 2τq

“ γc2
p2p2´ τκγq ` γc2

q

where we set γ “ ´ µ
c2 “

|µ|
c2 . When τ “ ´1 or τ “ `1 with 0 ă κ ă 2, we have 2p2´ τκγq `

γc2 ą 0 for any positive γ, hence there is no solution to this equation: in these cases we have
N´
n “ 0. If τ “ `1 and κ ą 2, it is thus required to make the nonlinear quantity

F pγq “ γ ´
2
c2 pκγ ´ 2q
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vanishes. The function F is continuous, increasing from p0,8q to p´ 2
c2 pκ ´ 2q,`8q; hence

there exists a unique γc “ ´
µc
c2 ą 0 such that F pγcq “ 0. Finally, we have to compute

pKX,Xq. Since X P pKerpL qqK, PX “ X and pKX,Xq “ pX̃,Xq. Using the equations for
pq̃0, q̃1q and pp̃0, p̃1q together with γcc

2 “ 2pκγc ´ 2q ą 0, we deduce that the eigenvectors
associated to µc are such that q̃1 “ ´q̃0 and p̃1 “ ´p̃0. On the one hand, choosing q̃0 “ 1
and p̃0 “ 0, we have

X̃ “

ˆ

1, 0,´1, 0,F´1
ˆ

´

?
2|ξ|pσpξq
γc ` |ξ|2

˙

, 0,F´1
ˆ

?
2|ξ|pσpξq
γc ` |ξ|2

˙

, 0
˙

X “

ˆ

2´ κγc , 0, κγc ´ 2, 0, 1
?

2
F´1

ˆ

´
|ξ|pσpξq

γc ` |ξ|2
`

pσpξq

|ξ|

˙

, 0, 1
?

2
F´1

ˆ

|ξ|pσpξq

γc ` |ξ|2
´

pσpξq

|ξ|

˙

, 0
˙

so that

pX̃,Xq “ ´2pκγc ´ 2q ` 2
ˆ
Rn

ˆ

|ξ|2|pσpξq|2

pγc ` |ξ|2q2
´
|pσpξq|2

γc ` |ξ|2

˙

dξ
p2πqn

“ ´γcc
2
´ 2γc

ˆ
Rn

|pσpξq|2

pγc ` |ξ|2q2
dξ
p2πqn ă 0.

On the other hand, choosing q̃0 “ 0 and p̃0 “ 1, we have

X̃ “

ˆ

0, 1, 0,´1, 0,´2
?

2
c
F´1

ˆ

pσpξq

γc ` |ξ|2

˙

, 0, 2
?

2
c
F´1

ˆ

pσpξq

γc ` |ξ|2

˙˙

X “

ˆ

0, 2, 0,´2, 0,´
?

2
c
F´1

ˆ

pσpξq

γc ` |ξ|2

˙

, 0,
?

2
c
F´1

ˆ

pσpξq

γc ` |ξ|2

˙˙

so that

pX̃,Xq “ 4` 8
c2

ˆ
Rn

|pσpξq|2

pγc ` |ξ|2q2
dξ
p2πqn ą 0.

We can conclude N´
n “ 1.

When µ ą 0, the symbol pσpξq
|ξ|2´µ{c2 has a singularity which is not square integrable; this

forces to set p0 “ p1 “ 0, and q̃0 “ q̃1 “ 0, so that $0 “ $1 “ 0, and φ̃0 “ φ̃1 “ 0. It implies
q0 “ q1 “ 0 and p̃0 “ p̃1 “ 0; there is no nontrivial solution of the generalized eigenvalue
problem with µ ą 0, that is N`

n “ 0.

For µ “ 0, the equations reduce to

τq0 ´ q1 “ 0 τp0 ´ p1 ` c
?

2
ˆ
Rn
σ$0 dz “ 0,

´ q0 ` τq1 “ 0, ´ p0 ` τp1 ` τc
?

2
ˆ
Rn
σ$1 dz “ 0

2c2
p´∆ϕ0q “ 0 2c2

p´∆$0q ` c
?

2σp0 “ 0
2c2
p´∆ϕ1q “ 0 2c2

p´∆$1q ` τc
?

2σp1 “ 0
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It yields ϕ0 “ ϕ1 “ 0 and $0 “ ´
1

c
?

2p´∆q´1σp0, $1 “ ´
τ

c
?

2p´∆q´1σp1, hence the systems

M0

ˆ

q0
q1

˙

“ 0, Mκ

ˆ

p0
p1

˙

“ 0.

Solving these systems, we obtain p0 “ 0 “ p1 and q1 “ τq0. As a consequence X is
proportional to ´JX0. Reinterpreting pKX,Xq “ pKp´JX0q| ´JX0q as p´JX0|Y0q

with Y0 given in Theorem 4.3, we obtain pKp´JX0q| ´JX0q ă 0 and we conclude that
N0
n “ 1.
To sum up, we have the following

N0
n “ 1, N`

n “ 0 and N´
n “

#

0 if τ “ ´1 or τ “ 1 and κ ă 2,
1 if τ “ 1 and κ ą 2.

.

We remind the reader that the spectral stability means that the spectrum of L is contained
in iR. To derive information about σpLq, we use the counting argument of [7, Theorem 1]
(see also [28]) which asserts that

N´
n `N

0
n `N

`
n `NC` “ npL q.

The presence of spectrally unstable directions corresponds to N´
n , 0 or NC` , 0. Gathering

the obtained information, we infer that

• if τ “ 1 and κ ă 2, N´
n “ 0 and NC` “ npL q ´ 1 “ 0;

• if τ “ 1 and κ ą 2, N´
n “ 1 and NC` “ npL q ´ 1´ 1 “ 0;

• if τ “ ´1, N´
n “ 0 and NC` “ npL q ´ 1 “ 2.

Accordingly, we conclude with the following claim.

Proposition 4.6 Suppose 0 ă κ ă 2 and let τ “ `1. Then, the reference solution (23) of
(1)-(2) is spectrally stable. If τ “ ´1 or τ “ `1 with κ ą 2, the reference solution (23) of
(1)-(2) is spectrally unstable.

This result is illustrated in Figure 7 (complemented by Figure 8 about the non linear
system). Inspired by the asymptotic problem, see Proposition 3.2 and Figure 3, we guess
that the linearized stabiltiy requires suitable orthogonality conditions. Indeed, we can check
that KerpLq “ Spanp0, 1, 0, τ,0q and KerpL˚q “ Spanp1, 0, τ, 0,0q. In particular, denoting
Ψ “ p1, 0, τ, 0,0q, we have d

dtpX|Ψq “ 0, and in order to prevent grows of the linearized
solution, we select initial data such that pXinit|Ψq “ 0, which reduces to qinit,0 ` τqinit,1 “ 0.

When κ ą 2, a similar statement holds for the solution (24).

Proposition 4.7 Suppose κ ą 2. Then, the reference solution (25) of (1)-(2) is spectrally
stable.
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Figure 7: Simulation of the linearized coupled model: phase portrait at T “ 100, for κ “ 1.1
with τ “ ´1 (a), with τ “ 1 for well-prepared initial data (b), with τ “ 1 for ill-prepared
initial data (c), and with κ “ 2.0688, τ “ 1 at T “ 150 for well-prepared initial data (d).
The circled points indicate the initial state, the cross indicate the final state

Proof. As before, we are concerned with the generalized eigenvalue problem MX “ µX̃,
L X̃ “ X with X, X̃ P pKerpL qqK. It now takes the form

Aq0 ´ q1 “ µq̃0 Ap0 ´ p1 ` 2αc
ˆ
Rn
σ$0 dz “ µp̃0,

´ q0 `Bq1 “ µq̃1, ´ p0 `Bp1 ` 2βc
ˆ
Rn
σ$1 dz “ µp̃1,

2c2
p´∆ϕ0q “ µϕ̃0 2c2

p´∆$0q ` 2αcσp0 “ µ$̃0,

2c2
p´∆ϕ1q “ µϕ̃1, 2c2

p´∆$1q ` 2βcσp1 “ µ$̃1,
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Simulation of the coupled model: phase portrait at T “ 700, with τ “ `1 (a, c,
e), with τ “ ´1 (b, d, f), and several values of κ: κ “ 0.193 for (a, b), κ “ 1.58 for (c, d),
κ “ 2.42 (e, f). The circled points indicate the initial state, the cross indicate the final state

coupled to

Aq̃0 ´ q̃1 ` α

ˆ
Rn
σp´∆q´1{2ϕ̃0 dz “ q0, Ap̃0 ´ p̃1 “ p0

´ q̃0 `Bq̃1 ` β

ˆ
Rn
σp´∆q´1{2ϕ̃1 dz “ q1, ´ p̃0 `Bp̃1 “ p1,

ϕ̃0

2 ` αp´∆q´1{2σq̃0 “ ϕ0,
$̃0

2 “ $0,

ϕ̃1

2 ` βp´∆q´1{2σq̃1 “ ϕ1,
$̃1

2 “ $1.
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As before the operator p´ µ
c2 ´∆q plays a crucial role. In particular, if µ ą 0 it cannot

be inverted so that the possibility to find nontrivial solutions with µ ą 0 is exluded. As a
consequence, N`

n “ 0. When µ ă 0, we have
´

´∆´
µ

c2

¯

$0 “ ´
α

c
σp0,

´

´∆´
µ

c2

¯

$1 “ ´
β

c
σp1,

and
´

´∆´
µ

c2

¯

ϕ̃0 “ ´2αp´∆q1{2σq̃0,
´

´∆´
µ

c2

¯

ϕ̃1 “ ´2βp´∆q1{2σq̃1.

Setting γ “ ´ µ
c2 ą 0 and κγ as before leads to the following systems of equations

ˆ

A´ 2α2κγ ´1
´1 B ´ 2β2κγ

˙ˆ

p0
p1

˙

“ µ

ˆ

p̃0
p̃1

˙

,

ˆ

A ´1
´1 B

˙ˆ

p̃0
p̃1

˙

“

ˆ

p0
p1

˙

and
ˆ

A ´1
´1 B

˙ˆ

q0
q1

˙

“ µ

ˆ

q̃0
q̃1

˙

,

ˆ

A´ 2α2κγ ´1
´1 B ´ 2β2κγ

˙ˆ

q̃0
q̃1

˙

“

ˆ

q0
q1

˙

.

As before, µ ă 0 should be such that

det
ˆˆ

A ´1
´1 B

˙ˆ

A´ 2α2κγ ´1
´1 B ´ 2β2κγ

˙

´ µI

˙

“ 0

This condition is equivalent to

0 “ det
ˆˆ

A ´1
´1 B

˙ˆ

A´ 2B
κ
κγ ´1

´1 B ´ 2A
κ
κγ

˙

´ µI

˙

“ det
ˆˆ

Aκ´ 2κγ
κ

´κ` 2Aκγ
κ

´κ` 2B κγ
κ

Bκ´ 2κγ
κ

˙

` γc2I

˙

“

´

Aκ´ 2κγ
κ
` γc2

¯´

Bκ´ 2κγ
κ
` γc2

¯

´

´

2Bκγ
κ
´ κ

¯´

2Aκγ
κ
´ κ

¯

“ pA`Bqκγc2
´ 4κγ

κ
γc2

` pγc2
q
2
“ γc2

´

κ2
´ 4κγ

κ
` γc2

¯

“ γc2
´

κ2
´ 4` 4

´

1´ κγ
κ

¯

` γc2
¯

where we use A “ β2κ, B “ α2κ and A` B “ κ. However, since κ ą 2 and κ ą κγ for any
γ ą 0, we have

γc2
´

κ2
´ 4` 4

´

1´ κγ
κ

¯

` γc2
¯

ą 0

so that N´
n “ 0.

Finally, Theorem 4.5 tells us that N0
n “ 1, while npL q “ 1. Applying the counting

argument, we conclude that NC` “ 0.
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4.3 Orbital stability
To discuss the orbital stability of solutions to (1)-(2), it would be useful to write the system
in a more convenient way by means of the change of variables

uj “ qj ` ipj, ϕj “ p´∆q1{2ψj, $j “
Btψj
c
.

Hence, (1)-(2) reads as

d
dtq0 “ p0 ´ p1 ` p0

ˆ
Rn
p´∆q´1{2σϕ0 dz Btϕ0 “ cp´∆q1{2$0

d
dtp0 “ ´q0 ` q1 ´ q0

ˆ
Rn
p´∆q´1{2σϕ0 dz Bt$0 “ ´cp´∆q1{2ϕ0 ´ cσp|q0|

2
` |p0|

2
q

d
dtq1 “ p1 ´ p0 ` p1

ˆ
Rn
p´∆q´1{2σϕ1 dz Btϕ1 “ cp´∆q1{2$1

d
dtp1 “ ´q1 ` q0 ´ q1

ˆ
Rn
p´∆q´1{2σϕ1 dz Bt$1 “ ´cp´∆q1{2ϕ1 ´ cσp|q1|

2
` |p1|

2
q

(47)

and it can be written as
BtX “ J∇HSW pXq (48)

with X “ pS,W q P R4 ˆ pL2pRnqq4 as in (41), J defined by (42) and

HSW pXq “
|q0 ´ q1|

2 ` |p0 ´ p1|
2

2 `
1
4

ˆ
Rn
p|$0|

2
` |$1|

2
` |ϕ0|

2
` |ϕ1|

2
q dz

`
1
2

ˆ
Rn
p´∆q1{2σpϕ0p|q0|

2
` |p0|

2
q ` ϕ1p|q1|

2
` |p1|

2
qq dz. (49)

Next, we denote by F pSq “ |S|2

2 “
q2

0`q
2
1`p

2
0`p

2
1

2 and introduce the functional

E pXq “ HSW pXq ` ωF pSq

which is thus conserved by the dynamical system (48). Let X˚ “ pS˚,W˚q one of the special
solutions described in subsection 2.2. In particular, S˚ “ pQ˚0, 0, Q˚1, 0q with

ˆ

Q˚0
Q˚1

˙

“
1
?

2

ˆ

1
τ

˙

, ω “
κ

2 ` τ ´ 1 for (23) (50)
ˆ

Q˚0
Q˚1

˙

“

ˆ

α
β

˙

, ω “ κ´ 1 for (25) (51)

and W˚ “ pϕ0˚, 0, ϕ1˚, 0q where ϕ˚j “ ´|Q˚j|2p´∆q´1{2σ.
Adapting the argument used for the asymptotic model, we consider the level set

S “ tX “ pS,W q, F pSq “ F pS˚q “ 1{2u.
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and its tangent set given by

TS “ tpS,W q, ∇F pS˚q ¨ S “ 0u.

Note that pS,W q “ pq0, p0, q1, p1,W q P TS if and only if Q˚0q0 ` Q˚1q1 “ 0. The orbit
associated to X˚ is given by

O “

!

pSθ,´|Q˚0|
2
p´∆q´1{2σ, 0,´|Q˚1|

2
p´∆q´1{2σ, 0q, Sθ “ RpθqS˚, θ P R

)

and pTOqK is made of pS,W q with S “ pq0, p0, q1, p1q such that Q˚0p0 `Q˚1p1 “ 0.

Remark 4.8 In contrast to the observation made for the asymptotic problem in Remark 3.3,
and to a common property of Hamiltonian systems, here the phase invariance property holds
in a restricted sense: the energy H pXq, and E pXq as well, is left unchanged when changing
X “ pS,W q into pRpθqS,W q, where the rotation Rpθq acts only on a part of the variables.

The Euler-Lagrange relation for the coupled problem can be reformulated as

∇E pX˚q “ 0 (52)

and L , defined in (43) or (45), corresponds to the Hessian of E evaluated at X˚ given by
(50) or (51) respectively. We wish to establish a coercivity estimate, on a certain subspace,
for the quadratic form X ÞÑ D2E pX˚qpX,Xq. This is a crucial property for establishing the
orbital stability. A straightforward computation gives, for any X P TS X pTOqK,

D2E pX˚qpX,Xq “
Q˚1

Q˚0
q2

0 ´ q1q0 ` 2Q˚0q0

ˆ
Rn
p´∆q´1{2σϕ0 dz ` Q˚1

Q˚0
p2

0 ´ p1p0

`
Q˚0

Q˚1
q2

1 ´ q0q1 ` 2Q˚1q1

ˆ
Rn
p´∆q´1{2σϕ1 dz ` Q˚0

Q˚1
p2

1 ´ p0p1

`
1
2p}ϕ0}

2
L2pRnq ` }ϕ1}

2
L2pRnqq `

1
2p}$0}

2
L2pRnq ` }$1}

2
L2pRnqq

where we use the fact that p1 ´ |Q˚0|
2κ ` ωqQ˚0 “ Q˚1 and p1 ´ |Q˚1|

2κ ` ωqQ˚1 “ Q˚0.
Now, since X P TS X pTOqK, we have Q˚0q0 `Q˚1q1 “ 0 “ Q˚0p0 `Q˚1p1, so that

D2E pX˚qpX,Xq “

ˆ

1
Q˚0Q˚1

˙

pq2
0 ` q

2
1q ` 2Q˚0q0

ˆ
Rn
p´∆q´1{2σϕ0 dz

` 2Q˚1q1

ˆ
Rn
p´∆q´1{2σϕ1 dz `

ˆ

1
Q˚0Q˚1

˙

pp2
0 ` p

2
1q

`
1
2p}ϕ0}

2
L2pRnq ` }ϕ1}

2
L2pRnqq `

1
2p}$0}

2
L2pRnq ` }$1}

2
L2pRnqq

By virtue of the Cauchy-Schwarz inequality,

2|Q˚j||qj|
ˇ

ˇ

ˇ

ˇ

ˆ
Rn
p´∆q´1{2σϕj dz

ˇ

ˇ

ˇ

ˇ

ď 2|Q˚j||qj|
?
κ}ϕj}L2 ď

κ

ε
|Q˚j|

2q2
j ` ε}ϕj}

2
L2
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for any ε ą 0. Therefore,

D2E pX˚qpX,Xq ě

ˆ

1
Q˚0Q˚1

´
κ

ε
|Q0˚|

2
˙

q2
0 `

ˆ

1
Q˚0Q˚1

´
κ

ε
|Q1˚|

2
˙

q2
1

`

ˆ

1
Q˚0Q˚1

˙

pp2
0 ` p

2
1q `

ˆ

1
2 ´ ε

˙

p}ϕ0}
2
L2pRnq ` }ϕ1}

2
L2pRnqq

`
1
2p}$0}

2
L2pRnq ` }$1}

2
L2pRnqq. (53)

Assume that X˚ is such that pQ˚0, Q˚1q is given by (50). Then Proposition 4.6 implies that
X˚ is spectrally stable only for τ “ 1 and 0 ă κ ă 2. In this case, (53) reads as

D2E pX˚qpX,Xq ě
´

2´ κ

2ε

¯

pq2
0 ` q

2
1q ` 2pp2

0 ` p
2
1q `

ˆ

1
2 ´ ε

˙

p}ϕ0}
2
L2pRnq ` }ϕ1}

2
L2pRnqq

`
1
2p}$0}

2
L2pRnq ` }$1}

2
L2pRnqq ě Cpεq}X}2.

with Cpεq “ min
 `

2´ κ
2ε

˘

,
`1

2 ´ ε
˘ (

. Note that Cpεq ą 0 provided ε is chosen such that
κ
4 ă ε ă 1

2 . This leads to the orbital stability of X˚ given by (50) when τ “ 1 and 0 ă κ ă 2.
Note that if τ “ 1 and κ ą 2 or τ “ ´1, then the quadratic form X ÞÑ D2E pX˚qpX,Xq

has no definite sign on TS X pTOqK.
Next, let κ ą 2 and let X˚ be such that pQ˚0, Q˚1q is given by (51). Then Proposition 4.7

implies that X˚ is always spectrally stable. In this case, (53) reads as

D2E pX˚qpX,Xq ě
´

κ´
κ

ε
α2
¯

q2
0 `

´

κ´
κ

ε
β2
¯

q2
1 ` κpp

2
0 ` p

2
1q

`

ˆ

1
2 ´ ε

˙

p}ϕ0}
2
L2pRnq ` }ϕ1}

2
L2pRnqq `

1
2p}$0}

2
L2pRnq ` }$1}

2
L2pRnqq

where we use that αβ “ 1
κ
. Next, we consider separately the cases τ “ 1 and τ “ ´1.

If τ “ 1, we write q1 “ ´
α
β
q0 so that

D2E pX˚qpX,Xq ěκ

ˆ

1
β2 ´

2
ε
α2
˙

q2
0 ` κpp

2
0 ` p

2
1q

`

ˆ

1
2 ´ ε

˙

p}ϕ0}
2
L2pRnq ` }ϕ1}

2
L2pRnqq `

1
2p}$0}

2
L2pRnq ` }$1}

2
L2pRnqq

“
κ

β2ε

ˆ

ε´
2
κ2

˙ˆ

1´ α2

β2

˙

q2
0 `

κ

β2ε

ˆ

ε´
2
κ2

˙

q2
1 ` κpp

2
0 ` p

2
1q

`

ˆ

1
2 ´ ε

˙

p}ϕ0}
2
L2pRnq ` }ϕ1}

2
L2pRnqq `

1
2p}$0}

2
L2pRnq ` }$1}

2
L2pRnqq.

By choosing 2
κ2 ă ε ă 1

2 which is possible since κ ą 2 and since α2

β2 ă 1, we obtain
D2E pX˚qpX,Xq ě Cpεq}X}2 with Cpεq ą 0 and for any X P TS X pTOqK.
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If τ “ ´1, we write q0 “ ´
β
α
q1 so that

D2E pX˚qpX,Xq ě
κ

α2ε

ˆ

ε´
2
κ2

˙

q2
0 `

κ

α2ε

ˆ

ε´
2
κ2

˙ˆ

1´ β2

α2

˙

q2
1 ` κpp

2
0 ` p

2
1q

`

ˆ

1
2 ´ ε

˙

p}ϕ0}
2
L2pRnq ` }ϕ1}

2
L2pRnqq `

1
2p}$0}

2
L2pRnq ` }$1}

2
L2pRnqq.

and we can conclude as above.

4.4 Instability
In this section we study the nonlinear instability of the solution X˚ given by (50) whenever
τ “ ´1 or τ “ 1 and κ ą 2, i.e. whenever X˚ is spectrally unstable. To this goal, we use
again the same change of variables as in the previous section so that (1)-(2) reads as (47).
Note that the reasoning of [29], as described in Section 3.4, can be applied only in the case
τ “ 1 and κ ą 2, the Morse index of L being larger than 2 when τ “ ´1. Hence, we are
going to apply the general result described in [32] to treat both cases at the same time. The
instability analysis is of different nature than in Section 3.4. In Section 3.4, the method of
[29] relies on the spectral property of the self-adjoint operator L ; it shows a linear growth
of the perturbation by using the energy conservation, but it requires a strong assumption on
the dimension of the eigenspace of unstable directions. Here, the arguments of [32], which
has been extended to various type of nonlinear Schrödinger equation in [8, 14], uses the fact
that L admits an eigenvalue with a positive real part. This property can be deduced from
the counting argument. As in [32], starting from the worst linearly unstable direction, we
construct an initial datum close to equilibrium such that the corresponding time evolution
exits a neighborhood of this equilibrium in a finite time.

We start by observing that the linearized operator L satisfies

pLX|Xq “ ´
1
?

2

ˆ
Rn
p´∆q´1{2σpϕ0p0 ` τϕ1p1q dz ´ c

?
2
ˆ
Rn
σp$0q0 ` τ$1q1q dz.

The Cauchy-Schwarz inequality yields

|pLX|Xq| ď 2p
a

κ{2` c
?

2}σ}L2pRnqq}X}
2.

As it will be detailed below, the operator λ´L is onto for sufficiently large (real part of) λ’s.
Accordingly, we can apply Lumer-Phillips’ theorem [31, Th. 12.22] to the linearized equation

BtX “ LX.

It can be formulated as the existence of the semi-group t ÞÑ eLt, which satisfies the continuity
estimate: there exists Λ ą 0 such that for any t ě 0, }eLt} ď eΛt. For further purposes, we
denote

K0 “ sup
 

}eLt}, 0 ď t ď 1
(

.
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Then, we consider the evolution of a perturbation of X˚ according to the dynamical
system (47). More precisely, we set

ˆ

q̃j
p̃j

˙

“ Rpωtq

ˆ

Q˚j ` qj
pj

˙

, ϕ̃j “ ϕ˚j ` ϕj, $̃j “ $j.

From (47), we deduce that the perturbation Y “ pq0, p0, q1, p1, ϕ0, $0, ϕ1, $1q satisfies

BtY “ LY ` F pY q

where the nonlinear remainder reads

F pY q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p0

ˆ
Rn
σp´∆q´1{2ϕ0 dz

´q0

ˆ
Rn
σp´∆q´1{2ϕ0 dz

p1

ˆ
Rn
σp´∆q´1{2ϕ1 dz

´q1

ˆ
Rn
σp´∆q´1{2ϕ1 dz

0
´cσp|p0|

2 ` |q0|
2q

0
´cσp|p1|

2 ` |q1|
2q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The orbital stability of the solution (50) to (47) is rephrased in the orbital stability of 0
for this problem. More precisely, we shall obtain the critical estimates by using the integral
formulation

Y ptq “ eLtYinit `

ˆ t

0
eLpt´sqF pY psqq ds (54)

of the problem. The application of the reasonings in [32] relies on the following estimate

Lemma 4.9 There exists C1 ą 0 such that for any X, we have |F pXq| ď C1|X|
2.

Proof. In order to estimate F pY q, we make the following quantities appear

p|pj|
2
` |qj|

2
q

ˆˆ
Rn
p´∆q´1{2σϕj dz

˙2

ď κp|pj|
2
` |qj|

2
q}ϕj}

2
L2pRnq

and
p|pj|

2
` |qj|

2
q
2
ˆ
Rn
|σ|2 dz “ }σ}2L2pRnqp|pj|

2
` |qj|

2
q
2.

It leads to the asserted conclusion with C1 “ 2p
?
κ` c}σ}L2pRnqq.

Next, we need the following information on the spectrum of L.
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Proposition 4.10 σpeLq “ eσpLq.

This statement strengthens the embedding exppσpLqq Ă σpeLq which always holds. It is
not a prerequisite but it simplifies the argument, see [32]. According to Gearhart-Greiner-
Herbst-Prüss Spectral Mapping Theorem, see e.g. [30, Prop. 1] (in fact, we use the criterion
in the same form as in [15, Section 2]), the proof relies on a uniform estimate on the resolvent
pλ´ Lq´1, as Impλq Ñ ˘8 with Repλq , 0 fixed, that we are going to establish. We denote

H “ R4
ˆ pL2

pRnqq4

endowed with the norm

}X}H “
b

|q0|2 ` |p0|2 ` |q1|2 ` |p1|2 ` }ϕ0}
2
L2pRnq ` }$0}

2
L2pRnq ` }ϕ1}

2
L2pRnq ` }$1}

2
L2pRnq.

Let λ P Czt0u and for a given data X 1, we consider the equation

pλ´ LqX “ X 1,

that is
λq0 ´ τp0 ` p1 “ q10,

λp0 ` τq0 ´ q1 `
1
?

2

ˆ
Rn
p´∆q´1{2σϕ0 dz “ p10,

λq1 ` p0 ´ τp1 “ q11,

λp1 ´ q0 ` τq1 `
τ
?

2

ˆ
Rn
p´∆q´1{2σϕ1 dz “ p11,

λϕ0 ´ cp´∆q1{2$0 “ ϕ10,
λ$0 ` cp´∆q1{2ϕ0 ` c

?
2σq0 “ $10,

λϕ1 ´ cp´∆q1{2$1 “ ϕ11,
λ$1 ` cp´∆q1{2ϕ1 ` τc

?
2σq1 “ $11.

Therefore, we get

$0 “
p´∆q´1{2

c
pλϕ0 ´ ϕ

1
0q, $1 “

p´∆q´1{2

c
pλϕ1 ´ ϕ

1
1q,

which allows us to write
´λ2

c2 ´∆
¯

ϕ0 “
λ

c2ϕ
1
0 ` p´∆q1{2$10 ´

?
2p´∆q1{2σq0,

´λ2

c2 ´∆
¯

ϕ1 “
λ

c2ϕ
1
1 ` p´∆q1{2$11 ´ τ

?
2p´∆q1{2σq1.

We solve these equations by means of Fourier transform. Note that this makes the symbol
`

λ2

c2 ` ξ
2˘ appear. However, it does not vanish outside of the axis iR. Hence, we still can use

the function
z P CziR ÞÝÑ κz “

ˆ
Rn

|pσpξq|2

z2 ` |ξ|2
dξ
p2πqn .
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As consequence, we arrive at the reduced system:

λq0 ´ τp0 ` p1 “ q10,
λp0 ` τq0 ´ q1 ´ κλ2{c2q0 “ S0,
λq1 ` p0 ´ τp1 “ q11,
λp1 ´ q0 ` τq1 ´ κλ2{c2q1 “ S1,

where we have set

S0 “ p10 ´
1
?

2

ˆ
Rn

pσpξqx$10pξq

λ2{c2 ` |ξ|2
dξ
p2πqn ´

λ
?

2c2

ˆ
Rn

pσpξqxϕ10pξq

pλ2{c2 ` |ξ|2q|ξ|

dξ
p2πqn ,

S1 “ p11 ´
τ
?

2

ˆ
Rn

pσpξqx$11pξq

λ2{c2 ` |ξ|2
dξ
p2πqn ´ τ

λ
?

2c2

ˆ
Rn

pσpξqxϕ11pξq

pλ2{c2 ` |ξ|2q|ξ|

dξ
p2πqn .

(55)

Since
λpq0 ` τq1q “ q10 ` τq

1
1,

we obtain
λp0 ` 2τq0 ´ κλ2{c2q0 “ S0 ` τ

pq10 ` τq
1
1q

λ
,

λp1 ´ 2q0 ` τκλ2{c2q0 “ S1 ´ τpτ ´ κλ2{c2q
pq10 ` τq

1
1q

λ
.

It eventually yields

pλ2
` 4´ 2τκλ2{c2qq0 “ λq10 ´ pS1 ´ τS0q ` p2´ τκλ2{c2q

pq10 ` τq
1
1q

λ
. (56)

In particular, setting X 1 “ 0, we obtain the relation (44) introduced above for studying the
eigenvalues of L. Next, we are going to use the following elementary claim.

Lemma 4.11 Let λ “ a` ib P C, with a and b reals. If |b| ě
?

3|a|, then, for any ε ě 0 we
have

ˇ

ˇ

ˇ

1
λ2 ` ε

ˇ

ˇ

ˇ
ď

?
2

|λ|2
,

ˇ

ˇ

ˇ

λ

λ2 ` ε

ˇ

ˇ

ˇ
ď

?
2

|λ|
.

Proof. We write λ “ reiθ with r “
?
a2 ` b2, so that

ˇ

ˇ

ˇ

1
λ2 ` ε

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

1
eiθr2 ` e´iθε

ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ

λ

λ2 ` ε

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

1
eiθr ` e´iθε{r

ˇ

ˇ

ˇ
.

Now, we re-organize

|eiθr2 ` e´iθε|2 “ r4 ` ε2 ` 2r2ε cosp2θq “ pr2 ´ εq2 ` 4r2ε cos2pθq

ě
pr2 ´ εq2

2 `
r4 ` ε2

2 ě
r4

2 ,

|eiθr ` e´iθε{r|2 “ r2 `
ε2

r2 ` 2ε cosp2θq “
´

r ´
ε

r

¯2
` 4ε cos2

pθq

ě
pr ´ ε{rq2

2 `
r2 ` ε2{r2

2 ě
r2

2 .
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where we have used that, by assumptions on a, b, | cospθq| “ |a|
?
a2`b2 ď

1
2 . It thus implies

ˇ

ˇ

ˇ

1
λ2 ` ε

ˇ

ˇ

ˇ
ď

?
2

r2 ,
ˇ

ˇ

ˇ

λ

λ2 ` ε

ˇ

ˇ

ˇ
ď

?
2
r
.

This allows us to estimate the resolvent pλ´ Lq´1.

Lemma 4.12 Let λ “ a ` ib P C, with a , 0, |b| ě
?

3|a|. Then, there exists a constant
Ca ą 0 such that the quantities S0, S1 in (55) satisfy

|Sj| ď Ca}X
1
}H.

Proof. The only difficulty is to estimate the integrals involving σ. Owing to Lemma 4.11
and the Cauchy-Schwarz inequality, we obtain

ˇ

ˇ

ˇ

λ

c2

ˆ
Rn

pσpξqxϕ10pξq

pλ2{c2 ` |ξ|2q|ξ|

dξ
p2πqn

ˇ

ˇ

ˇ
ď

?
2

|λ|

ˆ
Rn

|pσpξq| |xϕ10pξq|

|ξ|

dξ
p2πqn

ď

?
2

|λ|

ˆˆ
Rn

|pσpξq|2

|ξ|2
dξ
p2πqn

˙1{2 ˆˆ
Rn
|pϕ10pξq|

2 dξ
p2πqn

˙1{2

ď

?
2κ
|λ|

}ϕ10}L2pRnq ď

?
κ

?
2|a|

}ϕ10}L2pRnq.

Similarly, we get

ˇ

ˇ

ˇ

1
c2

ˆ
Rn

pσpξqx$10pξq

λ2{c2 ` |ξ|2
dξ
p2πqn

ˇ

ˇ

ˇ
ď

?
2

|λ|2

ˆ
Rn
|pσpξq| |x$10pξq|

dξ
p2πqn

ď

?
2

|λ|2
}σ}L2pRnq}$

1
0}L2pRnq ď

?
2}σ}L2pRnq

4|a|2 }$10}L2pRnq.

By direct inspection, Lemma 4.11 also yields the following estimate.

Lemma 4.13 Let λ “ a` ib P C, with a , 0 and |b| ě
?

3|a|. Then, we have

|κλ2{c2 | ď c2 }σ}
2
L2pRnq

2
?

2|a|2
.

Let λ “ a ` ib P C. By virtue of Lemma 4.13, when b is large enough, λ2 ` 4 ´ 2τκλ2{c2

does not vanish. We can therefore obtain q0 from the data X 1 with (56). Moreover, as
b Ñ 8, with a , 0 fixed, 1

λ2`4´2τκλ2{c2
, and λ

λ2`4´2τκλ2{c2
both tend to 0. We conclude that

we can find some r ą 0 and M ą 0 (depending on a, c, σ) such that for any b P R, |b| ě r,
we have }X}H “ }pa` ib´ Lq´1X 1}H ďM}X 1}H. This justifies Proposition 4.10.
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In case of spectral instability, L admits eigenvalues with positive real value. There is
only a finite number of such eigenvalues (as indicated by the counting argument). Since,
exppσpLqq Ă σpeLq we thus already know that the spectral radius of eL is larger than 1. In
fact, we can use the identity in Proposition 4.10. Let us denote

λ˚ “ a˚ ` ib˚ P σpLq, a˚ “ sup
 

Repλq, λ P σpLq
(

ą 0.

Of course, for any t ě 0, we have |eλ˚t| “ ea˚t and the spectral radius of eL is ea˚ ą 1, see
[14] for more details. We are going to use the following claim.

Lemma 4.14 [32, Lemma 2 & Lemma 3] There exists a constant K1, such that for any
t ě 0, there holds }etL}L pHq ď K1e

3a˚t{2.

Let us define ε ą 0 such that

4K1p1` C1q
2

a˚
ε ă 1

with C1 and K1 defined in Lemma 4.9 and 4.14 respectively. Then, pick an arbitrary 0 ă
δ ă ε and set

Tε “
1
a˚

ln
´ ε

δ

¯

Let Y˚ be a normalized eigenvector of L associated to λ˚:

LY˚ “ λ˚Y˚, }Y˚}H “ 1.

It will serve to define the initial perturbation that leads to instability: we start from the
perturbation

Y
ˇ

ˇ

t“0 “ δY˚,

which has thus an arbitrarily small norm. As a matter of fact, (54) becomes

Y ptq “ δeλ˚tY˚ `

ˆ t

0
eLpt´sqF pY psqq ds.

We are going to contradict the orbital stability by showing that Y pTεq is at a distance larger
than κε, for a certain constant κ ą 0, to the orbit O. Let

T̃ε “ sup
 

t P r0, Tεs, }Y psq} ď p1` C1qδe
a˚s for 0 ď s ď t

(

P p0, Tεs.

The Duhamel formula (54) yields

}Y ptq} ď δea˚t `

ˆ t

0
K1e

3a˚pt´sq{2C1}Y psq}
2 ds
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by using Lemma 4.9 and 4.14. Therefore

}Y ptq} ď δea˚t `K1C1p1` C1q
2δ2
ˆ t

0
e3a˚pt´sq{2e2a˚s ds

ď δea˚t `K1C1p1` C1q
2δ2 2e2a˚t

a˚

ď δea˚t
ˆ

1` 2K1C1p1` C1q
2

a˚
δea˚Tε

˙

ď δea˚t
ˆ

1` C1
2K1p1` C1q

2

a˚
ε

˙

holds for any t P r0, T̃εs Ă r0, Tεs. Hence, ε is chosen small enough so that this implies

}Y ptq} ă

ˆ

1` C1

2

˙

δea˚t,

which would contradict the definition of T̃ε if T̃ε ă Tε. We deduce that

}Y ptq} ď p1` C1qδe
a˚t ď p1` C1qε

holds for any t P r0, Tεs. Owing to this estimate, we go back to the Duhamel formula and
we obtain, for 0 ď t ď Tε,

}Y ptq ´ δeλ˚tY˚} ď

ˆ t

0
|eLpt´sqF pY psqq| ds ď

ˆ t

0
e3a˚pt´sq{2K1C1}Y psq}

2 ds

ď K1C1p1` C1q
2δ2
ˆ t

0
e3a˚pt´sq{2e2a˚s ds ď 2K1C1p1` C1q

2

a˚
δ2e2a˚t

ď
2K1C1p1` C1q

2

a˚
δ2e2a˚Tε “

2K1C1p1` C1q
2

a˚
ε2.

(57)
We distinguish the components of the solution X˚ “ pS˚,W˚q, Y ptq “ pS̃ptq, W̃ ptqq and
Xptq “ pSptq,W ptqq “ pRpωtqpS˚ ` S̃ptqq,W˚ ` W̃ ptqq. We wish to evaluate

Ξε “ inf
θ
}XpTεq ´ pRpθqS˚,W˚q}

“ inf
θ
}pRpωTεqpS˚ ` S̃pTεqq,W˚ ` W̃ pTεqq ´ pRpθqS˚,W˚q}

“ inf
θ
}pS˚ ` S̃pTεq,W˚ ` W̃ pTεqq ´ pRp´ωTεqRpθqS˚,W˚q}

“ inf
θ1
}Y pTεq `X˚ ´ pRpθ

1
qS˚,W˚q}.

Let θε denote the phase which reaches this infimum:

Ξε “ }Y pTεq `X˚ ´ pRpθεqS˚,W˚q}.

We observe that

Ξε ď inf
θ1

`

}Y pTεq} ` }X˚ ´ pRpθ
1
qS˚,W˚q}

˘

ď }Y pTεq} ď p1` C1qε.
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Next, we have
}X˚ ´ pRpθεqS˚,W˚q} ď Ξε ` }Y pTεq} ď 2p1` C1qε,

which implies that limεÑ0 θε “ 0. Hence, a basic Taylor expansion tells us that

X˚ ´ pRpθεqS˚,W˚q “ p´θεJSS˚, 0q ` εrε, lim
εÑ0

}rε} “ 0.

Now, we are going to use the following splitting of the initial perturbation

Y˚ “
`

Y˚|pJSS˚, 0q
˘ pJSS˚, 0q
}pJSS˚, 0q}2

` Y K˚ ,
`

Y K˚ |pJSS˚, 0q
˘

“ 0.

The Cauchy-Schwarz inequality yields

Ξε}Y
K
˚ } ě

ˇ

ˇ

`

Y pTεq `X˚ ´ pRpθεqS˚,W˚q|Y
K
˚

˘
ˇ

ˇ

ě
ˇ

ˇδeλ˚Tε
`

Y˚|Y
K
˚

˘

`
`

Y pTεq ´ δe
λ˚TεY˚|Y

K
˚

˘

´ θε
`

pJSS˚, 0q|Y K˚
˘

loooooooomoooooooon

“0

`ε
`

rε|Y
K
˚

˘
ˇ

ˇ

Possibly at the price of choosing a smaller ε, coming back to (57), we can make both quantities
ˇ

ˇ

`

Y pTεq ´ δe
λ˚TεY˚|Y

K
˚

˘
ˇ

ˇ ď
›

›Y pTεq ´ δe
λ˚TεY˚

›

›}Y K˚ } and ε
ˇ

ˇ

`

rε|Y
K
˚

˘
ˇ

ˇ ď ε}rε}}Y
K
˚ }

smaller than ε
4}Y

K
˚ }

2. It follows that

Ξε}Y
K
˚ } ě

ˇ

ˇδeλ˚Tε
`

Y˚|Y
K
˚

˘
ˇ

ˇ´
ˇ

ˇ

`

Y pTεq ´ δe
λ˚TεY˚|Y

K
˚

˘
ˇ

ˇ´ ε
ˇ

ˇ

`

rε|Y
K
˚

˘
ˇ

ˇ

ě δea˚Tε}Y K˚ }
2 ´

ε

2}Y
K
˚ }

2
“
ε

2}Y
K
˚ }

2.

This estimate is meaningful provided Y K˚ , 0. This is indeed the case because JSS˚ “
1?
2p0,´1, 0,´τq and we can check that pJSS˚, 0q lies in KerpLq while Y˚ P KerpL ´ λ˚q,

with λ˚ , 0.

A Proof of L2 and energy conservation properties
The three models can be cast under the general form

i
d
dt

ˆ

u0
u1

˙

“

ˆ

A0 ´1
´1 A1

˙ˆ

u0
u1

˙

where A0 “ A1 “ 1 for (4), A0 “ 1´κ|u0|
2, A1 “ 1´κ|u1|

2 for (5), and A0 “ 1`
´
Rn
σψ0 dz,

A1 “ 1`
´
Rn
σψ1 dz for (1)-(2). In any case, A0 and A1 are real. Therefore, we obtain

d
dtp|u0|

2
` |u1|

2
q “

u0

i
pA0u0 ´ u1q ´

u0

i
pA0u0 ´ u1q `

u1

i
pA1u1 ´ u0q ´

u1

i
pA1u1 ´ u0q

“
A0

i
pu0u0 ´ u0u0q `

A1

i
pu1u1 ´ u1u1q `

1
i
p´u0u1 ` u1u0 ´ u0u1 ` u1u0q

“ 0,
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which proves the conservation of |u0|
2 ` |u1|

2.
Moreover, we have

1
2

d
dt |u0 ´ u1|

2
“ ´

1
2

d
dtpu0u1 ` u1u0q

“ ´
1
2

ˆ

u1

i
pA0u0 ´ u1q ´

u1

i
pA0u0 ´ u1q `

u0

i
pA1u1 ´ u0q ´

u0

i
pA1u1 ´ u0q

˙

“ ´
1
2i pA0pu1u0 ´ u1u0q ` A1pu0u1 ´ u0u1qq “ ´pA0 ´ A1qImpu0u1q.

For (5), this combines to
κ

4
d
dtp|u0|

4
` |u1|

4
q “

κ|u0|
2

2

ˆ

u0

i
pA0u0 ´ u1q ´

u0

i
pA0u0 ´ u1q

˙

`
κ|u1|

2

2

ˆ

u1

i
pA1u1 ´ u0q ´

u1

i
pA1u1 ´ u0q

˙

“ ´
κ|u0|

2

2i pu0u1 ´ u0u1q ´
κ|u1|

2

2i pu1u0 ´ u1u0q

“ κp|u0|
2 ´ |u1|

2qImpu0u1q “ ´pA0 ´ A1qImpu0u1q,

so that (9) holds. For (1)-(2), we also compute the energy of the vibrational field
1
2

d
dt

ˆ
Rn

´ 1
c2 p|Btψ0|

2
` |Btψ1|

2
q ` |∇ψ0|

2
` |∇ψ1|

2
¯

dz

“

ˆ
Rn

"

´ 1
c2B

2
tψ0 ´∆ψ0

¯

Btψ0 `
´ 1
c2B

2
tψ1 ´∆ψ1

¯

Btψ1

*

dz

“ ´

ˆ
Rn
σ
`

|u0|
2
Btψ0 ` |u1|

2
Btψ1

˘

dz.

Finally, we compute the evolution of the interaction energy
d
dt

ˆ
Rn
σpψ0|u0|

2
` ψ1|u1|

2
q dz “

ˆ
Rn
σ
`

|u0|
2
Btψ0 ` |u1|

2
Btψ1

˘

dz

`

ˆ
Rn
σψ0

ˆ

u0

i
pA0u0 ´ u1q ´

u0

i
pA0u0 ´ u1q

˙

dz

`

ˆ
Rn
σψ1

ˆ

u1

i
pA1u1 ´ u0q ´

u1

i
pA1u1 ´ u0q

˙

dz

“

ˆ
Rn
σ
`

|u0|
2
Btψ0 ` |u1|

2
Btψ1

˘

dz

´
1
i

ˆ
Rn
σ
´

ψ0pu0u1 ´ u1u0q ` ψ1pu1u0 ´ u0u1q
¯

dz

“

ˆ
Rn
σ
`

|u0|
2
Btψ0 ` |u1|

2
Btψ1

˘

dz ` 2pA0 ´ A1qImpu0u1q.

Gathering these identities, we arrive at (8).
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B Proof of Lemma 4.2.
We extend Σ by 0 on p´8, 0q and we assume that Σ is supported in r´R` ?µ,R` ?µs, for
some 0 ă R ă 8. Extending the discussion to a function with fast decay at infinity follows
from a standard density argument. We start by defining the principal value

P.V.
ˆ `8

0

Σprq
pr ´

?
µqpr `

?
µq

dr “ lim
εÑ0

ˆ R`
?
µ

´R`
?
µ

1|r´?µ|ěε
Σprq

pr ´
?
µqpr `

?
µq

dr.

We decompose

1
pr ´

?
µqpr `

?
µq
“

1
2?µpr ´ ?

µq
´

1
2?µpr ` ?

µq
.

There is no difficulty in handling the last term by means of the Lebesgue’s dominated
convergence theorem (bearing in mind that Σ is supported on r0,8q) and we obtain

lim
εÑ0

ˆ R`
?
µ

´R`
?
µ

1|r´?µ|ěε
Σprq

2?µpr ` ?
µq

dr “
ˆ R`

?
µ

´R`
?
µ

Σprq
2?µpr ` ?

µq
dr.

Next, we make use of parity so that for any ε ą 0
ˆ R`

?
µ

´R`
?
µ

1|r´?µ|ěε
dr

r ´
?
µ
“ 0.

Hence, we rewrite

lim
εÑ0

ˆ R`
?
µ

´R`
?
µ

1|r´?µ|ěε
Σprq

r ´
?
µ

dr “ lim
εÑ0

ˆ R`
?
µ

´R`
?
µ

1|r´?µ|ěε
Σprq ´ Σp?µq

r ´
?
µ

dr

“

ˆ R`
?
µ

´R`
?
µ

Σprq ´ Σp?µq
r ´

?
µ

dr

which is well-defined since the integrand is bounded by }Σ1}L8 and the integral is over a
bounded domain. We conclude that

P.V.
ˆ `8

0

Σprq
pr ´

?
µqpr `

?
µq

dr

“ ´

ˆ R`
?
µ

´R`
?
µ

Σprq
2?µpr ` ?

µq
dr `

ˆ R`
?
µ

´R`
?
µ

Σprq ´ Σp?µq
2?µpr ´ ?

µq
dr.

We split P p´µ,Bq into its real and imaginary parts; it yields

P p´µ,Bq “

ˆ 8

0

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr ´ iB
ˆ 8

0

Σprq
B2 ` pr2 ´ µq2

dr.
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With B ą 0, and the change of variable r1 “ r´
?
µ

B
, the imaginary parts recasts as

ˆ 8

0

Σprq
1` ppr ´ ?

µq{Bq2pr `
?
µq2

dr
B
“

ˆ 8

´
?
µ{B

ΣpBr1 ` ?
µq

1` r12pBr1 ` 2?µq2 dr1.

A direct application of the Lebesgue’s dominated convegence theorem shows that it tends to

Σp?µq
ˆ 8

´8

1
1` 4µr12 dr1 “

πΣp?µq
2?µ

as B Ñ 0`. Taking the limit B Ñ 0´, changes the sign of this expression.
We proceed in two steps to handle the real part. Let ε ą 0 and computeˆ
|r´

?
µ|ďε

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr ´
ˆ
|r´

?
µ|ďε

2?µpr ´ ?
µqΣprq

B2 ` 4µpr ´ ?
µq2

dr

“

ˆ
|r´

?
µ|ďε

Σprqpr ´ ?
µq

ˆ
B2pr `

?
µ´ 2?µq ` 4µpr ´ ?

µq2pr `
?
µq ´ 2?µpr ´ ?

µq2pr `
?
µq2

pB2 ` pr2 ´ µq2qpB2 ` 4µpr ´ ?
µq2q

dr

“

ˆ
|r´

?
µ|ďε

Σprqpr ´ ?
µq2

B2 ` pr ´
?
µqpr `

?
µqp4µ´ 2?µpr ` ?

µqq

pB2 ` pr2 ´ µq2qpB2 ` 4µpr ´ ?
µq2q

dr

“

ˆ
|r´

?
µ|ďε

Σprqpr ´ ?
µq2

B2 ´ 2?µpr ´ ?
µq2pr `

?
µq

pB2 ` pr2 ´ µq2qpB2 ` 4µpr ´ ?
µq2q

dr.

This difference is dominated byˆ
|r´

?
µ|ďε

Σprq
ˆ

B2pr ´
?
µq2

B24µpr ´ ?
µq2

`
2?µpr ´ ?

µq4pr `
?
µq

4µpr ´ ?
µq4pr `

?
µq2

˙

dr

“

ˆ
|r´

?
µ|ďε

Σprq
ˆ

1
4µ `

1
2?µpr ` ?

µq

˙

dr.

Pick δ ą 0. Since r ÞÑ Σprq
` 1

4µ `
1

2?µpr`?µq

˘

is integrable over p0,8q, this quantity can be
made ď δ by choosing ε small enough. Possibly at the price of reducing ε, we also suppose
that

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ `8

0

Σprq
2?µpr ` ?

µq
dr ´

ˆ
|r´

?
µ|ěε

Σprq
2?µpr ` ?

µq
dr

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ

holds. Having disposed of this preliminary, we writeˆ 8

0

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr “

ˆ
|r´

?
µ|ďε

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr `
ˆ
|r´

?
µ|ěε

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr

“

˜ˆ
|r´

?
µ|ďε

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr ´
ˆ
|r´

?
µ|ďε

2?µpr ´ ?
µqΣprq

B2 ` 4µpr ´ ?
µq2

dr
¸

`

ˆ
|r´

?
µ|ďε

2?µpr ´ ?
µqΣprq

B2 ` 4µpr ´ ?
µq2

dr `
ˆ
|r´

?
µ|ěε

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr
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where the first term can be made ď δ, uniformly with respect to B, i.e.

sup
BPR

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|r´

?
µ|ďε

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr ´
ˆ
|r´

?
µ|ďε

2?µpr ´ ?
µqΣprq

B2 ` 4µpr ´ ?
µq2

dr

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ.

The limit of the last integral is identified by applying Lebesgue’s dominated convergence
theorem

lim
BÑ0

ˆ
|r´

?
µ|ěε

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr “
ˆ
|r´

?
µ|ěε

Σprq
pr2 ´ µq

dr

“

ˆ
|r´

?
µ|ěε

Σprq
2?µpr ´ ?

µq
dr ´

ˆ
|r´

?
µ|ěε

Σprq
2?µpr ` ?

µq
dr

“

ˆ R`
?
µ

´R`
?
µ

1|r´?µ|ěε
Σprq ´ Σp?µq
2?µpr ´ ?

µq
dr ´

ˆ
|r´

?
µ|ěε

Σprq
2?µpr ` ?

µq
dr.

Finally, the second term can be recast as
ˆ R`

?
µ

´R`
?
µ

1|r´?µ|ďε
2?µpr ´ ?

µqpΣprq ´ Σp?µqq
B2 ` 4µpr ´ ?

µq2
dr

so that, in the limit as B goes to 0, we get
ˆ R`

?
µ

´R`
?
µ

1|r´?µ|ďε
Σprq ´ Σp?µq
2?µpr ´ ?

µq
dr.

Therefore, we get

lim
BÑ0

˜ˆ
|r´

?
µ|ďε

2?µpr ´ ?
µqΣprq

B2 ` 4µpr ´ ?
µq2

dr `
ˆ
|r´

?
µ|ěε

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr
¸

“

ˆ R`
?
µ

´R`
?
µ

Σprq ´ Σp?µq
2?µpr ´ ?

µq
dr ´

ˆ
|r´

?
µ|ěε

Σprq
2?µpr ` ?

µq
dr,

which is close, up to δ, to P.V.
´ 8

0
Σprq

pr´
?
µqpr`

?
µq

dr. As a consequence, we conclude that, for
any δ ą 0, we can exhibit Bpδq ą 0 small enough so that

ˇ

ˇ

ˇ

ˇ

ˆ 8

0

pr2 ´ µqΣprq
B2 ` pr2 ´ µq2

dr ´ P.V.
ˆ 8

0

Σprq
pr ´

?
µqpr `

?
µq

dr
ˇ

ˇ

ˇ

ˇ

ď 2δ

holds for any 0 ă |B| ă Bpδq.
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