
Fourier transform and PDE: Yukawa potentials, Sobolev
spaces

Resolution of λu −∆u = f

Let λ > 0. Apply the Fourier transform to

λu −∆u = f

It leads to

û(ξ) =
f̂ (ξ)

λ+ ξ2
.

Note: if f ∈ S (RN), ξ 7→ f̂ (ξ)
λ+ξ2 lies in S (RN) too. Since

ξ 7→ 1
λ+ξ2 takes value in [0, 1], the function ξ 7→ f̂ (ξ)

λ+ξ2 ∈ L2(RN)

when f ∈ L2(RN).



Resolution of λu −∆u = f , II

We can thus define

u(x) = F−1
ξ→x

( f̂ (ξ)

λ+ ξ2

)
(x).

We get a representation formula of u by using the inverse
transform. We are led to study

u(x) = F−1
ξ→x

( f̂ (ξ)

λ+ ξ2

)
(x) =

∫
RN

Kλ(x − y)f (y)dy ,

where the kernel Kλ corresponds to inverse Fourier transform of
ξ 7→ 1

λ+ξ2 .



Dimension 1

For N = 1, the function ξ 7→ 1
1+ξ2 is integrable: we split

1

1 + ξ2
=

1

2(1 + iξ)
+

1

2(1− iξ)
.

The two terms are not integrable, but they are image of Fourier
transform:

1

1± iξ
=

∫ ∞
0

e−x(1±iξ) dx .

Therfore

1

1 + ξ2
=

1

2

∫ +∞

−∞
e−ixξ(e−x1x≥0 + ex1x≤0) dx

=
1

2

∫ +∞

−∞
e−ixξe−|x | dx .



Dimension 1, ctn’d

We rescale to account for λ. We have

1

λ+ ξ2
=

1

λ

1

1 + (ξ/
√
λ)2

=
1

λ
F

(
e−|x |

2

)(
ξ√
λ

)
and

1

λ
f̂

(
ξ√
λ

)
=

1√
λ

∫
e−ixξ/

√
λf (x)

dx√
λ

=
1√
λ

∫
e−iyξf (y

√
λ) dy .

We conclude with

Kλ(x) =
e−
√
λ|x |

2
√
λ
.

Note that Kλ and its Fourier transform are both integrable : Kλ
belongs to the Wiener algebra.



Dimension 3: Yukawa’s potential

We check that

Kλ(x) =
e−
√
λ|x |

4π|x |
is elementary solution of the PDE : (λ−∆)Kλ = δ0.

Note: Kλ is integrable over R3, smooth on {|x | ≥ ε} for any ε > 0,
and

〈∆Kλ|φ〉 =

∫
R3

Kλ(x)∆φ(x) dx = lim
ε→0

∫
|x|≥ε

Kλ(x)∆φ(x) dx

= lim
ε→0

{
−
∫
|x|≥ε

∇Kλ(x) · ∇φ(x) dx +

∫
|x|=ε

Kλ(x)∇φ(x) · ν(x) dσ(x)

}

= lim
ε→0

{∫
|x|≥ε

∆Kλ(x)φ(x) dx −
∫
|x|=ε
∇Kλ(x) · ν(x)φ(x)dσ(x)

+

∫
|x|=ε

Kλ(x)∇φ(x) · ν(x) dσ(x)

}
.



Dimension 3, ctn’d
When |x | ≥ ε > 0, we can compute

∇Kλ(x) = −x e−
√
λ|x|

4π|x |2
(√

λ+
1

|x |

)
,

and

∆Kλ(x) = −e−
√
λ|x|

4π|x |2
{

3
(√

λ+
1

|x |

)
− x
(√

λ+
1

|x |

)
· x

|x |

√
λ|x |2 + 2|x |
|x |2 − 1

|x |2
}

= −e−
√
λ|x|

4π|x |2
{(

3−
√
λ|x | − 2

)(√
λ+

1

|x |

)
− 1

|x |

}
= λKλ.

Since ν(x) = − x
|x| = −ω ∈ S2, we get∫

|x|=ε
Kλ(x)∇φ(x) · ν(x)dσ(x) = −e−

√
λε

4πε

∫
S2

∇φ(εω) · ωε2 dω = O(ε)

and∫
|x|=ε
∇Kλ(x) · ν(x)φ(x) dσ(x) =

e−
√
λε

4πε2

∫
S2

(√
λ+

1

ε

)
εω · ωφ(εω)ε2 dω

−−−→
ε→0

φ(0).



General case

Note that ∫
RN

dξ

(λ+ ξ2)p
= CN

∫ ∞
0

rN−1

(λ+ r2)p
dr

is finite for p > N/2. In particular ξ 7→ 1
λ+ξ2 lies in L1 only for

N = 1; it lies in L2 in dimensions 1, 2, 3. Nevertheless it still makes
sense to write

Kλ(x) = lim
R→∞

1

(2π)N

∫
|ξ|≤R

e ix ·ξ

λ+ ξ2
dξ︸ ︷︷ ︸

=Kλ,R(x)

.

We can write
1

λ+ ξ2
=

∫ ∞
0

e−t(λ+ξ2) dt



General case, ctn’d
It allows us to consider R →∞ in

〈Kλ,R |φ〉 =
1

(2π)N

∫∫
RN×RN

∫ ∞
0

1|ξ|≤Re
ix·ξe−t(λ+ξ2)φ(x) dt dξ dx

=
1

(2π)N

∫ ∞
0

∫
RN

e−tλe−tξ2

1|ξ|≤R

(∫
RN

e ix·ξφ(x)dx

)
︸ ︷︷ ︸

=φ̂(−ξ)

dξ dt.

The integrand is dominated by e−tλe−tξ2

|φ̂(−ξ)| ∈ L1([0,∞[×RN). Lebesgue’s
theorem yields

lim
R→∞

〈Kλ,R |φ〉 =
1

(2π)N

∫ ∞
0

∫
RN

e−tλe−tξ2

φ̂(−ξ) dξ dt

=
1

(2π)N

∫ ∞
0

∫
RN

e−tλ
(π
t

)N/2

e−x2/(4t)φ(x) dx dt.

where we used the exchange formula and the Fourier transform of the Gaussian

F (e−tξ2

)(x) =
(π
t

)N/2

e−ξ
2/(4t).

We concude that

Kλ(x) =
1

(4π)N/2

∫ ∞
0

e−tλe−x2/(4t)

tN/2
dt.



Going back to N = 3

We have

Kλ,R(x) =
1

(2π)3

∫ R

0

∫ π

0

∫ 2π

0

e ir|x| cos(θ)

λ+ r 2
r 2 sin(θ)dψ dθ dr

=
1

(2π)2

∫ R

0

r 2

λ+ r 2

(∫ π

0

e ir|x| cos(θ) sin(θ) dθ

)
dr

=
1

(2π)2

∫ R

0

r 2

λ+ r 2

e ir|x| − e−ir|x|

ir |x | dr

= − i

(2π)2|x |

∫ R

−R

re ir|x|

λ+ r 2
dr

We let R →∞ by using the residues formula.



Going back to N = 3, ctn’d
Indeed F : z ∈ C 7→ re iz|x|

(z−i
√
λ)(z+i

√
λ)

has a single singular point z = i
√
λ, in the

half-plane {Im(z) ≥ 0}. Integrate on ΓR = [−R,R] ∪ CR , with CR the half
circle with radius R, large enough for the pole to be inside the curve. We get∫

ΓR

F (z) dz = 2iπRes(F )(i
√
λ) = 2iπ i

√
λe−
√

λ|x|

2i
√
λ

= iπ e−
√
λ|x|

=

∫ R

−R

re ir|x|

λ+ r 2
dr +

∫ π

0

Re iRe
iθ|x|

R2e2iθ + λ
R dθ

We have∣∣∣∣∣
∫ π

0

Re iRe
iθ|x|

R2e2iθ + λ
R dθ

∣∣∣∣∣ ≤ R2

R2 − λ

∫ π

0

e−|x|R sin(θ) dθ =
2R2

R2 − λ

∫ π/2

0

e−|x|R sin(θ) dθ

≤ 2R2

R2 − λ

∫ π/2

0

e−2|x|Rθ/π dθ =
πR

|x |(R2 − λ)
−−−−→
R→∞

0

since θ 7→ sin(θ)
θ

in non increasing over [0, π/2] which implies sin(θ) ≥ 2θ
π

pour
0 ≤ θ ≤ π/2. We deduce

Kλ(x) = lim
R→∞

Kλ,R(x) =
e−
√
λ|x|

4π|x | .



Sobolev spaces

We wish to construct a hierarchy of functional spaces measuring
the regularity of solutions of PDEs. We already know the spaces
C k , but it is convenient to construct spaces based on the notion of
weak derivatives instead.

Let

H1(RN) =
{
u : RN → R such that u ∈ L2(RN) and ∇u ∈ L2(RN)

}
.

That u ∈ L2 lies in H1 means that its weak derivative ∇u also lies
in L2, By virtue of Riesz theorem, it means that we can find C > 0
such that for any φ ∈ C∞c (RN), we have

|〈∇u|φ〉| =
∣∣∣ ∫

RN

u(x)∇φ(x)dx
∣∣∣ ≤ C‖φ‖L2 .



Sobolev spaces, ctn’d

Next, we can play with higher derivatives and define recursively the
spaces Hk(RN), k ∈ N. We can work with Lp norms as well,
defining the spaces W k,p by imposing that derivatives up to order
k belong to Lp). The interest of the L2 framework is to offer an
hilbertian structure with the inner product

(u|v)Hk =
∑
|α|≤k

∫
RN

∂αu(x)∂αv(x) dx .



Sobolev spaces, Fourier viewpoint

Since ∇̂u(ξ) = iξû(ξ), we can also define H1 as

H1(RN) =
{
u : RN → R such that

∫
RN

(1 + ξ2)|û(ξ)|2 dξ <∞
}
.

More generally, given s ≥ 0,

Hs(RN) =
{
u : RN → R telle que

∫
RN

(1 + ξ2)s |û(ξ)|2 dξ <∞
}
,

an Hilbert space for the inner product

(u|v)Hs =

∫
RN

(1 + ξ2)s û(ξ)v̂(x) dξ.

Finally, we can consider negative s < 0, dealing with tempered
distributions.



Sobolev spaces, Fourier viewpoint, ctn’d

Observe that (1−∆)−1, which associate to f the sol. u of

(1−∆)u = f is given by û(ξ) = f̂ (ξ)
1+ξ2 . This defines an

isomorphism from H−1(RN) to H1(RN).

We have, for 0 < s < t,

C∞c ⊂ S ⊂ Ht ⊂ Hs ⊂ L2 ⊂ H−s ⊂ H−t ⊂ S ′ ⊂ D ′.



Exercices

Since δ̂0 = 1 and 1
(1+ξ2)s

∈ L1(RN) for s > N/2, we observe that

δ0 ∈ Hs(RN) pour tout s < −N/2.

The Heaviside function satisfies d
dx 1x≥0 = δ0, which yields

iξ1̂x≥0(ξ) = 1. Since elements of Hs(R) are locally square
integrable, 1x≥0 /∈ Hs(R) for any s ∈ R because
1/|ξ| /∈ L1(B(0, r)) for any r > 0.



Sobolev’s embedding theorem

Theorem. Let s > N/2. Then the elements of Hs(RN) are
continuous and bounded functions.

We are going to show that û ∈ L1 when u ∈ Hs with s > N/2.
Then the conclusion follows since we can apply the integral
expression of the inverse Fourier transform. Cauchy-Schwarz
inequality indeed yields∫

|û(ξ)|dξ =

∫
(1 + ξ2)s/2|û(ξ)|

(1 + ξ2)s/2
dξ ≤

√∫
dξ

(1 + ξ2)s
‖u‖Hs ,

where ξ 7→ 1
(1+ξ2)s

∈ L1(RN) when s > N/2.



Further properties of Sobolev spaces
Theorem. The following assertions hold

I For any φ ∈ S (RN) and s ∈ R, the application T 7→ φT is a
linear and continuous from Hs(RN) to Hs(RN).

I If s > N/2, Hs(RN) is an algebra.

The proof uses the result (Peetre’s lemma)

for any s ∈ R there exists Cs > 0 such that for any ξ, ζ ∈ RN

(1 + ξ2)s ≤ Cs(1 + ζ2)s(1 + |ξ − ζ|2)|s|
(1)

Indeed, for φ, u ∈ S , we get∫
(1 + ξ2)s |φ̂u(ξ)|2 dξ =

∫
(1 + ξ2)s

∣∣∣ ∫ φ̂(ξ − ζ)û(ζ) dζ
∣∣∣2 dξ

≤ C

∫ ∣∣∣ ∫ (1 + |ξ − ζ|2)|s|/2|φ̂(ξ − ζ)| (1 + ζ2)s/2|û(ζ)|dζ
∣∣∣2 dξ

the RHS can be written ‖F ? G‖2
L2 , with

F (ξ) = (1 + ξ2)|s|/2 |φ̂(ξ)|, G(ξ) = (1 + ξ2)s/2 |û(ξ)|.
By definition of Hs , we have G ∈ L2 with ‖G‖L2 = ‖u‖Hs , while φ ∈ S implies

φ̂ ∈ S , and F ∈ S ⊂ L1. We conclude with a density argument from

‖φu‖Hs ≤ C‖F‖L1‖G‖L2 ≤ C(φ)‖u‖Hs . (2)


