Lax-Milgram Theorem

Let E be a Hilbert space. Let $a:E\times E\to \mathbb{C}$ be a sesquilinear form 1 such that

continuity : $\exists C > 0$ s. t. $\forall x, y \in E$ one has $|a(x, y)| \leq C ||x|| ||y||$, coercivity : $\exists \alpha > 0$ s. t. $\forall x \in E$ one has Re $a(x, x) \geq \alpha ||x||^2$.

Let $\ell : E \to \mathbb{C}$ be an anti-linear form² continuous on $E^{,3}$ Then there exists a unique $x \in E$ such that for any $y \in E$, $a(x,y) = \ell(y)$. If *a* is **hermitian**, then *x* is characterized by

$$\frac{1}{2}a(x,x)-\ell(x)=\inf\Big\{\frac{1}{2}a(z,z)-\operatorname{Re}\,\ell(z),\,z\in E\Big\}.$$

¹For any $x, x' \in E, y, y' \in E, \lambda \in \mathbb{C}$, we have $a(x + x', y) = a(x, y) + a(x', y), a(\lambda x, y) = \lambda a(x, y),$ $a(x, y + y') = a(x, y) + a(x, y'), a(x, \lambda y) = \overline{\lambda} a(x, y).$ ²For any $x, x' \in E, \lambda \in \mathbb{C}$, one has $\ell(x + x') = \ell(x) + \ell(x')$ et $\ell(\lambda x) = \overline{\lambda} \ell(x).$ ³There exists C > 0 such that for any $x \in E$, one has $|\ell(x)| \leq C ||x||_{\mathbb{R}^{+}}$

Hermitian case. Apply Riesz' theorem with norm $N(x) = \sqrt{a(x,x)}$, noting that N and $\|\cdot\|$ are equivalent norms on E.

General case. $y \in E \mapsto a(x, y) \in \mathbb{C}$ is a anti-linear form on *E*. Riesz' theorem allows us to define

A :	Ε	\longrightarrow	Ε
	x	\mapsto	Ax

such that

$$a(x,y)=(Ax,y).$$

Check that $A \in \mathcal{L}(E)$ with $||A|| \leq C$. Similarly Riesz' theorem identifies ℓ with a vector $f \in E$: for any $y \in E$

$$\ell(y) = (f, y), \qquad ||f|| = |||\ell|||.$$

The problem becomes

To find $x \in E$ such that $y \in E$, (Ax - f, y) = 0.

We search for $x \in E$ such that Ax = f.

Proof, ctn'd

Let

$$T: E \longrightarrow E$$

$$x \longmapsto x - \rho(Ax - f)$$

with $\rho > 0$ to be determined.

Idea: x, solution of Ax = f, is found as a fixed point fixe of T. We have

$$\begin{split} \|T(x) - T(x')\|^2 \\ &= \|x - \rho(Ax - f) - x' + \rho(Ax' - f)\|^2 = \|x - x' - \rho A(x - x')\|^2 \\ &= \|x - x'\|^2 + \rho^2 \|A(x - x')\|^2 \\ &- \rho((x - x', A(x - x')) + (A(x - x'), x - x')) \\ &= \|x - x'\|^2 + \rho^2 \|A(x - x')\|^2 - 2\rho \operatorname{Re} (A(x - x'), x - x') \\ &= \|x - x'\|^2 + \rho^2 \|A(x - x')\|^2 - 2\rho \operatorname{Re} a(x - x', x - x') \\ &\leq \|x - x'\|^2 (1 + \rho^2 \|A\|^2 - 2\rho\alpha). \end{split}$$

For $\rho(\rho |||A|||^2 - 2\alpha) < 0$, T is a contraction. Banach's theorem tells us that T has a unique fixed point.

Hermitian case

Let
$$\mathcal{J}(x) = \frac{1}{2}a(x,x) - \operatorname{Re}(f,x) \in \mathbb{R}$$
. Note that $A = A^*$ since $a(x,y) = (Ax,y) = (x,A^*y) = \overline{a(y,x)} = \overline{(Ay,x)} = (x,Ay)$.
Hence

$$\mathcal{J}(x+h) = \mathcal{J}(x) + \operatorname{Re} (Ax - f, h) + \frac{1}{2}a(h, h)$$

where $a(h,h) \ge \alpha ||h||^2 \ge 0$. If x vérifie Ax = f, then $\mathcal{J}(x+h) \ge \mathcal{J}(x)$. Reciprocally, if x minimizes \mathcal{J} then with $h = \pm \alpha k$ and $h = \pm i \alpha k$, $\alpha > 0$ going to 0, we obtain Ax = f.

A crucial remark

Let $x \in E$ solution of $a(x, y) = \ell(y)$ for any $y \in E$. Choosing y = x we get

$$\alpha \|\mathbf{x}\| \le \|f\| = \|\ell\|.$$

We can define the inverse opreator $A^{-1}: E \to E$ par $A^{-1}f = x$. We have $A^{-1} \in \mathcal{L}(E)$ with

$$|\!|\!| A^{-1} |\!|\!| \le 1/\alpha.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Estimates for elliptic equations

We go back to the model problem

$$\lambda u - \nabla \cdot (A \nabla u) = f$$

with Dirichlet b. c.

The matrix valued function A is supposed to have bounded coefficients such that $A(x)\xi \cdot \xi \ge \alpha |\xi|^2$ for some $\alpha > 0$. Variational formulation: for any $v \in H_0^1$,

$$\lambda \int u\mathbf{v} \, \mathrm{d}x + \int A \nabla u \cdot \nabla v \, \mathrm{d}x = \int f \mathbf{v} \, \mathrm{d}x.$$

In particular, we can use this with v = u. It leads to

$$\lambda \|u\|_{L^2}^2 + \alpha \|\nabla u\|_{L^2}^2 \le \|f\|_{L^2} \|u\|_{L^2}.$$

In any case (including $\lambda = 0$ with Poincaré's inequality), it yields

$$||u||_{H^1} \leq C ||f||_{L^2}.$$

Consequence: the operator $f \mapsto u$ is compact on $\mathcal{L}^2_{\text{res}}$

Maximum principle: Stampacchia's method

We can find further useful estimates. Idea: work with $v = \Phi(u)$ with suitable Φ .

Lemma. Let $\Phi \in C^1(\mathbb{R})$ with $\Phi(0) = 0$ and $|\Phi'(z)| \leq M$ for any $z \in \mathbb{R}$. For any $u \in H^1$, we have

 $\Phi(u) \in H^1, \qquad \nabla \Phi(u) = \Phi'(u) \nabla u.$

Since $|\Phi(u)| \leq M|u|$ and $|\Phi'(u)\nabla u| \leq |\nabla u|$, these two functions belong to L^2 . Consider a sequence u_n of functions in C_c^{∞} which converges to u in H^1 and a. e.. For any $\psi \in C_c^{\infty}$, we have

$$\int \Phi(u_n) \nabla \psi \, \mathrm{d} x = - \int \Phi'(u_n) \nabla u_n \psi \, \mathrm{d} x$$

Then, by dominated convergence $\Phi(u_n)$ and $\Phi'(u_n)\nabla u_n$ converge to $\Phi(u)$ and $\Phi(u)\nabla u$ in L^2 , respectively, which allows us to identify $\nabla \Phi(u)$.

The statement still applies with Φ uniformly lipschitzian $(\Phi \in W^{1,\infty})$.

Maximum principle: Stampacchia's method

The idea is to work with $v = \Phi(u)$. Claim: if $f \ge 0$ then $u \ge 0$. Work with $\Phi(z) = 0$ when $z \ge 0$, $\Phi(z) < 0$ when z < 0, Φ non decreasing. (Ex.: typically $[z]_{-} = \min(z, 0)$). We get

$$\lambda \int u \Phi(u) \, \mathrm{d}x + \int \Phi'(u) A \nabla u \cdot \nabla u \, \mathrm{d}x = \int f \Phi(u) \, \mathrm{d}x \leq 0.$$

In the LHS all terms are ≥ 0 . If $\lambda > 0$, we can conclude directly: $u\Phi(u)$ vanishes a. e. which means $u \geq 0$ a. e. Otherwise, we should work with

$$\Psi(z) = \int_0^z \sqrt{\Phi'(s)} \,\mathrm{d}s$$

We have $\nabla \Psi(u) = 0$ and $\Psi(u) \in H_0^1$ so that $\Psi(u) = 0$ a. e., hence $u \ge 0$.

Application: homogeneization in 1D

$$-\frac{d}{dx}\left(a(x)\frac{d}{dx}u(x)\right) = f(x), \qquad x \in]0,1[$$
(1)

with Dirichlet b. c.

$$u(0) = 0 = u(1).$$
 (2)

Suppose

$$a, f \in C^0([0,1]), \qquad 0 < a_\star \leq a(x) \leq a^\star < \infty.$$

We integrate by hand

$$u(x) = \int_0^x \frac{1}{a(y)} \left(C - \int_0^y f(z) \, \mathrm{d}z \right) \, \mathrm{d}y,$$
$$C = \int_0^1 \frac{1}{a(y)} \left(\int_0^y f(z) \, \mathrm{d}z \right) \, \mathrm{d}y \times \left(\int_0^1 \frac{1}{a(y)} \, \mathrm{d}y \right)^{-1}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

•

Application: homogeneization in 1D, ctn'd

Consider a **sequence** $0 < a_* \le a_n(x) \le a^* < \infty$. The sequences $u_n(x)$ and $u'_n(x) = \frac{d}{dx}u_n(x)$ are uniformly bounded wrt $x \in [0,1]$ and $n \in \mathbb{N}$ by a constant depending only on a_*, a^* and $\sup_{x \in [0,1]} |f(x)|$. By Arzela-Ascoli's theorem we can extract a subsequence $(u_{n_k})_{k \in \mathbb{N}}$ which converges uniformly to u on [0,1]. What is the eq. satisfied by the limit u(x)?

The variational framework provides directly L^2 estimates (by virtue of Poincaré's lemma):

$$a_{\star} \|u_n'\|_{L^2} \leq C \|f\|_{L^2}$$

 u_n is bounded in H_0^1 , u'_n is bounded in L^2 . We can assume, for a subsequence, that $u_n \to u$ strongly and $u'_n \to u'$ weakly in L^2 .

Naive guess

u could satisfy the same equation with the constant coefficient $\int_0^1 \alpha(y)\,\mathrm{d} y,$ an intuition based on

Lemma. Let $b_n(x) = \beta(nx)$ where β is bounded and 1-périodique. Let $\overline{\beta} = \int_0^1 \beta(y) \, dy$. Then, for any $\varphi \in C_c^0(]0, 1[)$ we have

$$\lim_{n\to\infty}\int_0^1 b_n(x)\varphi(x)\,\mathrm{d} x=\int_0^1\bar\beta\varphi(x)\,\mathrm{d} x.$$

b_n converges weakly to $\bar{\beta}$

cf. Riemann-Lebesgue theorem: $e^{i2\pi nx}$ converges weakly to 0 in $L^2((0,1))$.

(日) (同) (三) (三) (三) (○) (○)

We have

$$\int_0^1 a_n(x)\varphi(x) \, dx - \overline{\alpha} \int_0^1 \varphi(x) \, dx = \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} \left(\alpha(nx) - \overline{\alpha}\right)\varphi(x) \, dx$$
$$= \sum_{k=0}^{n-1} \int_0^1 \left(\alpha(y) - \overline{\alpha}\right)\varphi((y+k)/n) \, dy/n$$
$$= \int_0^1 \left(\alpha(y) - \overline{\alpha}\right) \frac{1}{n} \sum_{k=0}^{n-1} \varphi((y+k)/n) \, dy.$$

Observe that

$$\frac{1}{n}\sum_{k=0}^{n-1}\varphi((y+k)/n) - \int_0^1\varphi(z)\,\mathrm{d}z = \sum_{k=0}^{n-1}\int_{k/n}^{(k+1)/n}\left(\varphi((y+k)/n) - \varphi(z)\right)\,\mathrm{d}z$$

is dominated, for φ in $\mathit{C}^1,$ by

$$\sup_{\xi \in (0,1)} |\varphi'(\xi)| \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} |y/n + k/n - z| \, \mathrm{d}z \le 2 \sup_{\xi \in (0,1)} |\varphi'(\xi)|/n.$$

This quantity thus tends to 0 as $n \to \infty$ and is dominated.

A product lemma

Let $(v_n)_{n \in \mathbb{N}}$ and $(w_n)_{n \in \mathbb{N}}$ be two sequences of continuous functions, uniformly bounded. Assume that v_n converges weakly to v and w_n converges uniformly to w. Then $v_n w_n$ converges weakly to vw.

Indeed, we have

$$\int_0^1 (v_n w_n - v w) \varphi(x) \, dx = \int_0^1 (v_n - v) w \varphi(x) \, dx + \int_0^1 v_n (w_n - w) \varphi(x) \, dx$$

The 1st integral tends to 0 as $n \to \infty$ since $v_n \rightharpoonup v$ the 2nd is dominated by $\sup_m |v_m|_{L^{\infty}} ||u_n - u||_{L^{\infty}} || ||\varphi||_{L^1}$, which equally tends to 0.

Similar conclusion with strong L^2 convergence instead of uniform convergence.

Passage to the limit

This statement does not apply for our purposes: neither $(a_n)_{n \in \mathbb{N}}$ nor $(u'_n)_{n \in \mathbb{N}}$ converge uniformly.

Idea: consider $w_n(x) = a_n(x)u'_n(x)$

The equation tells us it satisfies Arzela-Ascoli's criterion. We can thus suppose (subsequence) that $(w_{n_k})_{k\in\mathbb{N}}$ converges uniformly to some w on [0, 1]. We get

$$u_{n_k}'(x)=rac{1}{a_{n_k}(x)}\,\,w_{n_k}(x)$$
 converges weakly to $\int_0^1rac{dy}{lpha(y)}\,\,w(x).$

(日) (同) (三) (三) (三) (○) (○)

Effective coefficient

Let
$$\varphi \in C_c^{\infty}((0,1)).$$

$$\int_0^1 u'_n \varphi(x) \, dx = -\int_0^1 u_n \varphi'(x) \, dx$$

Set
$$U(x) = \int_0^1 \overline{1/\alpha} w(x)\varphi(x) dx = -\int_0^1 u\varphi'(x) dx.$$

$$\int_0^x \overline{1/\alpha} w(y) dy \in C^1([0,1]) \text{ so that}$$
$$\int_0^1 (u(x) - U(x))\varphi'(x) dx = 0.$$

It holds for any $\varphi \in C^{\infty}_{c}((0,1))$, and we deduce u(x) = U(x) a. e. $u'(x) = 1/\alpha w(x).$ Similarly, letting $k \to \infty$ in the eq. yields

$$-w'(x) = f(x) = -\frac{d}{dx} \left(a_{\text{eff}} \frac{d}{dx} u(x) \right), \qquad a_{\text{eff}} = \left(\int_0^1 \frac{dy}{\alpha(y)} \right)^{-1}$$

-1

Continuous and L^2 framework

In dimension N = 1, we can also go back to the explicit formula

$$u_n(x) = \int_0^x \frac{1}{a_n(y)} \left(C_n - \int_0^y f(z) \, \mathrm{d}z \right) \, \mathrm{d}y,$$
$$C_n = \int_0^1 \frac{1}{a_n(y)} \left(\int_0^y f(z) \, \mathrm{d}z \right) \, \mathrm{d}y \times \left(\int_0^1 \frac{1}{a_n(y)} \, \mathrm{d}y \right)^{-1}$$

We remark that C_n tends to

$$C = \int_0^1 \int_0^1 \frac{\mathrm{d}y}{a(y)} \left(\int_0^y f(z) \,\mathrm{d}z \right) \,\mathrm{d}y \times \left(\int_0^1 \frac{1}{a(y)} \,\mathrm{d}y \right)^{-1}$$

and we can directly check that u_n converges to

$$u(x) = \int_0^x \int_0^1 \frac{\mathrm{d}y'}{a(y')} \left(C - \int_0^y f(z) \,\mathrm{d}z\right) \,\mathrm{d}y.$$

This being said, we verify that this u satisfies

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathbf{a}_{\mathrm{eff}}\frac{\mathrm{d}}{\mathrm{d}x}u\right) = \mathbf{f}$$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

The proof presented here uses "elementary" functional arguments. The proof can be adapted to the L^2/H^1 framework, using weak and strong convergences in L^2 instead on weak and uniform convergence.

This cannot be avoided in higher dimensions.

Homogeneization in higher dimensions

$$-\nabla \cdot (A_n \nabla u_n) = f \text{ and Dirichlet b. c.}$$

where $\sup_{i,j,x} |[A_n]_{ij}(x)| \leq a^*$ and $A(x)\xi \cdot \xi \geq a_*|\xi|^2$,
 $0 < a_* < a^* < \infty$.
We still have $\|\nabla u_n\|_{L^2} \leq C \|f\|_{L^2}$. We can thus assume that

$$u_n \to u, \qquad \nabla u_n \rightharpoonup \nabla u.$$

<□ > < @ > < E > < E > E のQ @

Compensated Compactness

Let $U_n = (U_n^1, \ldots, U_n^N)$ and $V_n = (V_n^1, \ldots, V_n^N)$ be sequences of \mathbb{R}^N vector fields with components bounded in $L^2(\mathbb{R}^N)$. We assume that

$$U_n^i \rightharpoonup U^i, \qquad V_n^i \rightharpoonup V^i \qquad \text{weakly in } L^2(\mathbb{R}^N), \text{ for any } i \in \{1, \dots, N\}.$$

Then, we address the question of the behavior of the **inner** product $U_n \cdot V_n = \sum_{i=1}^N U_n^i V_n^i$.

Of course, by using the Rellich theorem, the limit is $U \cdot V$ when we have additional bounds on the whole derivative of one of the vector fields, say $\partial_j U_n^i$ bounded in $L^2(\mathbb{R}^N)$ for any $i, j \in \{1, \ldots, N\}$. In such a very favorable case, we actually have convergence componentwise $U_n^i V_n^i \rightharpoonup U^i V^i$ in $\mathcal{D}'(\mathbb{R}^N)$.

The div-curl lemma needs information on certain first order derivatives of U_n combined with, in some sense complementary, (first order) derivatives of V_n , so that the inner product passes to the limit, even if convergences do not hold componentwise.

Compensated Compactness

Let us define the scalar quantity

$$\operatorname{div}(U_n) = \sum_{i=1}^N \partial_i U_n^i$$

and the matrix valued quantity

$$(\operatorname{curl}(V_n))_{ij} = \partial_i V_n^j - \partial_j V_n^i.$$

Lemma [F. Murat and L. Tartar]. Suppose furthermore that

 $\operatorname{div}(U_n)$ and $\operatorname{curl}(V_n)$ are compact in $H^{-1}(\mathbb{R}^N)$.

Then, $U_n \cdot V_n \sum_{i=1}^N U_n^i V_n^i \rightarrow \sum_{i=1}^N U^i V^i = U \cdot V$ in $\mathcal{D}'(\mathbb{R}^N)$.

The proof is actually very simple by means of Fourier transform where we see how oscillations compensates. Without loss of generality, we can suppose that U = 0 = V.

Then, our task is to show that, given $\psi \in C_c^{\infty}(\mathbb{R}^N)$,

$$\lim_{n\to\infty}\int_{\mathbb{R}^N}U_n\cdot V_n\ \psi\,\mathrm{d} x=0.$$

Let us denote I_n the integral under consideration. Pick $\varphi \in C_c^{\infty}(\mathbb{R}^N)$ such that $0 \leq \varphi(x) \leq 1$ on \mathbb{R}^N with $\varphi(x) = 1$ on $\operatorname{supp}(\psi)$, so that

$$I_n = \int_{\mathbb{R}^N} U_n \varphi \cdot V_n \psi \, \mathrm{d}x.$$

Let us set $\widetilde{U}_n = U_n \varphi$ and $\widetilde{V}_n = V_n \psi$ that both tend weakly to 0 in $L^2(\mathbb{R}^N)$ and are compactly supported. We deduce that the Fourier transform

$$\widehat{\widetilde{U}_n}(\xi) = \int_{\mathbb{R}^N} e^{-ix\cdot\xi} U_n(x) \,\mathrm{d}x \xrightarrow[n \to \infty]{} 0 \qquad a.\epsilon$$

with the uniform estimate

$$|\widehat{\widetilde{U}_n}(\xi)| \leq \|U_n\|_{L^2(\mathbb{R}^N)} ext{ meas}(ext{supp}(arphi)) \leq C < \infty.$$

▲□▶▲□▶▲□▶▲□▶ □ ♡٩.0

Similar conclusions hold for V_n .

Then, by the Plancherel formula, I_n can be recast as

$$I_n = \int_{\mathbb{R}^N} \widehat{\widetilde{U}_n}(\xi) \cdot \overline{\widehat{\widetilde{V}_n}(\xi)} \, \mathrm{d}\xi.$$

Now, the additional assumption means for any $i, j \in \{1, \dots, N\}$,

$$\frac{\sum_{i=1}^{N} \xi_i \ \widehat{\widetilde{U}_n^i}}{\sqrt{1+|\xi|^2}} \quad \text{and} \quad \frac{\xi_i \ \widehat{\widetilde{V}_n^j} - \xi_j \ \widehat{\widetilde{V}_n^i}}{\sqrt{1+|\xi|^2}} \xrightarrow[n \to \infty]{} 0 \quad \text{strongly in } L^2(\mathbb{R}^N).$$
We write

$$\begin{cases} I_n = J_n + K_n, \\ J_n = \int_{\mathbb{R}^N} \frac{1}{1+|\xi|^2} \ \widehat{\widetilde{U}_n}(\xi) \cdot \overline{\widehat{\widetilde{V}_n}(\xi)} \, \mathrm{d}\xi, \\ K_n = \int_{\mathbb{R}^N} \frac{|\xi|^2}{1+|\xi|^2} \ \widehat{\widetilde{U}_n}(\xi) \cdot \overline{\widehat{\widetilde{V}_n}(\xi)} \, \mathrm{d}\xi \end{cases}$$

Then, we split $J_n = \int_{|\xi| \le R} \dots \, \mathrm{d}\xi + \int_{|\xi| \ge R} \dots \, \mathrm{d}\xi.$

We readily show that J_n tends to 0 as $n \to \infty$, since on the one hand

$$\left| \int_{|\xi| \ge R} \dots \, \mathrm{d}\xi \right| \le \|\psi\|_{L^{\infty}(\mathbb{R}^N)} \ \frac{\|U_n\|_{L^2(\mathbb{R}^N)} \ \|V_n\|_{L^2(\mathbb{R}^N)}}{1+R^2} \le \frac{C}{1+R^2}$$

can be made arbitrarily small by choosing R large enough, while, for any fixed $0 < R < \infty$, the pointwise convergences and bounds discussed above yield

$$\lim_{n\to\infty}\int_{|\xi|\leq R}\ldots\,\mathrm{d}\xi=0,$$

by virtue of the Lebesgue theorem.

Next, we get

$$\begin{split} \mathcal{K}_{n} &= \sum_{i,j=1}^{N} \int_{\mathbb{R}^{N}} \frac{\xi^{i} \xi^{i} \widehat{\widetilde{U}_{n}^{j}} \overline{\widetilde{\widetilde{V}_{n}^{j}}}}{1+|\xi|^{2}} \\ &= \sum_{i,j=1}^{N} \int_{\mathbb{R}^{N}} \frac{\xi^{i}}{\sqrt{1+|\xi|^{2}}} \ \widehat{\widetilde{U}_{n}^{i}} \frac{\xi^{i} \overline{\widetilde{\widetilde{V}_{n}^{j}}} - \xi^{j} \overline{\widetilde{\widetilde{V}_{n}^{i}}}}{\sqrt{1+|\xi|^{2}}} \, \mathrm{d}\xi \\ &+ \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \frac{\xi^{i}}{\sqrt{1+|\xi|^{2}}} \ \overline{\widetilde{U}_{n}^{i}} \frac{\xi^{j} \widehat{\widetilde{U}_{n}^{j}}}{\sqrt{1+|\xi|^{2}}} \ \overline{\widetilde{V}_{n}^{i}} \, \mathrm{d}\xi \end{split}$$

Then, the integrand in both integral of the right hand side reads as the product of the bounded quantity $\xi^i/\sqrt{1+|\xi|^2} \in L^{\infty}(\mathbb{R}^N)$ times a sequence that is bounded in $L^2(\mathbb{R}^N)$ times a sequence that converges strongly to 0 in $L^2(\mathbb{R}^N)$. Accordingly, K_n goes to 0 as $n \to 0$, which ends the proof.