
Lax-Milgram Theorem

Let E be a Hilbert space. Let a : E × E → C be a sesquilinear
form1 such that

continuity : ∃C > 0 s. t. ∀x , y ∈ E one has |a(x , y)| ≤ C‖x‖ ‖y‖,
coercivity : ∃α > 0 s. t. ∀x ∈ E one has Re a(x , x) ≥ α‖x‖2.

Let ` : E → C be an anti-linear form2 continuous on E .3 Then
there exists a unique x ∈ E such that for any y ∈ E ,
a(x , y) = `(y). If a is hermitian, then x is characterized by

1

2
a(x , x)− `(x) = inf

{1

2
a(z , z)− Re `(z), z ∈ E

}
.

1For any x , x ′ ∈ E , y , y ′ ∈ E , λ ∈ C, we have
a(x + x ′, y) = a(x , y) + a(x ′, y), a(λx , y) = λa(x , y),
a(x , y + y ′) = a(x , y) + a(x , y ′), a(x , λy) = λa(x , y).

2For any x , x ′ ∈ E , λ ∈ C, one has `(x + x ′) = `(x) + `(x ′) et
`(λx) = λ`(x).

3There exists C > 0 such that for any x ∈ E , one has |`(x)| ≤ C‖x‖.



Proof
Hermitian case. Apply Riesz’ theorem with norm
N(x) =

√
a(x , x), noting that N and ‖ · ‖ are equivalent norms

on E .

General case. y ∈ E 7−→ a(x , y) ∈ C is a anti-linear form on E .
Riesz’ theorem allows us to define

A : E −→ E
x 7−→ Ax

such that
a(x , y) = (Ax , y).

Check that A ∈ L(E ) with |||A||| ≤ C . Similarly Riesz’ theorem
identifies ` with a vector f ∈ E : for any y ∈ E

`(y) = (f , y), ‖f ‖ = |||`|||.

The problem becomes

To find x ∈ E such that y ∈ E , (Ax − f , y) = 0.

We search for x ∈ E such that Ax = f .



Proof, ctn’d

Let
T : E −→ E

x 7−→ x − ρ(Ax − f )

with ρ > 0 to be determined.
Idea: x , solution of Ax = f , is found as a fixed point fixe of T .
We have

‖T (x)− T (x ′)‖2
= ‖x − ρ(Ax − f )− x ′ + ρ(Ax ′ − f )‖2 = ‖x − x ′ − ρA(x − x ′)‖2
= ‖x − x ′‖2 + ρ2‖A(x − x ′)‖2

−ρ
(
(x − x ′,A(x − x ′)) + (A(x − x ′), x − x ′)

)
= ‖x − x ′‖2 + ρ2‖A(x − x ′)‖2 − 2ρ Re (A(x − x ′), x − x ′)
= ‖x − x ′‖2 + ρ2‖A(x − x ′)‖2 − 2ρ Re a(x − x ′, x − x ′)
≤ ‖x − x ′‖2(1 + ρ2|||A|||2 − 2ρα).

For ρ(ρ|||A|||2 − 2α) < 0, T is a contraction. Banach’s theorem tells
us that T has a unique fixed point.



Hermitian case

Let J (x) =
1

2
a(x , x)− Re (f , x) ∈ R. Note that A = A? since

a(x , y) = (Ax , y) = (x ,A?y) = a(y , x) = (Ay , x) = (x ,Ay).
Hence

J (x + h) = J (x) + Re (Ax − f , h) +
1

2
a(h, h)

where a(h, h) ≥ α‖h‖2 ≥ 0. If x vérifie Ax = f , then
J (x + h) ≥ J (x). Reciprocally, if x minimizes J then with
h = ±αk and h = ±iαk , α > 0 going to 0, we obtain Ax = f .



A crucial remark

Let x ∈ E solution of a(x , y) = `(y) for any y ∈ E . Choosing
y = x we get

α‖x‖ ≤ ‖f ‖ = |||`|||.

We can define the inverse opreator A−1 : E → E par A−1f = x .
We have A−1 ∈ L(E ) with

|||A−1||| ≤ 1/α.



Estimates for elliptic equations
We go back to the model problem

λu −∇ · (A∇u) = f

with Dirichlet b. c.
The matrix valued function A is supposed to have bounded
coefficients such that A(x)ξ · ξ ≥ α|ξ|2 for some α > 0.
Variational formulation: for any v ∈ H1

0 ,

λ

∫
uv dx +

∫
A∇u · ∇v dx =

∫
fv dx .

In particular, we can use this with v = u. It leads to

λ‖u‖2L2 + α‖∇u‖2L2 ≤ ‖f ‖L2‖u‖L2 .

In any case (including λ = 0 with Poincaré’s inequality), it yields

‖u‖H1 ≤ C‖f ‖L2 .

Consequence: the operator f 7→ u is compact on L2.



Maximum principle: Stampacchia’s method
We can find further useful estimates. Idea: work with v = Φ(u)
with suitable Φ.
Lemma. Let Φ ∈ C 1(R) with Φ(0) = 0 and |Φ′(z)| ≤ M for any
z ∈ R. For any u ∈ H1, we have

Φ(u) ∈ H1, ∇Φ(u) = Φ′(u)∇u.

Since |Φ(u)| ≤ M|u| and |Φ′(u)∇u| ≤ |∇u|, these two functions
belong to L2. Consider a sequence un of functions in C∞c which
converges to u in H1 and a. e.. For any ψ ∈ C∞c , we have∫

Φ(un)∇ψ dx = −
∫

Φ′(un)∇unψ dx

Then, by dominated convergence Φ(un) and Φ′(un)∇un converge
to Φ(u) and Φ(u)∇u in L2, respectively, which allows us to
identify ∇Φ(u).

The statement still applies with Φ uniformly lipschitzian
(Φ ∈W 1,∞).



Maximum principle: Stampacchia’s method

The idea is to work with v = Φ(u).
Claim: if f ≥ 0 then u ≥ 0.
Work with Φ(z) = 0 when z ≥ 0, Φ(z) < 0 when z < 0, Φ non
decreasing. (Ex.: typically [z ]− = min(z , 0)).
We get

λ

∫
uΦ(u) dx +

∫
Φ′(u)A∇u · ∇u dx =

∫
f Φ(u) dx ≤ 0.

In the LHS all terms are ≥ 0. If λ > 0, we can conclude directly:
uΦ(u) vanishes a. e. which means u ≥ 0 a. e. Otherwise, we
should work with

Ψ(z) =

∫ z

0

√
Φ′(s) ds

We have ∇Ψ(u) = 0 and Ψ(u) ∈ H1
0 so that Ψ(u) = 0 a. e., hence

u ≥ 0.



Application: homogeneization in 1D

− d

dx

(
a(x)

d

dx
u(x)

)
= f (x), x ∈]0, 1[ (1)

with Dirichlet b. c.
u(0) = 0 = u(1). (2)

Suppose

a, f ∈ C 0([0, 1]), 0 < a? ≤ a(x) ≤ a? <∞.

We integrate by hand

u(x) =

∫ x

0

1

a(y)

(
C −

∫ y

0
f (z) dz

)
dy ,

C =

∫ 1

0

1

a(y)

(∫ y

0
f (z) dz

)
dy ×

(∫ 1

0

1

a(y)
dy

)−1
.



Application: homogeneization in 1D, ctn’d

Consider a sequence 0 < a? ≤ an(x) ≤ a? <∞.
The sequences un(x) and u′n(x) = d

dx un(x) are uniformly bounded
wrt x ∈ [0, 1] and n ∈ N by a constant depending only on a?, a

?

and supx∈[0,1] |f (x)|.
By Arzela-Ascoli’s theorem we can extract a subsequence

(
unk
)
k∈N

which converges uniformly to u on [0, 1].
What is the eq. satisfied by the limit u(x) ?

The variational framework provides directly L2 estimates (by virtue
of Poincaré’s lemma):

a?‖u′n‖L2 ≤ C‖f ‖L2

un is bounded in H1
0 , u′n is bounded in L2. We can assume, for a

subsequence, that un → u strongly and u′n ⇀ u′ weakly in L2.



Naive guess

u could satisfy the same equation with the constant coefficient∫ 1
0 α(y) dy , an intuition based on

Lemma. Let bn(x) = β(nx) where β is bounded and 1-périodique.

Let β̄ =
∫ 1
0 β(y) dy . Then, for any ϕ ∈ C 0

c (]0, 1[) we have

lim
n→∞

∫ 1

0
bn(x)ϕ(x) dx =

∫ 1

0
β̄ϕ(x) dx .

bn converges weakly to β̄

cf. Riemann-Lebesgue theorem: e i2πnx converges weakly to 0 in
L2((0, 1)).



Proof
We have∫ 1

0
an(x)ϕ(x) dx − α

∫ 1

0
ϕ(x) dx =

n−1∑
k=0

∫ (k+1)/n

k/n

(
α(nx)− α

)
ϕ(x) dx

=
n−1∑
k=0

∫ 1

0

(
α(y)− α

)
ϕ((y + k)/n) dy/n

=

∫ 1

0

(
α(y)− α

)1

n

n−1∑
k=0

ϕ((y + k)/n) dy .

Observe that

1

n

n−1∑
k=0

ϕ((y+k)/n)−
∫ 1

0
ϕ(z) dz =

n−1∑
k=0

∫ (k+1)/n

k/n

(
ϕ((y+k)/n)−ϕ(z)

)
dz

is dominated, for ϕ in C 1, by

sup
ξ∈(0,1)

|ϕ′(ξ)|
n−1∑
k=0

∫ (k+1)/n

k/n
|y/n + k/n − z |dz ≤ 2 sup

ξ∈(0,1)
|ϕ′(ξ)|/n.

This quantity thus tends to 0 as n→∞ and is dominated.



A product lemma

Let
(
vn
)
n∈N and

(
wn

)
n∈N be two sequences of continuous

functions, uniformly bounded. Assume that vn converges weakly to
v and wn converges uniformly to w. Then vnwn converges weakly
to vw.

Indeed, we have∫ 1

0
(vnwn−vw)ϕ(x) dx =

∫ 1

0
(vn−v)wϕ(x) dx+

∫ 1

0
vn(wn−w)ϕ(x) dx

The 1st integral tends to 0 as n→∞ since vn ⇀ v the 2nd is
dominated by supm |vm|L∞‖un − u‖L∞‖ ‖ϕ‖L1 , which equally tends
to 0.

Similar conclusion with strong L2 convergence instead of uniform
convergence.



Passage to the limit

This statement does not apply for our purposes: neither
(
an
)
n∈N

nor
(
u′n
)
n∈N converge uniformly.

Idea: consider wn(x) = an(x)u′n(x)
The equation tells us it satisfies Arzela-Ascoli’s criterion. We can
thus suppose (subsequence) that

(
wnk

)
k∈N converges uniformly to

some w on [0, 1]. We get

u′nk (x) =
1

ank (x)
wnk (x) converges weakly to

∫ 1

0

dy

α(y)
w(x).



Effective coefficient
Let ϕ ∈ C∞c ((0, 1)).∫ 1

0
u′nϕ(x) dx = −

∫ 1

0
unϕ

′(x) dx

tends to ∫ 1

0
1/α w(x)ϕ(x) dx = −

∫ 1

0
uϕ′(x) dx .

Set U(x) =

∫ x

0
1/α w(y) dy ∈ C 1([0, 1]) so that∫ 1

0

(
u(x)− U(x)

)
ϕ′(x) dx = 0.

It holds for any ϕ ∈ C∞c ((0, 1)), and we deduce u(x) = U(x) a. e.
u′(x) = 1/α w(x).
Similarly, letting k →∞ in the eq. yields

−w ′(x) = f (x) = − d

dx

(
aeff

d

dx
u(x)

)
, aeff =

(∫ 1

0

dy

α(y)

)−1



Continuous and L2 framework
In dimension N = 1, we can also go back to the explicit formula

un(x) =

∫ x

0

1

an(y)

(
Cn −

∫ y

0
f (z) dz

)
dy ,

Cn =

∫ 1

0

1

an(y)

(∫ y

0
f (z) dz

)
dy ×

(∫ 1

0

1

an(y)
dy

)−1
.

We remark that Cn tends to

C =

∫ 1

0

∫ 1

0

dy

a(y)

(∫ y

0
f (z) dz

)
dy ×

(∫ 1

0

1

a(y)
dy

)−1
.

and we can directly check that un converges to

u(x) =

∫ x

0

∫ 1

0

dy ′

a(y ′)

(
C −

∫ y

0
f (z) dz

)
dy .

This being said, we verify that this u satisfies

− d

dx

(
aeff

d

dx
u
)

= f



Continuous and L2 framework

The proof presented here uses “elementary” functional arguments.
The proof can be adapted to the L2/H1 framework, using weak
and strong convergences in L2 instead on weak and uniform
convergence.

This cannot be avoided in higher dimensions.



Homogeneization in higher dimensions

−∇ · (An∇un) = f and Dirichlet b. c.

where supi ,j ,x |[An]ij(x)| ≤ a? and A(x)ξ · ξ ≥ a?|ξ|2,
0 < a? < a? <∞.
We still have ‖∇un‖L2 ≤ C‖f ‖L2 . We can thus assume that

un → u, ∇un ⇀ ∇u.



Compensated Compactness
Let Un = (U1

n , . . . ,U
N
n ) and Vn = (V 1

n , . . . ,V
N
n ) be sequences of

RN vector fields with components bounded in L2(RN). We assume
that

U i
n ⇀ U i , V i

n ⇀ V i weakly in L2(RN), for any i ∈ {1, . . . ,N}.

Then, we address the question of the behavior of the inner
product Un · Vn =

∑N
i=1 U

i
nV

i
n.

Of course, by using the Rellich theorem, the limit is U · V when we
have additional bounds on the whole derivative of one of the vector
fields, say ∂jU

i
n bounded in L2(RN) for any i , j ∈ {1, . . . ,N}. In

such a very favorable case, we actually have convergence
componentwise U i

nV
i
n ⇀ U iV i in D′(RN).

The div-curl lemma needs information on certain first order
derivatives of Un combined with, in some sense complementary,
(first order) derivatives of Vn, so that the inner product passes to
the limit, even if convergences do not hold componentwise.



Compensated Compactness

Let us define the scalar quantity

div(Un) =
N∑
i=1

∂iU
i
n

and the matrix valued quantity(
curl(Vn)

)
ij

= ∂iV
j
n − ∂jV i

n.

Lemma [F. Murat and L. Tartar]. Suppose furthermore that

div(Un) and curl(Vn) are compact in H−1(RN).

Then, Un · Vn
∑N

i=1 U
i
nV

i
n ⇀

∑N
i=1 U

iV i = U · V in D′(RN).

The proof is actually very simple by means of Fourier transform
where we see how oscillations compensates. Without loss of
generality, we can suppose that U = 0 = V .



Proof
Then, our task is to show that, given ψ ∈ C∞c (RN),

lim
n→∞

∫
RN

Un · Vn ψ dx = 0.

Let us denote In the integral under consideration. Pick
ϕ ∈ C∞c (RN) such that 0 ≤ ϕ(x) ≤ 1 on RN with ϕ(x) = 1 on
supp(ψ), so that

In =

∫
RN

Unϕ · Vnψ dx .

Let us set Ũn = Unϕ and Ṽn = Vnψ that both tend weakly to 0 in
L2(RN) and are compactly supported. We deduce that the Fourier
transform ̂̃

Un(ξ) =

∫
RN

e−ix ·ξUn(x) dx −−−→
n→∞

0 a.e

with the uniform estimate

|̂̃Un(ξ)| ≤ ‖Un‖L2(RN) meas(supp(ϕ)) ≤ C <∞.

Similar conclusions hold for
̂̃
Vn.



Proof
Then, by the Plancherel formula, In can be recast as

In =

∫
RN

̂̃
Un(ξ) · ̂̃Vn(ξ) dξ.

Now, the additional assumption means for any i , j ∈ {1, . . . ,N},
N∑
i=1

ξi
̂̃
U i
n√

1 + |ξ|2
and

ξi
̂̃
V j
n − ξj

̂̃
V i
n√

1 + |ξ|2
−−−→
n→∞

0 strongly in L2(RN).

We write 
In = Jn + Kn,

Jn =

∫
RN

1

1 + |ξ|2
̂̃
Un(ξ) · ̂̃Vn(ξ) dξ,

Kn =

∫
RN

|ξ|2

1 + |ξ|2
̂̃
Un(ξ) · ̂̃Vn(ξ) dξ

Then, we split Jn =

∫
|ξ|≤R

. . . dξ +

∫
|ξ|≥R

. . . dξ.



Proof

We readily show that Jn tends to 0 as n→∞, since on the one
hand∣∣∣∣∣
∫
|ξ|≥R

. . . dξ

∣∣∣∣∣ ≤ ‖ψ‖L∞(RN)

‖Un‖L2(RN) ‖Vn‖L2(RN)

1 + R2
≤ C

1 + R2

can be made arbitrarily small by choosing R large enough, while,
for any fixed 0 < R <∞, the pointwise convergences and bounds
discussed above yield

lim
n→∞

∫
|ξ|≤R

. . . dξ = 0,

by virtue of the Lebesgue theorem.



Proof

Next, we get

Kn =
N∑

i ,j=1

∫
RN

ξi ξi
̂̃
U j
n
̂̃
V j
n

1 + |ξ|2

=
N∑

i ,j=1

∫
RN

ξi√
1 + |ξ|2

̂̃
U j
n
ξi
̂̃
V j
n − ξj

̂̃
V i
n√

1 + |ξ|2
dξ

+
N∑
i=1

∫
RN

ξi√
1 + |ξ|2

N∑
j=1

ξj
̂̃
U j
n√

1 + |ξ|2
̂̃
V i
n dξ

Then, the integrand in both integral of the right hand side reads as
the product of the bounded quantity ξi/

√
1 + |ξ|2 ∈ L∞(RN)

times a sequence that is bounded in L2(RN) times a sequence that
converges strongly to 0 in L2(RN). Accordingly, Kn goes to 0 as
n→ 0, which ends the proof.


