Fourier transform and PDE: Yukawa potentials, Sobolev
spaces
Resolution of A\u — Au=f

Let A > 0. Apply the Fourier transform to
Au—Au=f

It leads to

Note: if f € Z(RN), ¢ ,\+§,g)2 lies in .(RN) too. Since
(&)

£ 5 62 takes value in [0, 1], the function & — ez € L2(RN)
when f € L2(RV).




Resolution of \u — Au = f, |l

We can thus define

U(X) J&HX ( )\fj_ggﬂ ) ( )

We get a representation formula of u by using the inverse
transform. We are led to study

i) = 7L 0 = [ - nray

where the kernel K, corresponds to inverse Fourier transform of



Dimension 1

For N = 1, the function £ — is integrable: we split

1+§2
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1+€2 2(1+i€) +2(1—i§)‘

The two terms are not integrable, but they are image of Fourier

transform:
x(1+£i€)
1i/§ dx.
Therfore
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Dimension 1, ctn'd

We rescale to account for A\. We have

1 1 1 _l,feM <5>
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and

() = [ = L [ersiovmay

We conclude with
e_\/j‘lxl
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Note that K and its Fourier transform are both integrable : K),
belongs to the Wiener algebra.

K)\(X) =



Dimension 3: Yukawa's potential

We check that
K e—\&|x\
00 Ty
is elementary solution of the PDE : (A — A)K) = do.

Note: K is integrable over R3, smooth on {|x| > ¢} for any € > 0,
and

(AK\|p) = /}R3 Kr(x)Ag(x) dx = lim /H> Kxa(x)Agp(x) dx

e—=0

=lim = [ VR Vol dx o+ / . KA(X)W(X)-V(X)do(X)}
= elm) e AKA(x)p(x)dx — " VKx(x) - v(x)o(x) do(x)

+ /‘X‘:€ Kx(x)V(x) - v(x) da(x)} .



Dimension 3, ctn'd

When |x| > € > 0, we can compute

—VXlx|

s 5 )
and
—V x| I
. o e
—VAlx|
S L= VA =2) (VA ) = g} =
Since v(x) = —ﬁ = —w € S? we get

—V/Xe ,
/ _ Kx(x)Vo(x) - v(x)do(x) = — /s2 Vo(ew) - we” dw = O(€)

4me
and
e_ﬁ 2
o VKA(x) - v(x)p(x)do(x) = W/Sz (\f—!— )ew~w¢(ew)e dw
. — ¢(0).

e—0



General case

Note that

dg B o'} erl
/R’V (A+&)p CN/o (A +r?)p o

is finite for p > N/2. In particular £ — lies in L only for

1
e
N = 1; it lies in L? in dimensions 1,2,3. Nevertheless it still makes
sense to write

1 ex€
Ky(x)= lim ——= ——d&.
>\( ) R—o0 (27T)N /E|SR A+ 52 5
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1 Tt
= dt
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We can write




General case, ctn'd
It allows us to consider R — oo in

W) = i [ RN/ Ligjre” $e ™ g(x) dt dg dx

B W/o /RN S T (/RN eix'5¢(X)dx) de dt.

=3(—¢)

The integrand is dominated by e_tAe_t52|<$(f§)| € L1([0, 0co[xRM). Lebesgue's
theorem yields

N (27r)N/ /RN 2 N/z _Xz/(“)ﬁﬁ(X)dxdt-

where we used the exchange formula and the Fourier transform of the Gaussian

Fe )0 = (1) e,
t

We concude that

1 00 g th g—x*/(4t)
Ka(x) = (47r)N/2/ £N/2 dt.



Going back to N =3

We have

27 lr\x\ cos(6)

i %sin(0) dv do dr

( / X9 gin(9) de)

lr\ | 7!/")(‘
= dr
(2m)? / A+r? ir|x|
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Kar(x) =

We let R — oo by using the residues formula.



Going back to N = 3, ctn'd

reiz|x]

Indeed FZEC'—)m
half-plane {Im(z) > 0}. Integrate on 'k = [ R, R] U Cg, with Cg the half
circle with radius R, large enough for the pole to be inside the curve. We get

has a single singular point z = iv/}, in the

/ F(z)dz = 2imRes(F)(iv\) = 2ir 'fzef' | i e VAN
Tr

; /'O‘X‘

R ir|x| ™ iRe
re Re
- /R — dr+/0 Frr 5 R

We have
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since 0 — S'"g( ) in non increasing over [0, /2] which implies sin(6) > 2 pour
0 <6 <7/2. We deduce
o VAl

K)\(X) = Rll_>moo K)\yR(X) = T'X‘
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Sobolev spaces

We wish to construct a hierarchy of functional spaces measuring
the regularity of solutions of PDEs. We already know the spaces
C¥, but it is convenient to construct spaces based on the notion of
weak derivatives instead.

Let

HY(RN) = {u: RV — R such that v € L2(R") and Vu € L2(RY)}.

That u € L2 lies in H! means that its weak derivative Vu also lies
in L2, By virtue of Riesz theorem, it means that we can find C > 0
such that for any ¢ € C°(RV), we have

Vel =| [ | ubVaax| < Clole



Sobolev spaces, ctn'd

Next, we can play with higher derivatives and define recursively the
spaces HK(RN), k € N. We can work with LP norms as well,
defining the spaces W*P by imposing that derivatives up to order
k belong to LP). The interest of the L2 framework is to offer an
hilbertian structure with the inner product

@ = Y [ o u)dvix) d.

la|<k



Sobolev spaces, Fourier viewpoint
Since Vu(¢) = i¢h(€), we can also define H as

HY(RN) = {u RN—>]Rsuchthat/ (1+§2)|a(§)\2d§<oo}.

RN

More generally, given s > 0,

HS(RN):{U:RN%RteHe que/ (1+&>)%a ()]2d§<oo},

RN

an Hilbert space for the inner product

(e = [ 1+ EFANTEI .

Finally, we can consider negative s < 0, dealing with tempered
distributions.



Sobolev spaces, Fourier viewpoint, ctn'd

Observe that (1 — A)~!, which associate to f the sol. u of

(1— A)u = f is given by G(¢) = 1. This defines an

isomorphism from H71(RN) to H(RN).

We have, for 0 < s < t,

CCYCHCH CI?CH® cH'cY c.



Exercices

Since 6o = 1 and ﬁ € [1(RN) for s > N /2, we observe that

5o € H*(RN) pour tout s < —N/2.

The Heaviside function satisfies d%(lxzo = §p, which yields

igﬂ;(g) = 1. Since elements of H*(IR) are locally square
integrable, 1,50 ¢ H*(R) for any s € R because
1/1€] ¢ LY(B(0,r)) for any r > 0.



Sobolev's embedding theorem

Theorem. Let s > N/2. Then the elements of H5(R"V) are
continuous and bounded functions.

We are going to show that & € L when u € H® with s > N/2.
Then the conclusion follows since we can apply the integral
expression of the inverse Fourier transform. Cauchy-Schwarz
inequality indeed yields

(1+&2)*/[a(¢)| d¢
Jiaenas = [T e < | [ astule

€ LY(RV) when s > N/2.

where £ — (1+£2)



Further properties of Sobolev spaces

Theorem. The following assertions hold
» Forany ¢ € .7(RN) and s € R, the application T+ ¢ T is a
linear and continuous from H*(RN) to H*(RN).
> If s > N/2, HS(RV) is an algebra.

The proof uses the result (Peetre’s lemma)

for any s € R there exists C; > 0 such that for any &,¢ € RV (1)
(1+€) < GE+EPE+[E— ¢
Indeed, for ¢, u € .7, we get
2\s | 2 2\s i -~ 2
Ja+eriguora = [a+ey| [ae-oae | a
<c [| farie=cpymae - o @+ a0l de
the RHS can be written ||F x G||,, with

FE =@+ 39,  G€) =@+ a)l.
By definition of H°, we have G € L* with ||G||2 = ||u|ns, while ¢ € .7 implies
¢ €., and F €. C L*. We conclude with a density argument from

lpullae < CIFlIGll < C(6)llullue. 2)




