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1 Set up of the problem
The goal is to understand the behavior of the sequence

(
un
)
n∈N of solutions of

the model PDE

−∇ · (An∇un) = f in Ω, un
∣∣
∂Ω

= 0. (1)

Throughout this discussion we assume that
— Ω is a smooth bounded domain in RN ,
— f is a fixed function in L2(Ω),
— An is a matrix valued function defined on Ω such that, for some α,M > 0

we have
|[An(x)]ij| ≤M, An(x)ξ · ξ ≥ α|ξ|2,

for almost every x ∈ Ω and any ξ ∈ RN . (Note that the estimates are uniform
with respect to n.)

We shall see that un, or at least a subsequence, converges to u weakly in H1
0 , where

u satisfies an equation of the same type

−∇ · (Aeff∇u) = f in Ω, un
∣∣
∂Ω

= 0. (2)

That the limit u satisfied such a PDE is far from obvious. The “effective” diffusion
matrix Aeff will be determined in a quite indirect way ; we shall see it satisfies L∞
and coercivity bounds that can be expressed by means of α,M . As the analysis
of the one dimensional case with periodic coefficients showed, in general Aeff does
not coincide with the weak limit of An.
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Based on the assumptions, we already know that, for any f ∈ L2 and any
n ∈ N, the problem admits a unique solution un ∈ H1

0 (Ω). We remind the reader
that H1

0 (Ω) is the adherence of C∞c (Ω) for the norm

‖u‖2
H1 = ‖u‖2

L2 + ‖∇u‖2
L2 .

It can be considered (up to a suitable definition of the traces of functions in H1)
as the space of functions in H1 which “vanish” on ∂Ω. By Poincaré’s lemma

u 7−→ ‖∇u‖L2

is a norm on H1
0 , equivalent to ‖u‖H1 . For further purposes it is convenient to

introduce the space H−1 of continuous linear forms on H1
0 endowed with the norm

‖λ‖H−1 = sup
{ |〈λ|u〉|
‖u‖H1

, u ∈ H1
0 , u 6= 0

}
.

For instance, if φ ∈ L2, then ∇φ defined by the relation

〈∇φ|u〉 = −
∫
φ∇u dx

lies in ∈ H−1. In particular equation (1) can be solved with f ∈ H−1 as well, by
means of the variational formulation. Despite the fact that H1

0 is a Hilbert space,
it is not identified with its dual space here ; in fact, we have the embedding

H1
0 ⊂ L2 ⊂ H−1 =

(
H1

0

)′
where the pivot space L2 identifies to its dual.

As a matter of fact, the variational formulation∫
An · ∇un · ∇un dx =

∫
fun dx (3)

already provides the following a priori estimates on the solutions

‖∇un‖L2 ≤ CP
α
‖f‖L2 ,

where CP is the Poincaré constant that depends on the domain Ω. (More generally,
we can replace ‖f‖L2 by H−1.) It already tells us that we can extract a subsequence
such that unk

⇀ u and ∇unk
⇀ ∇u weakly in L2. In view of the uniform bound of

the coefficients of An we can suppose that they converge weakly-? in L∞. This is not
enough to identify the limit of the sequence An∇un. This is the issue we are going
to discuss. The analysis relies on abstract arguments of functional analysis. Let
us describe these arguments, and then, we shall come back to the homogenization
problem.
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2 Preliminaries from Functional Analysis
Let V be a separable Hilbert space, and denote by V ′ its topological dual (we

do not identify V and V ′), endowed with the norm

‖λ‖V ′ = sup
{ |〈λ, v〉V,V ′|
‖v‖V

, v ∈ V \ {0}
}
.

Note that V ′ is also a separable space (see [2], p. 48 and 78). Let us consider a
sequence

(
Tn
)
n∈N of bounded operators from V to V ′. We suppose that the Tn’s

are both uniformly bounded and uniformly coercive, which means

there exist α,M > 0 such that for any n ∈ N, u ∈ V ,
〈Tnu, u〉V ′,V ≥ α‖u‖2

V , ‖Tnu‖V ′ ≤M‖u‖V .
(4)

Let us set
an : V × V −→ R

(u, v) 7−→ 〈Tnu, v〉V ′,V
which is a bilinear continuous and coercive mapping. Therefore, for any f ∈ V ′,
there exists a unique un ∈ V such that

〈Tnun, v〉V ′,V = 〈f, v〉V ′,V (5)

holds for all v ∈ V . We note
un = Snf.

In other words Sn = T−1
n . Going back to (1), we have

— V = H1
0 , V ′ = H−1,

— Tnu = ∇ · (An∇u),
— an is given by the LHS in (3).

As a warm up we rephrase several estimates in terms of properties of the opera-
tor Sn.

Lemma 2.1 The sequence
(
Sn
)
n∈N is a bounded sequence in L(V ′, V ) ; it satisfies

|||Sn|||L(V ′,V ) ≤ 1/α, (6)

and
〈f, Snf〉V ′,V ≥

α

M2
‖f‖2

V ′ . (7)
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Proof. Let f ∈ V ′ and set un = Snf , Tnun = f . By using (5) with v = un and the
assumptions on Tn, we get

α‖Snf‖2
V = α‖un‖2

V ≤ 〈Tnun, un〉V ′,V = 〈f, un〉V ′,V ≤ ‖f‖V ′‖un‖V = ‖f‖V ′‖Snf‖V .

It proves (6). Next, we remark that

|〈f, v〉V ′,V | = |〈Tnun, v〉V ′,V | ≤M‖un‖V ‖v‖V

holds for any v ∈ V . We deduce that

‖f‖V ′ ≤M‖un‖V = M‖Snf‖V .

Eventually, we get

〈f, Snf〉V ′,V = 〈f, un〉V ′,V = 〈Tnun, un〉V ′,V ≥ α‖un‖2
V = α‖Snf‖2

V ≥
α

M2
‖f‖2

V ′ .

The result we are interested in states as follows ; this is a compactness property
for sequences of operators.

Theorem 2.2 There exists a subsequence {nk, k ∈ N} and an operator T∞ ∈
L(V, V ′) such that for any f ∈ V ′ the sequence

(
unk

)
k∈N of the elements of V

defined by Tnk
unk

= f converges weakly in V to some u verifying T∞u = f .
Furthermore, we have

‖T∞u‖V ′ ≤
M2

α
, 〈T∞u, u〉V,V ′ ≥ α‖u‖2

V .

This result will be justified as a consequence of the following claim.

Lemma 2.3 Let X be a separable Banach space, and Y a reflexive Banach space.
Let

(
Sn
)
n∈N be a sequence in L(X, Y ) such that |||Sn|||L(X,Y ) ≤ C. Then, there

exists a subsequence {nk, k ∈ N} and an operator S∞ ∈ L(X, Y ) such that for any
f ∈ X, Snk

f converges to S∞f weakly in Y . Furthermore, we have

|||S∞|||L(X,Y ) ≤ lim inf
k→∞

|||Snk
|||L(X,Y ).

Remark 2.4 Of course, the result does not hold in general for the whole sequence :
the simplest counterexample is given by X = Y = R and Sn the multiplication by
(−1)n !
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Proof. For any f ∈ X, we have ‖Snf‖Y ≤ C‖f‖X , so that
(
Snf

)
n∈N is bounded

in Y . Since Y is a reflexive Banach space, we can extract a subsequence, depending
on f , which converges weakly in Y . We shall construct a subsequence which works
for any f by using a diagonal Cantor’s argument. Indeed, since X is separable, we
can consider a dense denombrable set

D = {ϕk, k ∈ N}.

Then, we reproduce the scheme :
— for k = 1, we extract from N a subsequence {σ1(n), n ∈ N} such that(

Sσ1(n)ϕ1

)
n∈N converges weakly in Y ,

— for k = 2, we extract from {σ1(n), n ∈ N} a subsequence {σ1(σ2(n)), n ∈ N}
such that

(
Sσ1(σ2(n))ϕ2

)
n∈N converges weakly in Y ,

— etc...
— for k ∈ N, we extract from {σ1 ◦ ...◦σk−1(n), n ∈ N} a subsequence {σ1 ◦ ...◦

σk−1 ◦ σk(n), n ∈ N} such that
(
Sσ1◦...◦σk(n)ϕk

)
n∈N converges weakly in Y ,...

Then, consider the diagonal sequence {σ1 ◦ ... ◦ σn(n), n ∈ N}. For k ≤ n it
is extracted from {σ1 ◦ ... ◦ σk(n), n ∈ N} so that

(
Sσ1◦...◦σn(n)ϕk

)
n∈N converges

weakly in Y . From now on, we simply denote by
(
Sn
)
n∈N this subsequence and

Snϕk ⇀ S∞ϕk holds as n → ∞, for any ϕk ∈ D. We check that S∞ is a linear
application on D and by lower semi-continuity we have

‖S∞ϕk‖Y ≤ lim inf
n→∞

‖Snϕk‖Y ≤ C‖ϕk‖X .

Since D is dense in X, we can extend S∞ to the whole space X : this defines
S∞ ∈ L(X, Y ) (with operator norm ≤ C).

Now, pick f ∈ X and λ ∈ Y ′. We have

|〈λ, Snf − S∞f〉Y ′,Y | ≤ |〈λ, Snf − Snϕ〉Y ′,Y |
+|〈λ, Snϕ− S∞ϕ〉Y ′,Y |+ |〈λ, S∞ϕ− S∞f〉Y ′,Y |.

Let ε > 0. Both the first and the third term in the right hand side can be dominated
by

C‖λ‖Y ′‖f − ϕ‖X .
Therefore since D is dense in X, we can choose ϕ = ϕ(ε) ∈ D such that these
quantities are both ≤ ε. Then, using the convergence established for the elements
of D, we can exhibit N(ε, ϕ(ε), λ) = Nε ∈ N such that for n ≥ Nε

|〈λ, Snϕ− S∞ϕ〉Y ′,Y | ≤ ε.

It follows that
|〈λ, Snf − S∞f〉Y ′,Y | ≤ 3ε
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holds when n ≥ Nε.

Proof of Theorem 2.2. We apply Lemma 2.3 with X = V ′, Y = V . Hence,
there exists a subsequence, still labelled by n, and S∞ ∈ L(V ′, V ) such that for
any f ∈ V ′, Snf ⇀ S∞f weakly in V , with |||S∞|||L(V ′,V ) ≤ 1/α. Besides, letting
n→∞ in (7) yields

α

M2
‖f‖2

V ′ ≤ 〈f, S∞f〉V ′,V ≤ ‖f‖V ′‖S∞f‖V .

It follows that
— S∞ is injective

since S∞f = 0 forces f = 0,
— Ran(S∞) is closed,

since if S∞fn tends to some u in V , then
(
fn
)
n∈N is a Cauchy sequence and

converges to some f ; by continuity it follows that u = S∞f ∈ Ran(S∞).
— S∞ is surjective,

indeed, let λ ∈ V ′ such that for any f ∈ V , we have 〈λ, S∞f〉V ′,V = 0. Then,
taking f = λ leads to 〈λ, S∞λ〉V ′,V = 0 ≥ (α/M2)‖λ‖2

V ′ , thus λ = 0. By the
Hahn-Banach theorem (see [2] p. 7 or [10, Corollary 7.6]) this implies that
Ran(S∞) = V .

We conclude that S∞ is a bounded operator form V ′ to V which is bijective.
The open mapping theorem (see [2] p. 18, 19 or [10, Theorem 5.43]) then tells us
that the inverse S−1

∞ = T∞ is a bounded operator from V to V ′. The coercivity
inequality ‖S∞f‖V ≥ (α/M2)‖f‖V ′ for S∞ (used with u = S∞f) can be recast as
a continuity property for T∞ = S−1

∞

(M2/α)‖u‖V ≥ ‖T∞u‖V .

For f ∈ V ′, let us denote un = Snf ∈ V the solution of Tnun = f . It converges
weakly to u = S∞f ∈ V , which satisfies T∞u = f . Besides, we have

〈f, un〉V ′,V = 〈Tnun, un〉V ′,V ≥ α‖un‖2
V .

Therefore, as n→∞ we obtain

lim
n→∞
〈f, un〉V ′,V = 〈f, u〉V ′,V = 〈T∞u, u〉V ′,V ≥ α lim inf

n→∞
‖un‖2

V ≥ α‖u‖2
V .

It will be convenient to rephrase the statement as follows : any element of V
can be reached as a weak limit of a sequence of solutions of problems Tnun = f ,
for an appropriate right hand side f .

Corollary 2.5 There exists a subsequence {nk, k ∈ N} and an operator T∞ ∈
(V, V ′) such that for any u ∈ V the sequence

(
unk

)
k∈N of the elements of V defined

by Tnk
unk

= T∞u converges weakly in V to u.
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3 Homogeneization
We apply the previous statements to the sequences Tn· = ∇ · (An∇·) and

un = T−1
n f = Snf . The sequence (un)n∈N converges weakly in H1

0 to u = S∞f . We
are left with the question of identifying u. It is not even clear that it satisfies an
equation of the same type as (1).

We shall use the div-curl lemma :

Lemma 3.1 (Div-Curl Lemma) Let Un and Vn be two functions defined on Ω
with values in RN and such that
— Un ⇀ U , Vn ⇀ V weakly in L2,
— div(Un) = ∇ · Un =

∑N
j=1 ∂xjUn,j lies in a compact of H−1,

— curl(Vn) = ∇ × Un (the skew-symmetric matrix with components ∂xjVn,k −
∂xkVn,j) lies in a compact of H−1.

Then, we have Un · Vn =
∑N

j=1 Un,jVn,j ⇀ U · V =
∑N

j=1 UjVj in D ′(Ω).

Indeed, we can suppose that un ⇀ u in H1, which in particular means ∇un ⇀
∇u and we already observe that Un = An∇Un and Vn = ∇un satisfy

∇ · Un = f , ∇× Vn = 0 both belong to a compact set of H−1.

We have Vn ⇀ ∇u and we can suppose Un ⇀ U in L2 ; we wish to identify U .
All these observations equally applies to the adoint equation where An is repla-

ced by Aᵀ
n. By using Corollary 2.5, for any v ∈ H1

0 , we can find a sequence (vn)n∈N
such that

vn ∈ H1
0 , vn ⇀ v weakly in H1

0 , −∇ · (Aᵀ
n∇vn) = g

where g = T∞u, T∞ = S−1
∞ ∈ L(H1

0 , H
−1) being the limit operator defined from

Tn· = ∇ · (Aᵀ
n∇·) by virtue of Lemma 2.3. We can also set Ũn = Aᵀ

n∇vn and Ṽn =
∇vn which satisfy the conditions of the div-curl lemma since, again, ∇× Ṽn = 0,
∇ · Ũn = −g both belong to a compact set of H−1. We have Ṽn ⇀ ∇v and we can
suppose Ũn ⇀ Ũ in L2.

Let us pick ϕ ∈ C∞c (Ω) and consider

In =

∫
An∇un · ∇vnϕ dx = an(un, vn).

It can be cast as

In =

∫
Un · Ṽnϕ dx =

∫
∇un · Aᵀ

n∇vnϕ dx =

∫
Vn · Ũnϕ dx.
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Hence, this nonlinear quantity passes to the limit, owing to the div-curl lemma :

lim
n→∞

In =

∫
U · ∇vϕ dx =

∫
∇u · Ũϕ dx.

It implies U · ∇v = Ũ · ∇u.
In order to characterize U the idea would be to take v ∈ {v1, ..., vN} such

that ∂xivj = δij. Unfortunately this amounts to set vj(x) = xj... which is not
an element of H1

0 . We should proceed indirectly to make this idea efficient. We
consider a domain Ω′ such that Ω ⊂ Ω′ (strictly). We extend the matrix-valued
functions An over Ω′ by setting

Bn(x) =

{
An(x) if x ∈ Ω,
αI if x ∈ Ω′ \ Ω,

for some α > 0. Then, we consider the extended operators T ′n· = −∇ · (Bn∇·)
on Ω′, endowed with homogeneous Dirichlet boundary conditions. With the same
reasoning as above for any v ∈ H1

0 (Ω′), we can find a sequence (vn)n∈N such that

vn ∈ H1
0 (Ω′), vn ⇀ v weakly in H1

0 (Ω′), −∇ · (Bᵀ
n∇vn) = g

where g = T ′∞u, T ′∞ = (S ′∞)−1 ∈ L(H1
0 (Ω′), H−1(Ω′)). We make this construction

with the functions vj, j ∈ {1, ..., N} such that

vj ∈ H1
0 (Ω′), vj

∣∣
Ω

= xj.

(For instance we can set vj(x) = xjχ(x) with χ ∈ C∞c (Ω′) a cut off function such
that χ(x) = 1 for any x ∈ Ω.) Finally, we arrive at

U = Aeff∇u

where the effective matrix x 7→ Aeff(x) has its coefficients defined by

Aeff,jk = lim
n→∞

[
Aᵀ
n∇vjn

]
k

= lim
n→∞

N∑
`=1

An,`k∂x`v
j
n

where the limit holds weakly in L2.
The last question consists in finding bounds on the effective coefficients : we

started with matrices in the set

Mα,M =
{
A : x ∈ Ω 7→ MN , |Aij(x)| ≤M, A(x)ξ · ξ ≥ α|ξ|2

}
.

We wonder whether the effective matrix satisfies such bounds. To this end, we use
again the div-curl lemma to pass to the limit in the expression∫

An∇un · ∇unϕ dx =

∫
Un · Vnϕ dx −−−→

n→∞

∫
U · V ϕ dx =

∫
Aeff∇u · ∇uϕ dx.
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Working with a non negative trial function ϕ ≥ 0, we have∫
An∇un · ∇unϕ dx ≥ α

∫
|∇un|2ϕ dx

which yields ∫
Aeff∇u · ∇uϕ dx ≥ α

∫
|∇u|2ϕ dx. (8)

We already know (see Theorem 2.2 and its proof) that S∞ = T−1
∞ is an isomorphism

from H−1 to H1
0 . Therefore, any u ∈ H1

0 can be reached as u = S∞f . Accordingly
inequality holds for any u ∈ H1

0 . Given ϕ ∈ C∞c (Ω), ϕ ≥ 0, we construct u ∈ H1
0

such that
u(x)

∣∣
supp(φ)

= ξ · x,

for ξ ∈ RN . It follows that Aeffξ · ξ ≥ α|ξ|2. The effective matrix Aeff thus satisfies
the same coercivity estimate as the An’s. For the bound on the coefficients we
shall obtain a different estimate than the bound on the coefficients of the An’s. We
start with the obvious estimate |Aξ| ≤ M |ξ| which yields |ζ| ≤ M |A−1ζ|. Next,
Aξ · ξ ≥ α|ξ|2 becomes A−1ζ · ζ ≥ α|A−1ζ|2 ≥ α

M2 |ζ|2. Accordingly, for any non
negative trial function ϕ ∈ C∞c , we get∫

φAn∇un · ∇un dx ≥ α

M2

∫
|An∇un|2φ dx.

Letting n run to ∞, we get∫
φAeff∇u · ∇u dx ≥ lim inf

n→∞

α

M2

∫
|An∇un|2φ dx ≥ α

M2

∫
|Aeff∇u|2φ dx.

As above, we choose u ∈ H1
0 such that u(x)

∣∣
supp(φ)

= ξ · x. It yields α
M2 |Aeffξ|2 ≤

|Aeffξ| |ξ| and finally

|Aeffξ| ≤
M2

α
|ξ|.

When the matrices An are symmetric, the effective matrix is symmetric too. In
this specific case the coefficients of Aeff remain bounded by M .

4 Comments
Basis on functional analysis can be found in the textbooks [2, 6, 10, 12]. An

introduction to the modeling viewpoint and numerical issues can be found in [11].
The compensated-compactness approach (div-curl lemma and various extensions),
and their applications to the theory of homogeneization date back to F. Murat
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and L. Tartar [14], see also [13, 16]. The div-curl lemma has also been shown to
be an efficient tool to handle conservation laws see [5, 4, 15]. Another applica-
tions is concerned with certain hydrodynamic limits from kinetic equations [3]. An
overview of compactness issues for analysing non linear PDEs can be found in [7].
The case of periodic homogeneization is amenable to specific treatments and more
explicit effective formulae can be derived [1]. Recent breakthrough are concerned
with the derivation of sharp estimates on the effective coefficients in the case of
stochastic homogeneization [8, 9].
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