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Motivation
Many problems in physics have the form

of Conservation Laws ∂tU +∇x · F (U) = 0

where
I U can be a scalar or a vector, thus F (U) a vector or a matrix,
I x can be one- or multi-dimensional

(Difficulties increases, for analysis and numerics, as the size of x
and of U increases).

or Balance Laws ∂tU +∇x · F (U) = S(U).

Goal: To design a “good and efficient” numerical method
I mathematical and physical criterion
I non linearities
I conservation of equilibria (∇x · F (Ueq) = S(Ueq)).
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What does “conservation” mean?
Density of a passive tracer immersed in a fluid

I ρ(t, x) = density of “particles”:∫
Ω
ρ(t, y)dy = Mass contained in Ω at time t

I u(t, x) = (God-given) velocity of the fluid
I Mass balance

d

dt

∫
Ω
ρ(t, y) dy = −

∫
∂Ω
ρ(t, y)u(t, y) · ν(y)dσ(y).

I Integrating by parts yields the PDE ∂tρ+∇x · (ρu) = 0.

Moto
To design numerical schemes by mimicking the physical derivation
of the equation (Finite Volume Schemes)



The cornerstone is the notion of flux

I Given a physical quantity U, its evolution in a domain Ω is
driven by gain/loss through the boundaries described by a flux
Q so that

d

dt

∫
Ω

U(t, y) dy = −
∫
∂Ω

Q(t, y) · ν(y)dσ(y).

I Then, a physical law prescribes how Q depends on U.
I Example: U =temperature, Fourier’s law: Q = −k∇x U.

It leads to the Heat Eq. ∂tU = ∇x · (k∇U). But this eq.
does not belong to the framework of Hyperbolic problems...
Main differences: Infinite Speed of Propagation &
Regularizing Effects

See F. Boyer’s lectures on FV methods for elliptic/parabolic eq.!



Examples
Transport eq.
∂tρ+∇x · (ρu) = 0

Kinetic eq. (Statistical physics)
Description in phase space ∂t f +∇x · (ξf ) = Interaction terms,
with f (t, x , ξ) depending on space and velocity.

Non linear models: traffic flows
Lighthill-Whitham-Richards’ model: ρ=density of vehicles, the
velocity is u(t, x) = V0(1− ρ) depends on ρ!

∂tρ+ ∂x (V0ρ(1− ρ)) = 0, the flux is V0ρ(1− ρ)

Non linear models: Burgers eq.
A toy model for gas dynamics

∂tρ+ ∂x (ρ2/2) = 0



Examples Contn’d
Waves eq. (linear system)
∂tu + c∂x v = 0, ∂tv + c∂x u = 0

I leads to ∂2
ttu − c2∂2

xx u = 0.
I Set W± = u ± v , then ∂tW± ± c∂x W± = 0 that is a system

of transport eq. (or a kinetic model with 2 velocities).

Euler system

∂t

 ρ
ρu
ρE

+ ∂x

 ρu
ρu2 + p

(ρu2/2 + p)u

 = 0

with E = u2/2 + e, p = p(ρ, e). (For instance p = 2ρe.)

Moto
A numerical scheme for a complex system should first work on

simple equations!



The NON-CONSERVATIVE transport equation

∂tρ+ u∂xρ = 0
Define the Characteristics
Assume that u : R× R→ R is C1 and satisfies
|u(t, x)| ≤ C(1 + |x |). Then we can apply the Cauchy-Lipschitz
theorem and define the Characteristic Curves

d

ds X (s; t, x) = u(s,X (s; t, x)), X (t; t, x) = x .

X (s; t, x) is the position occupied at time s by a particle which
starts from position x at time t.

Go back to the PDE
I Chain Rule:

d

ds

[
ρ(s,X (s; t, x))

]
= (∂tρ+ u · ∇xρ)(s,X (s; t, x)) = 0

I Integrate between s = 0 and s = t: ρ(t, x) = ρInit(X (0; t, x)).



The CONSERVATIVE transport equation

∂tρ+ ∂x (ρu) = ∂tρ+ u∂xρ+ ρ∂x u = 0

becomes d

ds

[
ρ(s,X (s; t, x))

]
= −ρ∂x u(s,X (s; t, x)).

Therefore ρ(t, x) = ρInit(X (0; t, x)) J(0; t, x) with

J(s; t, x) = exp
(
−
∫ t

s
∂x u(σ,X (σ; t, x))dσ

)
.

Interpretation: J is the jacobian of y = X (s; t, x){
∂s
(
∂x X (s; t, x)

)
= (∂x u)(s,X (s; t, x)) ∂x X (s; t, x),

∂x X (t; t, x) = 1.

We deduce that

∂x X (s; t, x) = exp
(

+

∫ s

t
∂x u(σ,X (σ; t, x) dσ

)
= J(s; t, x)

and dy = J(s; t, x)dx .



Fundamental observations

I Maximum principle: for the non-conservative case if
0 ≤ ρInit(x) ≤ M, then 0 ≤ ρ(t, x) ≤ M; for the conservative
case if ρInit(x) ≥ 0 then ρ(t, x) ≥ 0.

I Mass conservation: for the conservative case∫
R
ρ(t, x) dx =

∫
R
ρInit(y) dy .

I For ρInit ∈ C1, we get solutions in C1 (no gain of regularity)
I The discussion extends to the multi-dimensional framework.
I The formulae generalize to data in Lp(R), 1 ≤ p ≤ ∞: it

provides a (unique) solution in C0([0,T ], Lp(R)) for
1 ≤ p <∞, in C0([0,T ], L∞(R)− weak− ?) for p =∞.



Hints for proving uniqueness (Conservative case)
Weak solution
For any trial function φ ∈ C1

c ([0,∞)× R),

−
∫ ∞

0

∫
R
ρ(t, x)

(
∂tφ(t, x)+u(t, x)∂xφ(t, x)

)
dx dt−

∫
R
ρInit(x)φ(0, x)dx = 0.

Hölmgren’s method
Let ψ ∈ C∞c ((0,+∞)× R) with ψ(t, ·) = 0 for t ≥ T . Solve
∂tφ+ u∂xφ = ψ with final data φ

∣∣
t=T = 0. Precisely, we have

φ(t, x) =

∫ t

T
ψ(σ,X (σ; t, x))dσ ∈ C1

c ([0,+∞)× R).

thus, when ρInit = 0,
∫ ∞

0

∫
R
ρ(t, x)ψ(t, x) dx dt = 0.



Fundamental example
Linear Transport with Constant Speed
Let c ∈ R. Consider the PDE

∂tρ+ c∂xρ = ∂tρ+ ∂x (cρ) = 0.

Exact solution is known: ρ(t, x) = ρInit(x − ct).

To be compared with the solution of the heat equation
∂tρ = k∂2

xxρ which is given by

ρ(t, x) =
1√

4πt/k

∫
R

e−k|x−y |2/(4t)ρInit(y) dy .

(Infinite speed of propagation and regularization of the data.)

Exercise: Find the solution of ∂tρε + ∂x (cρε) = ε∂2
xxρε

and its limit as ε→ 0.



Behavior of different schemes (initial data=step, speed> 0)
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Nonlinear problems
Linear transport: For Ck data, we get a Ck solution.
Let us try to reproduce the reasoning for a non linear problem:

Burgers eq. ∂tρ+ ∂xρ
2/2 = 0 = (∂t + ρ∂x )ρ.

We still get ρ(t, x) = ρInit(X (0; t, x)). BUT now the
characteristics depend on the solution itself

d

ds X (s; t, x) = ρ(s,X (s; t, x)), X (t; t, x) = x .

Singularities might appear in finite time
Let v(t, x) = ∂xρ(t, x): (∂t + ρ∂x )v = −v2. Along characteristics
we recognize the Ricatti eq.

d

ds
[
v(s,X (s; t, x))

]
= −v2(s,X (s; t, x))

We get v(t, x) =
(

t +
1

∂xρInit(X (0; t, x))

)−1
. Blow up when

∂xρInit ≤ 0.



Loss of regularity for nonlinear problems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

I ρ remains bounded but
∂xρ becomes singular

I Characteristics not
well-defined:
Cauchy-Lipschitz th. does
not apply

Another way to think of the loss of regularity
I Sol constant along characteristics
I d

dt X (t; 0, x) = f ′
(
(ρ(t; X (t; 0, x))

)
= f ′

(
ρInit(x)

)
hence

X (t; 0, x) = x + tf ′
(
ρInit(x)

)
= φt(x)

I To find ρ(t, x) by means of ρInit(x), one needs to invert
x 7→ φt(x). But φ′t(x) = 1 + tf ′′

(
ρInit(x)

)
ρ′Init(x) might

change sign.



(We need) Weak solution for Scalar Conservation Laws

Definition
For any trial function φ ∈ C1

c ([0,∞)× R),

−
∫ ∞

0

∫
R

(
ρ∂tφ+ f (ρ)∂xφ

)
(t, x) dx dt−

∫
R
ρInit(x)φ(0, x)dx = 0.

Rankine-Hugoniot conditions RH

Discontinuities satisfy [[f (ρ)]] = ṡ[[ρ]].

Non uniqueness
Burgers eq. with ρInit = 0: ρ1(t, x) = 0 and
ρ2(t, x) = 10<x<t/2 − 1−t/2<x<0 are both weak solutions!



How to select among weak sol.: entropy criterion
Observe that for smooth solutions of ∂tρ+ ∂x f (ρ) = 0, we have

∂tη(ρ) + ∂x q(ρ) = 0, q′(z) = η′(z)f ′(z).

But, discontinuous solutions DO NOT verify this relation. Det

Definition
A weak solution ρ is said to be entropic, if, for any convex function
η, we have

−
∫ ∞

0

∫
R

(
η(ρ)∂tφ+q(ρ)∂xφ

)
(t, x) dx dt−

∫
R
η(ρInit)(x)φ(0, x)dx≤ 0

for any non negative trial function φ ≥ 0. (“∂tη(ρ) + ∂x q(ρ) ≤ 0”)

Kruzkov’s Theorem
The SCL admits a unique weak-entropic solution with
ρ ∈ C0([0,T ]; L1

loc(R)). ExBu



Admissible discontinuities
Go back to the Rankine-Hugoniot condition: [[q(u)]] ≤ ṡ[[η(u)]].
Use Kruzkhov’s entropies

ηk(u) = |u − k|, qk(u) = (f (u)− f (k))sgn(u − k).

I with k < min(u`, ur ), and k > max(u`, ur ): back to RH.
I with k = θu` + (1− θ)ur it leads to

sgn(ur − u`)
(
θf (u`) + (1− θ)f (ur )− f (θu` + (1− θ)ur )

)
≤ 0

Letting θ → 0, θ → 1, it yields the Lax criterion

f ′(ur ) ≤ ṡ ≤ f ′(u`).

I In particular, when the flux f is convex, admissible
discontinuities satisfy ur ≤ u`. ExBu



Entropy and vanishing viscosity approach
I Owing to regularizing effects, one can prove the existence of

solutions for the regularized problem

∂tρε + ∂x f (ρε) = ε∂2
xxρε

I Compare Euler and Navier-Stokes: ε plays the role of
“viscosity”. Besides, “good” numerical schemes induce such
kind of regularization.

Program
I Solve the nonlinear parabolic eq. with ε > 0
I Establish uniform estimates
I Deduce compactness properties
I Pass to the limit ε→ 0
I Show uniqueness by using entropies



Entropy and vanishing viscosity approach
I Owing to regularizing effects, one can prove the existence of

solutions for the regularized problem

∂tρε + ∂x f (ρε) = ε∂2
xxρε

I Entropy estimates

∂tη(ρε) + ∂x q(ρε) = εη′(ρε)∂
2
xxρε

= ε∂x
(
η′(ρε)∂xρε

)
− εη′′(ρε)|∂xρε|2

leads to
d

dt

∫
η(ρε) dx + ε

∫
η′′(ρε)|∂xρε|2 dx = 0.

I In particular, with η(ρ) = ρ2/2, we deduce that
ρε is bounded in L∞(0,T ; L2(R)),√
ε∂xρε is bounded in L2((0,T × R).



Entropy and vanishing viscosity approach, Contn’d
I We know that

ρε is bounded in L∞(0,T ; L2(R))

√
ε∂xρε is bounded in L2((0,T )× R)

I Similarly we can obtain L∞ estimates (use for instance
η(ρ) =

[
ρ− ‖ρInit‖∞

]2
−)

I Therefore

∂tρε + ∂x f (ρε) =
√
ε∂x
(√
ε∂xρε

)
−−→
ε→0

0

and, on the same token,

∂tη(ρε) + ∂x q(ρε) =
√
ε∂x
(√
εη′(ρε)∂xρε

)︸ ︷︷ ︸
−−→
ε→0

0

−εη′′(ρε)|∂xρε|2︸ ︷︷ ︸
≤0



Numerical schemes for transport equations
Let c ∈ R be a fixed constant. The solution of the PDE
∂tu + c∂x u = 0 is explicitely known by means of the initial data

u(t, x) = uInit(x − ct).

What do “natural” schemes on this simple equation ?
We know un

j =approximation of the solution at time n∆t and on
the grid points

x0 = 0 < x1 = ∆x < ...xj = j∆x < xj+1 = (j+1)∆x < ... < xN = L

(note that N = L/∆x). We want to update with

un+1
j − un

j
∆t = ???



To approximate the derivative

f (x + h)− f (x)

h −−−→
h→0

f ′(x),
f (x)− f (x − h)

h −−−→
h→0

f ′(x),

f (x + h)− f (x − h)

2h −−−→
h→0

f ′(x).



To approximate the derivative
∣∣∣ f (x + h)− f (x)

h − f ′(x)
∣∣∣ ≤ C h,∣∣∣ f (x)− f (x − h)

h − f ′(x)
∣∣∣ ≤ C h,

look less appealing than
∣∣∣ f (x + h)− f (x − h)

2h − f ′(x)
∣∣∣ ≤ C h2

But...
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Figure: Centered Scheme vs. Exact solution

Centered Scheme vs. Exact solution



UpWinding
The centered scheme

un+1
j − un

j
∆t = −c

un
j+1 − un

j−1
2∆x

goes wrong. Upwinding:

un+1
j − un

j
∆t = −c


un

j+1 − un
j

∆x if c < 0,

un
j − un

j−1
∆x if c > 0

does the job! UPW

Stability: CFL condition
If |c|∆t

∆x ≤ 1, then un+1
j appears as a convex combination of

un
j−1, un

j , un
j+1. In particular, L∞ estimates are preserved.



Code for transport eq.: Init.

c=1.37; %Speed
lg=2; %Size domain
cfl=0.9; %CFL nb: try with ¿1
J=150;% nb of cells
x=linspace(0,lg,J)’; % Grid
dx=x(2)-x(1); %Space step
dt=dx*cfl/c;% Time step
a=c*dt/dx; %Speed coef
Tfin=.5 % Final time
t=0;
eps=0.01;
u0=zeros(J,1);
u0((x>lg/2-lg/10)&(x<lg/2+lg/10))=1.;%Disc. data
u0=(1/sqrt(eps))*exp(-(x-lg/2).*(x-lg/2)/eps);% Cont. data



Code for transport eq.: Useful Matrices

e=ones(J,1);
ACent=spdiags([-e,0*e,e],-1:1,J,J);
APlus=spdiags([-e,e,0*e],-1:1,J,J);
AMinus=spdiags([0*e,-e,e],-1:1,J,J);
APlus(1,J)=-1;
AMinus(J,1)=1;
ACent(1,J)=1;ACent(J,1)=1;
matlap=spdiags([e,-2*e,e],-1:1,J,J);
matlap(1,J)=1;
matlap(J,1)=1;



Code for transport eq.: Time loop

while (k=1:Ntfin)
UpW=UpW-c*dt/dx*APlus*UpW; % Upwind
LxF=LxF-c*dt/dx/2*ACent*LxF + matlap*LxF/2; %Lax-Friedrihs
LxW=LxW-c*dt/dx/2*ACent*LxW
+(c*dt/dx)2/2 ∗matlap ∗ LxW ; %Lax −Wendroff
uexact=(1/sqrt(eps))*exp(-(x-c*k*dt-lg/2).*(x-c*k*dt-lg/2)/eps);
%Sol exacte
end



Finite Volume Schemes for Conservation Laws
How can we extend the notion of UpWinding for nonlinear
problems

∂tU + ∂x F (U) = 0 ?
Integrate over cells (tn, tn+1)× (xj−1/2, xj+1/2):∫ xj+1/2

xj−1/2

U(tn+1, y) dy −
∫ xj+1/2

xj−1/2

U(tn, y) dy

+

∫ tn+1

tn

{
F (U(s, xj+1/2))− F (U(s, xj−1/2))

}
ds = 0.

The numerical unknown Un
j is intended to approximate the mean

value 1
∆x

∫ xj+1/2

xj−1/2

U(tn, y) dy . We mimic the balance formula:

∆x
∆t (Un+1

j − Un
j ) + F n

j+1/2 − F n
j−1/2 = 0

and we seek a relevant definition for the numerical flux F n
j+1/2.



Example: the Rujsanow scheme
Let us consider a mere SCL ∂tρ+ ∂x f (ρ) = 0. Set a = max |f ′(ρ)|
and rewrite

∂tρ+ ∂x
( f (ρ) + aρ

2

)
︸ ︷︷ ︸

Velocity f ′(ρ) + a > 0

+∂x
( f (ρ)− aρ

2

)
︸ ︷︷ ︸

Velocity f ′(ρ)− a < 0

= 0.

It leads to
ρn+1

j − ρj
n

∆t = − 1
2∆x

(
f (ρn

j ) + aρn
j − f (ρn

j−1)− aρn
j−1

+f (ρn
j+1)− aρn

j+1 − f (ρn
j ) + aρn

j

)
= − 1

2∆x
(
f (ρn

j+1)− f (ρn
j−1)

)
︸ ︷︷ ︸

Centered Approx.

+
a

∆x
(
ρn

j+1 − 2ρn
j −+ρn

j−1
)

︸ ︷︷ ︸
Diffusion

.

It correponds to the discretization of the modified equation
∂tρ+ ∂x f (ρ) = ε∂2

xxρ, ε = a∆x .
ExBu



Example: the Rujsanow scheme, Cont’d
The Rusjanow scheme can be rewritten in terms of numerical
fluxes

∆x
∆t (ρn+1

j − ρj
n) + F n

j+1/2 − F n
j−1/2 = 0, F n

j+1/2 = F(ρn
j+1, ρ

n
j ),

with F(ρn
j+1, ρ

n
j ) =

1
2(f (ρn

j+1)− aρn
j+1 + f (ρn

j ) + aρn
j ).

Properties and extensions
I The flux is consistent F(ρ, ρ) = f (ρ).
I L∞ stability under CFL condition a∆t

∆x < 1.
I The method can be designed by reasoning locally.
I The method adapts to system using for a the spectral radius

of the jacobian matrix ∇UF (U).



Elements for the numerical analysis of scheme for SCL

PDE: ∂tρ+ ∂x f (ρ) = 0
Scheme: h

∆t (ρn+1
j − ρn

j ) + F n
j+1/2 − F n

j−1/2 = 0, F n
j+1/2 = F(ρn

j+1, ρ
n
j ).

Flux-Consistency F(ρ, ρ) = f (ρ).

Lax-Wendroff Theorem
Let ∆t/h be constant and let ρh be the piecewise constant
function associated to the discretization and the scheme. Suppose
that ρh is uniformly bounded in L∞ and that it converges in L1

loc

and a.e. to ρ as h goes to 0. Then ρ is a weak solution of the PDE.

Note that this statement does not ensure the uniform bound nor
the convergence of (a subsequence of) the approximation, and it
says nothing about the entropy criterion!



Elements for the numerical analysis of scheme for SCL, II

Assume we can rewrite the scheme in the Incremental Form

ρn+1
j = ρn

j − Cn
j−1/2(ρn

j − ρn
j−1) + Dn

j+1/2(ρn
j+1 − ρn

j )

Harten-Le Roux Lemma
Assume Cn

j−1/2 ≥ 0, Dn
j+1/2 ≥ 0 with Cn

j−1/2 + Dn
j+1/2 ≤ 1. Then

the scheme is L∞-stable.
(With furthermore Cn

j+1/2 + Dn
j+1/2 ≤ 1, the scheme is TVD).

Cond 1=UpWinding, cond. 2=CFL.
A convex combination appears in

ρn+1
j = (1− Cn

j−1/2 − Dn
j+1/2)ρn

j + Cn
j−1/2ρ

n
j−1 + Dn

j+1/2ρ
n
j+1.



Kinetic equations: collisional models
Conservation laws=“macroscopic” version of a more detailed
physics

N particles −→︸︷︷︸
N→∞

Statistical physics −→︸︷︷︸
mean free path →0

Hydrodynamic

General form: ∂t f + ξ∂x f︸ ︷︷ ︸
Transport

=
1
τ

Q(f )︸ ︷︷ ︸
Collision

where Q is intended to describe “interaction between particles”
and τ is a relaxation time.
Q has a specific structure

I Q usually acts only on ξ: integral or differential operator
I Q preserves the maximum principle (f ≥ 0).

For example : Q(f ) = Q+(f )− ν(f ) f
and think of an iterative process with the Duhamel formula:
∂t fn+1 + ξ · ∇x fn+1 + ν(fn)fn+1 = Q+(fn).



Kinetic equations: collisional models
General form

∂t f + ξ∂x f =
1
τ

Q(f )

where Q is intended to describe “interaction between particles”
and Q has some fundamental properties, crucial both on a
physical and a mathematical viewpoints

I Conservation: There exists functions m(ξ) such that∫
m(ξ)Q(f ) dξ = 0

I Equilibrium: Q(f ) = 0 iff f has a specific dependence wrt ξ:
f = M(ξ).

I Dissipation: There exists some function Ψ such that∫
Ψ(f )Q(f ) dξ ≤ 0

Example: Boltzmann eq. describes binary collision dynamics, with
mass, momentum, energy conservation.



Example: the BGK operator
Q(f ) = Mn,u,θ − f with Mn,u,θ(ξ) =

n
(2πθ)N/2 exp

(
− |ξ − u|2

2θ

)
.

where∫  1
ξ
ξ2

 f dξ =

 n
nu
nu2 + Nnθ

 =

∫  1
ξ
ξ2

Mn,u,θ(ξ) dξ

Properties
I Conservation of mass, momentum, energy:∫

(1, ξ, ξ2)Q(f ) dξ = 0,

I Equilibrium: Q(f ) = 0 iff f (ξ) = Mn,u,θ(ξ),

I Entropy dissipation
∫

Q(f ) ln(f )dξ ≤ 0.



From BGK to Euler

Go back to BGK: ∂t f + ξ · ∇x f =
1
τ

(
Mn,u,θ − f

)
I Due to conservation we have

∂t

∫  1
ξ
ξ2/2

 f dξ +∇x

∫
ξ

 1
ξ
ξ2/2

 f dξ = 0

It recasts as

∂t

 n
nu
(nu2 + Nnθ)/2

+∇x

 nu
P
Q

 = 0

but P and Q, moments of f cannot be expressed by means
on n, u, θ: the system is not closed.



From BGK to Euler, II
Go back to BGK: ∂t f + ξ · ∇x f =

1
τ

(
Mn,u,θ − f

)
I Due to conservation we have

∂t

∫  1
ξ
ξ2/2

 f dξ +∇x

∫
ξ

 1
ξ
ξ2/2

 f dξ = 0

I Due to equilibrium and dissipation we expect as τ → 0 that
f ' Mn,u,θ

I Then, replace f by Mn,u,θ in the conservation eq. and we get...

∂tn + divx (nu) = 0,
∂t(nu) + Divx (nu ⊗ u + nθI) = 0,

∂t
(nu2

2 + N nθ
2

)
+ divx

((nu2

2 + N nθ
2 + nθ

)
u
)

= 0.

the Euler system for (n, u, θ) with pressure law p = nθ.



From BGK to Euler, III

The kinetic framework also provides an entropy for the Euler
system. We have

∂t

∫
f ln(f )dξ +∇x

∫
ξf ln(f )dξ ≤ 0.

Set η(U) =

∫
Mρ,u,θ(ξ) ln(Mρ,u,θ(ξ))dξ, with

U = (ρ, ρu, ρu2/2 + Nρθ/2).

Proposition
U 7→ η(U) is convex. The associated entropy flux reads∫
ξMρ,u,θ(ξ) ln(Mρ,u,θ(ξ))dξ = uη(U).



A BGK-like toy model [Perthame-Tadmor ’91]
Let a : R→ R (“velocity function”) and consider

∂t f + a(ξ)∂x f =
1
ε

(M[ρf ]− f ), ρf (t, x) =

∫
R

f (t, x , ξ) dξ,

Here, the “Maxwellian” is

M[ρ](ξ) = 10≤ξ≤ρ − 1ρ≤ξ≤0

Mass conservation (ρ+ = max(0, ρ) ≥ 0, ρ− = min(0, ρ) ≤ 0)∫
R

(M[ρf ]−f ) dξ =

∫ [ρf ]+

0
dξ−

∫ 0

[ρf ]−

dξ−ρf = [ρf ]++[ρf ]−−ρf = 0.

leads to the local conservation law

∂t

∫
R

f dξ + ∂x

∫
R

a(ξ)f dξ = 0



Entropy dissipation
Lemma Bk4

Assume −1 ≤ f (ξ) ≤ 1 and sgn(ξ)f (ξ) ≥ 0. Let H be a non
decreasing funtion. Then

∫
(M[ρf ]− f )H dξ ≤ 0.

I =

∫
(M[ρf ]− f )(H(ξ)− H(ρf ))dξ

=

∫ [ρf ]+

0
(1− f )︸ ︷︷ ︸
≥0

(H(ξ)− H(ρf ))︸ ︷︷ ︸
≤0

dξ +

∫ ∞
[ρf ]+

(−f )︸ ︷︷ ︸
≤0

(H(ξ)− H(ρf ))︸ ︷︷ ︸
≥0

dξ

+

∫ 0

[ρf ]−

(−1− f )︸ ︷︷ ︸
≤0

(H(ξ)− H(ρf ))︸ ︷︷ ︸
≥0

dξ +

∫ [ρf ]−

−∞
(−f )︸ ︷︷ ︸
≥0

(H(ξ)− H(ρf ))︸ ︷︷ ︸
≤0

dξ.

Consequence
For η convex, we have ∂t

∫
η′(ξ)f dξ + ∂x

∫
a(ξ)η′(ξ)f dξ ≤ 0.



Can we guess the limit ε→ 0? (Yes, we can!)
Let A′(ρ) = a(ρ), A(0) = 0, so that

∫
R

a(ξ)M[ρ] dξ = A(ρ)

Write f = M[ρf ]− ε(∂t f + a(ξ)∂x f ) so that

∂tρ+ ∂x

∫
R

a(ξ)M[ρ] dξ − ε∂x

(∫
R

a(ξ)
(
∂t f + a(ξ)∂x f

)
dξ

)
= 0

= ∂tρ+ ∂x A(ρ)− ε
(
∂2

tx

∫
R

a(ξ) f dξ + ∂2
xx

∫
R

a(ξ)2 f dξ

)
= 0.

Then, we suspect that f ' M[ρ] with ρ solution of the scalar
conservation law

∂tρ+ ∂x A(ρ) = 0.

Note: We have used, when φ(0) = 0,∫
R
φ′(ξ)M[ρ](ξ)dξ =

∫ ρ+

0
φ′(ξ) dξ−

∫ 0

ρ−

φ′(ξ)dξ = φ(ρ+)+φ(ρ−) = φ(ρ).



Step 1. Existence of solutions and a priori estimates
Initial data
Let f0 : R× R→ R verify −1 ≤ f0 ≤ 1, sgn(ξ)f0(x , ξ) ≥ 0 and∫

R

∫
R

f0(x , ξ) dξ dx <∞, f0(x , ξ) = 0 for |ξ| ≥ V .

Duhamel formula

d

ds

[
es/ε f (t + s, x + sa(ξ), ξ)

]
=

1
ε

es/ε M[ρf ](t + s, x + sa(ξ), ξ).

Iterative scheme
I f (0) = 0,
I f (n) being given, set ρ(n)(t, x) =

∫
R f (n)(t, x , ξ) dξ and

f (n+1)(t, x , ξ) = e−t/εf0(x − ta(ξ), ξ)

+
1
ε

∫ t

0
e−(t−s)/ε M[ρ(n)](s, x − (t − s)a(ξ), ξ) ds



Convergence of the scheme

I 0 ≤ sgn(ξ)f (n)(t, x , ξ) ≤ 1
I supp

(
f (n)(t, x , ·)

)
⊂ [−V0,V0] implies M[ρ(n)] = 0 on

{[−V0,V0]. Thus supp
(
f (n+1)(t, x , ·)

)
⊂ [−V0,V0].

I

∫
|M[ρf1 ]−M[ρf2 ]|dξ ≤

∫
|f1 − f2|dξ.

I For a certain norm on L∞(0,∞; L1(R× R), we can find
0 < η < 1 such that |||f (n+1) − f (n)||| ≤ η|||f (n) − f (n−1)|||.

I Conclusion: existence-uniqueness for the nonlinear BGK
model.



Step 2. Dissipation Properties

With the entropy dissipation ED , rewrite the collision term:

I Set mε(t, x , ξ) =
1
ε

∫ ξ

−∞

(
M[ρε]− fε

)
(t, x ,w) dw

I mε is a sequence of non negative measures on (0,T )×R×R.

since for h ≥ 0, with H(ξ) =

∫ ξ

−∞
h(z)dz

∫
R

mεh dξ = −
∫
R
∂ξmε H dξ ≥ 0.

I The sequence
(
mε

)
ε>0 is bounded in M1((0,T )× R× R).

Cal



A few mathematical tools, Average lemma
A specific tool of kinetic theory

I Goal: Having information on f and ξ · ∇x f , can we improve
the regularity (compactness) of ρψ(x) =

∫
ψ(ξ) f (x , ξ) dξ?

I Basic claim: If both f and ξ · ∇x f belong to L2(RN × RN),
then ρψ lies in H1/2(RN).

Sketch of proof ALL2

I Fourier transform wrt to space
I Split into |ξ · k| ≥ δ|k| (Good) |ξ · k| ≤ δ|k| (Bad but with a

small contribution)

I Optimize wrt δ: |ρ̂ψ(k)| ≤
[
F (k)G(k)

]1/2

|k|1/2 with

F ,G ∈ L2(RN).



Improvements and variants
I Replacing ξ · ∇x by ∂t + a(ξ) · ∇x is not a big deal...
I Crucial: “having enough velocity” that is for any k∈ SN−1,∣∣{ξ ∈ B(0,R), ξ · k = 0

}∣∣ = 0
I Dealing with Lp spaces (ok at least for p > 1)
I Dealing with derivatives in the rhs

Theorem [Bouchut, Perthame-Souganidis].
Let fn and gn satisfy

(∂t + ξ · ∇x )fn =
N∑

j=1
∂xj∂

α
ξ g (j)

n

for some α ∈ NN . Let Q be a open set in R× RN . We suppose
that

(
fn
)

n∈N is bounded in Lp(Q × RN) for some p > 1 and the(
g (j)

n
)

n∈N’s are relatively compact in Lp(Q × RN). Then, for any
φ ∈ C∞c (RN), the sequence defined by ρn(t, x) =

∫
RN fnφ dξ is

relatively compact in Lp(Q).



Step 3. Compactness
We have

∂t fε + a(ξ)∂x fε = ∂ξmε

with
I fε bounded in L∞,
I mε bounded in M1((0,T )× R× R).
I Suppose a(ξ) = A′(ξ) 6= 0 for a. e. ξ.

Average lemma applies and ρε converges strongly in
Lp((0,T )× R), 1 ≤ p <∞. ALC

Suppose further fInit,ε(x , ξ) ⇀ M[ρInit](x , ξ) (preparation of data):
it guarantees

lim
h→0

1
h

∫ h

0

∫
|ρ(t, x)− ρ0(x)|dx dt = 0.



Step 4. Conclusion

Conservation law
We have ∂tρ+ ∂x A(ρ) = 0... but this is not enough

Entropies ∫ t

0

∫
R

(
η(ρ)∂tψ + q(ρ)∂xψ

)
dx dt ≥ 0

for any positive ψ ∈ C∞c ((0,∞)× R× R) and any pair
entropy/entropy flux (η, q), with η convex and η′A′ = q′. Indeed

∂tη(ρε) + ∂x q(ρε) = −
∫
R
η”(v) mε dv︸ ︷︷ ︸ + remainder︸ ︷︷ ︸

which is ≤ 0 which is small



Kinetic scheme for SCL
Let us start with a Time splitting

I Step 1: solve the linear transport equation
∂t f + a(ξ)∂x f = 0.

UpWind does the job (a± = a±|a|
2 ).

∆x
∆t (f n+1/2

j (ξ)− f n
j (ξ))

= −
{

[a(ξ)]+(f n
j (ξ)− f n

j−1(ξ)) + [a(ξ)]−(f n
j+1(ξ)− f n

j (ξ))
}
.

I Step 2: solve the stiff ODE

∂t f =
1
τ

(M[ρf ]− f ).

BUT ρf does not change during this step (
∫

Q(f ) dξ = 0):

ρn+1 = ρn+1/2 =

∫
f n+1/2 dξ. We integrate by hand:

f n+1
j = e−∆t/τ f n+1/2

j + (1− e−∆t/τ )Mn+1/2
j .



Kinetic scheme for SCL
Now let τ → 0

I Step 2 degenerates to f n+1
j = Mn+1/2

j (projection to the
equilibrium).

I Integrate Step 1 to obtain a scheme for the macroscopic
quantity ρ

ρn+1
j =

∫
f n+1
j dξ =

∫
f n+1/2 dξ

= ρn
j −

∆t
∆x (F n

j+1/2 − F n
j−1/2),

with the numerical flux

F n
j+1/2 =

∫
a+(ξ)M[ρn

j ]dξ +

∫
a−(ξ)M[ρn

j+1] dξ

= F(ρn
j+1, ρ

n
j ) = Ap(ρn

j+1) + Am(ρn
j ), Ap,m(ρ) =

∫ ρ

0
a+,−(z) dz .



Properties of the kinetic scheme
I We recover the Enquist-Osher scheme,
I Consistency of the flux F n

j+1/2 = F(ρn
j+1, ρ

n
j ) with

F(ρ, ρ) =

∫
(a+(z) + a−(z))M[ρ](z) dz = A(ρ)

I Incremental form:
ρn+1

j = ρn
j +

∆t
∆x Dn

j+1/2(ρn
j+1 − ρn

j )− ∆t
∆x Cn

j−1/2(ρn
j − ρn

j−1)

with

Dn
j+1/2 = −∆t

∆x
Am(ρn

j+1)− Am(ρn
j )

ρn
j+1 − ρn

j
, Cn

j−1/2 =
∆t
∆x

Ap(ρn
j )− Ap(ρn

j−1)

ρn
j − ρn

j−1

≥ 0 since A′m = a− ≤ 0, A′p = a+ ≥ 0. Stability is guaranteed

under CFL condition: |Am,p(ρ+ h)− Am,p(ρ)

h | ≥ |a−,+(ρ)|,
thus 1− Cn

j−1/2 − Dn
j+1/2 ≥ 0 when ∆t max |a(ρ)| ≤ ∆x



Entropy dissipation
Let η convex. By the dissipation lemma∫
η′(ξ)(f n+1

j −M[ρn+1
j ]) dξ ≥ 0, or η(ρn+1

j ) ≤
∫
η′(ξ)f n+1

j dξ.

But

η′(ξ)f n+1
j (ξ) ≤ η′(ξ)

(
M[ρn

j ](ξ)
(

1− ∆t
∆x |a(ξ)|

)
+

∆t
∆x a+(ξ)M[ρn

j−1](ξ) +
∆t
∆x (−a−(ξ))M[ρn

j+1](ξ)
)
.

Sum over j and ξ:∑
j

∫
η′(ξ)f n+1

j (ξ) dξ ≤
∑

j

∫
η′(ξ)M[ρn

j ](ξ) dξ =
∑

j
η(ρn

j )

We conclude that
∑

j
η(ρn+1

j ) ≤
∑

j
η(ρn

j ). ExBu



Kinetic scheme for the Euler system
Let us start with a Time splitting

I Step 1: solve the linear transport equation
∂t f + ξ∂x f = 0.

UpWind does the job (ξ± = ξ±|ξ|
2 ).

∆x
∆t (f n+1/2

j (ξ)− f n
j (ξ))

= −
{
ξ+(f n

j (ξ)− f n
j−1(ξ)) + ξ−(f n

j+1(ξ)− f n
j (ξ))

}
.

I Step 2: solve the stiff ODE

∂t f =
1
τ

(M[ρ, u, θ]− f ).

BUT ρ, u, θ do not change during this step (
∫

Q(f )dξ = 0):

(ρ, u, θ)n+1 = (ρ, u, θ)n+1/2 =

∫
(1, v , |ξ − u|2/N)f n+1/2 dξ.

We integrate by hand:

f n+1
j = e−∆t/τ f n+1/2

j + (1− e−∆t/τ )Mn+1/2
j .



Kinetic scheme for the Euler system
Now let τ → 0

I Step 2 degenerates to f n+1
j = Mn+1/2

j (projection to the
equilibrium).

I Integrate Step 1 to obtain a scheme for the macroscopic
quantities ρ, ρu, ρE = ρu2/2 + Nθ/2 ρn+1

j
(ρu)n+1

j
(2ρE )n+1

j

 =

∫  1
ξ
ξ2

 f n+1
j dξ =

∫  1
ξ
ξ2

 f n+1/2 dξ

=

 ρn
j

(ρu)n
j

(2ρE )n
j

− ∆t
∆x (F n

j+1/2 − F n
j−1/2),

with the numerical fluxes

F n
j+1/2 =

∫
ξ+

 1
ξ
ξ2

M[ρn
j , un

j , θ
n
j ] dξ +

∫
ξ−

 1
ξ
ξ2

M[ρn
j+1, un

j+1, θ
n
j+1] dξ.



Properties of the scheme

I Work with generalized equilibrium having compact support,
adapted to the characteristic speeds of the system
u −
√

3θ, u, u +
√

3θ: replace the Maxwellian M[ρ, u, θ] by
Kaniel’s function

M [ρ, u, θ](ξ) =
ρ

2
√
θ

1|ξ−u|≤
√

3θ

I Under CFL condition: max(|un
j |+

√
3θn

j ) ≤ ∆x/∆t, then
ρn+1 and θn+1 remain ≥ 0. Pos

I Possible extension to more complex pressure law.
I Pullin, Desphpande, Perthame...



Simulation of the Euler system (Rusjanow vs Kinetic)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

 

 

density

momentum

energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

density

momentum

energy



Remarks on Isentropic Euler equations
Pressure law: p = p(ρ). Example p(ρ) = κργ , κ > 0, γ > 1 (but
for “real” applications the formula can be much more complicated,
with possible loss of convexity).

∂tρ+ ∂x (ρu) = 0,
∂t(ρu) + ∂x (ρu2 + p(ρ)) = 0

In non conservative form, with U = (ρ, ρu = J)

∂tU + A(U)∂x U = 0, A(U) =

(
0 1
−J2/ρ2 + p′(ρ) 2J/ρ

)
Eigenvalues u ± c(ρ), with c(ρ) =

√
p′(ρ), the sound speed.

Entropy
Let Φ′′(ρ) =

p′(ρ)

ρ
and set η(U) =

J2

2ρ + Φ(ρ). Then, U 7→ η(U)

is convex and we have, for smooth solutions,

∂tη(U) + ∂x q(U) = 0, with q(U) = J(
J2

2ρ2 + Φ(ρ))



Kinetic schemes for the isentropic Euler system

Kaniel’s function
Use M [ρ, u](ξ) =

ρ

2c(ρ)
1|ξ−u|≤c(ρ). Idea based on the finite speed

of propagation of the system.

Entropy and Gibbs principle
Minimize a functional H(f ) =

∫ (ξ2

2 f + Ψ(f )
)
dξ, under moments

constraints
∫

(1, ξ)f dξ = (ρ, J). Denote M[ρ, J ] the minimizor.
The construction is such that η(ρ, J) = H(M[ρ, J ]). We get

M[ρ, J ] = a
[
ργ−1 − b|ξ − J/ρ|2

](3−γ)/2(γ−1)

+

See Bouchut, Berthelin-Bouchut, Perthame



Comments on the isentropic case

I By construction the scheme #2 is entropy decaying.
I But the CFL is slightly more constrained than with

method #1.
I There is no clear formula for general (non homogeneous)

pressure laws
I Computation of the numerical fluxes involves the evaluation of

integrals that could be numerically costly (except for γ = 2)...
(to be compared with the resolution of Riemann problems)

I Kinetic schemes usually performs well in vacuum regions
I A new version of (stable and entropy-decaying) kinetic scheme

on staggered grids: Berthelin-G.-Minjeaud.



A kinetic scheme on staggered grids for barotropic gas
dynamics {

∂tφ+ ∂x (φV ) = 0,
∂t(φV ) + ∂x (φV 2 + π(φ)) = 0.

The pressure φ 7→ π(φ) is strictly increasing and strictly convex;
the sound speed φ 7→ c(φ) =

√
π′(φ) is strictly increasing.

[Not true for “real” gases like the Bizarrium.]
The system is hyperbolic, the characteristic speeds are V ± c(φ).
Kinetic scheme
Define a “generalized Maxwellian” M = (M0,M1)(φ,V ) with∫

M dξ =

(
φ
φV

)
= U,

∫
ξM dξ =

(
φV
φV 2 + π(φ)

)
= F (U).

Set F±(U) =

∫
ξ≷0

ξM(φ,V )(ξ) dξ.

Consistency : F (U) = F +(U) + F−(U).



Construction of the kinetic scheme
Principle : Fluxes are constructed from moments of M & Upwinding

Maxwellian

M0(φ,V )(ξ) =
φ

2c(φ)
1|ξ−V |≤c(ρ),

M1(φ,V )(ξ) = V M0(φ,V )(ξ) + M̃(φ,V )(ξ)

with M̃(φ,V )(ξ) = ξL(φ,V )1|ξ|≤|V |+c(φ).

Staggered grids: Mass flux
Density known at xj+1/2, velocity at the interface xj .
Upwinding is natural

hj+1/2
∆t (φk+1

j+1/2 − φ
k
j+1/2) + F k

j+1 −F k
j = 0,

F k
j =

∫
ξ>0

ξM0(φj−1/2,V k
j )dξ +

∫
ξ<0

ξM0(φj+1/2,V k
j )dξ



Staggered grids: Momentum
I Set φk

j =
hj+1/2φ

k
j+1/2 + hj−1/2φ

k
j−1/2

2hj
=

1
hj

∫
φk

h(y) dy .
I FV scheme

hj
∆t (φk+1

j V k+1
j − φk

j V k+1
j ) + F̃ k

j+1/2 − F̃ k
j+1/2 = 0.

I Pressure flux: Since∫
ξ>0

ξM̃(ρ,V ) dξ +

∫
ξ<0

ξM̃(ρ′,V ′) dξ =
1
2(p(ρ) + p(ρ′))

the pressure gradient is centered p(φk
j+1/2)− p(φk

j−1/2).
I Convection flux: φV × V =Mass flux × V involves∫

ξ≷0
ξM0(φ,V )(ξ)× V dξ. Idea: Upwind of V and average

on xj+1/2 of the mass fluxes known at xj , xj+1:

Vj
F +(φj−1/2,Vj) + F +(φj+1/2,Vj+1/2)

2
+Vj+1

F−(φj+1/2,Vj) + F−(φj+3/2,Vj+1)

2



Numerical Analysis

Under suitable CFL condition:
I Positivity of the density is preserved ρk

j+1/2 ≥ 0,
I The physical entropy is decaying: with p(ρ) = ρΦ′(ρ)− Φ(ρ),

hj
∑

j
φk+1

j |V k+1
j |2 + hj+1/2

∑
j

Φ(φk+1
j+1/2)

≤ hj
∑

j
φk

j |V k
j |2 + hj+1/2

∑
j

Φ(φk
j+1/2).

It holds for general (convex) pressure laws.
Proof: mixing of Bouchut’s and Herbin-Latché techniques.
Unusual: “work with 2 eq. rather than a system”.

I Performs well in vacuum regions.



Numerical results (Density, Velocity, L1-Error)



A simulation with vacuum (Density, Velocity, Momentum)



Simulation of a Van der Waals gas k
(

ρ
ρ∗−ρ

)γ



Rankine-Hugoniot condition WS

Let ρ be a weak solution of ∂tρ+ ∂x f (ρ) = 0.
Assume that ρ is C1 in Ω− and Ω+, with a discontinuity curve
Γ = {(x , t) = (s(t), t), t ≥ 0}.

t

x

•

ν−

Ω−

Ω+

Γ = {(s(τ), τ), τ > 0}

{x + ṡ(t)(τ − t), τ ∈ R}

Figure: Courbe de discontinuité et relations de Rankine-Hugoniot



Rankine-Hugoniot condition WS

Let ρ be a weak solution of ∂tρ+ ∂x f (ρ) = 0.
Assume that ρ is C1 in Ω− and Ω+, with a discontinuity curve
Γ = {(x , t) = (s(t), t), t ≥ 0}.

−
∫∫

(ρ∂tφ+ f (ρ)∂xφ)dx dt = 0 = −
∫∫

Ω−
...dx dt −

∫∫
Ω+

...dx dt

=

∫∫
Ω−

(
∂tρ+ ∂x f (ρ)

)
φ dx dt +

∫∫
Ω+

(
∂tρ+ ∂x f (ρ)

)
φ dx dt

−
∫

Γ−
(ρν−t + f (ρ)ν−x )φ dγ −

∫
Γ−

(ρν+
t + f (ρ)ν+

x )φ dγ

= 0 +

∫
Γ

[
(ρ+ − ρ−)ν−t + (f (ρ+)− f (ρ−)ν−x

]
φ dγ

since ν− =

(
ν−x
ν−t

)
= −ν+ =

1√
1 + |s ′(t)|2

(
1
−s ′(t)

)
.

We arrive at [[ρ]]ṡ = [[f (ρ)]]



Discontinuous solutions and entropies Kr

For discontinuous solutions, we make the following quantity appear (by
reproducing the computations that lead to RH relations)

[[η(ρ)]]ṡ − [[q(ρ)]] = (η(ρr )− η(ρ`))ṡ − (q(ρr )− q(ρ`))

=

∫ ρr

ρ`

η′(z)ṡ dz −
∫ ρr

ρ`

q′(z)dz

=

∫ ρr

ρ`

η′(z)ṡ dz −
∫ ρr

ρ`

η′f ′(z)dz (then integrate by parts)

= −
∫ ρr

ρ`

η′′(z)
( f (ρr )− f (ρ`)

ρr − ρ`
(z − ρ`)−

(
f (z)− f (ρ`)

)
dz

= −
∫ ρr

ρ`

η′′(z)(z − ρ`)
( f (ρr )− f (ρ`)

ρr − ρ`
− f (z)− f (ρ`)

z − ρ`

)
dz .

Since η is convex, z 7→ η′′(z)(z − ρ`) has a constant sign on the interval
I defined by ρr and ρ`. Assuming that f is convex or concave on I, the
integrand has a constant sign and [[η(ρ)]]ṡ − [[q(ρ)]] vanishes iff

f (z)− f (ρ`) =
f (ρr )− f (ρ`)

ρr − ρ`
(z − ρ`) on I. It would mean that f is an

affine function on I, a case that we exclude by assumption
(the flux is assumed “genuinely non linear”).



Estimate of mε
Bk4

Bear in mind that fε, M[ρε], and thus mε have their support wrt
the variable ξ in [−V ,V ]. Then, with hV (ξ) = h(ξ)1|ξ|≤V ,

HV (ξ) =

∫ ξ

−∞
hV (z) dz , we have

0 ≤
∫∫∫

mεh(ξ)dξ dx dt =

∫∫∫
mεhV (ξ) dξ dx dt

= −
∫∫∫ 1

ε
(M[ρε]− fε) HV (ξ)dξ dx dt

= −
∫∫∫

(∂t + a(ξ)∂x )fε HV (ξ) dξ dx dt

≤ −
∫∫

fεHV dξ dx
∣∣∣∣t=T

t=0
≤ 2V ‖hV ‖L∞‖fε‖L∞(0,T ;L1)

≤ 4V ‖h‖L∞‖fInit‖L1 .



Stability analysis

f n+1/2
j (ξ) =

(
1−∆t

∆x |ξ|
)
M n

j (ξ)+
∆t
∆x ξ+M n

j−1(ξ)+
∆t
∆x (−ξ−)M n

j+1(ξ)

vanishes for |ξ| ≥ max(|un
j +

√
3θn

j ) (support property of the
equilibrium M ).
By CFL, this is a convex combination of ≥ 0 quantities:
f n+1/2
j (ξ) ≥ 0 and ρn+1

j =

∫
f n+1/2
j (ξ)dξ ≥ 0.

Similarly, we have

2(ρE )n+1
j =

∫
ξ2f n+1/2

j (ξ) dξ

=

∫ (
|ξ − un+1

j |2 − |un+1
j |+ 2un+1

j ξ
)
f n+1/2
j (ξ)dξ

≥ 0− |un+1
j |2ρn+1

j + 2un+1
j ρn+1

j un+1
j = ρn+1

j |un+1
j |2

Since 2E n+1
j = |un+1

j |2 + 3θn+1
j we deduce that θn+1

j ≥ 0. PptE



Average Lemma: L2 statement Bk5

I Fourier Transform wrt x .
Iρ̂(k) =

∫
f̂ (k, ξ)ψ(ξ) dξ =

∫
|ξ·k|/≤δ|k|

...dξ +

∫
|ξ·k|/>δ|k|

...dξ.

I I1 ≤
√∫

|f̂ (k, ξ)|2 dξ
√∫

|ξ·k|≤δ|k|
|ψ|2 dξ ≤ F (k)

√
δ.

I I2 ≤
√∫

|k · ξ|2|f̂ (k, ξ)|2 dξ

√∫
|ξ·k|>δ|k|

|ψ(ξ)|2

|k · ξ|2 dξ ≤ G(k)

δ|k|2 .

I I2 (large k · ξ’s)=Good, I1 (small k · ξ’s)=Bad but Small
I Optimize wrt δ, use F ,G bounded in L2...
I We need “enough velocities”:

meas
({
ξ ∈ RN , |ξ| ≤ R, |ξ · k| ≤ ε

})
≤ CRε

γ



Gain of compactness Comp

Set ∆t,x ,ξΦε = mε = ∇t,x ,ξ · (∇t,x ,ξΦε).
Remind that W 1,p ⊂comp C0, hence M 1 = (C0)′ ⊂comp W−1,p′ ,
for p > N, 1 ≤ p′ < N/(N − 1).
Thus Φε is compact in W 1,p′

loc , with, here, N = 3, and ∇Φε is
compact in Lp′

loc, 1 ≤ p′ < 3/2.

The assumption on the velocity becomes

meas
({
ξ ∈ RN , |ξ| ≤ R, |α + a(ξ) · k| ≤ ε

})
≤ CRε

δ

Here N = 1 and we can get rid of k:

meas
({
ξ ∈ R, |ξ| ≤ R, |α + a(ξ)| ≤ ε

})
≤ CRε

δ

It is satisfied when a′(ξ) = A′′(ξ) 6= 0 for a. e. ξ
(Genuinely Nonlinear problem)



Upwind scheme for the transport equation BkU
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Figure: Upwind Scheme vs. Exact solution


