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Motivation
Many problems in physics have the form

of Conservation Laws U+ V- F(U)=0

where
» U can be a scalar or a vector, thus F(U) a vector or a matrix,
> x can be one- or multi-dimensional

(Difficulties increases, for analysis and numerics, as the size of x
and of U increases).

or Balance Laws  0.U+ V- F(U) = S(U).

Goal: To design a “good and efficient” numerical method
» mathematical and physical criterion
> non linearities

» conservation of equilibria (V- F(Usq) = S(Ueq))-
Crria
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What does “conservation” mean?

Density of a passive tracer immersed in a fluid

» p(t,x) = density of “particles”:
p(t,y)dy = Mass contained in § at time t
Q

» u(t,x) = (God-given) velocity of the fluid
» Mass balance

d

T Qp(tvy)dyz /mp(tvy)U(t,y)~V(y)d0(y)-

» Integrating by parts yields the PDE 0:p + V - (pu) = 0.

Moto
To design numerical schemes by mimicking the physical derivation
of the equation (Finite Volume Schemes)
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The cornerstone is the notion of flux

» Given a physical quantity U, its evolution in a domain € is
driven by gain/loss through the boundaries described by a flux
Q so that

L ey =— [ Q) vl doty)
Q a9

» Then, a physical law prescribes how Q depends on U.

» Example: U =temperature, Fourier's law: Q@ = —kV, U.
It leads to the Heat Eq. 0:U = V, - (kVU). But this eq.
does not belong to the framework of Hyperbolic problems...
Main differences: Infinite Speed of Propagation &
Regularizing Effects
See F. Boyer's lectures on FV methods for elliptic/parabolic eq.!



Examples
Transport eq.
Otp+ Vi - (pu) =0
Kinetic eq. (Statistical physics)

Description in phase space 0;f + V - (£f) = Interaction terms,
with f(t, x,&) depending on space and velocity.

Non linear models: traffic flows
Lighthill-Whitham-Richards’ model: p=density of vehicles, the
velocity is u(t,x) = Vp(1 — p) depends on p!

Oep + 0x(Vop(1 — p)) =0, the flux is Vop(1 — p)
Non linear models: Burgers eq.
A toy model for gas dynamics

2 —
o 0up + 0x(72/2) = 0



Examples Contn'd

Waves eq. (linear system)
Oru + cOxv =0, Otv + cOxu =0
» leads to 02u — c20% u = 0.
» Set Wy = u=+ v, then 0; W4 £ cOx Wy = 0 that is a system
of transport eq. (or a kinetic model with 2 velocities).

Euler system

p pu
Or | pu | + 0x pu® +p =0
pE (pu?/2+ p)u

with E = u?/2 + e, p= p(p,e). (For instance p = 2pe.)

Moto
A numerical scheme for a complex system should first work on

; simple equations!
Crzia— p q



The NON-CONSERVATIVE transport equation

Otp + udxp =0
Define the Characteristics
Assume that u: R x R — R is C! and satisfies
|u(t,x)| < C(1+ |x]). Then we can apply the Cauchy-Lipschitz
theorem and define the Characteristic Curves

d
d—X(s; t,x) = u(s, X(s; t, x)), X(t; t,x) = x.
s
X(s; t, x) is the position occupied at time s by a particle which
starts from position x at time t.

Go back to the PDE

> C(Pj]ain Rule:
1 p(s, X(s; t,x))] = (Oep+ u- Vip)(s,X(s; t,x)) =0

> Integrate between s =0 and s = t: p(t, x) = pmit(X(0; t, x)).
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The CONSERVATIVE transport equation

Otp + Ox(pu) = Orp + udxp + pOxu =0

becomes % [p(s,X(s; t,x))} = —poxu(s, X(s; t,x)).

Therefore p(t, x) = pmit(X(0; t, x)) J(0; t, x) with
ot
J(s; t,x) = exp ( — / Oxu(o, X(o; t,x)) da).
s

Interpretation: J is the jacobian of y = X(s; t, x)

{ D5 (0x X (s; t,x)) = (Oxu)(s, X(s; t,x)) O X(s:t,x),
O X(t; t x) =1.

We deduce that

S
Ok X(s; t,x) = exp < + / Oxu(o, X(o; t, x) da) = J(s; t,x)
t
berdar and dy = J(s: t. x) dx.



Fundamental observations

Maximum principle: for the non-conservative case if
0 < pmit(x) < M, then 0 < p(t, x) < M; for the conservative
case if pmmit(x) > 0 then p(t,x) > 0.

Mass conservation: for the conservative case
/p(t,x) dx = / pmit(y) dy.
R R

For pmit € C!, we get solutions in C! (no gain of regularity)

The discussion extends to the multi-dimensional framework.

The formulae generalize to data in LP(R), 1 < p < oc: it
provides a (unique) solution in C°([0, T], LP(R)) for
1 < p < oo, in CO[0, T], L®(R) — weak — x) for p = oco.



Hints for proving uniqueness (Conservative case)

Weak solution
For any trial function ¢ € C1(]0, 00) x R),

[T [ ot @eote 0 +ule )6t 0) dxde= [ pus(x)o(0.x) de =0,
0 R R

Holmgren's method
Let ¢ € C°((0, +00) x R) with ¢(t,-) =0 for t > T. Solve

0t¢ + udy¢ = 1y with final data <Z>|t:T = 0. Precisely, we have
o(t,x) = /zp X(o; t,x))do € CH([0, +o0) x R).
thus, when pmit = 0, / / p(t, x)(t, x)dxdt = 0.
o JR
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Fundamental example

Linear Transport with Constant Speed
Let ¢ € R. Consider the PDE

Otp + cOxp = Orp + Ox(cp) = 0.

Exact solution is known: p(t,x) = prit(x — ct).

To be compared with the solution of the heat equation
O:p = k2 p which is given by

—k|x—y|?/(4t) pmit(y) dy.

o(t,x) = W [ e

(Infinite speed of propagation and regularization of the data.)

Exercise: Find the solution of 0;p, + Ox(cpc) = €02 pe

; and its limit as € — 0.
Crzia—



Behavior of different schemes (initial data=step, speed> 0)
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Nonlinear problems
Linear transport: For C* data, we get a C¥ solution.
Let us try to reproduce the reasoning for a non linear problem:
Burgers eq.  9ip+ 0xp?/2 = 0 = (0; + pdy)p.

We still get p(t, x) = prit(X(0; £, x)). BUT now the
characteristics depend on the solution itself

d
d—X(s; t,x) = p(s, X(s; t,x)), X(t; t,x) = x.

s
Singularities might appear in finite time
Let v(t,x) = Oxp(t,x): (Or + pOx)v = —v2. Along characteristics
we recognize the Ricatti eq.

% [v(s, X(s: £, x))] = —v?(s, X (s t,x))

1

-1
aXpInit (X(O, t, X))>
bl aprnit <0.

. Blow up when

We get v(t,x) = (t +



Loss of regularity for nonlinear problems

> p remains bounded but
Oxp becomes singular

» Characteristics not
well-defined:
Cauchy-Lipschitz th. does
not apply

Another way to think of the loss of regularity
» Sol constant along characteristics
» LX(£;0,x) = f'((p(t; X(£;0,x))) = f'(pmit(x)) hence
X(t;0,x) = x+ tf’(plnit(x)) = ¢¢(x)
» To find p(t, x) by means of ppit(x), one needs to invert

x = ¢¢(x). But ¢y(x) = 1+ tf” (pmit(x)) plie (x) might
change sign.



(We need) Weak solution for Scalar Conservation Laws

Definition
For any trial function ¢ € C1(]0, 00) x R),

_/OOO/R(patchr f(p)ax¢)(t,x)dth—/RpInit(X)qﬁ(O’x)dX:0.

Rankine-Hugoniot conditions
Discontinuities satisfy [ (p)] = 5[p].

Non uniqueness
Burgers eq. with ppuit = 0: p1(f. x) = 0 and
pa(t,x) = Loexerjo — 14 joox<o are both weak solutions!

Creia—



How to select among weak sol.: entropy criterion
Observe that for smooth solutions of 9:p + 0xf(p) = 0, we have
0en(p) +0xq(p) =0, ¢'(z) =1 (2)f (2).
But, discontinuous solutions DO NOT verify this relation.CEED

Definition
A weak solution p is said to be entropic, if, for any convex function
7, we have

/ / 1(0)Beb+a(p)0x6) (£, x) dx dt— / (o1t ($)6(0, %) dx< 0

for any non negative trial function ¢ > 0. (“0:n(p) + 0xq(p) < 0")

Kruzkov's Theorem
The SCL admits a unique weak-entropic solution with
p € CO([0, T]; LL.(R)) CEZD
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Admissible discontinuities

Go back to the Rankine-Hugoniot condition: [q(u)] < s[n(u)].
Use Kruzkhov's entropies

me(u) = lu =kl ai(u) = (f(u) = £(k))sgn(u — k).
» with k < min(u, u,), and k > max(uy, u,): back to RH.
» with k = 0up + (1 — 0)u, it leads to
sen(ur — ) (0F() + (1= 0)F(ur) = F(Bus + (1= 6)uy)) <0
Letting @ — 0, 8 — 1, it yields the Lax criterion

f’(ur) S S S f/(Ug).

» In particular, when the flux f is convex, admissible
discontinuities satisfy u, < uy.
élxu’a,—



Entropy and vanishing viscosity approach

» Owing to regularizing effects, one can prove the existence of
solutions for the regularized problem

Otpe + Oxf(pe) = 63)20([)6

» Compare Euler and Navier-Stokes: € plays the role of
“viscosity”. Besides, “good” numerical schemes induce such
kind of regularization.

Program

» Solve the nonlinear parabolic eq. with ¢ > 0

v

Establish uniform estimates

v

Deduce compactness properties

v

Pass to the limit e — 0

v

Show uniqueness by using entropies



Entropy and vanishing viscosity approach

» Owing to regularizing effects, one can prove the existence of
solutions for the regularized problem

Orpe + Oxf(pe) = 60)2<xpe
> Entropy estimates

Ben(pe) +0xq(pe) = en'(pe)Oipe
€0 (1 (p)0xpe) — en" (pe)|Oxpe?

leads to

d
5t [ neaxe [l ax—o.

» In particular, with n(p) = p?/2, we deduce that
pe is bounded in L>(0, T; L?(R)),
V/€0xp. is bounded in L2((0, T x R).



Entropy and vanishing viscosity approach, Contn'd

» We know that
pe is bounded in L*°(0, T; L2(R))

Vedype is bounded in L2((0, T) x R)
» Similarly we can obtain L estimates (use for instance
2
1(p) = [p = llpmitllo] )
> Therefore

atpe + axf(pe) = ﬁax(ﬁaxpe) j 0
and, on the same token,

atn(Pe) + 8xq(pe) = \Eax(\&n/(pe)axpe) _67///(/)5)‘&(/)5’2
—0 <0

e—0
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Numerical schemes for transport equations

Let ¢ € R be a fixed constant. The solution of the PDE
Oru + cOyu = 0 is explicitely known by means of the initial data

u(t,x) = umit(x — ct).

What do “natural” schemes on this simple equation ?
We know uf'=approximation of the solution at time nAt and on
the grid points

x=0<x1 =Ax < .xj=jAx<xjy1=(+1)Ax < .. <xy=1L

(note that N = L/Ax). We want to update with

n+1
gy 977
At



To approximate the derivative

f(x+ h)—f(x)
h h—0 h h—0

f(x+h)—f(x—h) ,
2h h—0 Fi(x).

Creia—



To approximate the derivative

EEDEE

—Fuﬁgcm

f(x)—f(x—nh
f h)—f(x—h
look less appealing than ‘ (x + )2h (x ) — f'(x)
But..
60 ““ :/‘I?;“‘\“‘
Il I
s Al 7 ke
—40 l “ /“; ,’ \‘\\ \‘:‘
“: 7 \A
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UpWinding

The centered scheme

n+l _ n n _ N
o/ RN £
At 2Ax
goes wrong. Upwinding:
u” n
J+1 i
uJp+1 —ur A if ¢ <0,
—_ - = —C
At ujf’ — uf’il
<= ifc>0
Ax

does the job!
Stability: CFL condition

A o
If ‘CA‘—; <1, then uj’“ appears as a convex combination of

n n n H 0 H
ul g, ufs Uiy In particular, L° estimates are preserved.
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Code for transport eq.: Init.

c=1.37; %Speed

lg=2; %Size domain

cfl=0.9; %CFL nb: try with 1

J=150;% nb of cells

x=linspace(0,lg,J)"; % Grid

dx=x(2)-x(1); %Space step

dt=dx*cfl/c;% Time step

a=c*dt/dx; %Speed coef

Tfin=.5 % Final time

t=0;

eps=0.01;

u0=zeros(J,1);
u0((x>lg/2-1g/10)&(x<Ig/2+1g/10))=1.;%Disc. data
u0=(1/sqrt(eps))*exp(-(x-lg/2).*(x-lg/2) /eps);% Cont. data

Creia—



Code for transport eq.: Useful Matrices

e=ones(J,1);
ACent=spdiags([-e,0*e,e],-1:1,J,J);
APlus=spdiags([-e,e,0*¢],-1:1,J,J);
AMinus=spdiags([0*e,-¢,e],-1:1,J,J);
APlus(1,J)=-1;

AMinus(J,1)=1;
ACent(1,J)=1;ACent(J,1)=1,
matlap=spdiags([e,-2*e,e],-1:1,J,J);
matlap(1,J)=1;

matlap(J,1)=1;



Code for transport eq.: Time loop

while (k=1:Ntfin)

UpW=UpW-c*dt/dx*APlus*UpW; % Upwind
LxF=LxF-c*dt/dx/2*ACent*LxF + matlap*LxF/2; %Lax-Friedrihs
LxW=LxW-c*dt/dx/2*ACent*LxW

+(c*dt/dx)?/2 * matlap * LxW; %Lax — Wendroff

uexact=(1/sqrt(eps))*exp(-(x-c*k*dt-lg/2).* (x-c*k*dt-Ig/2)/eps);
%Sol exacte
end



Finite Volume Schemes for Conservation Laws
How can we extend the notion of UpWinding for nonlinear
problems

0tU+ 0xF(U)=07

Integrate over cells (t7,t"T1) x (Xj—1/2: Xj31/2):

Xj+1/2 g1 Xj+1/2 N
/ u(t ,y)dY/ u(t",y)dy

Xj—1/2 Xj—1/2
tn+1

+/t {F(U(S»Xjﬂ/z))*F(U(S,Xj_l/z))}ds:o.

n

The numerical unknown U} is intended to approximate the mean

J+1/2
value / t" y)dy. We mimic the balance formula:
—1/2

Ax 1
Aft(UfhL Ul)+ Flp = Flyip=0
and we seek a relevant definition for the numerical flux FJ+1/2

Creia—



Example: the Rujsanow scheme

Let us consider a mere SCL 0:p + 0xf(p) = 0. Set a = max|f'(p)|
and rewrite

Bep + O (f(p);ap) +O, (f(m;"”’) —0.

Velocity f'(p) +a >0 Velocity f'(p) —a< 0
It leads to

n+1 pjn 1
= (o) + 3] = F(pf1) — ap)y

At 2Ax
+f(pf+1) —apf — f(pf) + apf)
1

= - E(f@ﬂl) f(p]_1)) + (PJ+1 2p] —+pj1) -

Centered Approx. Diffusion
It correponds to the discretization of the modified equation

Drp + O f(p) = €02 p, € = alx.
Lo DD
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Example: the Rujsanow scheme, Cont'd

The Rusjanow scheme can be rewritten in terms of numerical
fluxes

A n n n n
At( n+1 Pjn) +1/2 F'—1/2 =0, Fj+1/2 - F(ijrl?pj)a

. 1
with F(pfs1, p7) = 5(F(pf41) — apja + £(p]) + ap}).
Properties and extensions

» The flux is consistent F(p, p) = f(p).
» L[°° stability under CFL condition % <1
» The method can be designed by reasoning locally.

» The method adapts to system using for a the spectral radius
of the jacobian matrix VyF(U).
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Elements for the numerical analysis of scheme for SCL

PDE: 0;p + 0xf(p) =0
h n n n n n n n
Scheme: E(Pj- B pi)+ = Flap =0 Fliip = F(pf1: 0f).
Flux-Consistency F(p, p) = f(p).

Lax-Wendroff Theorem

Let At/h be constant and let p/ be the piecewise constant
function associated to the discretization and the scheme. Suppose
that p" is uniformly bounded in L and that it converges in Liloc
and a.e. to p as h goes to 0. Then p is a weak solution of the PDE.

Note that this statement does not ensure the uniform bound nor
the convergence of (a subsequence of) the approximation, and it
says nothing about the entropy criterion!



Elements for the numerical analysis of scheme for SCL, Il

Assume we can rewrite the scheme in the Incremental Form
+1
pi " = 0] = Clyo(p] = pf1) + Dy yopfia — £f)

Harten-Le Roux Lemma

Assume CJ 12 >0, DJ+1/2 > 0 with lel1/2 + DJ"H/2 < 1. Then
the scheme is L°°-stable.

(With furthermore Cli1/2+ Dfyjp <1, the scheme is TVD).

Cond 1=UpWinding, cond. 2=CFL.
A convex combination appears in

1
Pjn+ (1- Cfl1/2 - D_]p+1/2)p_}1 + Cﬂl/zpﬂl + Df! +1/2PJ+1

Creia—



Kinetic equations: collisional models
Conservation laws="macroscopic” version of a more detailed

physics
N particles — Statistical physics — Hydrodynamic
~—~ ~—~
N—oo mean free path —0
1

General form: Oif + E0xf = — Q(f)
S——— T~~~
Transport Collision

where @ is intended to describe “interaction between particles”
and 7 is a relaxation time.

® has a specific structure

» @ usually acts only on &: integral or differential operator

» @ preserves the maximum principle (f > 0).
For example : Q(f) = QT (f) — v(f) f
and think of an iterative process with the Duhamel formula:
atf-njtl + f : vxf-n+1 + V(fn)fnJrl = Q+(fn)



Kinetic equations: collisional models
General form

0ef + €0 = Q(7)

where Q is intended to describe “interaction between particles”

and @ has some fundamental properties, crucial both on a
physical and a mathematical viewpoints

» Conservation: There exists functions m(§) such that
[ meawnas=o

» Equilibrium: Q(f) = 0 iff f has a specific dependence wrt &:

f=M(E).
» Dissipation: There exists some function W such that
/\U(f)Q(f)dg <0

Example: Boltzmann eq. describes binary collision dynamics, with
Conia mass, momentum, energy conservation.



Example: the BGK operator

_ 42
Q(F) = Mpup —  with M, (€)= ﬁexp ( 16—yl )

(2r0) 26
where
1 n 1
[le |rac={ n ~ [ & | Muwato)e
€2 nu? + Nné €2
Properties

» Conservation of mass, momentum, energy:
Jacearn o

» Equilibrium: Q(f) = 0iff £(§) = M, 4 0(8),

» Entropy dissipation /Q(f)ln(f) d¢ <0.
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From BGK to Euler

1
Go back to BGK: 0:f + & - V,f = *(Mn’u,g — f)
T
» Due to conservation we have

1 1
at/(g )fdwx/g(g )fdgo
£2/2 £)/2

It recasts as

n nu
O | nu +V,| P =0
(nu? + Nn#)/2 Q

but P and @, moments of f cannot be expressed by means
on n, u,d: the system is not closed.



From BGK to Euler, Il ,
Go back to BGK: 9:f + & - Vif = *(Mn’u,g — f)
T
» Due to conservation we have

1

Ot/ & fdé+ Vi /5 fdé¢=0
£2/2 £2/2
» Due to equilibrium and dissipation we expect as 7 — 0 that

f~ Mn,u,é’
» Then, replace f by M, , ¢ in the conservation eq. and we get...

O¢n + divy(nu) =0,
Ot(nu) + Divy(nu ® u + nfl) =0,

at(nnganj)erivX((”g +N’729+n«9) ) 0.

the Euler system for (n, u,0) with pressure law p = nf.
6,1/1[a,-



From BGK to Euler, Il

The kinetic framework also provides an entropy for the Euler
system. We have

8t/fln(f)d£+vx/§fln(f)d§ <0.

Set 1(U) = [ Mo 0(My.u0(€)) e, with
U = (p, pu, pu?/2 + NpB/2).
Proposition

U — n(U) is convex. The associated entropy flux reads

/ EMp,.0(€) In(My,0(€)) A€ = um(U).



A BGK-like toy model [Perthame-Tadmor '91]

Let a: R — R (“velocity function”) and consider

1
aff + 3(5)8Xf = E(M[pf] - f)a ,Of(t,X) = / f(t,x,{) d£7
R
Here, the “"Maxwellian” is

Mlp](§) = Lo<e<p — Lp<e<o

Mass conservation (p4+ = max(0, p) > 0, p— = min(0, p) < 0)

lofl+ 0
[ipa-ryae= [ e [ de—pr = [prl+o-—pr =0
R 0 [of]-

leads to the local conservation law

8t/Rfd§+8X/Ra(§)fd§:0

Creia—



Entropy dissipation

Lemma
Assume —1 < f(§) <1 and sgn(§)f(£) > 0. Let H be a non

decreasing funtion. Then /(M[p,c] —f)Hd¢ <0.

/Z/Mmﬂ—fXWQ—H@dmf
[Pf]+ ()
5/ u—nwm—Hm»%+/ (—F) (H() — H(pr)) d
0 —_— —_—

v [ofl+
>0 <0 <0 >0

0 [of]-
+/ (1ﬂmew»%+/p(fwmamm»%
[ —_— N —_————

P S—~—
<0 >0 >0 <0

Consequence
For n convex, we have 8t/ &)f d& + Ox / §)fd¢ <o0.

Creia—



Can we guess the limit € — 07 (Yes, we can!)
Let A'(p) = a(p), A(0) = 0, so that | a(€)M[s] d€ = A(p)
Write f = M[pf] — e(0:f + a(§)Oxf) so that

Oep + 8X/ a(§)M[p] d¢ — edy (/ a(&)(0ef + a(€)oxf) d§> =0
R R
=0+ 0.(0) — ¢ (2R [ a(€) £ ac+ 02 [ atey? 7 ag) =0,
R R
Then, we suspect that f ~ M|[p] with p solution of the scalar

conservation law

Orp + O0xA(p) = 0.

Note: We have used, when ¢(0) = 0,

P+ 0
/ &/ () MIp](€) d¢ = / ¢/(€)de— / ¢/(€)de = d(p4)+(p-) = d(p).
R 0 p—

Creia—



Step 1. Existence of solutions and a priori estimates

Initial data
Let fo: R x R — R verify —1 < fy <1, sgn(§)fo(x,€&) > 0 and

//fo(x,ﬁ)dfdx<oo, fo(x,€) =0 for |£| > V.
R JR

Duhamel formula
G2 [27 e s +92(9.0] = L e Mipel(e 5.+ 53(0).€).

Iterative scheme
» O =,
» £(") being given, set p("(t,x) = [ F())(t,x, &) d¢ and
FED(E,x,€) = e fo(x — ta(€),€)
t
o #2 [ e MOl x — (£ - $)a(€). ) ds
€ In



Convergence of the scheme

> 0 <sgn(§)f((t,x,€) <1
» supp(f(")(t, x,-)) C [~ Vo, Vo] implies M[p(M] =0 on
C[— Vo, Vo). Thus supp(f("*1(t, x,-)) C [~ Vo, Vo).

. /\M[pﬁ]—M[pfzndss/m—fﬂdé.

» For a certain norm on L*(0, 00; L}(R x R), we can find
0 < n < 1such that [|[f(mD) — FN | < p|£(7) — £n=1).

» Conclusion: existence-uniqueness for the nonlinear BGK
model.



Step 2. Dissipation Properties

With the entropy dissipation @ED, rewrite the collision term:

3
> Set mi(t,x, &) — 1/ (Mlpd — £)(t.x, w) dw

—0o0

» m. is a sequence of non negative measures on (0, T) x R x R.

3
since for h > 0, with H(¢) = / h(z)dz

—0o0

/mehdgz—/agmeHdézo.
R R

» The sequence (me)€>0 is bounded in M1((0, T) x R x R).

Creia—



A few mathematical tools, Average lemma

A specific tool of kinetic theory

» Goal: Having information on f and & - Vf, can we improve

the regularity (compactness) of p,(x) = /1/)(5) f(x,&)de?

» Basic claim: If both f and & - V,f belong to L2(RN x RV),
then py lies in HY/2(RN).

Sketch of proof CIEED

» Fourier transform wrt to space
» Split into |£ - k| > J|k| (Good) |€ - k| < d|k| (Bad but with a
small contribution)
1/2
[F(K)G(k)]"

‘k’1/2 with

» Optimize wrt d: |py(k)| <

F,G e [2(RN).
Crola—



Improvements and variants

» Replacing £ - Vi by 0: + a(€) - Vi is not a big deal...

» Crucial: “having enough velocity” that is for any ke SVN=1,
{¢€B(O,R), £ k=0}[=0

> Dealing with LP spaces (ok at least for p > 1)

» Dealing with derivatives in the rhs

Theorem [Bouchut, Perthame-Souganidis].
Let f, and g, satisfy

N
O +€ Vo= 808
i=1

for some o € NV, Let Q be a open set in R x RN. We suppose
that (f,) qen is bounded in LP(Q x RN) for some p > 1 and the
(g,(,j))neN 's are relatively compact in LP(Q % RN) Then, for any

¢ € C(RN), the sequence defined by pn(t, x) = Jan fapd€ is
bveiar relatively compact in LP(Q).



Step 3. Compactness
We have
Oefe + a(§)Oxfe = Ogme
with
» f. bounded in L°°,
» m, bounded in M((0, T) x R x R).
» Suppose a(§) = A'(§) #0 for a. e. &.

Average lemma applies and p. converges strongly in
LP((0, T) xR), 1 < p < oo.

Suppose further finit (X, &) = M[pmit](x, &) (preparation of data):
it guarantees

lrria—



Step 4. Conclusion

Conservation law
We have 0;p + 0xA(p) = 0... but this is not enough

Entropies

/ / p)OxY + q(p)Oxt) dx dt >0

for any positive 1 € C2°((0,00) x R x R) and any pair
entropy/entropy flux (7, ), with n convex and /A" = ¢’. Indeed

Im(pe) + 0xq(pe) = —/Rn”(v) me dv 4+ remainder
which is <0 which is small

Creia—



Kinetic scheme for SCL

Let us start with a Time splitting
» Step 1: solve the linear transport equation

Otf 4 a(€)0xf = 0.
UpWind does the job (a+ = %la‘)
Ax , _p n
AU R/ (5))
= —{[a(©)] (£7(&) — £7.1(8) + [a(E)] - (£71(E) — £7(E)) }-
» Step 2: solve the stiff ODE
1
Ocf = ;(M[Pf] —f).
BUT pr does not change during this step ([ Q(f)d¢ = 0):
prtl = pntl/2 — / F1+1/2 3¢ We integrate by hand:

7j_n-i-l _ e—At/an—i-l/z + (1 _ efAt/r)Mjn-&-l/g
Crola—



Kinetic scheme for SCL

Now let 7 — 0
M_n+1/2

» Step 2 degenerates to )S-”H =M,

equilibrium).

(projection to the

> Integrate Step 1 to obtain a scheme for the macroscopic
quantity p

pJ!]Jrl :/fj"nJrl d¢ :/fn—‘rl/Z d¢
ac

=p] - Ax( 12— Fili2);

with the numerical flux
Fap = [aOMpds+ [a (M) de
p
F(plhy, p7) = Ap(00i1) + Am(0D)  Apm(p) = /0 ar_(2)dz.

Creia—



Properties of the kinetic scheme

» We recover the Enquist-Osher scheme,

> Consistency of the flux F; , = F(pl,1,p]) with

Flp.p) = [ (a+(2) + a-(2)MIsl(z) dz = Alp)

» Incremental form:
n+1 At n n At

Pj —pJ + Ax DJ+1/2(PJ+1 Pj)_ FCJ 1/2( IOJ 1)
with
n At Am(pji1) = Am(p]) cr .- EAP(PJ']) — Ap(p}_1)
27 Ax Pl — P ©OUT2 T Ax Pj = Pi

> 0since Al, = a_ <0, A;,(— ay )2 0. Sta(bil)ity is guaranteed
Amp(p+h) —Amp(p
P TR > a4 (),

> 0 when At max|a(p)| < Ax

under CFL condition: |

thus 1— Cy ) — DIy

1/2

Creia—



Entropy dissipation

Let 1 convex. By the dissipation lemma
[ Mg ae > 0, 0r ™) < [ ae
But
TEOFE) < (&) (Mp)e) (1 - 5 la(e)])
F RS OMITL)(E) + R (—a )MIf](E):

Sum over j and &:
> [©f©es Y [remge - Zn
J J

We conclude that Zn ntl) Zn(pj")
J Jj

6’7/’@-



Kinetic scheme for the Euler system
Let us start with a Time splitting
» Step 1: solve the linear transport equation

UpWind does the job (£ = “£El).

(29 - ()
= —{&(F7(€) — £71(8)) + € (F71(8) — £7(6)) }-
» Step 2: solve the stiff ODE
Ocf = %(M[p, 0, 0] f).
BUT p, u, 6 do not change during this step ([ Q(f)d¢ = 0):
(9,0, 6)7 = (p,6)772 = [(1,0,]¢ = uP/N)FTH2 e

We integrate by hand:

fjn—i-l — efAt/TfJ.”+1/2 + (1 _ efAt/T)M{7+1/2‘

Crola— j



Kinetic scheme for the Euler system
Now let 7 — 0
» Step 2 degenerates to 75-”“ = /\/IJ.nH/2 (projection to the
equilibrium).
> Integrate Step 1 to obtain a scheme for the macroscopic
quantities p, pu, pE = pu?/2 + NG /2

pn—i-l 1 1
(pu)n+l — / E f}fH—l df — / € fn+1/2 d§
(2pE)n+1 52 52
P At
= Egul)_;)" - E( 111/2 - an—1/2)7
PEJj

with the numerical fluxes

2

1
_/+1/2 - /§+ M[pjn7 uj(77 9_/”] df + /f— § M[pjr]+17 uﬂ%lv 91p+1] df
3



Properties of the scheme

» Work with generalized equilibrium having compact support,
adapted to the characteristic speeds of the system
u—+/30, u, u++/30: replace the Maxwellian M[p, u, 6] by
Kaniel's function

Mp,u 00 = S5 v

> Under CFL condition: max(|uf'| +,/307) < Ax/At, then
"1 and "1 remain > 0. G
» Possible extension to more complex pressure law.

» Pullin, Desphpande, Perthame...

Creia—



Simulation of the Euler system (Rusjanow vs Kinetic)
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Remarks on Isentropic Euler equations

Pressure law: p = p(p). Example p(p) = kp?, k >0, v > 1 (but
for “real” applications the formula can be much more complicated,
with possible loss of convexity).

8tp + ax(pu) = 07
O (pu) + dx(pu? + p(p)) = 0
In non conservative form, with U = (p, pu = J)

0 1
0:U+ A(U)ocU =0, A(U) =
t ( ) ( ) <_J2/p2+p/(p) 2.///))
Eigenvalues u + c(p), with c(p) = +/p'(p), the sound speed.
Entropy

P'(p) 2
Let ®"(p) = =, and set n(U) = 5=+ ©(p). Then, U = (V)

is convex and we have, for smooth solutions,
2

~ 9m(U) + 0xq(U) = 0, with q(U) = J(2J2 + d(p))
lnzia—



Kinetic schemes for the isentropic Euler system

Kaniel's function
Use . [p, u](§) = 2( )1|§ ul<c(p)- ldea based on the finite speed
c(p

of propagation of the system.
Entropy and Gibbs principle

2
Minimize a functional H(f) = / (5 f+V(f )) d¢, under moments
constraints /(1 &)fd& = (p,J). Denote M[p, J] the minimizor.
The construction is such that n(p, J) = H(M|p, J]). We get

)/2(v—1)
Mip. ) = [~ ble — 3/p]

See Bouchut, Berthelin-Bouchut, Perthame

Crria—



Comments on the isentropic case

Creia—

By construction the scheme #2 is entropy decaying.

But the CFL is slightly more constrained than with
method #1.

There is no clear formula for general (non homogeneous)
pressure laws

Computation of the numerical fluxes involves the evaluation of
integrals that could be numerically costly (except for v = 2)...
(to be compared with the resolution of Riemann problems)

Kinetic schemes usually performs well in vacuum regions

A new version of (stable and entropy-decaying) kinetic scheme
on staggered grids: Berthelin-G.-Minjeaud.



A kinetic scheme on staggered grids for barotropic gas
dynamics

{ Oep + 0x(9V) =0,
Be(oV) + 9x(6V? + m(9)) = O.
The pressure ¢ — m(¢) is strictly increasing and strictly convex;

the sound speed ¢ — c(¢) = \/7/(¢) is strictly increasing.
[Not true for “real” gases like the Bizarrium.]

The system is hyperbolic, the characteristic speeds are V' + c(¢).

Kinetic scheme
Define a “generalized Maxwellian” M = (My, M1)(¢, V') with

/Md§:<i\/>:U, /5Md§=<%ﬂ(¢))zp(uy

Set F*(U) = /6 EM0. V)
bt Consistency : F(U) = FT(U) + F~(U).



Construction of the kinetic scheme

Principle : Fluxes are constructed from moments of M & Upwinding
Maxwellian

Mo(6.V)(E) = 5275 visetn

Mi(¢, V)(€) = V Mo(o, V)(E) + M(, V)(€)
with M(¢, V)(€) = EL(¢, V) Ligj<)v 1c(o)-

Staggered grids: Mass flux

Density known at x;,1 /o, velocity at the interface x;.

Upwinding is natural

h
Jt1/2 k1 k
At (¢Ji1/2 j+1/2)+y -7 =0,

7f = /g>0 EMo(¢j-1/2, V) dE + /§<O§MO(¢J'+1/2’ Vi) dg

Creia—



Staggered grids: Momentum

hiv120f 10+ him120f 10 1/¢k(
2h o) h

> Set qﬁj’-‘ =
> Fly scheme
i [k k k
ﬁ(¢j+l\/j VI + ) P =0
» Pressure flux: Since

/ ER(p, v d§+/ (!, V) dz = 2 (pl0) + p())

the pressure gradient is centered p((ij/z) p(qﬁj’.‘_l/z).
» Convection flux: ¢V x V =Mass flux x V involves

/ EMo(o, V)(&) x V dE. Idea: Upwind of V' and average
on X, 1/ of the mass fluxes known at xj, xj11:

V.J+(¢j—1/27 V) + J\’L(¢>j+1/2, Viii/2)
J

2
9’*(@-4_1/2, VJ) + y7(¢j+3/27 Vj+1)
+Vin

Creia— 2




Numerical Analysis

Under suitable CFL condition:
» Positivity of the density is preserved pj’.‘H/2 >0,
» The physical entropy is decaying: with p(p) = p®'(p) — ®(p),

h Z¢k+1‘vk+l|2 +h +1/ZZ¢ J+1/2

<hZ¢J|Vk +h+1/2z¢ j+1/2

It holds for general (convex) pressure laws.
Proof: mixing of Bouchut’s and Herbin-Latché techniques.
Unusual: “work with 2 eq. rather than a system”.

» Performs well in vacuum regions.



Numerical results (Density, Velocity, L1-Error)

1.00 N -0.40-
N - = J=100 - = J=100
0.95- R —--- J=400 -0.41- e J =400
k P
.90 e J =320 0421 e =320
—— exact solution —— exact solution
0.85- —_— -0.43+ ¥
0.80 -0.44 \
0.754 -0.45+
0.70 Ny -0.46
A W
0.65-1 -0.47+
\
0.60 -0.48+
.\ /4
0.55-] '\ -0.49 /
Lo 7
0.5¢ T T T T T G e J -0.50 - s T T -
0.7 06 -05 -04 03 02 -01 00 01 02 03 0.7 06 -05 -04 03 -02 -0.1 01 02
2
10
3 O
10 3 o
-4 |
10
+ +Density
O Ovelocity
~ slope = 0.78
B slope = 0.79
10 5 i 3 -2
10 10 10 10
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A simulation with vacuum (Density, Velocity, Momentum)

— — J=200
47 - J=400
- J = 3200
—— exact solution
2]
4
o]
a2
2
34
4
“os
— = J=200 bz
J = 400 v

- J = 3200
—— exact solution
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Simulation of a Van der Waals gas k ﬁ

2.44 - = J=100
oo J=200
2.2+ 1 =~ 1.0 U [ J = 1600
3 N —— exact solution
2.0
0.9
1.8
1.6 0.8]
1.4 071
|
1.2+ I !
| 0.6 I\
10 ) e ] i 3
exact solution N
0. 0.
0.2 -01 00 01 02 03 04 05 06 07 08 %02 01 00 01 02 03 04 05 06 07
1
10
+
1073 A
o
A -
- o
3 - -
10 AT o
e
5]
0% O ++Den5|_ty
QO Ovelocity
-~ slope = 0.98
. 5 slope = 1
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Rankine-Hugoniot condition

Let p be a weak solution of d¢p + 0xf(p) = 0.
Assume that p is C' in and QT, with a discontinuity curve
r={(x,t) = (s(t),t), t > 0}.
t
r={(s(r),7), 7> 0}
Q_

{x+s(t)(t —t), T €R}

_ Qf

X

Lot Figure: Courbe de discontinuité et relations de Rankine-Hugoniot



Rankine-Hugoniot condition

Let p be a weak solution of d¢p + 0xf(p) = 0.
Assume that p is C' in and QT, with a discontinuity curve

M ={(x.£) = (s(t).t), £ 0}.
—//(p6t¢+f(p)8x¢)dxdt:0:—// ...dxdt—//m . dxdt
:// (8tp+axf(p))¢dxdt+//9+ (Oep + Oxf(p)) P dx dt

~ [+ Fop)0ds = [ (oo + ooy
=0+ [ [0 =i + () = s oy

“““F:<v?):ﬂﬁ:VTQLMP<£ﬂn>'

We arrive at [p]s = [f(p)]



Discontinuous solutions and entropies

For discontinuous solutions, we make the following quantity appear (by
reproducing the computations that lead to RH relations)

()15 — [a(p)] = (g{pr) —n(pe))s — (a(pr) — alpe))

or

= | nEsde- / d(2)dz

- / " n(2)5dz - / " n'f'(z)dz  (then integrate by parts)
— _M/pj n”(z)(W(z —pe) — (F(2) - f(pe)> dz
o ()=t

Since 7 is convex, z — 1"(z)(z — p¢) has a constant sign on the interval
I defined by p, and py. Assuming that f is convex or concave on /, the
integrand has a constant sign and [7(p)]$ — [q(p)] vanishes iff

f Pr) — f Pe
f(z) ~ Flpn) = (A= Te0)

r— P
affine function on /, a case that we exclude by assumption

(z — pe) on . It would mean that f is an

(the flux is assumed “genuinely non linear").

Creia—



Estimate of m,

Bear in mind that f., M[p.], and thus m, have their support wrt
the variable  in [V, V]. Then, with hy(§) = h(£)1j¢<v,

3
Hy(§) :/ hy(z)dz, we have

0<///m5 dfdxdt—///mehv )d¢ dx dt

—— [[] ZMipd - 2) () ag axae
- / (00 + ()0 Hy(€)dé dx dt

t=T
g—/ f.Hy d¢ dx
t=0

<2V [lhv || e[ fell oo (0, 7501
<4V ||h”L°°HfInit||L1-




Stability analysis

n At At At i
(26 = (1= R ) AP+ R € M (E)+ R (—E 171 (€)
vanishes for [£| > max(|u] + , /307) (support property of the

equilibrium 7).
By CFL, this is a convex combination of > 0 quantities:

n+1/2(£) > 0 and o1 = /Gn+1/2(£) de > 0.

Similarly, we have

2pE) = / €2£712(¢) de
( n+1 2 n+1’ —|—2uf’+1 ) .n+1/2(£)d€

0_| n+1‘2 n+1_|_2un+1 n+1 n+1 —PJ+1|UH+1’2

Since 2Ej"+1 = \uj’+1|2 + 391’-1+:l we deduce that 9}’“ > 0.
Crola—



Average Lemma: L? statement

» Fourier Transform wrt x.

»5(k) = [ f(k, d¢ = dE+ .. de.

A(K) / (@i [ e /f o

> 1< ?(k,5)|2df\/ / ]2 de < F(k)V3.
|€-k|<5|k|

<\// EPIF(0) g\//gk|>5|k |k - 5’2 de= d|k|?

12 (large k - £'s)=Good, /1 (small k - ¢'s)=Bad but Small
Optimize wrt 6, use F, G bounded in L2...

We need “enough velocities":

v

v

v

v

meas({¢ € RY, [¢| <R, |¢- k| <e}) < Cre”




Gain of compactness
Set At,x,fq)e =m. = an,g : (me,gq)e).
Remind that WP Ceomp €O, hence .t = (C°) Ceomp w-Lr
forp>N,1<p <N/(N-1).
Thus &, is compact in Wlif/, with, here, N =3, and V&, is
compact in LP | 1< p/ < 3/2.

loc’

The assumption on the velocity becomes
meas({¢ € RY, [¢[ <R, |a+a(¢) k| < e}) < Cgre’
Here N =1 and we can get rid of k:
meas({{ €R, [¢] <R, |a+a(é)] <e}) < Cre®
It is satisfied when a'(§) = A”(€) #0 for a. e. &

(Genuinely Nonlinear problem)
Crria



Upwind scheme for the transport equation

10t 4 10
st \ 8
\
| =
= °r | = ©
= | g
| E
|
at l 4
2+ \ 2
o ~ o
o 0.5 1 1.5 2 o 0.5 1 1.5
x

Figure: Upwind Scheme vs. Exact solution
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