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Résumé
Ce travail se concentre sur l’application de l’analyse statique pour la vérification ou la réfutation
automatique de propriétés de flux d’information, en se concentrant sur l’interprétation abstraite
et l’exécution symbolique. et l’exécution symbolique. Plus précisément, nous nous concentrons
sur deux propriétés de flux d’informations : non-interférence, et secret faible.

La thèse est divisée en deux parties. Dans la première partie de la thèse, nous explorons une
analyse statique basée sur des symboles qui communique avec une analyse des dépendances pour
la vérification de l’intégrité du système. avec une analyse des dépendances pour la vérification
de la non-interférence. Notre contribution est un domaine de produit réduit entre un domaine
symbolique et un domaine de dépendances pour l’analyse solide de la non-interférence dans
un langage impératif simple. Nous proposons également un produit réduit entre une exécution
symbolique non relationnelle et des domaines numériques tels que les intervalles et les polyèdres
convexes.

La deuxième partie consiste à explorer le concept d’un taint-tracker symbolique statique.
Nous développons une sémantique formelle pour un traqueur de taches symbolique, ainsi que
l’adaptation du secret faible pour les cas d’utilisation modernes. Ensuite, en supposant l’existence
d’un taint-tracker sain mais imprécis, nous proposons une analyse combinée qui utilise à la fois le
taint-tracker sain et le taint-tracker imprécis. analyse combinée qui utilise à la fois les traqueurs
de taches sonores et symboliques. Enfin, nous instancions l’analyse combinée avec Pysa, un
taint-tracker sonore développé par Meta, et notre outil Pysta. Notre outil affine les résultats de
l’analyseur de taches sonores, réduisant ainsi la charge de travail des développeurs pour l’examen
manuel des alarmes. d’examiner manuellement les alarmes.

Mots clés : analyse statique, flux d’informations, interprétation abstraite, exécution symbolique
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Abstract
This work focuses on the application of static analysis for the automatic verification or refutation
of information flow properties, focusing on abstract interpretation and symbolic execution. More
specifically, we focus on two information flow properties: noninterference, and weak secrecy.

The thesis is split in two parts. In the first part of the thesis we explore a symbolically
driven static analysis that communicates with a dependences analysis for the verification of
noninterference. Our contribution is a reduced product domain between a symbolic domain and
a dependences domain for the sound analysis of Noninterference in a simple imperative language.
We also offer a reduced product between a non-relational symbolic execution and numerical
domains such as intervals and convex polyhedra.

The second part consists on exploring the concept of a static symbolic taint-tracker. We
develop a formal semantics for a symbolic taint-tracker, together with the adaptation of weak
secrecy for modern use-cases. Then, by assuming the existence of a sound-but-imprecise taint-
tracker, we contribute a combined analysis that uses both the sound and the symbolic taint-
trackers. Finally, we instantiate the combined analysis with Pysa, a sound taint-tracker developed
by Meta, and our tool Pysta. Our tool refines the output of the sound taint-tracker, lowering
the load of developers to manually review alarms.

Keywords : static analysis, information flow, abstract interpretation, symbolic execution
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Chapter 1
Introduction

1 Security challenges and properties

We constantly interact with computer systems that perform a variety of tasks. Some, such as
web applications, handle sensitive information that can cause damage if leaked. Others, like
a water plant, are critical systems, and their failure can result in physical damage, affecting
thousands of people.

Often, these systems are connected to the Internet, making them vulnerable to computer
attacks. For instance, in 2017, a weakness in Apache Struts (CVE-2017-5638) caused the
American company Equifax to leak sensitive information of approximately 150 million people.
The leaked data included full names and social security number, making it one of the most
serious cyber-security attacks in history. We consider weaknesses or flaws that can be exploited
by cybercriminals to be vulnerabilities in the system.

In the 2017 data breach of Equifax, the attack consisted on targeting a vulnerable Apache
Struts parser. By sending maliciously crafted messages, the attackers were able to inject
executable code. At that stage, the attackers gained access to the system, and progressively went
deeper withing system until they reached databases with confidential information. This attack
falls into the category of information-flow vulnerabilities. Information-flow vulnerabilities occur
when a system fails to properly control the movement of sensitive data.

An information flow can happen in two ways: explicit flows are direct manipulations of
the information, such as copying a variable, or computing a value from a variable. Implicit
flows happen as a byproduct of the manipulation of the information, and are harder to detect.
For instance, the assignment y = x induces an explicit flow from x to y. By contrast, if x >

0 then y = 0 induces an indirect flow from x to y, since the value of y indirectly depends on x.
If we observe that the value of y is not 0, we learn that x ≤ 0.

Using the notion of explicit and implicit flows, we can define policies that establish which
behaviors are allowed in a system. For example, an information flow policy might stipulate that
“neither explicit nor implicit information flows cause the leakage of confidential information”.
Another example is a policy stating that “malicious inputs never reach sensitive functions via
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explicit flows”.
It is possible to formalize these properties by introducing well-established semantic properties.

A semantic property is a characteristic of a program that relates to its execution, rather that
its syntax. The work of Goguen and Meseguer in 1982 defines a semantic property called
noninterference [Goguen, 1982], which addresses the leakage of confidential information through
implicit and explicit information flows. The work of Volpano in 1999 defines weak secrecy, a
weaker semantic property, similar to noninterference, that ignores implicit flows. We can use
these two semantic properties to formalize the information-flow policies presented earlier.

In the next subsections we study these two semantic properties further.

1.1 Weak secrecy

Weak secrecy [Volpano, 1999] is designed to model explicit flows of information. Taken from
the definition of Volpano, variables are separated into high or low, where high corresponds to
sensitive information. By sensitive, we mainly refer to two cases: confidential information such
as passwords, but also information that might be originated from an untrusted source, such as a
user input. In essence, we do not associate high or low with the value, but with the origin of the
value. Finally, throughout the execution, the attacker can only observe low variables. Thus, for
a program to be weak secret, high values must never flow into low variables.

This property is of specific interest because it can be adapted to describe several information-
flow policies. For instance, let us assume there is a system that is performing SQL queries
to a database. Then, we consider the policy stating that “a SQL injection attack cannot be
performed”. The high value is an external input that is stored in the program. However, instead
of determining if the program is secure or not based on the assignment of low variables, we focus
on the function performing the SQL query. The SQL query function acts as a sink in a taint
analysis. Thus, the program is secure if the external input never flows to the SQL query function.

Determining whether a program satisfies weak secrecy can be performed by checking the
absence of illegal flows for each individual execution. This kind of properties that depend on
individual executions are called trace properties. Trace properties can be described as sets of
execution traces.

1.2 Noninterference

Noninterference [Goguen, 1982] is a semantic property that considers both explicit and implicit
flows of information, in contrast to weak secrecy.

In noninterference, the attacker can observe the low variables in the memory at the beginning
and end of the execution. Assuming the memory is partitioned in high and low variables, for a
program to be noninterferent, the high values must not affect the low variables in the execution,
neither explicitly nor implicitly.

Weak secrecy can be expressed as a trace property. However, many important semantic
properties such as noninterference cannot be expressed in that manner. To characterize noninter-
ference, we need to consider pairs of executions. By taking two executions that agree on low
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variables, the program is noninterferent if the final memories still agree on low variables. That is,
the executions are indistinguishable for the attacker. The noninterference property is a 2-safety
property [Clarkson, 2008], meaning that it is a safety property requiring the observation of two
simultaneous executions.

2 Verification methods

Seeing the existence of vulnerabilities, our goal is to eliminate them whenever possible. Different
techniques are used for this purpose, but none of them is perfect.

Testing is widely adopted due to its ease of use, while providing good confidence in the
functionality of code. Several tools exist to automate the process of writing test-cases while
providing high coverage [Cadar, 2008; Cadar, 2021]. However, testing cannot provide full coverage,
leaving vulnerabilities undetected.

Model checking [Merz, 2001] is another technique that has been broadly adopted. A model
checker works by taking a model—an abstraction of the system—and a set of properties to
verify. These properties are often expressed in temporal logics. If the model checker succeeds,
it assures that the properties are satisfied in the model. When failing, it can provide counter-
examples illustrating why the properties do not hold. The downside is that, since the model is
an abstraction, the properties hold in the model but might not in the real system. Similarly, the
counter-examples apply to the model, but might not be counter-examples in the real system.

Static analysis works by automatically examining source code without executing it, deriving
information about the semantics of the program. In contrast to model checking, this technique
does not require the definition of an abstract model of the system, removing potential human
errors. Unlike testing, it can provide full coverage by analyzing the semantics of the program,
formally verifying the property of interest.

Given a language and a property of interest, an ideal static analyzer would always answer
whether a program satisfies or not the property in finite time. If we take the example from
the previous section with the policy “neither explicit nor implicit information flows cause the
leakage of confidential information”, we would like to be able to determine for any program that
the policy is never violated, without human intervention. Unfortunately, this is not possible for
Turing-complete languages as shown by Rice’s Theorem [Rice, 1953].

Rice’s Theorem is a fundamental result in computability theory that provides insights into
the undecidability of program properties, stating that, for a Turing-complete language, any
non-trivial semantic properties of programs are undecidable. A property is non-trivial if it holds
for some programs, and does not for others.

Ideal analyzer

Let P be a non-trivial semantic property. Let p be a program in a Turing-complete language.
Let analyzer be an analyzer that takes a program as input and responds A (as in “accept”)
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or R (as in “reject”) in finite time. We say analyzer is ideal if

(analyzer(p) = A) ⇔ p satisfies P.

Rice’s theorem implies that this double implication cannot hold. Instead, by decomposing it,
we arrive at two core concepts of static analysis which we call soundness and completeness.

Soundness: (analyzer(p) = A) ⇒ p satisfies P

Completeness: (analyzer(p) = A) ⇐ p satisfies P

Depending on the property of interest and the use-case, the user must choose whether to
have a sound or complete static analyzer.

Sound static analyzers are appropriate to verify properties. When the analyzer returns
“accept”, we have a guarantee that the program holds for the property of interest. Instead, a
complete analyzer is appropriate for refuting a program. We can transform the completeness
definition to be more direct:

analyzer(p) = R ⇒ p does not satisfy P.

We provided a universal understanding of the limitations associated with static analyzers.
However, we say nothing about the core approaches to perform the static analysis of programs.
As the name suggests, a static analyzer does not execute the program in the conventional
way, but it can be seen as executing the program with an “abstraction” of the semantics. We
are particularly interested in two approaches: symbolic execution [Boyer, 1975; King, 1976;
Cadar, 2013], where concrete values are replaced by mathematical symbols, and the control
flow of the program generates arithmetic or logical constraints that can be tested; and abstract
interpretation [Cousot, 1977] where the concrete values are replaced by an abstract domain that
retains the relevant information of the execution, accompanied by an abstract semantics.

2.1 Symbolic execution based static analysis

Symbolic execution is a technique that relies on replacing concrete values in a program execution
for symbolic values. Symbolic values are mathematical symbols that can represent several values
simultaneously.

To build a symbolic executor, it is not enough to swap the concrete values for symbolic ones.
A symbolic state must contain the map from variables to symbols, and a set of constraints for the
symbols that are mapped. For example, if we take the program if x > 0 then y = 0, the initial
state maps x, and y to two different symbols: [x 7→ x ; y 7→ y ]. We call this a symbolic store.
When evaluating the guard of the if statement, nothing is known about symbol x . Thus, it is
possible to take both branches of the if. However, the symbolic state must contain information
to reflect which path was chosen. At the current example, by assuming the guard is satisfied, a
symbolic constraint x > 0 is generated. In turn, it is stored in what we call the symbolic path.
Finally, a symbolic state is a pair composed of a symbolic store and a symbolic path.
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L

H

Figure 1.1: A lattice of confidentiality levels with two levels: high and low.

Symbolic execution annotates all the path information, allowing for a very precise description
of the program semantics. For that reason, symbolic execution analyzers are usually complete and
notably utilized for finding vulnerabilities, such as in KLEE [Cadar, 2008]. To do so, symbolic
execution discharges queries to an SMT solver, that checks if the constraints in the symbolic
path are satisfiable. If so, the SMT solver can produce a counter-example.

In the previous example, we supposed that the symbolic execution analysis chose the true-
branch of the if statement. However, this would disregard all executions that follow the
false-branch. In order to cover the largest amount of the concrete semantics of the program, the
symbolic executor must collect different paths. Yet, collecting different paths is not costless. At
each control-flow statement, the state must be duplicated to explore the different paths, leading
to what is called state-explosion.

The problem of state-explosion is even worse when reasoning about loops. Each iteration of
a loop requires the duplication of the state. Physical limitations of computers imply that only so
many iterations of a loop can be performed. Moreover, a condition such as y < z might always
be satisfiable in symbolic execution if the value of z is unknown.

As mentioned, one of the key aspects of static analysis is that it must terminate in finite
time for any program. Hence, we cannot allow loops to iterate freely. A way to deal with the
boundless iteration of loops is to set a threshold, limiting the amount of times a loop can be
accessed. After the bound of iterations is met, the trace is dropped, ensuring the termination of
the analysis.

Noninterference is a hyperproperty, meaning that we need to observe simultaneous traces in
order to study it. Symbolic execution can be adapted to a relational symbolic execution [Farina,
2019] for this purpose. In the case of noninterference, the basis of relational symbolic execution
is to map variables to two symbols. The agreement of low variables can be done by constraining
the symbols to be equal at the beginning of the execution.

2.2 Abstract interpretation

In a concrete execution, the program state is represented by a map from variables to concrete
values, a memory. Instead, in an abstract interpretation [Cousot, 1977], the program state is
represented by an abstract element. The set of all abstract elements is called an abstract domain.
For the case of confidentiality, we can define the dependences abstract domain that abstracts
variables to their security level on a security lattice. More specifically, by focusing on the lattice
of Figure 1.1, the abstract elements are sets of constraints of the form H → x and L → x where x
is a variable. Finally, the dependences domain is the set of all abstract elements of this shape.
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Using the dependences abstraction, the concrete values are stripped down to their security
level. However, discarding information causes the abstraction to be less precise. The abstraction
must be picked carefully, to contain enough information to successfully analyze programs.

This loss of precision can be observed through a concretization. We define concretizations as
follows: given an abstract element a, the concretization is the set of program states that satisfy
it, denoted by γ(a). In the case of Figure 1.1, the concretization of {H → x ; L → y} is the
set of all memories where x is high and y is low. Any other information has been disregarded,
leaving us with a much more general description of concrete states.

An abstract semantics, is a set of semantic rules where the state is an abstract element that
gets refined with each execution step. The two main operations that abstract semantics relies on
are join and widen. Operation join takes two abstract elements and produces a single abstract
element that contains both original states. This operation is used, for instance, for analyzing if
statements. For ensuring the termination of loops, the widen operation is used. This operation
ensures finding a fix-point of the loop in finite-time.

Both of these operations are sound, meaning that they ensure the full coverage of the program
semantics. What this implies, is that these operations perform over-approximations. Hence,
abstract interpretation is imprecise not only because of the abstract domain not being descriptive
enough, but also the way abstract semantics are defined.

2.3 Comparison and research question

Both symbolic execution and abstract interpretation can be employed to verify program properties.
The precision of symbolic execution allows to analyze the semantics of a program closely to
its concrete execution. This also allows generating traces that trigger the property violation.
However, this precision comes at the cost of potential exponential growth in memory, coupled
with the immense computational time associated with SMT solvers.

Abstract interpretation, focuses on describing states in a simpler, concise manner, allowing for
faster execution times, and uses mechanisms such as join and widen to ensure termination, and
to not multiply abstract states such as symbolic execution. This approach can work extremely
well, but the loss of information usually implies the impossibility of bug-finding.

In essence, we see abstract interpretation being more inclined to perform sound analysis of
programs, and symbolic execution being more inclined to perform complete analysis of programs.
Divided between these two techniques, in essence, the developer is forced to choose either
soundness or completeness.

Research questions Symbolic execution and abstract interpretation based analyses are very
different; the two methods seem opposed in their approach. Indeed, this is what prompts the
following questions:

• Symbolic execution does not over-approximate the program semantics, and can only be
unrolled up to a threshold. If a loop needs to be unrolled more times than the allowed limit,
the analysis fails. Meanwhile, abstract interpretation assures termination of the analysis

6



3. Sound symbolic execution via abstract interpretation

1 # H → priv ; L → y
2 if (priv > 0):
3 y = 5
4 else:
5 y = 5

(a) Noninterferent program:
fails with dependencies.

1 # H → priv ; L → i,z
2 i = 0
3 while (i < z):
4 i += 1
5 priv += 2

(b) Noninterferent program: fails
with symbolic execution.

1 # H → priv ; L → i,y
2 while (i < priv):
3 if (i > priv):
4 log(priv)
5 i += 1

(c) Explicit secret program: gener-
ates false alarm.

1 # H → priv ; L → y
2 if 0 == y**2 + y*2 - 8:
3 log(priv)

(d) Not explicit secret program: re-
quires symbolic execution.

Figure 1.2: Motivating examples. All variables are of type int.

by using operations such as widen. At the cost of completeness, can we use abstract
interpretation as an over-approximation technique on top of a symbolic execution analysis
to achieve soundness?

• While abstract interpretation is useful to verify programs, when a program is rejected
the user does not get a satisfactory answer. Instead, it causes the user to spend time
understanding why the abstract interpretation rejected the program, and then manually
verify whether there is a real bug, or if it is just a false-positive. Meanwhile, symbolic
execution is suited to return possible input values, guiding the user to the specific trace
that violates the property. Is it possible, once the abstract interpretation analyzer has been
executed, to refine its output through symbolic execution?

In the following sections, we aim to delve deeper into the proposed questions. We take on
the first question in Section 3, and the second question in Section 4

3 Sound symbolic execution via abstract interpretation

Relational symbolic execution based static analysis for noninterference Standard
symbolic execution is usually complete. However, to verify a property as noninterference, we need
not only a relational symbolic execution, but a sound one. Examples 1.2a and 1.2b illustrate the
problem.

In Example 1.2a, variable priv stores confidential information. Assuming ystores value
y . In any execution of this program, y stores 5. Using a relational symbolic execution Here,
relational symbolic execution can safely check all possible interleavings: following true in both
executions, following false in both executions, and one going to the true branch while the other
execution goes to the false branch. For instance, one of the diverging paths produces constraints
(priv 0 > 0 ∧ priv 1 ≤ 0). In this example it is possible to check all possible paths.

7
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In Example 1.2b, variable i is initialized at 0. The value of z is unknown, and there is a loop
with the guard i < z, in which variables i and priv are augmented by 1 and 2 correspondingly.
This program is noninterferent, as the final value of i is z when z > 0 or 0 otherwise. However,
since the value of z is unknown, the loop can be analyzed infinitely many times. This results in
the impossibility to verify the program with relational symbolic execution.

The alternative is to make the relational symbolic execution sound by over-approximating
loops. Nevertheless, if the loop over-approximation is not precise enough, the analyzer fails to
verify programs. Let us explore a possible over-approximation approach for loops:

• first, by analyzing the body of the loop it is possible to approximate which variables might
be modified in the execution of the loop;

• once the modifiable variables have been calculated, assign fresh (previously unused) symbols
to those variables;

• finally, add the negation of the guard as a symbolic constraint.

The problem with this approach is that, by mapping variables to two symbols, it renders the
verification of noninterference impossible. This happens since we cannot establish the equality
between the new symbols without extra information. In the case of Example 1.2b, applying this
method makes i be mapped to two symbols. Since the two symbols cannot be proved equal, the
program cannot be verified.

Dependences based static analysis for noninterference Many static analyses that work
for noninterference rely on some form of dependence abstraction as formalized in, e.g., [Assaf,
2017] or [Hunt, 2006]. For our purpose, we assume an ordered set of security levels {L, H} and
that each value fed into a program via an input variable is given a security level. A dependency,
noted as l → x with l ∈ {L, H}, expresses the agreement of x in both executions when observing
from level l. The dependences analysis has a dependences state, defined to be a mapping from
variables to security levels.

For Example 1.2a, the analysis determines that the assignments are conditioned by the value
of priv, which is initially high. Since dependences only keep track of the security level of a
variable, the assignment for y to 5—a constant—is low, but these assignments happen inside an
if statement with a guard that depends on high variable priv. Thus, the dependency L → y is
dropped, indicating the potential disagreement of y. Therefore, dependences cannot determine
that the program is noninterferent. In Program 1.2b, the loop condition is only influenced by i
and z, which are low. The assignment of low variables is not affected, and i and z remain low,
allowing to prove noninterference, in contrast to the relational symbolic execution.

3.1 Problem

As observed, both relational symbolic execution and dependences can be used for the verifica-
tion of noninterference. Neither approach is perfect—dependences being sound but imprecise,
relational symbolic execution unable to handle loops properly, even if it performs a sound over
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approximation—but in Examples 1.2a and 1.2b, these techniques complement each other. This
raises the following question: Can we combine dependences and relational symbolic execution to
enhance overall precision?

3.2 Contribution I

In this manuscript, we design a combination of relational symbolic execution and abstract
interpretation based analyses for the verification of noninterference. The abstract interpretation
based analysis is used to refine the over approximation of loops, by passing information to the
symbolic execution state. In this thesis, we investigate this technique by using a dependences
domain, but also non-relational domains such as intervals. To do so, we first formalize the
relationship between dependences and relational symbolic execution, and define two functions:
to transform a relational symbolic state into a dependences and state, and to extract constraints
from a dependences state to use in relational symbolic execution. We can exploit the constraints
generated by dependences and smartly choose how to over approximate the variables.

4 Symbolic execution over abstract interpretation outputs

Weak secrecy can be utilized to formalize the behavior of taint trackers. Pysa [Meta, 2023], a
taint-tracker developed by Meta, is such a case of a tool that closely follows weak secrecy. Pysa
is an open-source static analyzer, based in abstract interpretation, that performs taint-tracking
in Python, and is used at a production level in Meta.

Pysa is designed to analyse immense codebases. To do so, it must perform various over
approximations. These over approximations involve keeping track solely of taints, instead of
values, even collapsing structures to fit in memory. For instance, if an element in a list is tainted,
Pysa might assume that all the elements are tainted.

These aspects lower the precision of the tool. Indeed, these over approximations cause the
tool to generate false-positves. Hence, developers must manually check each alarm, and decide
whether the alarm is reporting a real problem, or must be disregarded. Needless to say, this
process is not optimal.

For the following examples we assume that function log is a sink in Pysa. In Example 1.2c,
function log can never be executed, since the intersection of the guard of the loop and if is
empty. However, Pysa assumes that the both the guard of the loop and the if are satisfiable
simultaneously. This leads to assuming that log(priv) is executed, resulting in an alarm.
Instead, using symbolic execution, the SMT solver determines that this path is unfeasible,
concluding that the program is secure.

In Example 1.2d, function log is reachable but only if the value of y is the positive root of
the polynomial y2 + 2y − 8. This means that the program is not weak secret. In Pysa, an alarm
is raised. However, Pysa does not provide us input values to trigger the trace. Instead, the
symbolic execution can generate constraints and pass them onto an SMT solver. Since the guard
expression is a second degree polynomial, the SMT returns that the input value for y is 2. Hence,
we can use symbolic execution to decide whether some alarms are real, and get counter-examples.
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4.1 Problem

Sound taint analyzers such as Pysa are very powerful. These raise alarms that might be real or
not, and the process of filtering these alarms is not direct. This motivates the following question:
can a sound taint analyzer be combined with a symbolic execution analysi, refining its results by
detecting false alarms and generating counter-examples?

4.2 Contribution II

We propose a complete symbolic execution taint analysis that can be used to find counter-
examples, and to refute false-alarms. We illustrate a combined taint analysis, that uses a sound
taint analysis in conjunction with our symbolic taint analysis. The combines taint analysis
consists on executing the sound taint analysis and attempting to automatically filter the alarms
generated. Assuming that sound taint analysis produces an alarm, the symbolic taint analysis
will attempt to determine whether the alarm is real or a false-positive.

On top of that, we present Pysta, our prototype symbolic taint analysis tool. Our tool aims
to instantiate the combined taint analysis, to show how the output of a tool such as Pysa can
be utilized to guide a more precise symbolic taint analysis, refining the more imprecise tool.

5 Outline of the thesis

The thesis is divided into two parts. Part I expands on Section 3 from the introduction. In
Chapter 3, we implement a sound non-relational symbolic execution. In Chapter 4, we define
the reduced product of the semantics of I.2 with an intervals abstract domain, to raise precision
of loop overapproximation. In Chapter 5, we define a sound relational symbolic execution,
that can be instantiated with the non-relational symbolic execution of sections I.2 and I.3. In
Chapter 6, we define the main contribution: the reduced product between the semantics of I.4
and dependences. In Chapter 7, we discuss the implementation of the analysis and we evaluate
it in a set of small but challenging programs. Finally, in Chapter 8 we discuss related work, and
conclude in ??.

Part II expands on Section 4. In Chapter 10, we formalize taints and present a formal concrete
semantics for a taint-tracker. In Chapter 11 we adapt weak secrecy for our more general taints
and language. In Chapter 12, we present our main contribution of this part, a complete symbolic
taint-tracker semantics, and we present a proof of completeness. In Chapter 13, we present the
combined analyzer between a sound and our symbolic taint-tracker. In Chapter 14, we discuss
the implementation and its limitations, showing our tool Pysta and Pysa, and instantiating
the combination of Chapter 13. In Chapter 15 we evaluate the tool on a set of examples. In
Chapter 16, we discuss related work, and we conclude in ??.
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Combination of Relational Symbolic
Execution and Dependences for

Noninterference
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Chapter 2
Towards sound symbolic execution via
abstractions

Usually, symbolic execution is not sound, leading to it being used as a testing technique,
rather than a verification technique. In this part of the manuscript we will develop sound
over-approximations of loops, with and without, abstractions. In the non-relational symbolic
execution we will use a standard numerial abstraction. Instead, for relational symbolic execution
we will use a dependences abstractions. Finally, our goal is to verify noninterferent programs
with our sound relational symbolic execution.

1 Sound non-relational symbolic execution

In Chapter 3, we first present the standard semantics of symbolic execution. Two main problems
arise: the semantics are not relational, and they are not sound. The lack of soundness implies
that the semantics are not immediately fit for the verification of programs. For that matter, the
chapter first focuses on creating a broad over-approximation of loops, that we call SoundSE. The
over-approximation works by first checking which variables might be modified in the body of the
loop. Then, those variables must be assigned new fresh symbolic values. For instance, let us
focus on the noninterferent Program 1.2b. Let us assume that the initial value of z is 10. If the
threshold of loop unrollings is lower than 10, the value of i and priv must be over-approximated,
resulting in the mapping i 7→ i1, with the only constraint for i1 being that is greater than 10.
Hence, it is not possible to determine the precise value of i .

In Chapter 4, the goal is to raise the precision of SoundSE through numerical abstractions,
that allow us to infer interesting information from loops. One of the core concepts is that of
reduced product between our symbolic and abstract states. A reduced product boils down to
defining a new state that contains both original states, adapting the semantics to execute with
this new state, and mainly, defining a reduction function. The reduction function will take the
new state and will “share” information between the abstract and symbolic state, generating new
constraints; in other words, raising the precision of the symbolic state. We call this semantics
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RedSoundSE. In Program 1.2b, a convex polyhedra analysis, is able to determine that i = z if
the loop is accessed, and i = 0 otherwise.

Semantics SoundSE and RedSoundSE are non-relational semantics, meaning that we cannot
use them to do verification of noninterference. What we can do, is use them to define a relational
symbolic execution, as we will explain in the following section.

2 Sound relational symbolic execution

In Chapter 5, we first present a standard relational symbolic execution semantics that is not
sound as it cannot over-approximate loops. Similarly to Chapter 3, in the chapter we will adapt
the semantics to be sound, but imprecise. The sole difference in this approach will be that,
now the relational symbolic execution must assign a pair of symbolic values, encompassing both
executions. SoundRSE can instance either SoundSE or RedSoundSE. Indeed, Program 1.2b will
behave exactly as in SoundSE if we instance it, and the value of i will not be precise enough to
establish the equality of it between the two executions. However, this relational analysis, named
SoundRSE, can verify some programs given its relational nature. By instancing RedSoundSE, the
value of i can be determined to be 10 for any execution accessing the loop, and the program can
be proved noninteferent.

To raise its precision, in Chapter 6 we introduce a dependences abstraction, that maps
security levels to variables. The dependences abstraction can easily be connected to the symbolic
states through, what we call, translation and extraction functions. These functions allow us
to transform relational stores to dependences states, and then extract the dependences when
required. Then, the over-approximation of loops narrows down to the analysis by dependences of
the loop, and the extraction of the new dependences, which we consider a new analysis named
RedSoundRSE. While SoundRSE was not able to verify Program 1.2b without the numerical
abstraction, RedSoundRSE is. A dependences analysis will notice that the value of i is only
constrained by z, which is low. Therefore, the value of i can only depend on z, and priv cannot
interfere. Thus, the program is noninterferent.

3 Relationship between analyses

SE

RSE

SoundSE(Chap. 3)

SoundRSE(Chap. 5)

RedSoundSE(Chap. 4)

RedSoundRSE(Chap. 6)

Single trace analyses:

Relational analyses:

Sound analyses:
Reduced product

and sound analyses:

Figure 2.1: Relation between different symbolic execution analyses.

In Figure 2.1 we illustrate all the symbolic execution semantics from this part. Red dashed
lines represent a dependency in terms of: a relational analysis depends on a single trace analysis.
Blue dashed lines represent an “enhancement” of the analysis generally speaking. SE [Boyer, 1975]
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is a conventional symbolic execution and RSE [Milushev, 2012; Palikareva, 2016] is its extension
to relational properties. We avoid to use the term SE and RSE later in the manuscript. Instead,
we will refer them as standard symbolic execution and standard relational symbolic execution,
respectively. These two semantics are unsound in general, except for the work of [Farina, 2019].
The rest of the analyses are sound and are our contributions: SoundSE evolves from the standard
symbolic execution (SE), and eventually reaches RedSoundSE through the addition of numerical
abstractions. SoundRSE evolves from the standard relational symbolic execution (RSE), and
using dependeces becomes RedSoundRSE. While in the graph it looks like RedSoundRSE its the
relational upgrade of RedSoundSE, the red arrow here implies more of a moral dependency. In
reality, RedSoundRSE can be instanced by either of the non-relational symbolic executions. Same
applies for SoundRSE.
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Chapter 3
SoundSE: Sound Symbolic Execution

In this chapter, our goal is to first define a standard non-relational symbolic execution, that
will introduce all the concepts of symbolic execution. From there, we extend this symbolic
execution with a rule to over-approximate loops after a threshold, making the symbolic execution
sound. While the over-approximation will be imprecise, it is a first version, that we will gradually
upgrade throughout the chapters. Also, the sound symbolic execution semantics will be instanced
in later chapters for building a relational symbolic execution.

We will reintroduce the examples from Chapter 1, plus a new one that will guide us through
this part.

1 Language syntax and semantics

Next we define a toy language that we will use for the whole part, and the concrete semantics
that we will symbolically abstract.

1.1 Syntax

We let V and X be the set of values and program variables respectively, and ⊕, < be binary
operators. The set of all expressions e is E. The set of all boolean expressions b is B. A
statement s is either a skip, an assignment, a condition, or a loop. Finally, a command c is a
finite sequence of statements.

e ::= n (n ∈ V) | x (x ∈ X) | e ⊕ e b ::= tt | ff | e < e | ¬b
s ::= skip | x := e | if b then c else c | while b do c c ::= s | s; c

1.2 Semantics

A concrete store (a memory) is a function µ from program variables X to concrete values V. We
write M = P(X → V) for the set of concrete stores and write [x 7→ n, . . . ] for an explicit store,
where n ∈ V.
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Chapter 3. SoundSE: Sound Symbolic Execution

µ ⊢ n ↓ n µ ⊢ x ↓ µ(x)
µ ⊢ b ↓ b

µ ⊢ ¬b ↓ ¬b

µ ⊢ e1 ↓ n1 µ ⊢ e2 ↓ n2
n3 ≜ n1 ⊕ n2

µ ⊢ e1 ⊕ e2 ↓ n3

µ ⊢ e1 ↓ n1 µ ⊢ e2 ↓ n2
b ≜ n1 < n2

µ ⊢ e1 < e2 ↓ n3

Figure 3.1: Concrete evaluation of expressions

We define the evaluation of expressions (↓) : (E ∪ B) → V ∪ {tt; ff} with a context µ ∈ M in
big-step style in Figure 3.1. We denote µ ⊢ e ↓ n the evaluation of e into value n with concrete
store µ. We denote µ ⊢ b ↓ b the evaluation of b into boolean b with concrete store µ.

µ ⊢ e ↓ n

(x := e, µ) −→ (skip, µ[x 7→ n])

(c1, µ) −→ (c′
1, µ′)

(c1; c2, µ) −→ (c′
1; c2, µ′) (skip; c2, µ) −→ (c2, µ)

µ ⊢ b ↓ tt
(if b then c1 else c2, µ) −→ (c1, µ)

µ ⊢ b ↓ ff
(if b then c1 else c2, µ) −→ (c2, µ)

µ ⊢ b ↓ tt
(while b do c, µ) −→ (c; while b do c, µ)

µ ⊢ b ↓ ff
(while b do c, µ) −→ (skip, µ)

Figure 3.2: Concrete step relation

A concrete state is a pair (c, µ) ∈ C × M of a command and a store. Concrete semantics of
the toy language is defined in small-step fashion as a step relation (→) : C × M → C × M, defined
in Figure 3.2.

2 Standard symbolic execution

The core principle of symbolic execution is to map program variables into expressions made
of symbolic values that denote the initial value of the program variables. Then, instead of
finishing the execution with concrete values, the execution accumulates constraints that reflect,
symbolically, the semantics of the program. To start, we need to define symbolic values that
replace concrete values, and symbolic stores, the counterpart of concrete stores.

2.1 Symbolic expressions and stores

We let V = {x , y , . . .} denote the set of symbolic variables and note for clarity x the symbolic
variable associated to program variable x (not to be confused with concrete values). A symbolic
store is a function ρ from program variables to symbolic expressions the set of which is noted E,
namely expressions defined like the programming language expressions using symbolic values
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2. Standard symbolic execution

instead of program variables. We write M = P(X → E) for the set of symbolic stores and write
[x 7→ (x ), . . .] for an explicitly given symbolic store. To tie properly symbolic stores and concrete
stores, we need to relate symbolic values and concrete values. To this end, we let a valuation
be a function ν : V −→ V. Moreover, given a symbolic expression ε, we let JεK be a partial
function that maps a valuation ν to the value obtained when evaluating the expression obtained
by replacing each symbolic value x in e with ν(x ). We can now express the concretization of
symbolic stores.

Definition 1 (Symbolic store concretization).

γM : M −→ P(M × (V → V))
ρ 7−→ {(µ, ν) | ∀x ∈ X, µ(x) = Jρ(x)K(ν)}

Example 1 (Symbolic store and concretization). We reintroduce Program 1.2a and 1.2b.

1 # H → priv ; L → y
2 if (priv > 0):
3 y = 5
4 else:
5 y = 5

1 # H → priv ; L → i,z
2 i = 0
3 while (i < z):
4 i += 1
5 priv += 2

In Program 1.2a, all executions will generate the same symbolic store ρ = [y 7→ 5; priv 7→
priv ]. A possible concretization is

µ = [y 7→ 5; priv 7→ 0] ν = [priv 7→ 0]

In Program 1.2b, a possible final store is ρ = [i 7→ 10; z 7→ z ; priv 7→ priv + 20], which
happens after executing the loop 10 times. The concretization is γM(ρ) an infinite set of stores
and valuations. For instance, a pair (µ, ν) ∈ γM(ρ) could be

µ = [i 7→ 10; z 7→ 10; priv 7→ 20] ν = [z 7→ 10; priv 7→ 0]

Notice that, while a valid store and valuation have been given (according to the concrete semantics),
the definition of the concretization might lead to generating spurious stores (stores that do not
belong to any concrete execution). This happens because there is no connection between z and i,
as can be seen in the symbolic store. For instance,

µ = [i 7→ 10; z 7→ 0; priv 7→ 20] ν = [z 7→ 0; priv 7→ 0]

also belongs to the concretization of ρ.

In the next subsection, we constrain the symbolic store and define a new concretization
function. This way, we can overcome the limitations of γM, getting rid of spurious stores.
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2.2 Symbolic path and precise store

To precisely characterize the outcome of an execution path, a symbolic store is too abstract.
Hence, symbolic execution also utilizes a symbolic expression to constrain the store, referred to
as symbolic path, that accounts for the conditions encountered during a path.

A symbolic boolean expression is a symbolic expression that can be evaluated to true or
false. The set of all symbolic boolean expressions is denoted by B. A symbolic path π is a set
of symbolic boolean expressions. We assume that for a given path π, the elements of the set
are separated by a conjunction. A symbolic precise store is a pair κ = (ρ, π) where ρ ∈ M and
π ∈ P(B). We write K for the set of symbolic precise stores.

We overload the J·K operator for symbolic paths, where JπK is a partial function from valuations
to true or false.

Definition 2 (Symbolic precise store concretization). The symbolic state concretization γK is
defined by:

γK : K −→ P(M × (V → V))
(ρ, π) 7−→ {(µ, ν) ∈ γM(ρ) | JπK(ν) = tt}

Example 2 (Symbolic precise store and concretization). In Program 1.2a, having the symbolic
path only helps to differentiate if the initial value of priv is greater than 0 or otherwise. If
π ≜ priv > 0, then

µ = [y 7→ 5; priv 7→ 0] ν = [priv 7→ 0]

is not in the concretization of that precise store, but it is for the other branch.
We consider Program 1.2b. Previously, in Example 1, we proposed the symbolic store

ρ = [i 7→ 10; z 7→ z ; priv 7→ priv + 20]. But, without the symbolic path, the concretization
generates spurious concrete stores. For example,

µ = [i 7→ 10; z 7→ 0; priv 7→ 20] ν = [z 7→ 0; priv 7→ 0]

is in the concretization of ρ. Given that ρ(i) = 10, it must be the case that the value of z is 10,
and the loop was executed 10 times. Then, a possible symbolic path is π ≜ 10 = z . Hence, while
(µ, ν) ∈ γM(ρ), adding the symbolic path rules out the pair: (µ, ν) ̸∈ γK(ρ, π).

2.3 Symbolic execution step

The main piece of the symbolic execution algorithm is the step relation, which closely follows the
small step semantics of the programs. We define it by a transition relation ⇀s between symbolic
execution states that are made of a program command and a symbolic precise store. To do so,
we will first define the evaluation of expressions, and then the step semantics.

Symbolic evaluation We define the symbolic evaluation of an expression or condition in a
symbolic store, which produces a symbolic expression. We note ρ ⊢ e ⇓ ε the evaluation of e
into symbolic expression ε in symbolic store ρ. Usually, this evaluation step boils down to the
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2. Standard symbolic execution

substitution of the variables in e with the symbolic expressions they are mapped to in ρ, possibly
with some simplifications.

Example. For instance, let us assume expression e = x + y, and a symbolic map ρ = [x 7→
(x ); y 7→ (x + 10)]. Then, the evaluation is as follows

ρ ⊢ e ⇓ (x + x + 10)

Satisfiability of constraints Second, we define the conservative satisfiability test of a symbolic
path. This step is usually performed by an external tool such as an SMT solver, so we do not
detail its internals here. We note that this test may conservatively return as a result that a
symbolic path may be satisfiable. We note may(π) when π may be satisfiable.

s-assign
ρ ⊢ e ⇓ ε

(x := e, (ρ, π)) ⇀s (skip, (ρ[x 7→ ε], π))

s-seq-exit
(skip; c1, κ) ⇀s (c1, κ)

s-seq
(c0, κ) ⇀s (c′

0, κ′)
(c0; c1, κ) ⇀s (c′

0; c1, κ′)

s-if-t
ρ ⊢ b ⇓ β π′ ≜ π ∧ β may(π′)

(if b then c0 else c1, (ρ, π)) ⇀s (c0, (ρ, π))

s-if-f
ρ ⊢ b ⇓ β π′ ≜ π ∧ ¬β may(π′)

(if b then c0 else c1, (ρ, π)) ⇀s (c1, (ρ, π))

s-loop-t
ρ ⊢ b ⇓ β π′ ≜ π ∧ β may(π′)

(while b do c, (ρ, π)) ⇀s (c; while b do c, (ρ, π))

s-loop-f
ρ ⊢ b ⇓ β π′ ≜ π ∧ ¬β may(π′)
(while b do c, (ρ, π)) ⇀s (skip, (ρ, π))

Figure 3.3: Symbolic execution step relation

Symbolic execution step Semantic rules are introduced in Figure 3.3. Rules such as s-assign,
s-seq and s-seq-exit are trivial.

s-if-t and s-if-f are applied when if statement is met. These rules have to first evaluate
the condition, then add it to the symbolic path, and check if the path is satisfiable. In the case
of s-if-f, the guard is negated. If the guard (does not) holds, command c0 (c1) is chosen to
continue the execution. Notice that, both rules might apply to the same guard, contrary to a
concrete execution. For instance, in Program 1.2a, guard priv > 0 and its negation may hold,
assuming the value of priv is unknown.

s-loop-t assumes the guard of the loop to hold. The next command to execute is a sequence
of c and the loop. To exit a loop, s-loop-f evaluates the guard to false. This removes the loop
for the next step. Notice that the given semantics in Figure 3.3 does not over-approximate the
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1 # H → priv ; L → i
2 while i > priv:
3 i += 1
4 priv += 2

Figure 3.4: Unsafe program.

loop, and might never terminate. For example, in Program 1.2b, since the value of z is unkown,
the semantics will unroll the loop infinitely.

2.4 Soundness

The standard symbolic execution semantics are sound, since every possible concrete execution is
covered.

Theorem 1 (Soundness of a single symbolic execution step). Let (c, µ) and (c′, µ′) ∈ S be two
states such that (c, µ) −→ (c′, µ′), κ ∈ K a symbolic precise store, and ν be a valuation such
that (µ, ν) ∈ γK(κ). Then, there exists a symbolic precise store κ′ such that (µ′, ν) ∈ γK(κ′) and
(c, κ) ⇀s (c′, κ′).

Proof of Theorem 1 is done via structural induction on the syntax of commands, and it is
assumed since this semantics are not new.

2.5 Completeness

A very desirable feature of symbolic execution is the ability to produce counter-examples. Since
no over-approximation is done, the standard symbolic execution semantics are complete, and can
generate counter-example.

Theorem 2 (Completeness). Let c be a command, κ, κ′ ∈ K be two precise stores, w, w′ ∈ W,
such that (c, κ) ⇀∗

s (skip, κ′). Then, for all (µ′, ν ′) ∈ γK(κ′), it exists (µ, ν) ∈ γK(κ) such that
(c, µ) →∗ (skip, µ′).

Proof of Theorem 2 is done via structural induction on the syntax of commands, and it is
assumed since this semantics are not new.

Example. In Program 3.4, the value of i depends on the value of priv. Since this symbolic
execution is not relational, it is not possible to perform a noninterference analysis. Yet, we can
use the SMT solver to generate relevant (as in real) traces. By executing the loop at least one
time and exiting, a possible symbolic precise store is

ρ = [i 7→ (i + 1); priv 7→ (priv + 2)] π ≜ priv + 2 ≥ i + 1

The SMT solver can be used to generate a store, for example

µ = [i 7→ 11; priv 7→ 11] ν = [i 7→ 10; priv 7→ 9]
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Notice that, store µ is the final store, while the valuation ν holds the initial values of i and priv.

2.6 Limitations

Clearly, the exhaustive application of the symbolic execution step relation defined in Figure 3.3
would never terminate loops of unbounded length, which is not a desirable feature. Therefore, a
common tactic in symbolic execution is to abort the exploration when the traces reach certain
execution length. In turn, this makes the semantics unsound, as there will be valid traces that
are ignored based on their length.

In the next section, we aim to mend this limitations by introducing an over-approximation
mechanism.

3 SoundSE: Sound depth bounded symbolic execution

Our goal is to be able to do verification of properties with symbolic execution. For that reason,
we propose to modify the standard symbolic execution semantics by implementing an over-
approximation mechanism, specifically for loop statements. The over-approximation we will
propose in this section will generate imprecise results, and, in essence, it will consist on clearing
the value of variables that might have been modified.

3.1 Sound symbolic states

In order to define the over-approximation of loops it is necessary to extend symbolic states.
The first addition is a precision flag, useful to keep track of whether there has been an over-
approximation. Secondly, to keep track of how many times a loop has been visited, we add a
counter and a function that determines when to perform the over-approximation.

Precision flag The precision flag states whether the symbolic execution has performed any
over-approximation due to exhausting the bound of loop unrollings. Even if the analyzer is not
fully complete, some traces have not been over-approximated. Thanks to this flag, non-over-
approximated traces can be passed to the SMT solver to generate input values.

Counter and step function The counter is used to keep track of the loop iterations. We
define set W as the set of counters, with a special element w0 ∈ W that denotes the initial counter
status with respect to bound control. To operate over counters, we require a function step which
inputs two commands c, c′, and a counter w. It produces a result of the form (b, w′) where b is a
boolean, and w′ is the next counter. Value b is tt if and only if a step from c to c′ can be done
without exhausting the iteration bounds, and with the new counter w′. If b is ff, the iteration
bound has been reached and the state needs to be over-approximated.

We give the definition of what we call the “classic counter” that will be used throughout the
manuscript.
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Definition 3 (Classic counter). The most typical way to bound symbolic execution limits the
number of iteration of each loop to pre-defined number k. Then, W consists of stacks of integers,
w0 is the empty stack, and step: adds a one on top of the stack when entering a new loop, and
pops the value on top of the stack when exiting a loop. More importantly, step increments the
value n at the top of the stack when n ≤ k and moving to the next iteration (rule s-loop-t); on
the other hand, when n > k, it pops n and returns the ff precision flag.

To ensure termination, W and step should satisfy the following well-foundedness property: for
any infinite sequence of commands (ci)i the infinite sequence (wi)i defined by step(ci, ci+1, wi) =
(tt, wi+1) should be stationary, which we assume here.

3.2 Over-approximation of loops

At this point, the counter is set up, and we can determine when we want to perform an over-
approximation. For this goal, our approach is to define a function called modif that inputs a
symbolic precise store, and a loop, and returns an over-approximation of the store.

Since we want to only over-approximate loops, we need an operation that splits a sequence
into its head and its tail. Assuming s is a language statement, and c is a language command, we
call this operation deseq, and it is defined as follows.

deseq(s) = (s, skip)
deseq(s; c) = (s, c)

Then, the modification function modif should behave in the following way.

Definition 4 (Modification function is sound). Let c = (while b do c0); c1 be a sequence starting
with a while statement. Let µ a store, ν a valuation, and κ a symbolic precise store, such that
(µ, ν) ∈ γK(κ). Then, modif is such that

(c, µ) ∗−→ (c1, µ′) =⇒ modif(κ, c) = (κ′, c1) ∧ ∃ν ′ : ν ⪯ ν ′ ∧ (µ′, ν ′) ∈ γK(κ′)

We define a possible implementation of modif.

Definition 5 (Simple modif). Given a precise store κ, and a command s = while b do c0 where
c1 can be any command, or just skip. Then, we define modif = (ρ, π) as follows:

1. Calculate the set m of modifiable variables by doing a syntactic check over c0: any variable
that appears in the left-hand side of an assignment gets added to m.

2. We define a new symbolic store ρ′ such that

ρ′(x) =
{

x if x ∈ m with fresh symbol x
ρ(x) otherwise

We call symbolic variables fresh if it has not appeared previously in the symbolic precise
store.
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3. Evaluate the guard b, and add its negation to the symbolic path.

π′ = π ∧ ¬β where (b, ρ′) ⊢s (β)

4. Return (ρ′, π′).

Lemma 1. Simple modif is sound.

Proof of Lemma 1 is done via induction ?

3.3 Sound symbolic semantics

s-next
(c, κ) ⇀s (c′, κ′) step(c, c′, w) = (tt, w′)

(c, κ, w, b) ⇀s (c′, κ′, w′, b)

s-approx-many

(c, κ) ⇀s (c′, κ′) step(c, c′, w) = (ff, w′)
deseq(c) = (c0, c1) modif(κ, c0) = κ′′

(c, κ, w, b) ⇀s (c1, κ′′, w′, ff)

Figure 3.5: SoundSE: Sound bounded symbolic execution step relation

Based on these definitions, depth bounded symbolic execution is defined by a transition relation
over 4-tuples made of a command, a symbolic state, an element of W, and a boolean, referred to
as symbolic state. We overload the notation ⇀s for this relation, which is defined based on the
previously defined ⇀s. The rules are provided in Figure 3.5:

• Rule s-next carries out an atomic step of symbolic execution that requires no over
approximation; function step returns the precision flag b and a new counter;

• Rule s-approx-many carries out a global approximation step; indeed, as step returns ff,
the function modif is applied to the symbolic state to over-approximate the effect of an
arbitrary number of steps of execution of c; alongside with the new counter state the ff
precision is propagated forward.

Under the well-foundedness assumption, exhaustive iteration of the available symbolic exe-
cution rules from any initial symbolic state will terminate and produce finitely many symbolic
states.

Example 3. We assume the bounding of Definition 3 with its limit of iterations k = 5, and the
modif as in Definition 5. In Program 1.2b, after executing the loop 5 times, the symbolic precise
store is

ρ = [i 7→ (5); z 7→ (z ); priv 7→ (priv + 10)] π ≜ 5 < z

At the next attempt to execute the loop, function step will return ff. Then, function modif is
called, assigning fresh values for variables i and priv since they might have been modified. The
resulting precise store is

ρ = [i 7→ (i1); z 7→ (z ); priv 7→ (priv 1)] π ≜ i1 = z
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3.4 Soundness

To express the soundness of this algorithm, we need to account for the creation of symbolic
values by function modif, which means that valuations also need to be extended. To this end, we
note ν ⪯ ν ′ when the domain of valuation ν is included into that of ν ′ and when both ν and ν ′

agree on the intersection of their domains.
We now obtain the following soundness statement:

Theorem 3 (Soundness of any sequence of SoundSE steps). Let (c, µ) ∈ S be a state and µ′

be a store such that (c, µ) →∗ (skip, µ′). Let κ ∈ K be a symbolic precise store and ν be a
valuation such that (µ, ν) ∈ γK(κ). Let w ∈ W be a counter. Then, there exists a symbolic
precise store κ′, a valuation ν ′, and a counter w′ ∈ W such that ν ⪯ ν ′, (µ′, ν ′) ∈ γK(κ′), and
(c, κ, w, b) ⇀∗

s (skip, κ′, w′, b′).

Proof. There is an execution (c, µ) n−→ (skip, µ) where c terminates in n steps. Let κ be such that
(µ, ν) ∈ γK(κ) By doing induction over n, steps will either be simulated one-to-one by s-next, or
a sequence of steps will be simulated by s-approx-many. When rule s-approx-many, we use
the hypothesis that modif is providing a sound over-approximation of the loop. Eventually, by
applying this rules exhaustively, the execution of c terminates, and we have (µ′, ν ′) ∈ γK(κ′) and
ν ⪯ ν ′. Thus, the SoundSE semantics are sound.

Example 4 (Symbolic execution). For Program 1.2a, symbolic execution performs no over-
approximation, resulting in precise stores with precision flag tt.

For Program 1.2b, as in Example 3, the over-approximation of the loop is performed, turning
the precision flag to ff, with i and priv being assigned fresh symbolic values generated by rule
s-approx-many. There are no constraints over the fresh symbols, except the negation of the
guard which involves i. Thus, the exact value of i cannot be calculated, as the precision flag
implies.

3.5 Refutation

Theorem 4 (Refutation up to a bound of SoundSE). Let c be a command, κ, κ′ ∈ K be two precise
stores, w, w′ ∈ W, such that (c, κ, w, tt) ⇀∗

s (skip, κ′, w′, tt). Then, for all (µ′, ν ′) ∈ γK(κ′), it
exists (µ, ν) ∈ γK(κ) such that (c, µ) →∗ (skip, µ′).

Proof. The SoundSE semantics has a boolean flag b that starts as true (tt). Applications of rule
s-next do not alter the precision flag. Therefore, the only way to have a false (ff) precision
flag is to apply rule s-approx-many. Indeed, this rule over-approximates states, and loses
completeness of the analysis. Thus, Theorem 2 still applies, and this theorem holds.

Example 5 (Symbolic execution completeness up to a bound). We consider the cases discussed
in Example 4. Using the bounding of Definition 3, the result produced for program 1.2a is complete
whereas that for Program 1.2b generates some final symbolic state with precision flag ff, hence
for which Theorem 4 does not apply on these traces. For traces that exited the loop before the
bound k, the SMT solver can still generate counter-examples.
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Chapter 4
RedSoundSE: product of SoundSE and
abstractions

To enhance the precision of loop over-approximation, this chapter introduces a modified rule
that utilises both symbolic execution and abstract interpretation. The notion that combines
these two methods is called reduced product, which involves defining new states that incorporate
both symbolic and abstract stores, and defining a new semantics that executes both symbolically
and abstractly. Since the symbolic execution semantics is small-step, this new reduced product
semantics must also follow that principle, contrary to standard abstract interpretation analyses.
However, we still want to define a classical abstract interpretation semantics that allow us to
soundly over-approximate loops. Ultimately, this semantics will rely on a function called reduction
function that refines the representation of such states by “sharing” information between the
symbolic and abstract stores. Hence, after over-approximating a loop, the reduction function will
alter the symbolic store raising the general precision of the analysis. This new reduced product
semantics will be called RedSoundSE.

1 Abstract interpretation

Abstract interpretation semantics are usually sound, producing a single abstraction that encom-
passes the whole semantics of a program. This is of great interest to us, as the over-approximation
presented in the previous chapter is extremely imprecise. Still, we will also require a small-step
abstract semantics that follows closely that of the symbolic execution. To do so, we will first
define abstract domains—which are abstractions of concrete values—two abstract transport
functions—this functions allow us to operate over the abstractions—and two abstract semantics:
a classical abstract interpretation semantics, and a small-step abstract semantics.

1.1 Abstract domain

An abstract domain [Cousot, 1977] is an abstraction of concrete values. Abstract domains come in
many shapes, such as signs domain where numerical values are abstracted to their sign (negative

27



Chapter 4. RedSoundSE: product of SoundSE and abstractions

or positive), parity domain where values are abstracted to either even or odd, and so on. Domains
can be defined as the need arises, depending on the type of property that is being studied. A key
aspect of domains is that by retaining a limited amount of information, it is still possible to infer
interesting information about a program execution.

For our purpose, we assume a general abstract domain A describing sets of stores, together
with a concretization function γA. We call elements of A abstractions or abstract stores. A
concretization function, takes an abstraction a ∈ A and returns a set of concrete stores that are
being abstracted by a.

γA : A −→ P(M)

Abstract domains are complete lattices (A, ⊑), and as such, we assume the existence of a top
and bottom elements, where γA(⊤) = M and γA(⊥) = ∅. Naturally, ∀a : ⊥ ⊑ a ⊑ ⊤. The lattice
operation lub (least upper bound), often called join in the context, and denoted by ⊔, returns an
abstraction that encompasses both abstractions. That is

γA(a0) ⊆ γA(a0 ⊔ a1) ∧ γA(a1) ⊆ γA(a0 ⊔ a1)

Example (Intervals and convex polyhedra abstract domains). In the intervals domain [Cousot,
1977], the abstract elements are defined by constraints of the form lx ≤ x, x ≤ hx where x is a
variable, lx is the lower bound of x, and hx is the higher bound of x. For instance, an intervals
abstraction might describe the possible values of x as 0 ≤ x10, implying that any memory where
the value of x is between 0 and 10 is in its concretization. Since intervals cannot relate variables,
that is, it is not possible to write x ≤ y, we consider it a non-relational domain.

In the convex polyhedra abstract domain [Cousot, 1978], the abstract elements are conjunctions
of linear inequality constraints. These constraints can describe the relationship between different
variables. For example, an if statement with guard x < y∗2 that constraints the upper bound of x
based on that of y. This inequality can be expressed by convex polyhedra. We say that this domain
is a relational domain. We say that the convex polyhedra domain is a relational domain. This
relational constraint cannot be expressed by the intervals domain. Instead, an over-approximation
of the constraint is used.

1.2 Abstract transport functions

To define a small-step abstract semantics, we require two abstract transport functions that allow
us to modify the abstractions. We will overload the function J·K once again, to replace variables
in an expression by their mapping in a store.

Definition (Abstract assignment). assignx,e : A −→ A is parameterized by a variable x and an
expression e and is such that

∀a ∈ A, {µ[x 7→ JeK(µ)] | µ ∈ γA(a)} ⊆ γA(assignx,e(a))

Function assignx,e allows to modify an abstraction by simulating the assignment of e to x.
For example, in the context of intervals, let a = {0 ≤ y ≤ 10}. Then, the assignment x = y
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1. Abstract interpretation

causes x to take be constrained by the same interval assignx,y(a) = {0 ≤ y ≤ 10 ; 0 ≤ x ≤ 10}.

Definition (Abstract condition). guardb : A −→ A is parameterized by a boolean expression b
and is such that

∀a ∈ A, {µ ∈ γA(a) | JbK(µ) = tt} ⊆ γA(guardb(a))

Function guard constraints the abstract store. For example, given a guard 5 ≤ x with the
abstract store a = {0 ≤ x ≤ 10} tightens the interval of x to guardb(a) = {5 ≤ x ≤ 10}.

1.3 Abstract interpretation based static analysis

In order to over-approximate loops precisely, we need to define an abstract interpretation based
analysis that always terminates and is sound.

In the abstract semantics, A is assumed to be a parameter of the analysis. It may consist
of any numerical abstraction, such as the interval abstract domain or the domain of convex
polyhedra.

Definition 6 (Sound abstract semantics). The static analysis function JcK♯
A : A −→ A is sound

in the sense that, for all command c and all abstract state a,

{µ′ ∈ M | ∃µ ∈ γA(a), (c, µ) ∗−→ (skip, µ′)} ⊆ γA(JcK♯
A(a))

meaning that γA(JcK♯
A(a)) is a sound over-approximation of the concrete semantics.

To ensure termination, we have function lfp⊑
a : C −→ A parameterized by an abstraction a

that calculates the least fixed point of a command starting by a. This function will apply
JaK♯

A exhaustively until it reaches a fixed point, assured by the application of a widening
operator [Cousot, 1977]. We characterize the widening operator as follows.

Definition 7 (Widening operator). A widening operator over an abstract domain A is a binary
operator ▽, such that

(i) for all abstract elements a0, a1 ∈ A,

γA(a0) ∪ γA(a1) ⊆ γA(a0▽a1)

(ii) ll sequences (an)n∈N of abstract elements, the sequence (a′
n)n∈N defined below converges:{

a′
0 = a0

a′
n+1 = a′

n▽an

Then, lfp⊑
a will apply the condition and body of the loop over a, widening at each iteration,

until a fixed point is reached. A definition of the semantics can be found in Figure 4.1.

Example 6 (Convex polyhedra abstraction). For Program 1.2a, using convex polyhedra, the
abstract interpretation will calculate the two branches of the if independently, and then use the
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JskipK♯
A(a) = a

Jx = eK♯
A(a) = assignx,e(a) Jc0; c0K

♯
A(a) = Jc1K

♯
A ◦ Jc0K

♯
A(a)

Jif b then c0 else c1K
♯
A =

(
Jc0K

♯
A ◦ guardb(a)

)
⊔

(
Jc1K

♯
A ◦ guard¬b(a)

)
Jwhile b do c0K

♯
A = guard¬b ◦ lfp⊑

a Jif b then c0 else skipK♯
A

Figure 4.1: Abstract interpretation semantics

a-assign
a′ ≜ assignx,e(a)

(x := e, a) ⇀A (skip, a′)
a-if-t

a′ ≜ guardb(a) a′ ̸= ⊥
(if b then c0 else c1, a) ⇀A (c0, a′)

a-if-f
a′ ≜ guard¬b(a) a′ ̸= ⊥

(if b then c0 else c1, a) ⇀A (c0, a′)

a-seq-exit
(skip; c1, a) ⇀A (c1, a)

a-seq
(c0, a) ⇀A (c′

0, a′)
(c0; c1, a) ⇀A (c′

0; c1, a′)

a-loop-f
a′ ≜ guard¬b(a) a′ ̸= ⊥

(while b do c0, a) ⇀A (skip, a′)

a-loop-t
a′ ≜ guardb(a) a′ ̸= ⊥

(while b do c0, a) ⇀A (c; while b do c0, a′)

Figure 4.2: Abstract execution step

join operation.

Jc0K
♯
A ◦ guardb(a) = {1 ≤ priv ; y = 5}

Jc1K
♯
A ◦ guard¬b(a) = {priv ≤ 0 ; y = 5}

⊔=⇒ {y = 5}

The join will cause the constraint over priv to be lost, but the equality on y is kept.
For Program 1.2b, the loop could potentially execute infinitely. Then, the least fixed point

function will execute the loop and apply the widening operator until a fixed point is found.

a′
1 = {0 ≤ i ≤ 0}

a′
2 = {0 ≤ i ≤ 1}

a′
3 = {0 ≤ i ≤ ∞}

At a′
3 the fixed point is found, and after negating the guard the abstraction is

a = {z ≤ i ; 0 ≤ i ≤ ∞}

Since the value of z could potentially be negative, either i stayed with value 0, or it grew.
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1.4 Abstract step semantics

The abstract interpretation based analysis fits perfectly to perform the over-approximation of
loops as we desire. However, the symbolic execution semantics work in a small-step fashion.
Thus, we define a small-step abstract semantics that imitates the symbolic execution semantics so
that these “synchronize” in the execution of a statement. We provide its definition in Figure 4.2
by using the abstract operations defined earlier, making it very straightforward.

These abstract semantics cannot ensure termination, similarly to the standard symbolic
execution. Also, each abstraction follows a single path, which contrasts with classical abstract
interpretation were operations such as join and widening are used to ensure the coverage of all
possibilities.

Example 7. For Program 1.2a, since there is no join, collecting all possible executions results
in two abstractions.

att = {1 ≤ priv; y = 5}
aff = {priv ≤ 0; y = 5}

For Program 1.2b, an infinite amount of abstractions are generated. We list some of them.

a0 = {z ≤ 0 ; i = 0}
a1 = {z = 1 ; i = 1}
a2 = {z = 2 ; i = 2}

...

2 Reduction of symbolic precise stores and abstract states

Reduced product [Cousot, 1979] aims at expressing precisely conjunctions of constraints expressed
in distinct abstract domains. First, a product domain is defined. In our case, the product domain
will hold a precise symbolic store, and an abstraction. Then, the reduction function will exchange
information between these two, to enhance the general precision of the analysis.

2.1 Product domain

We let a precise product store be a pair (κ, a) ∈ K × A. In our case, the definition needs to be
adapted slightly as symbolic execution and abstract domain A do not abstract exactly the same
objects:

Definition 8 (Product domain). The product abstract domain consists of the set K × A and the
concretization function γK×A defined as follows:

γK×A : K × A −→ P(M × (V → V))
(κ, a) 7−→ {(µ, ν) ∈ γM(κ) | µ ∈ γA(a)}
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2.2 Reduction

In a precise product store (κ, a), the goal is to enhance precision by exchanging information
between κ and a. This is done through a reduction function, which rewrites an abstract element
with another of equal concretization, but that supports more precise analysis operations.

Then the reduction follow must satisfy the following

Definition 9 (Reduction is sound). Let (κ, a) ∈ K × A. Then,

(γK×A ◦ reduction)(κ, a) = γK×A(κ, a)

Our approach is based on the assumption that the abstract domain A supports a function
called constr, that maps an abstract state a to a logical formula over program variables such that,
if µ ∈ γA(a) then µ satisfies formula constr(a). Some abstract domains—specifically intervals
and convex polyhedra—utilize an internal representation based on conjunction of constraints, in
which case constr is trivial.

We provide a possible definition for the reduction function.

Definition 10 (Simple reduction).

reduction : K × A −→ K × A

((ρ, π), a) 7−→ ((ρ, π′), a) where π′ = π ∧ constr(a)[⃗x 7→ ρ(⃗x)]

Note that [⃗x 7→ ρ(⃗x)] in the above definition, symbolizes the replacement of each program
variable present in constr(a) into its definition in ρ. This step follows from the fact that a

constrains program variables whereas π constrains valuations. This general reduction function
may be refined into a more precise one, where the resulting symbolic path is simplified, possibly
to the ff formula. Furthermore, this reduction only modifies the symbolic path π, but it is
possible to define a reduction operation that also rewrites the abstract state a.

Example 8. Let (κ, a) = (([z 7→ z ∗ 2], (10 ≤ z )), {20 ≤ z ≤ 40}). In this precise product
store, a is more precise than κ over z. By applying the reduction function the symbolic path π is
updated.

reduction(κ, a) = (([z 7→ z ∗ 2], (10 ≤ z ≤ 20)), {20 ≤ z ≤ 40})

Notice that, while the abstraction is referring to variables of the program, the symbolic path
refers to symbolic variables. Hence, the replacement of variables using the symbolic store must be
performed in the reduction.

3 RedSoundSE: reduced product symbolic execution

Similarly to SoundSE, the new semantics, RedSoundSE, takes the form of an extension the
standard symbolic execution presented in the previous chapter, meaning that we only need to
define two new rules: one for simple execution steps, and one for the over-approximation of loops.
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s-a-next

(c, κ) ⇀s (c′, κ′) step(c, c′, w) = (tt, w′)
(c, a) ⇀A (c′, a′) reduction(κ′, a′) = (κ′′, a′′)

(c, (κ, a), w, b) ⇀s×A (c′, (κ′′, a′′), w′, b)

s-a-approx-many

(c, κ) ⇀s (c′, κ′) step(c, c′, w) = (ff, w′)
deseq(c) = (c0, c1) modif(κ, c0) = κ′′

a′ = Jc0K
♯
A(a) reduction(κ′′, a′) = (κ′′′, a′′′)

(c, (κ, a), w, b) ⇀s×A (c1, (κ′′′, a′′′), w′, ff)

Figure 4.3: Product of symbolic execution and abstract interpretation

3.1 Reduced product semantics

The new product states are 4-tuples as previously, with the difference that the symbolic precise
store (previously κ) is now replaced by a precise product store: a pair (κ, a). The transition
relation ⇀s×A between such states consists of two rules that are shown in Figure 4.3 and that
extend those in Figure 3.5.

Rule s-a-next corresponds to a regular symbolic execution step, and in this case, a similar
abstract execution step is performed. For this rule, it is important that we use the small-step
abstract semantics. After doing both one step in the symbolic and abstract stores, the reduction
function is applied. This is optional depending on the reduction function: if the simple definition
of reduction is used, using the reduction in this rule will not raise the precision of further
execution steps.

When the exploration bound is met, rule s-a-approx-many is applied. As in rule s-approx-
many, first modif is used to clear modified variables and create a sound over-approximation of
the store. Then, the big-step abstract semantics are used to over-approximate the loop, and the
reduction function is used. In this case, the reduction function will share information between
the symbolic and abstract stores, raising the precision of the following execution steps. In the
case of the simple reduction function from Definition 10, this implies injecting constraints from
the abstraction into the symbolic store.

Example 9 (Product analysis). In Program 1.2b, the value of z is unknown. Hence, the final
value of i is unknown, but it can be narrowed down by using the convex polyhedra domain. When
the loop is reached, to paths are taken: the first path does not enter the loop, assuming that the
value of z is lesser-equal to 0. In the other path, z must be greater-equal to 1. After k steps,
where k is the classic counter bound the precise product store is as follows.

κ = ([i 7→ k ; z 7→ z0 ; priv 7→ priv 0 + k ∗ 2], k − 1 < z0) a =
{

i − 1 < z
k ≤ i ≤ k

Then, s-a-approx-many is applied. Before the reduction, the stores are as follows.

κ = ([i 7→ i1 ; z 7→ z0 ; priv 7→ priv 1], k − 1 < z0 ∧ i1 ≥ z0) a =
{

i = z
k − 1 ≤ i
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1 # H → priv ; L → y,i
2 if priv < 0: priv = 0
3 while i < 10:
4 i += 1
5 priv += 2
6 if priv >= 0: y += 1
7 else: y = 0

Figure 4.4: Safe program that requires either RedSoundSE with intervals or polyhedra, or
RedSoundRSE with dependences.

Finally, after the reduction.

κ = ([i 7→ i1 ; z 7→ z0 ; priv 7→ priv 1], i1 = z0 ∧ k − 1 ≤ i1)

The new constraint in green, is clearly more precise than the old one.

The last example we present is program from Figure 4.4. This program is safe, but it requires
either the use RedSoundSE with intervals or polyhedra.

Example 10. In this example we will execute Program 4.4 with RedSoundSE. We denote the
program with c.

We will start reasoning about the program by looking at the first line with the if statement.
By applying s-if-t, the value of priv is 0. By applying s-if-f, the value of priv must be greater
or equal to 0. With this logic we can assume that priv is always greater or equal to 0 before the
loop.

The value of i is unknown. Therefore, both s-loop-t and s-loop-f can be applied. Assuming
the loop is never entered, the value of i is not modified, neither priv. If the loop is executed,
i will grow until the guard does not hold. However, the value of i is unknown and, eventually,
needs to be over-approximated.

If we were to apply rule s-approx-many, from SoundSE, the new value of i and priv would
be completely imprecise. Instead, by using s-a-approx-many with a numerical domain such as
intervals, it is possible to determine that the value of i is exactly 10, and the value of priv is
greater or equal to 0.

Summarizing, in both cases of executing or not executing the loop, it is possible to establish
that the value of priv ≥ 0. This, in turn, forces the last if statement to always execute, making
the value of y equal to its original value plus 1, for every execution.

What this implies is that, when we apply a relational symbolic execution using RedSoundSE
as the basis, the analysis will determine that the value of y is always shared between executions
and that the program is noninterferent.

3.2 Soundness and refutation property

The RedSoundSE analysis defined satisfies the same soundness (Theorem 3) and refutation
(Theorem 4) properties as SoundSE.
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3. RedSoundSE: reduced product symbolic execution

Theorem 5 (Soundness of any sequence of RedSoundSE steps). Let (c, µ) ∈ S be a state and µ′

be a store such that (c, µ) →∗ (skip, µ′). Let (κ, a) ∈ K × A be a product precise store and ν be a
valuation such that (µ, ν) ∈ γK×A(κ, a). Let w ∈ W be a counter. Then, there exists a symbolic
precise store κ′, a valuation ν ′, and a counter w′ ∈ W such that ν ⪯ ν ′, (µ′, ν ′) ∈ γK×A(κ′, a′),
and (c, (κ, a), w, b) ⇀s×A (skip, (κ′, a), w′, b′).

Proof. There is an execution (c, µ) n−→ (skip, µ) where c terminates in n steps. Let κ be such that
(µ, ν) ∈ γK(κ) By doing induction over n, steps will either be simulated one-to-one by s-a-next,
or a sequence of steps will be simulated by s-a-approx-many. When rule s-a-approx-many,
we use the hypothesis that modif is providing a sound over-approximation of the loop, as well
as the soundness of the abstract interpretation and of the reduction function. Eventually, by
applying this rules exhaustively, the execution of c terminates, and we have (µ′, ν ′) ∈ γK(κ′) and
ν ⪯ ν ′. Thus, the RedSoundSE semantics are sound.

Theorem 6 (Refutation up to a bound of RedSoundSE). Let c be a command, (κ, a), (κ′, a′) ∈ K×
A be two product precise stores, w, w′ ∈ W, such that (c, (κ, a), w, tt) ⇀s×A (skip, (κ′, a′), w′, tt).
Then, for all (µ′, ν ′) ∈ γK×A(κ′, a′), it exists (µ, ν) ∈ γK×A(κ, a) such that (c, µ) ⇀s×A (skip, µ′).

Proof. The RedSoundSE semantics has a boolean flag b that starts as true (tt). Applications
of rule s-a-next do not alter the precision flag. Therefore, the only way to have a false (ff)
precision flag is to apply rule s-a-approx-many. Indeed, this rule over-approximates states, and
loses completeness of the analysis. Thus, Theorem 2 still applies, and this theorem holds.
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Chapter 5
SoundRSE: Sound Relational Symbolic
Execution

As discussed in Chapter 1, security properties like noninterference require to reason over pairs
of execution traces thus we now set up a sound relational symbolic execution technique that
constructs pairs of executions. This analysis will be regarded as SoundRSE. The approach will be
very similar to that of SoundSE, but with relational symbolic expressions.

1 Standard relational symbolic execution

1.1 Relational symbolic expressions and stores

We first define the notions of relational expression, relational store, and precise relational store.
An approach to define a relational symbolic state would be to simply build pairs of sym-

bolic states (κ0, κ1). However, this representation is redundant. Indeed, to attempt proving
noninterference we need to express that both symbolic states agree on low variables, which
can be captured by adding equalities over symbolic values. Yet, it is more efficient to share
common fragments of the symbolic stores and symbolic paths. Intuitively, instead of writing
κ0 = [i 7→ (i0)], κ1 = [i 7→ (i1)], and i0 = i1, we may simply have a single symbolic variable i

and a single symbolic memory [i 7→ (i )].
A relational symbolic expression is an element defined by the grammar: ε̃ ::= (ε)|(ε | ε) where

ε ranges over the set E of symbolic expressions. We write E2 for the set of relational symbolic
expressions. When a variable shares its value in both executions, we simply write i 7→ (ε).
However, when the values disagree (for instance, when it is high), the variable will be mapped to
two symbolic expressions, written x 7→ (ε0 | ε1).

Definition 11 (Relational and precise relational stores). A relational symbolic store ρ̃ is a
function from variables to relational symbolic expressions. We let M2 = X → E2 stand for their
set. Finally, a precise relational store κ̃ is a pair (ρ̃, π) ∈ K2.
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1.2 Store operations

Before we define concretizations of M2 and K2, we need to introduce two operations. The first is
a projection of relational symbolic stores to get one side of it. The second operation is a pairing
of two symbolic stores into a relational symbolic store.

Projections The projections Π0, Π1 map relational symbolic stores into symbolic stores. They
are defined in a pointwise manner, as follows:

• if ρ̃(x) = (ε) then Π0(ρ̃)(x) = Π1(ρ̃)(x) = ε;

• if ρ̃(x) = (ε0 | ε1), then Π0(ρ̃)(x) = ε0 and Π1(ρ̃)(x) = ε1.

We overload the Π0, Π1 notation and also apply it to double symbolic expressions: Π0((ε)) =
Π1((ε)) = ε and if ε̃ = (ε0 | ε1), then Π0(ε̃) = ε0 and Π1(ε̃) = ε1.

Pairing The pairing Lρ0 | ρ1M of two symbolic stores ρ0 and ρ1 is a relational symbolic store
defined such that, for all variable x,

Lρ0 | ρ1M(x) =
{

(ε) if ρ0(x) and ρ1(x) are provably equal to ε ∈ E

(ρ0(x) | ρ1(x)) otherwise

where the notion of “provably equal” may boil down to syntactic equality of symbolic expressions
or involve an external proving tool.

1.3 Concretization functions

We can now define the concretization functions for relational symbolic stores and relational
precise stores. These are analogous to the concretizations in Chapter 3.

Definition 12 (Concretization functions). The concretization of relational stores γM2
and

concretization of precise relational stores γK2 are defined by:

γM2
: M2 −→ P(M × M × (V → V))

ρ̃ 7−→ {(µ0, µ1, ν) | ∀x ∈ X, ∀i ∈ {0, 1}, µi(x) = JΠi(ρ̃)(x)K(ν)}
γK2 : K2 −→ P(M × M × (V → V))

(ρ̃, π) 7−→ {(µ0, µ1, ν) ∈ γM2
(ρ̃) | JπK(ν) = tt}.

1.4 Relational symbolic execution states and commands

Similarly to non-relational states of SoundSE in Chapter 3, relational states, denoted κ̃, are
4-tuples with a command, a relational precise store, and components w and b.

κ̃ = (c, κ̃, w, b)

Since relational symbolic execution aims at describing pairs of executions, it should account
for the case where the two executions follow different control flow paths. Thus, a relational
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symbolic state may consist of a single command when both executions follow the same path,
or two commands when they diverge. For this matter, we introduce a new type of language
command, called composition, denoted by ▷◁. Thus, the language syntax is extended with special
composed commands c▷◁.

c▷◁ ::= c | c ▷◁ c

When both executions are following the same path, symbolic states remain the same. However,
the executions are not following the same path, for instance, when an if statement is executed,
the command is split in two and symbolic states are of the shape

((c0 ▷◁ c1; c2), κ̃, w, b)

Command c0 (resp., c1) denotes the control state of the first (resp., second) execution. When
both executions finishing executing their respective command, they “meet” and execute c2.

Notice that, when we define the semantic rules for the composition command, the counter
can still be implemented as in Example 3.

1.5 Evaluation of expressions

For the evaluation of expressions, we can assume For an expression e, the relational evaluation is
denoted by Evaluation of expressions now has two account for relational stores. For that, we
overload evaluation ⇓, to take an expression e and a relational store ρ̃, and return a relational
symbolic expression ε̃. We define the relational evaluation of expressions through the standard
one.

ρ̃ ⊢ e ⇓ ε̃ where ε̃ =
{

(ε0) if ε0 = ε1

(ε0 | ε1) otherwise
with Π0(ρ̃) ⊢ e ⇓ ε0

Π1(ρ̃) ⊢ e ⇓ ε1

1.6 Relational symbolic execution semantics

We write ⇀sr for the relational symbolic execution step relation. Rules are shown in Figure 5.1,
and discussed here.

sr-assign evaluates expression e, returning a relational symbolic expression. The expression
is then mapped in the relational symbolic store.

sr-seq executes a step on sequence command c0; c1, executing c0 and updating the precise
relational symbolic store. If c0 does not finish, it is replaced by c′

0, and the next will continue
executing it. Once the head of the sequence is skip, sr-seq-exit exits the sequence, leaving
just c1.

sr-if-tt and sr-if-ff either consider the guard to hold or to not hold in both executions.
This results in picking the corresponding command c0 or c1, and continuing execution normally,
with an added constraint.

sr-if-tf is applied when the first execution follows the true branch, and the second execution
follows the false branch of an if statement. This results in the composition of commands with
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the ▷◁ operator. The guard is evaluated and added as a constraint, and the semantics will then
execute both executions separately. The same logic applies for sr-if-ft.

When an while statement is met, if step is true, that is, we can unroll the loop, rule sr-
loop-tt is applied and the body of the loop is appended to the loop, and a new constraint is
added. Rule sr-loop-ff works similarly, but instead udpates the command to skip.

sr-loop-tf and sr-loop-ft work similarly to sr-if-tf and sr-if-ft, as long as step is true.
Since the executions become totally separated until they meet after the loop, the counter does
not need to be modified at all.

The most interesting rules are sr-comp-r and sr-comp-l. sr-comp-l executes the left
command of a composition. To do so, it uses a non-relational symbolic execution, such as
SoundSE or RedSoundSE. Eventually, this command will reach skip, at which point sr-comp-r
starts being applied. When both commands eventually are skip, rule sr-comp-exit consumes
the empty composition. We say that the two executions “meet” when sr-comp-exit is applied.
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sr-assign
ρ̃ ⊢ e ⇓ ε̃

(x = e, (ρ̃, π)) ⇀sr (skip, (ρ̃[x 7→ ⟨ε̃⟩], π))

sr-seq
(c0, κ̃) ⇀sr (c′

0, κ̃′)
(c0; c1, κ̃) ⇀sr (c′

0; c1, κ̃′)
sr-seq-exit

(skip; c1, κ̃) ⇀sr (c1, κ̃)

sr-if-tt
ρ ⊢ b ⇓ β̃ π′ = π ∧ Π0(β̃) ∧ Π1(β̃) may(π′)

(if b then c0 else c1, (ρ̃, π)) ⇀sr (c0, (ρ̃, π′))

sr-if-tf
ρ ⊢ b ⇓ β̃ π′ = π ∧ Π0(β̃) ∧ ¬Π1(β̃) may(π′)
(if b then c0 else c1, (ρ̃, π)) ⇀sr (c0 ▷◁ c1, (ρ̃, π′))

sr-if-ft
ρ ⊢ b ⇓ β̃ π′ = π ∧ ¬Π0(β̃) ∧ Π1(β̃) may(π′)
(if b then c0 else c1, (ρ̃, π)) ⇀sr (c1 ▷◁ c0, (ρ̃, π′))

sr-if-ff
ρ ⊢ b ⇓ β̃ π′ = π ∧ ¬Π0(β̃) ∧ ¬Π1(β̃) may(π′)

(if b then c0 else c1, (ρ̃, π)) ⇀sr (c0, (ρ̃, π′))

sr-loop-tt
ρ ⊢ b ⇓ β̃ π′ = π ∧ Π0(β̃) ∧ Π1(β̃) may(π′)

(while b do c0, (ρ̃, π)) ⇀sr (c0; while b do c0, (ρ̃, π))

sr-loop-tf
ρ ⊢ b ⇓ β̃ π′ = π ∧ Π0(β̃) ∧ ¬Π1(β̃) may(π′)

(while b do c0, (ρ̃, π)) ⇀sr ((c0; while b do c0) ▷◁ skip, (ρ̃, π′))

sr-loop-ft
ρ ⊢ b ⇓ β̃ π′ = π ∧ ¬Π0(β̃) ∧ Π1(β̃) may(π′)

(while b do c0, (ρ̃, π)) ⇀sr (skip ▷◁ (c0; while b do c0), (ρ̃, π′))

sr-loop-ff
ρ ⊢ b ⇓ β̃ π′ = π ∧ ¬Π0(β̃) ∧ ¬Π1(β̃) may(π′)

(while b do c0, (ρ̃, π)) ⇀sr (skip, (ρ̃, π′))

sr-comp-l
(c0, (Π0(ρ̃), π)) ⇀s (c′

0, (ρ′
0, π′))

(c0 ▷◁ c1, (ρ̃, π)) ⇀sr (c′
0 ▷◁ c1, (Lρ′

0 | Π1(ρ̃)M, π′))

sr-comp-r
(c1, (Π1(ρ̃), π)) ⇀s (c′

1, (ρ′
1, π′))

(skip ▷◁ c1, (ρ̃, π)) ⇀sr (skip ▷◁ c′
1, (LΠ0(ρ̃) | ρ′

1M, π′))

sr-comp-exit
(skip ▷◁ skip, κ̃) ⇀sr (skip, κ̃)

Figure 5.1: Rules of relational symbolic execution step relation.
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2 SoundRSE: sound relational symbolic execution

To define SoundRSE, similarly to Chapter 3, we will define a few rules that make use of the
standard relational symbolic execution.

2.1 Over-approximation of loops

Rules that define SoundRSE can be found in Figure 5.2.
The first rule is sr-next, that just applies a normal step of execution.
For the over-approximation of loops, we have two rules: sr-approx-many and sr-approx-

many-abs. The standard rule, sr-approx-many, is defined with the use of an adapted function
modif. This extension of modif to relational symbolic states, maps modified variables to a pair of
fresh symbolic variables. Rule sr-approx-many-abs is done by also using the abstraction from
RedSoundSE.

Finally, since two simultaneous traces can follow different paths, one execution might reach
the iteration bound. When this happens, the over-approximation needs to be applied to just one
execution. This is done by rules sr-approx-comp-r and sr-approx-comp-l.

2.2 SoundRSE with non-relational abstractions

At this point, rule sr-approx-many completely disregards the abstractions used in RedSoundSE,
such as intervals and polyhedra domains. We will not reformulate all of the semantics rules of
SoundRSE, but we will assume that:

• The symbolic state, originally a relational symbolic precise store, is now complemented by
two abstract states a0 and a1.

• At each semantic step, the abstract semantics is applied over a0 and a1 with the current
command, similar to RedSoundSE.

• For the loop over-approximation, rule sr-approx-many-abs applies the reduction on both
a0 and a1 after function modif has been applied. The reduction function is similar to the
one of RedSoundSE, doing the reduction of a0 with the left side of the relational store, and
the reduction of a1 with the right side of the relational store.

We introduce the updated rule in Figure 5.3.

2.3 Soundness and refutation results

SoundRSE inherits similar soundness and refutation properties as SoundSE, as shown in the
following theorems.

Theorem 7 (Soundness). Let κ̃ ∈ K2, w ∈ W, and b ∈ B. We let (µ0, µ1, ν) ∈ γK2(κ̃) and assume
that stores µ′

0, µ′
1 are such that (c, µ0) →∗ (skip, µ′

0) and (c, µ1) →∗ (skip, µ′
1). Then, there

exists κ̃′ ∈ K2, a valuation ν ′, and a counter state w′ ∈ W such that ν ⪯ ν ′, (µ′
0, µ′

1, ν ′) ∈ γK(κ̃′),
and (c, κ̃, w, b) ⇀∗

sr (skip, κ̃′, w′, b′).
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sr-next
(c, κ̃) ⇀sr (c′, κ̃′) step(c, c′, w) = (tt, w′)

(c, κ̃, w, b) ⇀sr (c′, κ̃′, w′, b)

sr-approx-comp-r

(c, κ̃) ⇀sr (c′, κ̃′) step(c, c′, w) = (ff, w′) deseq(c) = (skip ▷◁ c1, c2)
(c1, Π1(κ̃), w, b) ⇀s (c′

1, κ′, w′, ff) κ̃′′ = LΠ0(κ̃) | κ′M
(c, κ̃, w, b) ⇀sr (skip ▷◁ c′

1; c2, κ̃′′, w′, ff)

sr-approx-comp-l

(c, κ̃) ⇀sr (c′, κ̃′) step(c, c′, w) = (ff, w′) deseq(c) = (c0 ▷◁ c1, c2)
(c0, Π0(κ̃), w, b) ⇀s (c′

0, κ′, w′, ff) κ̃′′ = Lκ′ | Π1(κ̃)M
(c, κ̃, w, b) ⇀sr (c′

0 ▷◁ c1; c2, κ̃′′, w′, ff)

sr-approx-many

(c, κ̃) ⇀sr (c′, κ̃′) step(c, c′, w) = (ff, w′)
deseq(c) = (c0, c1) modif(κ̃, c0) = κ̃′′

(c, κ̃, w, b) ⇀sr (c1, κ̃′′, w′, ff)

Figure 5.2: Rule for loop over-approximation in SoundRSE.

sr-approx-many-abs

(c, κ̃) ⇀sr (c′, κ̃′) step(c, c′, w) = (ff, w′)
deseq(c) = (c0, c1) modif(κ̃, c0) = κ̃′′

i ∈ {0, 1} a′
i = Jc0K

♯
A(ai) reduction(κ̃′′, a′

0, a′
1) = (κ̃′′′, a′′

0, a′′
1)

(c, (κ̃, a0, a1), w, b) ⇀sr (c1, (κ̃′′, a′′
0, a′′

1), w′, ff)

Figure 5.3: Rule sr-approx-many-abs.

Theorem 8 (Refutation up to a bound). Let c be a command, κ̃, κ̃′ ∈ K2 be two precise stores,
w, w′ ∈ W, such that (c, κ, w, tt) ⇀∗

sr (skip, κ′, w′, tt). Then, for all (µ′
0, µ′

1, ν ′) ∈ γK2(κ′), it
exists (µ0, µ1, ν) ∈ γK2(κ) such that (c, µ0) →∗ (skip, µ′

0) and (c, µ1) →∗ (skip, µ′
1).

Proof. Proof follows that of Theorem 4

3 SoundRSE-based analysis of noninterference

We now assume a program (c, L), and show the application of SoundRSE analysis to attempt
proving noninterference. The analysis proceeds according to the following steps:

1. Construction of the initial store ρ̃0 such that, for all variables x present in c, ρ̃0(x) = (x )
(resp., ρ̃0(x) = (x0 | x1)) if x ∈ L (resp., x ̸∈ L), and where x is a fresh symbolic value
(resp., x0, x1 are fresh symbolic values).

2. Exhaustive application of semantic rules from initial state (c, (ρ̃0, tt), w0, tt); we let O
stand for the set of final precise relational stores with their precision flags: O ≜ {(κ̃, b) |
∃w ∈ W, (c, (ρ̃0, tt), w0, tt) ⇀sr (skip, κ̃, w, b)}.
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3. Attempt to prove noninterference for each symbolic path in O using an external tool, such
as an SMT solver; more precisely, given ((ρ̃, π), b) ∈ O,

• if π is not satisfiable, the path is infeasible and can be ignored;

• if it can be proved that for all variables x ∈ L, there is a unique value, i.e., Π0(ρ̃)(x) =
Π1(ρ̃)(x), then the program is noninterferent;

• if a valuation ν can be found, such that JπK(ν) = tt (the path is satisfiable), and there
exists a variable x ∈ L such that JΠ0(ρ̃)(x)K(ν) ̸= JΠ1(ρ̃)(x)K(ν), and b = tt, then ν

provides a counter-example refuting noninterference;

• finally, if b = ff and neither of the above cases occurs, no conclusive answer can be
given for this path.

To summarize, the analyser either proves noninterference (when all paths are either not satisfiable
or noninterferent), or it provides a valuation that refutes noninterference (when such a valuation
can be found for at least one path), or it does not conclude. When a refutation is found, this
refutation actually defines a real attack.

1 # H → priv ; L → i
2 while i > priv:
3 i += 1
4 priv += 2

To illustrate the refutation capabilities of SoundRSE, we reintroduce Program 3.4, where the
final value of i depends on priv. This program always terminates since the value of i is growing
slower than that of priv.

Example 11 (Noninterference). Applying SoundRSE to Program 1.2a, goes through the four
interleavings. When finishing executing the if, all the relational stores have that y maps to 5.
Therefore, the program is verified noninterferent.

Program 1.2b eventually reaches the unrolling limit and rule sr-approx-many is applied.
When the rule is applied, i is assigned (i1 | i2), and their equality cannot be proven. Therefore,
the program cannot be verified. If we instance SoundRSE with RedSoundSE, where the value of i
is 10, then the program can be verified.

The analysis of Program 3.4 computes at least one interferent path if the unrolling bound is
set to any strictly positive integer.

3.1 Refutation of programs with respect to noninterference

We consider two new examples for showing the refutation of programs, found in Figure 5.4.

Example 12. Program 5.4a copies the value of priv into y0 after three executions of the loop.
Variables y1 and y2 are cleared after the loop by getting value 0 assigned, but y0 retains the value
of priv.
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3. SoundRSE-based analysis of noninterference

1 i = 0
2 while (i < 3):
3 y0 = y1
4 y1 = y2
5 y2 = priv
6 i += 1
7 y1, y2 = 0, 0

(a) Insecure

1 i = 0
2 while (i < 100):
3 if (priv > 0):
4 y = 5
5 i += 1

(b) Insecure

Figure 5.4: Unsafe programs with respect to Noninterference. Program (a) can be refuted by
SoundSE, while program (b) cannot.

By using SoundRSE, from initial store

ρ̃ = [i 7→ (i ); y0 7→ (y0); y1 7→ (y1); y2 7→ (y2); priv 7→ (p0 | p1)],

if the iteration bound is greater than three (meaning that SoundRSE accesses the loop the three),
the loop does not need to be over approximated.

The final symbolic store is

ρ̃ = [i 7→ (i ); y0 7→ (p0 | p1); y1 7→ (0); y2 7→ (0); priv 7→ (p0 | p1)],

and then a valuation ν exists such that it satisfies this trace, and the final value of y0 disagrees
between the two executions. For example,

ν = [p0 7→ 0; p1 7→ 1; . . . ].

Example 13. Program 5.4b is also unsafe, but instead of accessing the loop 3 times, we need to
access it a hundred times. We can keep raising the number of iterations, but clearly there has to
be a limit, either for space explosion, or for limiting the time to analyze programs. Because of
this, we assume that the bound of iterations is lower than 100.

In this case, the analysis will have to over approximate the value of y. This will cause the
analyzer to not be able to prove that the program is noninterferent, neither insecure. Hence, the
response is inconclusive.
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Chapter 6
RedSoundRSE: dependences and SoundRSE

Dependences analysis consists on tracking the dependency between variables in a program,
ignoring the actual values. While dependences are imprecise, they can track the relation between
variables, making it good for hyperproperties such as Noninterference.

Some programs like Program 1.2b, where an while statement with a low guard performs
assignments, can be verified by dependences. However, the more precise SoundRSE cannot,
steming from the broad over-approximation of loops.

In this chapter, we set up a novel form of product of abstractions, to benefit from dependences
in the symbolic semantics. This notion of product is generic and does not require to fix a specific
dependency abstraction. We refer to the final analysis presented in this section as RedSoundRSE
(Reduced Sound Relational Symbolic Execution).

1 Dependences semantics

Although dependence abstractions may take many forms, they all characterize information flows
that can be observed by comparing pairs of executions. For instance, [Assaf, 2017] uses a lattice
of security levels and abstract elements map each level to a set of variables. We will use this
representation for our purposes.

The general definition for dependences is as follows.

Definition 13. Let Sec be a security lattice, where s ∈ Sec is a security level. We consider that
H is always the top of the lattice, and L is the bottom. Let D be an abstract lattice, from security
levels to variables. A dependences state d ∈ D is a mapping from Sec → P(X) (security levels
to set of variables). Then, assuming for any d ∈ D, and s ∈ Sec, typing d(s) returns the set of
variables mapped to that security level in d.

For the dependences abstraction, given a dependences state d, its concretization is a set of
pairs of memories, that share the same value for all low variables.

Definition 14 (Dependences abstraction). A dependences abstraction is defined by an abstract
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lattice D, and a concretization function

γD : D −→ P(M × M)
d 7−→ {(µ0, µ1) ∈ M × M | µ0 =d(L) µ1}

Now, based on the concretization function we can define a sound dependences analysis.

Definition 15. A sound dependences analysis is defined by a function JcK♯
D : D → D such that,

for all d ∈ D, (µ0, µ1) ∈ γD(d),

{(µ′
0, µ′

1) ∈ M × M | ∀i ∈ {0, 1}, (c, µi) −→∗ (skip, µ′
i)} ⊆ γD ◦ JcK♯

D(d).

Example 14 (Standard dependence based abstraction [Assaf, 2017]). The abstraction of [Assaf,
2017] is an instance of Definition 14. Let {L, H} be the set of security levels. Assume an initial
abstract state d that captures pairs of concrete stores that are low equal for some program (c, L).
By applying the dependence analysis, if the final dependence state has a low dependency for each
initially low variable, the program is noninterferent.

In practice such information is computed by forward abstract interpretation, using syntactic
dependencies for expressions and conditions, and conservatively assuming conditions may generate
(implicit) flows to any operation that they guard.

We note that Definition 14 accounts not only for dependence abstractions such as that
of [Assaf, 2017]. In particular, [Delmas, 2019] proposes a semantic patch analysis which can
also be applied to security properties by using a relational abstract domain to relate pairs of
executions; such analyses use an abstraction that also writes as in Definition 14. In the following,
we assume a sound dependence analysis is fixed.

2 Product of symbolic execution and dependence analysis

Rules of SoundRSE defined in Figure 5.1 introduce no imprecision. The exception is rule sr-
approx-many, from Figure 5.2, applied when the execution bound is reached. Therefore,
the principle of the combined analysis is to replace this imprecise rule with another that uses
dependence analysis results to strengthen relational stores.

First, we need to introduce two operations to transport information in a sound manner into
and from the dependence abstract domain.

Definition 16 (Information translation). The translation from symbolic to dependences is
defined as follows

τs→D : M2 → D

ρ̃ 7→
{

L 7→ {x | may(Π0(ρ̃)(x) = Π1(ρ̃)(x))}
H 7→ {x | ¬ may(Π0(ρ̃)(x) = Π1(ρ̃)(x))}

Definition 16 takes a relational symbolic store, and creates an according dependences state.
This dependences state can then in turn be used to execute with the dependences semantics.
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Definition 17 (Dependences extraction). The extraction of dependences information is a
function λD→L : D → P(X) defined as follows:

λD→L : D → P(X)
d 7→ {x | d(x) = L}

Function λD→L is sound in the following sense:

∀d ∈ D, ∀(µ0, µ1) ∈ γD(d), µ0 =λD→L(d) µ1

Similarly, the function λD→L extracts a set of variables which are proved to remain low,
boiling down to returning d(L).

3 RedSoundRSE

We now present the combined analysis RedSoundRSE between dependences and SoundRSE. To
define it we just need to replace rule sr-approx-many, with rule sr-approx-many-depby using the
information translation function and the dependences extraction function.

3.1 Reduced relational semantics

The symbolic execution step sr-approx-many-dep is shown in Figure 6.1 and replaces rule
sr-approx-many (Figure 5.2). When the execution bound is reached for a loop statement,
it performs the dependence analysis of the whole loop from the dependence state derived by
applying τs→D to the relational symbolic store. Then, it applies λD→L to derive the set of
variables that are proved to be low by the dependence analysis. Finally, it computes a new
relational symbolic store by modifying the variables according to the set of variables determined
low:

• if variable x is low based on the λD→L output, modifD synthesizes one fresh symbolic value
xnew and maps it to (xnew);

• if variable x cannot be proved low, modifD synthesizes two fresh symbolic values xnew0,
xnew1 and maps x to (xnew0 | xnew1).

Remark 1 (Reduced product property). We stress the fact that the rule sr-approx-many-dep
may be applied multiple times during the analysis, essentially whenever a loop statement is
analyzed, which is generally many times more than the number of loop commands in the program
due to abstract iterations. Therefore, our analysis cannot be viewed as a fixed sequence of analyses.
Such a decomposition (for example, where dependences analysis is ran first and symbolic execution
second) would be strictly less precise than our reduced product based approach.
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sr-approx-many-dep

(c, κ̃) ⇀sr (c′, κ̃′) step(c, c′, w) = (ff, w′) deseq(c) = (c0, c1)
d = Jc0K

♯
D(τs→D(κ̃)) modifD(κ̃, c0, λD→L(d)) = κ̃′′

(c, κ̃, w, b) ⇀sr×D (c1, κ̃′′, w′, ff)

sr-approx-many-dep-abs

(c, κ̃) ⇀sr (c′, κ̃′) step(c, c′, w) = (ff, w′) deseq(c) = (c0, c1)
d = Jc0K

♯
D(τs→D(κ̃)) modifD(κ̃, c0, λD→L(d)) = κ̃′′ i ∈ {0, 1}

a′
i = Jc0K

♯
A(ai) reduction(κ̃′′, a′

0, a′
1) = (κ̃′′′, a′′

0, a′′
1)

(c, (κ̃, a0, a1), w, b) ⇀sr×D (c1, (κ̃′′, a′′
0, a′′

1), w′, ff)

Figure 6.1: RedSoundRSE: Symbolic execution approximation and product with dependence
information.

3.2 Soundness and refutation properties

Under the assumption that the dependence analysis and translation operations are sound, so is
the combined symbolic execution, thus Theorem 7 still holds. Moreover, the refutation property
of Theorem 8 also holds.

4 RedSoundRSE-based analysis of noninterference

RedSoundRSE only deviates from SoundRSE for loop over-approximations. We present three
examples of varying complexity. The first example has already been visited previously, while the
last two are new, and they require dependences to be verified.

Example 15 (Combined analysis). We reintroduce Program 1.2b. This program cannot be

1 # H → priv ; L → i,z
2 i = 0
3 while (i < z):
4 i += 1
5 priv += 2

verified by SoundRSE when instantiated with SoundSE (no intervals or polyhedra). By switching to
RedSoundSE (either with intervals or polyhedra), the program can be analyzed successfully. Also,
by using dependences and no intervals or polyhedra—that is, RedSoundRSE with SoundSE—it is
also possible to verify this program.

At the stage of executing rule sr-approx-many-dep, the symbolic precise store is as follows.

ρ̃ = [i 7→ (5); z 7→ (z0); priv 7→ (priv 0 + 10 | priv 1 + 10)] π ≜ 5 < z

The application of the information translation function returns a dependences state.

τs→D(ρ̃) = d =
{

L 7→ {i; z}
H 7→ {priv}
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1 if (priv > 0):
2 i = 0
3 else:
4 i = 0:
5 while (i < 10):
6 i += 1
7 priv += 5

(a) Secure

1 i = 0; w = 2
2 x = 100
3 while(i < x):
4 if (x <= 0):
5 w = priv
6 i += 2
7 x += 1

(b) Secure

Figure 6.2: Programs illustrating different properties of the analyzer. Variable priv is high.

As the guard of the loop only contains low-variables i and z, applying the dependences semantics
over the loop with dependences state d returns the same dependences state.

JcK♯
D(d) = d

Then, the application of the dependences extraction function returns variables i and z.

λD→L(d) = {i; z}

Finally, the application of modifD is as follows.

modif((ρ̃, π), (while . . . ), {i; z}) = ([i 7→ (i1); z 7→ (z0); priv 7→ (priv 2 | priv 3)], π)

Only variables i and priv are modified, making the value of z to remain the same. Variable i
remained low, so it is mapped only to a single symbol. However, priv is mapped to two values
since it is a high variable.

Thus, the program can be verified noninterferent with RedSoundRSE.

Example 16. Program 6.2a starts with an if statement that sets the value of i to 0. This if
statement would make dependences analysis to fail on its own.

Assuming the bound of iterations is less than 10, the loop needs to be over-approximated.
Both variables i and priv are modified, and thanks to dependences, the analysis is able to
determine that the value of i should agree between both traces, and the program is proven to be
noninterferent.

Example 17. Program 6.2b requires more than RedSoundRSE with dependences. The loop will
always terminate because i grows faster thatn x, but the amount of iterations depends both on i
and x.

At the moment before applying the over-approximation rule, the state is as follows.

κ̃ = ([i 7→ 2b ; x 7→ b + 100; w 7→ 2; priv 7→ (p0 | p1)], (2b < b + 100))
a0 = a1 = [i = b ;w = 2;x = b + 100]
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Executing the loop with the abstract semantics returns a fix-point of the loop.

Jwhile . . .K♯
A(a0) = [i ≥ b + 100;w = 2;x ≥ b + 100] = a′

0 = a′
1

While the value i and x cannot be established precisely, the value of w is exactly 2, and that is
agreed by both executions.

By using dependences, even if the value of i and x cannot be exact, it can established that
there is no high dependency. Therefore, their values agree as well.

Combining these abstractions allow us to end with the following relational store,

ρ̃ = [i 7→ i1; w 7→ 2; x 7→ x1; priv 7→ (p0 | p1)] π = i1 ≥ x1

and the program is proven noninterferent.
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Implementation and evaluation of
Noninterference analyzer

In this section we compare our analyses among them as well as with the dependency analysis of
Assaf et al. [Assaf, 2017]. To do so, we implemented prototypes of all the analyses. Our goal is
not to evaluate the analyses in large code bases but to assess their differences based on programs
that are small but challenging for typical noninteference analysers.

1 Implementation

We prototype the analyses proposed in this work as well as the dependency analysis, intervals and
convex polyhedra analysis. The prototype is implemented in around 4k lines of OCaml code, using
the Apron library [Jeannet, 2009] for the numerical domains and the Z3 SMT solver [Moura, 2008].
By defining a shared interface for SoundSE and RedSoundSE, the implementation of RedSoundRSE
is parameterized by these. The analyzer can be found in github.com/ignatirabo/sound-rse.

1.1 Limitations

As RedSoundSE is sound and automatic, it necessarily fails to achieve completeness (by Rice’s
Theorem [Jr, 1987; Asperti, 2008]), which means that there exist secure input programs that
cannot be proven so. Obvious reasons for that are the approximations performed in the dependence
abstraction and in the state abstraction. In return, we provide completeness up to a bound.

Our analysis is built so that the abstractions used are parameters and can be modified or
switched, for instance by switching from interval abstraction to convex polyhedra, yet each
abstract domain has limited expressiveness. Likewise, the computation of the variables that may
be modified in a loop (rule s-a-many) is also over-approximated.

Another more subtle limitation is that the numerical abstraction are applied at the level of the
single symbolic execution (RedSoundSE). This means that these abstractions cannot track down
relations between executions, but just local constraints. This means that more complex numerical
relations across symbolic variables that stem from distinct paths will not be tracked down,
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indirectly limiting the ability to discover that certain pairs of paths are infeasible. Potentially,
this could be achieved by using the concept of self-composition [Barthe, 2004] together with a
relational numerical abstract domain (although at a much increased cost).

In general, the set of modified command variables cannot be computed in finite time. The over-
approximation provided by us makes use of SoundSE. It would be possible to better approximate
the set by using RedSoundSE, but we believe that it is not cost-effective. In any case, calculating
this set is always an over-approximation.

2 Evaluation

We compare the 3 different relational techniques using different single-trace analyses by evaluating
them on a set of challenging examples. Our results are shown in Table 7.1. In the following, we
split NI programs from non NI ones. For the latter we look at the refutation capabilities of the
analysis.

Relational Analysis D SoundRSE RedSoundRSE (D)
relational analysis input: None SoundSE RedSoundSE SoundSE RedSoundSE
Program Secure?
Fig. 1.2a Yes ✗ False alarm ✓ Secure ✓ Secure (I,P) ✓ Secure ✓ Secure (I,P)

Fig. 1.2b Yes ✓ Secure ✗ False alarm ✓ Secure (P) ✓ Secure ✓ Secure (I,P)

Fig. 4.4 Yes ✗ False alarm ✗ False alarm ✓ Secure (I,P) ✗ False alarm ✓ Secure (I,P)

Fig. 6.2a Yes ✗ False alarm ✗ False alarm ✗ False alarm ✓ Secure ✓ Secure (I,P)

Fig. 6.2b Yes ✗ False alarm ✗ False alarm ✗ False alarm ✗ False alarm ✓ Secure (I,P)

Fig. 3.4 No ✓ Alarm ✓ Refutation model ✓ Refutation model ✓ Refutation model ✓ Refutation model
Fig. 5.4a No ✓ Alarm ✓ Refutation model ✓ Refutation model ✓ Refutation model ✓ Refutation model
Fig. 5.4b No ✓ Alarm ✓ Alarm ✓ Alarm ✓ Alarm ✓ Alarm

Table 7.1: Evaluation and comparison of analyses combination. D denotes the dependency
analysis of [Assaf, 2017]. Symbol ✓ (resp., ✗ ) denotes a semantically correct (resp., incorrect)
analysis outcome, with either a proof of security, a (possibly false) alarm, or a refutation model.
For RedSoundSE columns, when the analyses succeed to prove NI, we mark the result with I
(resp. P) to indicate that the intervals (resp. polyhedra) domain is being used.

2.1 Comparison of verification capabilities

Table 7.1 synthesizes our findings, displaying all the programs that we have studied in this part.
Programs 1.2a and 1.2b display the basic differences dependences and relational symbolic

execution, motivating the work we have done in this part.
Program 4.4 displays the capabilities of non-relational numerical domains such as intervals and

polyhedra, by using them to exactly calculate the value of variables, thus, proving noninterference.
In Program 6.2a, the first condition renders dependence analysis useless as it will consider

variable i high. This program will also fail to be verified by SoundRSE if the iteration bound
is lower than 10: in this case, i will be assigned a fresh symbolic value and hence be deemed
high. In contrast, RedSoundRSE can determine that the value of i in the loop does not depend
on priv.
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Program 6.2b is more convoluted. The analysis requires both numerical and dependence
abstractions in order to prove its NI. The analysis will determine (conservatively) that three
variables are modified in the loop: x, i and w. Dependence analysis can determine that variable
i and x are low even if both are modified. However, since w depends on x, and the exact value of
x is unknown, it is not possible to determine that w is low. By adding a numerical domain, it
is easy to track that the value of x is always positive, which implies that the if statement can
never be executed.

2.2 Comparison of refutation capabilities

Since SoundRSE and RedSoundRSE unroll loops a bounded number of times, there are insecure
programs for which a refutation model can be found, and programs where this is not possible.
Notice that, to refute a program with a model, it is required that the symbolic execution did
not perform any over approximation, i.e. that the precision flag is set to false when the analysis
finds the violation. Therefore, the results for insecure programs of SoundRSE are similar to
those of the different combinations that rely on symbolic execution, as reflected on Figure 7.1.
For Program 3.4, a valuation can be found by doing one iteration: ν(i0) = ν(i1) = 1 and
ν(priv 0) = 0, ν(priv 1) = 1. For Program 5.4a, a model can be found if the bound of iterations
is set to 4 or higher. The valuation ν just needs to map variable priv to two different values:
ν(priv 0) ̸= ν(priv 1). In Program 5.4b, for any user-set bound lower than 100 the execution
will have to overapproximate, losing refutation capabilities.

Conclusion of the evaluation. We have evaluated and compared our analyses among them
and with the state-of-the-art on dependency analyses [Assaf, 2017] on a set of 8 challenging
examples. Our results show that, in contrast to dependencies [Assaf, 2017], analyses inherit the
capacity of providing a refutation model up to a bound from symbolic execution. Moreover,
RedSoundRSE instantiated with RedSoundSE is capable of soundly verifying all the examples, in
contrast to all the other compared analyses, as summarized in Table 7.1.

55





Chapter 8
Related work

1 Hyperproperties

Noninterference was first defined by Goguen and Meseguer [Goguen, 1982], and also generalized
to more powerful attacker models under the property name of declassification. We refer the
reader to a survey on declassification policies [Sabelfeld, 2005] up to 2005. As discussed in the
introduction, noninterference is not a safety property but a safety hyperproperty [Clarkson, 2008],
a.k.a. hypersafety. Several works in the literature have shown that hypersafety verification
can be reduced to verification of safety properties [Barthe, 2004; Darvas, 2005; Terauchi, 2005;
Clarkson, 2008], however this reduction is not always efficient in practice [Terauchi, 2005]. In
our work, we do not reduce noninterference to verification of safety but rather apply relational
analyses. We only show our results using noninterference but the methodology can be easily
generalized to more relaxed declassification properties, provided sound abstract domains exist.

2 Symbolic execution

Symbolic execution is a static analysis technique that was born in the 70s [Boyer, 1975; King,
1976] and that is now deployed in several popular testing tools, such as KLEE [Cadar, 2021] and
NASA’s Symbolic PathFinder [Pasareanu, 2008], to name a few. A primary goal and strength
of symbolic execution is to find paths leading to counter-examples to generate concrete input
values exercising that path. This is of particular importance to security in order to debug and
confirm the feasibility of an attack when a vulnerability is detected.

Alatawi et al. [Alatawi, 2017] use abstract interpretation to enhance the precision of a
dynamic symbolic execution aimed at path coverage. Their approach consists of first doing
an analysis of the program with abstraction interpretation to capture indirect dependences in
order to enhance path predicates. Furthermore, their analysis does not maintain soundness (nor
completeness). Meanwhile, our approach continuously alternates between abstract domains and
symbolic execution, keeping soundness and completeness up to a bound. Lastly, Alatawi et
al. [Alatawi, 2017] do not analyze relational properties such as noninterference but just safety
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properties.
We focus the rest of the related work on static analysis techniques for relational security

properties: for a broader discussion on symbolic execution we refer the interested reader to a
survey [Cadar, 2011] up to 2011 and an illuminating discussion on symbolic execution challenges
in practice up to 2013 [Cadar, 2013].

3 Relational symbolic execution

In order to apply symbolic execution to security properties such as noninterference, Milushev et
al. [Milushev, 2012] propose a form of relational symbolic execution to use KLEE to analyze
noninterference by means of a technique called self-composition [Barthe, 2004; Darvas, 2005;
Terauchi, 2005] to reduce a relational property of a program p to a safety property of a
transformation of p. More recently, Daniel et al. have optimized relational symbolic execution to
be applicable to binary code to analyze relational properties such as constant time [Daniel, 2020]
and speculative constant time [Daniel, 2021; Daniel, 2022] and discovered violations of these
properties in real-world cryptographic libraries. All these approaches are based on pure (relational)
symbolic execution static techniques and, as such, they are not capable of recovering soundness
beyond a fixed bound as in our case. The closest work to RedSoundRSE is RelSym [Farina, 2019]
which supports interactive refutation, as well as soundness. In order to recover soundness, Chong
et al. [Farina, 2019] propose to use RelSym on manually annotated programs with loop invariants.
Precision of refutation is guaranteed only if the invariants are strong enough, which cannot be
determined by the tool itself. Precision is not guaranteed in any other cases. In contrast, our
invariants are automatically generated via abstract interpretation and precision of refutation is
always guaranteed up to a bound, which is automatically computed by our tool.

4 Sound static analyses for hyperproperties

As discussed in the introduction, many sound verification methods have been proposed for
relational security properties. We refer the reader to an excellent survey on this topic [Sabelfeld,
2003] up to 2003. After 2003, several sound (semi-) static verification methods of noninterference-
like properties have been proposed by means of type systems (e.g. [Banerjee, 2008; Fournet,
2011]), hybrid types, (e.g. [Santos, 2015]), relational logics (e.g. [Aguirre, 2017]), model checking
(e.g. [Huisman, 2006; Backes, 2009]), and pure abstract interpretation [Assaf, 2017]. We expand
on the ones based on abstract interpretation since they are the closest to our work. Giacobazzi
and Mastroeni [Giacobazzi, 2004] define abstractions for attacker’s views of program secrets
and design sound automatic program analyses based on abstract interpretation for sets of
executions (in contrast to relational executions). Assaf et al. [Assaf, 2017] are the first to express
hyperproperties entirely within the framework of abstract interpretation by defining a Galois
connection that directly approximates the hyperproperty of interest. We utilize the abstract
domain of Assaf et al. [Assaf, 2017] combined with symbolic execution to obtain RedSoundSE.
Notice that because the framework of Assaf et al. [Assaf, 2017] relies on incomplete abstraction,
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their analysis is not capable of precise refutation nor provide refutations models. To the best
of our knowledge, no previous work has combined abstract domains and symbolic execution to
achieve soundness.
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Part II

Static Symbolic Tainting Analysis
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Chapter 9
Towards static symbolic tainting analysis

Taint-tracking is a practice that is widely used for detecting vulnerabilities. It works by tagging
values and then checking whether they reach sensitive parts of the program. In this part, the
challenge is designing a complete symbolic taint-tracker that can eliminate false alarms generated
by other tools that are not so precise, and also find possible input values when the alarm is real.

1 Taint-checks versus taint-tracking

Taint-checks were first introduced in Perl in the year 1989. The Perl programming language is a
scripting language aimed to executing shell commands for different tasks as system administration,
which can lead to security vulnerabilities. For this reason, Perl introduced taint-checking (also
called taint-tracking) in 1989 with the goal of dynamically catching possibly insecure instructions.
In principle, all external information should not affect other external information. Then, the
assumption is that any arguments passed to the script are possibly dangerous, and any instructions
that can produce an effect on a system are inclined to be attacked. While in the implementation
in Perl might be quite simple, this technique can help tackle common security issues.

Dynamic taint-tracking in Perl is extremely useful, as it can prevent countless security issues.
However, Perl is mostly a scripting language, where programs are very specific. What happens
when we want to ensure the security of a system composed by dozens of modules? While dynamic
taint-tracking can help catch vulnerabilities on-the-fly, the system will end up failing. For that
reason, we are interested in static taint-tracking, in an effort to spot the source of problems
before they manifest, preventing system failures.

Performing dynamic taint-tracking is straightforward. The execution is performed over
completely concrete values. However, for static taint-analysis this is not the case. Instead, values
need to be abstracted, leading to several limitations.

A static taint-tracker of interest is Pysa [Meta, 2023]. This taint-tracker analyses Python code,
and calculates a sound over-approximation of the program behavior via abstract interpretation.
This analyzer is extremely fast, and, together with other taint-analyzers used at Meta, represents
a big portion of the bugs found at their software [Meta, 2020]. In exchange for its speed, this tool
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performs many over-approximations, resulting in false-alarms that have to be manually checked
by engineers to determine if these are real bugs or not.

2 Symbolic taint-tracking of Python programs

Our model of taint-tracking is aimed at Python programs, where we consider sources of taints and
sinks are function calls. Then, a function call might generate an observation that is not allowed.
While in a real world scenario the sources can originate from different places, the formalization is
simplified to reflect the meaningful mechanics that go into place for taint-tracking. We consider,
like in the real world, that when a taint reaches a sink the taint-tracker raises an alarm.

In Program 1.2c, an illegal flow happens when the value of y is the positive root of the
polynomial. This program is unsafe, but a sound taint-analyzer such as Pysa cannot assert that.
This kind of limitation forces an engineer to go over the alarm and determine it is real, which is
easy for the example. However, in a real system, this is not trivial. By using symbolic execution
and collecting the path constraints, an SMT solver can easily determine the actual value of y
that triggers the flow.

3 Outline

In this part, our objective is to introduce taints formally and finally design a complete symbolic
taint-tracker that acts as a second-stage analysis after Pysa. Chapter 10 introduces taints and
a concrete taint-tracker that we use as a reference throughout the part. Chapter 11 presents
the property we focus on: weak secrecy. Given a set of rules that establishes which flows are
illegal, this property stipulates that a program must not perform any illegal flows. In Chapter 12,
we define a symbolic tainting semantics that abstract those of Chapter 10. We also provide
a completeness theorem that ensures that the abstract traces have a concrete counter-part.
Chapter 13 introduces a combined analysis between a sound taint-tracker and our symbolic
taint-tracker. In Chapter 14, we instantiate the sound taint-tracker with Pysa, an open-source
tain-tracker developed by Meta, and we instantiate the symbolic taint-tracker with our own tool
Pysta. In Chapter 15, we evaluate the instantiated combined analysis in a set of examples
extracted from different sources, and we answer three research questions. Finally, in Chapter 16
we present related work.
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Chapter 10
Taint-tracking

In this chapter, we first present a language fit for our purposes of taint-tracking, we give a formal
definition of taints, and present a concrete taint-tracker that will be the baseline for the rest of
the part.

In Figure 10.1, we introduce a fictitious, unsafe-by-design, program where a user inputs its
username and password to login to a system. This fictitious program has two vulnerabilities
which can be found by performing taint-tracking.

We first formalize taints by defining what is a source and a sink, and how these relate
through rules. A new language syntax will allow us to annotate programs to have sources and
sinks handled through functions. These functions have input streams, allowing us to simulate
non-determinism, and external inputs, important aspects of real-life executions. Finally, we
present a concrete taint-tracker that gives insight on how illegal flows happen.

1 Unsafe program

Program from Figure 10.1 is unsafe, suffering from two vulnerabilities. The first vulnerability is
an SQL injection, since string formatting in Python does ensure the proper delimitation of special
characters. Then, the input stored in user is potentially malicious, and could lead to tampering
of the database. The second vulnerability is inspired in Log4Shell (CVE-2021-44228). Similarly
to vulnerability number one, we cannot ensure that input is not maliciously crafted, and we
assume that function log can be attacked as in Log4Shell, leading to remote code execution.

2 Taints and values

In taint-tracking, the interest lies in tracking sensitive information through the program execution
to ensure that it does not reach a specific vulnerable statement. What makes data sensitive is
up to the user: it could be confidential information, or a value that might eventually trigger a
run-time error, etcetera.

In our setup, taint tags, or sources, are generated by functions, and accompany values
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1 user = input ()
2 password = input ()
3 stmt = f"SELECT␣password␣\
4 FROM␣users␣WHERE␣username␣=␣’{user}’"
5 row = db.query(stmt)
6 if row == password:
7 log(f"user␣{user}␣logged␣in")

Figure 10.1: Unsafe program

throughout the execution. There can be multiple sources, which are unique, and user-defined.
For instance, function input might generate source input↓, and so on. We use a down-arrow
notation to denote sources, such as t↓

0, where the set of all sources is denoted by T↓. To denote a
subset of T↓, we use notation T ↓. We consider that the only concrete values that are handled
are integers V = Z. Then, taint-values are defined as follows.

Definition 18. A taint-value is a pair (i, T ↓) ∈ Z × P(T↓). We denote with VT the set of all
taint-values.

Sinks, are the counterparts of sources, and represent sensitive locations within a program
where specific values may induce unwanted behaviors, ranging from system crashes to the
leak of confidential information. In taint-tracking, this concept is represented by source tags,
accompanying values, reaching pertinent sinks. Similarly to sources, these are unique and
user-defined, but they are not carried in values. To denote them, we use an up-arrow notation to
denote sinks t↑, with the set of all sinks denoted by T↑.

To define the connection between each source and sink, we define observations and rules.

Definition 19. An observation, denoted by o, is a 3-tuple (T ↓, v, t↑) ∈ P(T↓) × V × T↑ formed
by a set of sources, a value, and a sink.

Definition 20. A rule r is a pair of (t↓, t↑) ∈ T↓ × T↑ that indicates an unwanted behavior.
Rules, denoted as R ∈ P(T↓ × T↑), are a relation between sources and sinks.

In some cases the value carried in observations can be safely ignored. In that case, we will
not write it down as part of the observations, such as o = (t↓, t↑). Observations are events that
are observable by the attacker. These are generated during execution when a sink is reached. If
the observation triggers a rule, we say it is a relevant observation.

Example 18. Let T↓ = {input↓; sensitive↓} and T↑ = {log↑; sql↑}. A possible set of rules is

R = {(input↓, log↑); (input↓, sql↑); (sensitive↓, log↑); }

meaning that when a value coming from function input reaches functions log or db.query an
illegal behavior possibly exists. Likewise, outputs of db.query might be sensitive, and should not
reach function log.
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3. Language syntax

e ::= v | x[i] | e ⊕ e
b ::= tt | ff | e < e

s ::= skip

| x[i] = e
| x = y

| x = g(e0, . . . , en)
| g(x)
| if b then c else c
| while b do c
| return [e; . . . ; e]

c ::= s | s; c

f ::= def g(x1, . . . ,xn) = c; return [e1; . . . ; em]
| def input g( ) : T ↓

| def sink g(x : t↑) : ∅

p ::= f ; p | c

Figure 10.2: Syntax of taint-language.

3 Language syntax

In order to perform taint-tracking, we require an extended language syntax that can describe
taints, that is, sources and sinks. These aspects of the language are all expressed through
functions: sources and sinks are embedded in functions.

Another particularity of the language is that variables are mapped to arrays of values, and
functions always return non-empty arrays: this is very clearly reflected in expressions, where
variables are indexed. This decision allows us to have functions return several values at a time,
allowing us to study more complex programs.

The full syntax of this language, called taint-language, is presented in Figure 10.2.

3.1 Expressions

Let the set of variables be noted as X, and binary operators ⊕ and <. As noted before, in this
language variables are going to be mapped to an array of values. For this reason, an expression
e ∈ E is either a value v ∈ V, a binary operation between expressions, or a subscript x[i] which
takes the ith element of x ∈ X. Variable names are not treated as expressions since they are
mapped to arrays.

Boolean expressions b ∈ B are either true, false or a binary operation between expressions.
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3.2 Statements, functions and programs

In Figure 10.2, we present the syntax of statements, commands, functions, and programs.
Statement s can be a skip, an if statement, a while statement, a return statement, a call to
a procedure, or forcibly one of three types of assignments: the first case is the assignment to
an index of a variable; the second assignment allows to copy a variable to another one; the last
assignment is a function call. Return statements are used to return a sequence of values from a
function call. A sequence of statements is called a command, denoted by c ∈ C.

Symbol f denotes function definitions, which can be defined in three different ways: executable
functions are composed by a name, a series of arguments, and a command that represents the
body of the function that always finishes with a return statement. These are functions that are
analyzed line-by-line by the taint-tracker, as opposed to the other types of functions. The other
types of functions are input-functions and sink-functions.

1. Input-functions return an array of values that might be tainted with a source.

def input g( ) : T ↓

This function takes no argument. The sources T ↓ are optional, meaning that we can model
some function as rand (returns a random integer) where no taint is generated, or a function
such as input where a taint is expected.

2. Sink-functions take a single value that is sunk, and return no value, denoted by ∅.

def sink g(x : t↑) : ∅

3. Executable functions take n arguments, and return an array of elements.

def g(x1, . . . ,xn) = c; return [. . . ]

Since function calls are part of c, executable functions can have calls to input-functions
and sink-functions, which is useful to write more interesting programs.

Example 19. Since sink-functions cannot return values, we can define functions with sinks
inside when needed. This is the case for function db.query, that sinks the argument, while still
returning a tainted value.

Let us first define an input function, and a sink function.

def input sensitive( ) : {sensitive↓}
def sink sql(x : sql↑) : ∅

While in real-life the semantics of db.query are important, from the point of view of the
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taint-tracker they do not matter.

def db.query(x) = {
sql(x)
y = sensitive()
return y

}

The last functions that we need to define are input and log.

def input input( ) : {input↓}
def sink log(x : log↑) : ∅

Finally, programs are denoted by p: these are a sequence of function definitions, followed by
a command c.

4 Semantics

The concrete taint semantics for the taint-language is described in this section. These perform a
precise execution of programs but use taint-values instead of simple values.

Two main characteristics of this semantics is:

• sources and sinks are always embedded in functions;

• the usage of input channels—or input channels—to simulate external nondeterminism of
functions—such as user inputs.

4.1 Concrete store

Concrete stores are mappings from variables in X to VTn, denoted by µ ∈ MT. We use x 7→
[(v0, T ↓

0 ), . . . , (vn, T ↓
n)] to explicitly enumerate the content of a store, where x is mapped to an

array of concrete values and sources.

4.2 Evaluation of expressions

µ ⊢ n ↓η (n, η)
µ ⊢ e0 ↓η (v0, T ↓

0 ) µ ⊢ e1 ↓η (v1, T ↓
1 )

µ ⊢ e0 ⊕ e1 ↓η (v0 ⊕ v1, T ↓
0 ∪ T ↓

1 )

µ(x)[i] = (v, T ↓)
µ ⊢ x[i] ↓η (v, η ∪ T ↓)

µ ⊢ e ↓η (v, T ↓
0 ) o = (T ↓

0 , v, T ↓
1 )

µ ⊢ e
T ↓

1
↓η

o (v, T ↓
0 )

Figure 10.3: Concrete evaluation of expressions

We define the concrete evaluation of expressions ↓ in big-step style in Figure 10.3. We denote
µ ⊢ e ↓η (v, T ↓) the evaluation of e with store µ and a taint-context η, reaching a taint-value
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(v, T ↓). While taint-tracking specifically focuses on explicit flows of information, by adding a
taint-context, it is possible to use the same semantics to consider both types of flows.

Evaluation of expressions e and b is straightforward except for a special type of expressions
that we call taint-expressions. Evaluating expression et↑ evaluates e normally, while also
generating an observation o that has the sink t↑.

Example 20. Let us assume µ = [x 7→ (0, {input↓})]. Let us assume that the definition of log
is the following:

def sink log(obj : log↑) : ∅

Then, the application of log(x), results in the evaluation of expression:

µ ⊢ xlog↑
↓o (0, {input↓}) where o = ({input↓}, 0, log↑)

4.3 Input channels

An input channel is a stream of inputs that can be used by functions to describe external
non-determinism. As we will observe in the definition of the semantics, these input values are
only used in source-functions. Each source-function name f ∈ Fname is associated to its own
input channel.

Definition 21. An input pointer p is a mapping from a function name to a non-negative integer.
A channel input queue q is a map from non-negative integers to input values in V. A program
input I is a mapping from function names f to a channel input queue. Function read : I → V is
defined as follows

read
I(i) = q p(i) = n q(n) = v p′ = p[i 7→ p(i) + 1]

read(I, i, p) = v, p′

The set of all input channels is Cin. The symbol p0 denotes an initial input pointer mapping
every input channel to position 0. We assume that there is an input channel for each function
name.

Example 21 (Input channels). For instance, let us define functions input, get_user_creds
and log. We assume that the first two functions take no arguments, and return a “user input”
and the credentials of a user, respectively. Function log takes an argument called obj and returns
0. Then, we can define them as follows.

def input input( ) : input↓

For input, we look at two possible input channels for two different executions. Let

I1(input) = [1, 2, 3, 4, . . . ] I2(input) = [5, 4, 3, 2, . . . ]

where I1 and I2 are input channels, corresponding to execution 1 and execution 2, respectively.

70



4. Semantics

In execution 1, the first call of input returns (1, {input↓}), then (2, {input↓}), and so on.
However, in execution 2, a call to input returns (5, {input↓}) first.

4.4 Function definition

Based on the language syntax, programs p are defined as a sequence of function definitions
followed by a command.

p = f1; . . . ; fk; c

Functions, while part of the syntax, are not defined in the semantics, but they are considered as
part of the environment. To do so, we define the set of functions F as follows.

We assume the first n functions are executable functions—functions that have a body—then
there is m input-functions, and lastly k sink-functions. Then fi is either of the three:

fi = def gi(x1, . . . ,xn) = c ∨
fi = def input gi( ) : T ↓ ∨
fi = def sink gi(x1 : t↑) : ∅

The set of executable functions is defined as follows.

Fe =
n⋃

i=1
(gi, (x1, . . . ,xn), (λ(x1, . . . ,xn).c))

The body of the program becomes a lambda-term, where the actual values can be injected.
The set of source and sink-functions is defined as follows.

F↓ =
m+n⋃

i=n+1
(gi, T ↓) F↑ =

n+m+k⋃
i=n+k+1

(gi, t↑)

Finally, the set of all functions F is defined as the union of these sets.

F = Fe ∪ F↓ ∪ F↑

4.5 Flow functions

As said previously, the semantics makes use of a taint-context η that keeps track of the implicit
flows. In order to have a concise definition, we define a family of functions, called flow-functions.

A flow-function fl : (P(T↓) × P(T↓)) → P(T↓) takes two sets of sources, and returns a set
of sources. The first argument is the context η, and the second set is the new incoming flow
context. Its output is the new taint-context after adding the incoming flow context.

We provide two different flow-functions.

Definition 22 (Implicit flow-function). The implicit flow-function is defined as follows

fli(η, t) = η ∪ t.

71



Chapter 10. Taint-tracking

assign-sub
µ ⊢ e ↓η v

I, F ⊢ (x[i]η = e, µ, p) −→ (skip, µ[x[i] 7→ v], p)

assign-var
I, F ⊢ (xη = y, µ, p) −→ (skip, µ[x 7→ µ(y)], p)

assign-fun

(g, (x1, . . . ,xn), c) ∈ F µ ⊢ ei ↓η vi for 1 ≤ i ≤ n

I, F ⊢ (c(v1, . . . , vn), µ, p) o−→∗ (return [e′
1, . . . , e′

k], µ′, p′)
µ′ ⊢ e′

i ↓η v′
i for 1 ≤ i ≤ k

I, F ⊢ (xη = g(e1, . . . , en), µ, p) o−→ (skip, µ[x 7→ (v′
1, . . . , v′

k)], p′)

fun-input
(g, t↓) ∈ F read(I, g, p) = ((v1, . . . , vn), p′) v = ((v1, t↓ ∪ η), . . . , (vn, t↓ ∪ η))

I, F ⊢ (xη = g( ), µ, p) −→ (skip, µ[x 7→ v], p′)

fun-sink
(g, t↑) ∈ F µ ⊢ e ↓η (v, t) o = (t, v, t↑)

I, F ⊢ (g(e)η, µ, p) o−→ (skip, µ, p)

Figure 10.4: Set of step semantics rules for concrete taint-tracker.

Definition 23 (Explicit flow-function). The explicit flow-function is defined as follows

fle(η, t) = η.

The semantics are parameterized by one of these two functions.

4.6 Step relation

A state is a 3-tuple (c, µ, p) with a command c, a store µ, and an input pointer p. In particular,
a state of the form (skip, . . .) is final. We write MT and S for the set of stores and states
respectively. Let (−→) ⊆ Fname × Cin × S × O∗ × S denote the small step operational semantics.

In Figure 10.4, we define the three assignment rules, and the function definition rule. Rule
assign-sub, evaluates an expression e and assigns it to an index of the variable. Rule assign-var,
assigns the complete value of a variable to another one.

Rule assign-fun evaluates a function call. To do so, first we look up for function g ∈ F ,
meaning that the function has been defined previously. Then, all n arguments are evaluated. All
of these values can then be applied to the body of the function which is a lambda term. After a
number of execution steps, the command of the state is return [. . . ]. Notice that these execution
steps might generate an observation. The returned expressions are evaluated and assigned, and
if any observation was generated, it is annotated.

Rule fun-input returns a tainted value. The value comes from an input channel, and
Rule fun-sink sinks a single argument. This implies that an observation is generated. When

the argument has a taint, and that taint and sink are a rule, this observation is relevant. Through
this mechanism the semantics detects illegal flows.
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4. Semantics

if-t
(b, µ) ↓η (tt, t)

I, F ⊢ (ifη b then c0 else c1, µ, p) −→ (cfl(η,t)
0 , µ, p)

if-f
(b, µ) ↓η (ff, t)

I, F ⊢ (ifη b then c0 else c1, µ, p) −→ (cfl(η,t)
1 , µ, p)

seq-1
I, F ⊢ ((skipη; cη1

1 ), µ, p) −→ (cη1
1 , µ, p)

seq-2
(cη0

0 , µ, p) o−→ (cη′
0

0′ , µ′, p′)

I, F ⊢ ((cη0
0 ; cη1

1 ), µ, p) o−→ ((cη′
0

0′ ; cη1
1 ), µ′, p′)

while-t
(b, µ, η) ↓η (tt, t)

I, F ⊢ (whileη b do c0, µ, p) −→ ((cfl(η,t)
0 ; whilefl(η,t) b do c0), µ, p)

while-f
(b, µ, η) ↓η (ff, t)

I, F ⊢ (whileη b do c0, µ, p) −→ (skip, µ, p)

Figure 10.5: Set of step semantics rules for concrete taint-tracker.

In rules if-t and if-f, either c0 or c1 are chosen based on the value of the guard. The context
is updated by fl with the taint calculated from the guard. The same logic applies for while-t
and while-f.

Example 22. In this example we execute Program 10.1 with the taint-tracker semantics. We
denote the program with c, and we assume all functions used are defined in set F . We specify
the input channels for input-functions as in Example 21.

I(input) = [1; 2; . . . ]
I(sensitive) = [2; 4; . . . ]

When we write ci, that represents the command from “line i to the end of the program”. We
are going to display the execution of the program line-by-line, writing on the left side “Line
i”, meaning that the command on the right is yet to be executed. Starting from the initial
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Chapter 10. Taint-tracking

configuration is (c, [ ], p0), let us follow the execution of the program.

Line 1: ((user = input( ); c2), [ ], p0)
⇂ fun-input

Line 2: ((password = input( ); c3), [user 7→ (1, {input↓})], p1)
⇂ fun-input

Line 3: ((stmt = user; c4), [password 7→ (2, {input↓}); username 7→ (1, {input↓})], p2)
⇂ assign-var

Line 5: ((row = db.query(stmt); c5), [stmt 7→ (1, {input↓}); . . . ], p2)
⇂ assign-fun, o1 = ({input↓}, 1, sql↑)

Line 6: ((if row = password then log(user) else skip), [row 7→ (2, {sensitive↓}); . . . ], p3)

First and second step apply rule fun-input, assigning value 1 and 2 from the input channel
to variables user and password, respectively. Based on the definition of input, the value also
carries a taint {input↓}.

For the third step, we assume that the string formatting is equal to an assignment between
variables. Notice that line 3 takes two lines of code, so the next configuration holds line 5.

The fourth step applies rule assign-fun. In this step, function db.query, based on the
definition of Example 19, performs a sink in its body, and returns a new value from function
sensitive. For that reason, observation o1 is generated, and row maps to 2 with a taint
{sensitive↓}.

Next, we inspect the last steps.

Line 6: ((if row = password then log(user) else skip), [row 7→ (2, {sensitive↓}); . . . ], p3)
⇂ if-t

Line 7: (log(user), [user 7→ (1, {input↓}); . . . ], p3)
⇂ fun-sink, o2 = ({input↓}, 1, log↑)

Line 8: (skip, [user 7→ (1, {input↓}); . . . ], p3)

Condition row = password holds, since both are equal to 2. Then, rule if-t can be applied, and
the body of the if gets chosen to execute. Lastly, the call log generates observation o2 that, as
observation o1, is relevant.

Finally, the program generated two relevant observations, leading us to determine that it is
unsafe with respect to rules R.
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Chapter 11
Observations and Weak Secrecy

Given the definition of the concrete taint-tracker, we now require a property of interest that gives
a meaning to these concrete traces with their respective observations. This property is called
weak secrecy [Volpano, 1999], and it stipulates which explicit flows are allowed in a program
execution given a pre-defined set of rules.

In order to introduce these properties, we first present a series of definitions that allow us to
compare traces based on the observations generated in each of them.

To gain intuition about these different properties, in Figure 11.1 we introduce five programs
that illustrate weak secrecy. We will reason about these programs to determine if they satisfy or
not the property.

1 Relevant-equal observations

To prove anything about the semantics, we focus on the events generated during the execution—
the observations, specifically, the relevant ones. An observation is relevant when the source and
sink connecting are a rule in the rules relation R.

Definition 24 (Relevant observation). Let an observation ({t↓
1, . . . , t↓

n}, v, t↑) ∈ O. We say
({t↓

1, . . . , t↓
n}, v, t↑) is relevant, denoted ({t↓

1, . . . , t↓
n}, v, t↑) ∈ R, if and only if

∃ i : 1 ≤ i ≤ n ∧ (t↓
i , t↑) ∈ R.

Since traces generate a sequence of observations, we are interested in filtering such sequences
to only keep relevant observations. Non-relevant observations can be safely removed.

Definition 25 (Relevant filtering). Let o = [o1; . . . ; on] be a sequence of observations. Observa-
tions o′ = [oi1 ; . . . ; oim ], with 1 ≤ i1 < · · · < im ≤ n, are a relevant filtering of o, written o/R,
if and only if o′ is the result of removing every oj ∈ o such that oi ̸∈ R while not altering the
order of the elements.

Now that sequences of observations can be filtered, we need to compare them to establish a
relationship between traces. To do so we define the relevant-equal observations relation.
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Chapter 11. Observations and Weak Secrecy

1 x = f1()
2 g = g1(x)

(a)

1 x = f1()
2 if b:
3 if not b:
4 y = g1(x)

(b)

1 r = r1()
2 x = f1()
3 if x > 0:
4 y = g1(r)

(c)

1 x = f1()
2 y = mult(0,x)
3 z = g1(y)

(d)

Figure 11.1: Abstract programs to provide intuition about weak secrecy. In these programs, we
assume that functions that are called fi return a value with a source f↓i . Functions called gi have
sinks gi

↑. Pairs (f↓i , gi
↑) are part of the set of rules R.

Definition 26 (Relevant-equal observations). We define the relevant equal observations as the
equality of relevant filterings.

Let o1, o2 ∈ O∗ be two sequences of observations. We say o1 is relevant-equal to o2, denoted
o1

R= o2, if and only if,
o1/R = o2/R

2 Weak secrecy

The property we present is weak secrecy [Volpano, 1999]. This property is of interest to us
because it models closely taint-trackers, stating that no relevant observation should happen in
an execution.

Definition 27 (Weak secrecy). Assuming the semantics are parameterized by the explicit flow-
function fle. Given an initial memory µ0, a set of functions F , and an input channels I. A
program c satisfies weak secrecy, written WS ⊨t↓ c, if and only if,

∃ µ1, p1 : I, F ⊢ (c, µ0, p0)( o−→)∗(skip, µ1, p1) =⇒ o
R= [ ]

The nature of weak secrecy is that a program is secure if no relevant observations are
generated.

Example 23. Program 11.1a generates a relevant observation in every execution. Therefore, it
is not weak secret.

In Program 11.1b, the sink is unreachable, therefore, no observation is generated. Thus, the
program is weak secret.

In Program 11.1c the sink is reachable when the value of x is greater than 0, but the value
passed to g1 is not tainted. Hence, the observation generated is (∅, r, g1

↑), and it is not relevant.
Then, the program is weak secret.
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2. Weak secrecy

Program 11.1d always generates relevant observations with value 0. Hence, it is not weak
secret.
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Chapter 12
Symbolic execution taint-tracker

The concrete taint-tracker presented in Chapter 10 acts as a dynamic taint-tracker, that can
catch illegal flows on-the-fly (during an execution). However, finding an illegal flow on-the-fly
leads to an abrupt termination, possibly causing the system to fail. Instead, in this chapter we
aim at analyzing the program statically, allowing to detect bugs previous to the execution of the
system. In some cases, it is also possible to prove the absence of bugs. To do so, we introduce
our symbolic taint-tracker semantics, built to emulate the concrete taint-tracker. We also provide
a completeness theorem, and a soundness up-to-a-bound theorem, proving that the symbolic
taint-tracker abstracts the concrete taint-tracker precisely.

1 Concretization

To ensure the new taint-tracker abstracts the concrete one, we define the abstraction and its
concretization, connecting concrete and symbolic stores.

1.1 Symbolic store and symbolic path

The counterpart of concrete values are symbolic expressions ε ∈ E. These can either be an integer
n, a numerical symbol x , or a binary operation ⊕ between symbolic expressions.

Symbolic boolean expressions are denoted by β ∈ B: a symbolic boolean expression is either
true, false, a boolean symbol b , the negation of a symbolic boolean expression, the comparison
of two symbolic expressions, or a binary operation < between symbolic boolean expressions.

ε ::= n | x | ε ⊕ ε

β ::= tt | ff | b | ¬β | ε < ε | β ⊘ β

Our symbolic execution, given that it abstracts the concrete semantics, abstracts taint-values
by replacing concrete values for symbolic expressions.

ET = E × P(T↓)
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Chapter 12. Symbolic execution taint-tracker

Symbolic taint store A symbolic taint store is a mapping from variables in X to ETn, and
are denoted by ρ ∈ MT. We use x 7→ [(ε0, T0), . . . , (εn, Tn)] to explicitly enumerate the contents
of a store, where x is mapped to a list of symbolic expressions and sources.

Symbolic taint path For defining constraints, we define the set of taint boolean expressions.

BT = B × P(T↓)

Then, a symbolic taint path is a set of constraints denoted by π ∈ P(BT). The symbolic taint
path collects information about the path taken by the trace, and constraints the symbolic map.

Symbolic precise store A symbolic precise store is a pair (ρ, π) of a symbolic taint store and
a symbolic taint path, denoted by κ ∈ KT.

1.2 Concretization

To concretize a symbolic precise store, we not only require a concrete store, but a valuation as
well. We let a valuation be a function ν : V −→ V, mapping every symbol present in the symbolic
store to a concrete value. By having a valuation, we can precisely characterize which concrete
stores are a concretization of the symbolic store.

To exploit valuations, we define a substitution function. Given a valuation, the substitution
function takes a symbolic expression and returns a concrete value.

Definition 28 (Symbolic substitution). Given a symbolic expression ε, we let JεK be a partial
function that maps a valuation ν to the value obtained by replacing each symbolic value x in ε

with ν(x ), defined as follows:

JnK(ν) = n

Jx K(ν) = ν(x )
Jε0 ⊕ εK(ν) = Jε0K(ν) ⊕ Jε1K(ν)

In the case of a taint symbolic expression, we define it in the following way.

J(ε, t)K(ν) = (JεK(ν), t)

We extend this notation to symbolic maps and symbolic paths

JρK(ν) = [ x ∈ D(ρ) : x 7→ Jρ[x]K(ν) ]

JπK(ν) =
m∧

i=1
JϕiK(ν)

where D is the domain function, returning the set of variables that are mapped.

To define the concretization function, we require auxiliary functions π1 and π2, which are the
left and right projection of a taint-value, respectively.
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1. Concretization

Definition 29 (Symbolic store concretization). The symbolic store concretization, γMT : MT −→
P(MT × (V → V)), maps a symbolic store to the set of pairs made of a store and a valuation that
realize it, i.e.,

γMT(ρ) = {(µ, ν) | ∀ x ∈ D(ρ) : π1
(
µ(x)

)
= π1

(
Jρ(x)K(ν)

)
∧ π2

(
µ(x)

)
= π2

(
ρ(x)

)
}

A symbolic precise store is a pair κ = (ρ, π) where ρ ∈ MT and π is a symbolic path. We
write K for the set of symbolic precise stores. Their meaning is defined as follows:

Definition 30 (Symbolic precise store concretization). The symbolic precise store concretization,
γKT : KT −→ P(MT × (V → V)), is defined by γKT(ρ, π) = {(µ, ν) ∈ γMT(ρ) | JπKν = tt}.

For example, the most general symbolic state ⊤ maps each variable to an unconstrained
symbol. Its precise store concretization is an infinite set of pairs (µ, ν) ∈ γKT(⊤) with all possible
combinations, since there are no constraints.

1 user = input ()
2 pwd = input ()
3 if 0 == pwd**2 + pwd*2 - 8:
4 log(f"user␣{user}␣logged␣in")

Program 1.2d adapted to fit more closely with the context of taint-trackers.

Example 24. We reintroduce Program 1.2d. If the password is the root of a polynomial (pwd = 2),
the user is logged. Assuming that the input value coming from input is 2, the execution is as
follows, and there exists a symbolic precise store, and a valuation such that (µ0, ν0) ∈ γKT(κ0):

I, F ⊢ (c, [ ], p0)( o0−→)∗(skip, µ, p′
0) where µ0 = [pwd 7→ (2, {input↓}); user 7→ (0, {input↓})]

and o0 = [(input↓, log↑); (∅, log↑)]

κ0 = ([pwd 7→ (p , {input↓}); user 7→ (u , {input↓})], p 2 + 2p = 8)

Notice that the constraints in κ0 are such that any concretization of κ0 maps the value of pwd to
2. The observation o0 is relevant with respect to rules R, implying that the program is not secure.

Another possible scenario is that the password taken from input is not 2. Then,

I, F ⊢ (c, [ ], p0)( o0−→)∗(skip, µ1, p′
1) where µ1 = [pwd 7→ (1, {input↓}); user 7→ (0, {input↓})]

and o1 = [ ]

κ1 = ([pwd 7→ (p , {input↓}); user 7→ (u , {input↓})], p 2 + 2p ̸= 8)

This other execution does not generate any relevant observations.
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2 Formal semantics for symbolic taint-tracker

The semantics presented in Chapter 10 might not terminate. Instead, the semantics presented in
this section always terminates, and performs no over-approximation. This adaptation requires
the addition of a counter to keep tracks of loop iterations.

2.1 Abstract input channels

The input channels from Chapter 10 are replaced by abstract input channels, denoted by I♮.
These input channels only vary in that they contain symbols.

Example 25 (Abstract input channels). For function rand, a possible input channel is

I♮(rand) = [r0, r1, . . . ]

2.2 Evaluation of expressions

We define the evaluation of symbolic expressions as follows.

ρ ⊢ n ⇓η n

ρ ⊢ e0 ⇓η (ε0, T ↓
0 ) ρ ⊢ e1 ⇓η (ε1, T ↓

1 )
ρ ⊢ e0 ⊕ e1 ⇓η (ε0 ⊕ ε1, T ↓

0 ∪ T ↓
1 )

ρ(x)[i] = (ε, T ↓)
ρ ⊢ x[i] ⇓η (ε, η ∪ T ↓)

ρ ⊢ e ⇓η (ε, T ↓
0 ) o = (T ↓, t↑)

ρ ⊢ et↑ ⇓η
o (ε, T ↓

0 )

This is very similar to the concrete evaluation of expressions, but the output are symbolic
expressions that keep the relation between the different symbols. For instance, given ρ = [x 7→
(x , ∅); y 7→ (y , ∅)], the evaluation of x + y returns (x + y , ∅). Then, the concretization function
provides a valuation that specifies the value of each of these symbols.

2.3 Symbolic step semantics

The symbolic step semantics for taint-tracking are presented in the following subsection. In
contrast to the concrete taint-tracker, these semantics are designed to perform static taint-
tracking. For that reason, ensuring termination is a key aspect. This is done similarly to the
symbolic semantics of Part I, where a counter keeps track of loops, and eventually forces the exit
of the loop.

We denote counters with w ∈ W, and these are operated abstractly through a step function
step that takes three arguments: the initial command, the following command, an a counter,
and it returns a boolean indicating if the iteration is allowed, and the new counter. When the
boolean is false, the iteration cannot be executed.

Let us see how configurations are defined.

Definition 31. A configuration is a 4-tuple (c, κ, p, w) composed by: a command c, a symbolic
precise store κ, a pointer p, and a counter w.
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2. Formal semantics for symbolic taint-tracker

s-assign-sub
ρ ⊢ e ⇓η v

I♮, F ⊢ (x[i]η = e, (ρ, π), p, w) −⇁ (skip, (ρ[x[i] 7→ v], π), p, w)

s-assign-var
I♮, F ⊢ (xη = y, (ρ, π), p, w) −⇁ (skip, (ρ[x 7→ ρ(y)], π), p, w)

s-seq-1
I♮, F ⊢ (cη0

0 , (ρ, π), p, w) o−⇁ (cη′
0

0′ , (ρ′, π′), p′, w′)

I♮, F ⊢ ((cη0
0 ; cη1

1 ), (ρ, π), p, w) o−⇁ ((cη′
0

0′ ; cη1
1 ), (ρ′, π′), p′, w′)

s-seq-2
I♮, F ⊢ ((skipη; cη1

1 ), (ρ, π), p, w) −⇁ (cη1
1 , (ρ, π), p, w)

Figure 12.1: Simple assignments and sequences of statements of symbolic taint-tracker.

s-if-t
ρ ⊢ b ⇓η (β, T ↓) π′ ≜ π ∧ (β, T ↓) may(π′)

I♮, F ⊢ (ifη b then c0 else c1, (ρ, π), p, w) −⇁ (cfl(η,T ↓)
0 , (ρ, π′), p, w)

s-if-f
ρ ⊢ b ⇓η (β, T ↓) π′ ≜ π ∧ (¬β, T ↓) may(π′)

I♮, F ⊢ (ifη b then c0 else c1, (ρ, π), p, w) −⇁ (cfl(η,T ↓)
1 , (ρ, π′), p, w)

Figure 12.2: Branching rules of symbolic taint-tracker.

To study this semantics, we split the rules into different categories, starting with the simplest
rules.

2.3.1 Assignments and sequences of statements

For assignments, either a variable is copied to another variable, or an expression is evaluated and
then assigned to the index of a variable.

Sequence rules are recursively defined, executing the head of the sequence until eventually it
reaches skip.

2.3.2 Branching statements

For branching statements, we use proposition may, which was introduced previously in Chapter 3.
Proposition may states the possible truth value of the symbolic path, meaning that such path
is feasible. More specifically, proposition may(π) holds when there exists a valuation ν where
JπKν = tt. These two rules alter the configuration by constraining the symbolic path and
updating the command to execute.

2.3.3 Loops

Loops need to be carefully managed since it is possible that they never terminate, in which
case, we want to stop the taint-tracker forcefully. Loops are handled via a counter w with a
step function that determines when the analysis needs to be stopped. If function step returns
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s-while-f
step(c, c′, w) = (tt, w′) ρ ⊢ b ⇓η (β, T ↓) π′ ≜ π ∧ (¬β, T ↓) may(π′)

I♮, F ⊢ (whileη b do c0, (ρ, π), p, w) −⇁ (skip, (ρ, π′), p, w′)

s-while-t
step(c, c′, w) = (tt, w′) ρ ⊢ b ⇓η (β, T ↓) π′ ≜ π ∧ (β, T ↓) may(π′)

I♮, F ⊢ (whileη b do c0, (ρ, π), p, w) −⇁ ((cfl(η,t)
0 ; whilefl(η,t) b do c0), (ρ, π′), p, w′)

s-while-end
step(c, c′, w) = (ff, w′)

I♮, F ⊢ (whileη b do c0, (ρ, π), p, w) −⇁ (end, (ρ, π), p, w′)

Figure 12.3: Rules for loop iteration in symbolic taint-tracker.

true, indicating that an execution step must happen, two rules can be applied: rule s-while-t
accesses the loop, unrolling it once. Meanwhile, s-while-f exits the loop directly. However,
if step returns false, the command is replaced with a new command end, indicating that the
execution ended abruptly. This special statement has no corresponding rule to apply, meaning
that the configuration is a final configuration, similarly to skip.

2.3.4 Function calls

Last four rules regard function calls, and are defined in Figure 12.4. Rule s-assign-fun remains
very similar to its concrete version. When the function call is made, and the function reaches a
return statement, this rule can be applied succesfully, and the execution may continue. However,
if the execution of the function body has a loop that reached the bound of iterations, rule
s-assign-fun-end is applied. This causes the function evaluation to end abruptly, setting the
configuration statement to end, but keeping the observations generated. The last two rules are
s-fun-input and s-fun-sink. Rule s-fun-input reads a value from an abstract input channel
and adds the corresping source. Rule s-fun-sink generates an observation with the symbolic
value that was passed as an argument.

In the following example we show different cases to provide intuition on the symbolic taint-
tracker.

Example 26. Program 12.5a defines a function that takes an argument, sinks it, and then
returns the input value plus a randomly generated number. The function call is located inside the
body of the if statement.

We specify the input channels for input-functions.

I♮(input) = [i ; . . . ]
I♮(rand) = [r ; . . . ]

Since we are looking at the symbolic taint-tracker, the input channels are abstract, that is, they
hold symbols. These symbols represent external inputs that are initially not constrained. This
makes taking different paths possible during an execution. For instance, both branches of an if
statement may be satisfiable.
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s-assign-fun

(g, (x1, . . . ,xn), c) ∈ F ρ ⊢ ei ⇓η (εi, T ↓
i ) for 1 ≤ i ≤ n

I♮, F ⊢ (c((ε1, T ↓
1 ), . . . , (εn, T ↓

n)), (ρ, π), p, w) o−⇁∗ (return [e′
1, . . . , e′

k], (ρ′, π′), p′, w′)
ρ′ ⊢ e′

i ⇓η (εi′ , T ↓
i′) for 1 ≤ i ≤ k

I♮, F ⊢ (xη = g(e1, . . . , en), (ρ, π), p, w) o−→ (skip, (ρ[x 7→ ((ε1′ , T ↓
1′), . . . , (εk′ , T ↓

k′))], π′), p′, w)

s-assign-fun-end

(g, (x1, . . . ,xn), c) ∈ F ρ ⊢ ei ⇓η (εi, T ↓
i ) for 1 ≤ i ≤ n

I♮, F ⊢ (c((ε1, T ↓
1 ), . . . , (εn, T ↓

n)), (ρ, π), p, w) o−⇁∗ (end, (ρ′, π′), p′, w′)
I♮, F ⊢ (xη = g(e1, . . . , en), (ρ, π), p, w) o−⇁ (end, (ρ′, π′), p′, w′)

s-fun-input

(g, T ↓) ∈ F
read(I♮, g, p) = ((ε1, . . . , εn), p′) εt = ((ε1, η ∪ T ↓), . . . , (εn, η ∪ T ↓))

I♮, F ⊢ (xη = g( ), (ρ, π), p, w) −⇁ (skip, (ρ[x 7→ εT ↓], π), p′, w)

s-fun-sink
(g, t↑) ∈ F ρ ⊢ e ⇓η (ε, T ↓) o = (T ↓, ε, t↑)
I♮, F ⊢ (g(e)η, (ρ, π), p, w) o−⇁ (skip, (ρ, π), p, w)

Figure 12.4: Rules for function evaluation in symbolic taint-tracker.

1 def g(x):
2 y = rand()
3 print(x)
4 return (x + y)
5 x = input ()
6 if (x > 0):
7 y = g(x)

(a) Intricate function call.

1 i = rand()
2 y = rand()
3 while (i < y):
4 i++

(b) Non terminating
program.

Figure 12.5: Two example programs to display the symbolic taint-tracker semantics.

Execution starts at line 5. In line 5, x is assigned the value i plus the incoming taint from
function input. Since i has no constraints, it is possible for this execution to take either paths:
the guard may hold, and the guard may not hold.

First, we look at the case where the semantics chooses the false branch.

Line 5: ((x = input( ); if . . . ), ([ ], tt), p0, w0)
⇂ s-fun-input

Line 6: (if x > 0 then g(x) else skip, ([x 7→ (i , input↓)], tt), p1, w0)
⇂ s-if-f

Line 8: (skip, ([x 7→ (i , input↓)], i ≤ 0), p1, w0)

Since the body of the else is skip, the execution ends there, and no observations are generated.
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Instead, if the true branch is taken, the body of the if is not empty.

Line 5: ((x = input( ); if . . . ), [ ], p0)
⇂ s-fun-input

Line 6: (if x > 0 then g(x) else skip, ([x 7→ (i , input↓)], tt), p1, w0)
⇂ s-if-t

Line 7: (y = g(x), ([x 7→ (i , input↓)], i > 0), p1, w0)

From line 7, the next rule that applies is s-assign-fun. To gain insight, we show the execution
of the body of the function and how the value is then returned.

It is important to notice at this stage that the symbolic path remains the same, as the symbolic
path does not constrain variables, but symbols. These constraints still apply inside the function
call, and new constraints that arise in the function call should also be considered after the function
finishes. Variable x is assigned the value of the argument passed, in this case x, making the
symbolic precise store remain equal.

Line 2: (y = rand(); . . . , ([x 7→ (i , input↓)], i > 0), p1, w0)
⇂ s-fun-input

Line 3: (print(x); . . . , ([x 7→ (i , input↓); y 7→ (r , ∅)], i > 0), p1, w0)
⇂ s-fun-sink, o = (input↓, i , print↑)

Line 4: (return x + y, ([x 7→ (i , input↓); y 7→ (r , ∅)], i > 0), p1, w0)

Rule s-fun-assign dictates that the expression in the return statement must now be evaluated,
and then assigned to y in the top-level of the program.

[x 7→ (i , input↓); y 7→ (r , ∅)] ⊢ x + y ⇓ (i + r , input↓)

Finally, the end of this trace is as follows:

Line 7: (y = g(x), ([x 7→ (i , input↓)], i > 0), p1, w0)
⇂ s-assign-fun, o = (input↓, i , print↑)

Line 8: (skip, ([x 7→ (i , input↓); y 7→ (i + r , input↓)], i > 0), p1, w0)

Then, observation o is relevant, and the program is not secure with respect to weak secrecy.

Example 27. Program 12.5b takes two random values and iterates, adding one to the value of
i until i ≥ y. This program is safe with respect to weak secrecy by design, since there are no
sinks. However, since the values of rand depend on its input channel, it might be the case that y
is sufficiently greater than i to reach the bound of iterations in a concrete execution. For the
symbolic taint-tracker, the abstract input channel of rand is as follows:

I♮(rand) = [r0; r1; . . . ]
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The execution of the first assignments is straightforward.

Line 1: (i = rand( ); . . . , ([ ], tt), p0, w0)
⇂ s-fun-input

Line 2: (y = rand( ); . . . , ([i 7→ (r0, ∅)], tt), p1, w0)
⇂ s-fun-input

Line 3: (while i < y do i = i + 1, ([i 7→ (r0, ∅); y 7→ (r1, ∅)], tt), p2, w0)

Since we have no constraint over r0 or r1, we may assume that the loop is never executed,
applying rule s-while-f. In that case, the trace is as follows:

Line 3: (while i < y do i = i + 1, ([i 7→ (r0, ∅); y 7→ (r1, ∅)], tt), p2, w0)
⇂ s-while-f

Line 5: (skip, ([i 7→ (r0, ∅); y 7→ (r1, ∅)], r0 ≥ r1), p2, w0)

Instead, applying rule s-while-t, acceses the loop, updating the symbolic path and the counter.

Line 3: (while i < y do i = i + 1, ([i 7→ (r0, ∅); y 7→ (r1, ∅)], tt), p2, w0)
⇂ s-while-t

Line 4: ((i = i + 1; while . . . ), ([i 7→ (r0, ∅); y 7→ (r1, ∅)], r0 < r1), p2, w1)
⇂ s-assign-sub

Line 3: (while i < y do i = i + 1, ([i 7→ (r0 + 1, ∅); y 7→ (r1, ∅)], r0 < r1), p2, w1)
...

Line 3: (while i < y do i = i + 1, ([i 7→ (r0 + n, ∅); y 7→ (r1, ∅)], r0 + n − 1 < r1), p2, wn)
⇂ s-while-end

Line 5: (end, ([i 7→ (r0 + n, ∅); y 7→ (r1, ∅)], r0 + n − 1 < r1), p2, wn+1)

After n steps, the bound of iterations is reached, as determined by

step((while . . . ), . . . , wn) = (ff, wn+1).

At said point, the only option is to set the command end and finish the execution abruptly. Notice
that any observations that happen before reaching end are real observations that can be observed
in the concrete execution.

3 Completeness and soundness properties

The symbolic taint-tracker presented does not perform any over-approximations, but in some
situations it does the opposite: when the bound of iterations is exceeded, the analysis halts,
under-approximating the program semantics. This is visible in Program 1.2c, where we cannot
assure that the program is safe. However, not every program has to be under-approximated:
some programs can be fully explored, meaning that the analyzer is sound for those programs.
Thanks to the concretization function and that the semantics have been crafted to imitate that of
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the concrete taint-tracker of Chapter 10, in this chapter we prove that the symbolic taint-tracker
is complete, and partially-sound with respect to the concrete taint-tracker.

3.1 Completeness

In the following lemma, for each possible step of the symbolic taint-tracker, there exists a memory
and a valuation that corresponds to it. Between these two executions, the observations are equal.
So is the case for the pointer, and the counter.

Lemma 2 (Completeness in 1 step). For any program c, any symbolic precise store κ, any
pointer p, any abstract input channels set I♮, and any set of functions F . Let K′ denote the set
of symbolic precise stores when executing c one step from κ.

K′ = {(κ′, o′) | I♮, F ⊢ (c, κ, p, w) o′
−⇁ (c′, κ′, p′, w′)}

For any (κ′, o′) ∈ K′, for each (µ′, ν ′) ∈ γK(κ′),

∃ o, µ, ν, I : (µ, ν) ∈ γK(κ) ∧ I = JI♮K(ν ′) ∧
I, F ⊢ (c, µ, p) o−→ (c′, µ′, p′) ∧
ν ⪯ ν ′ ∧ o = o′

Then, we expand Lemma 2 for n steps.

Lemma 3 (Completeness). For any programs c, c′, any symbolic precise store κ, any pointer p,
any abstract input channels set I♮, and any set of functions F . Let Kf denote the set of final
symbolic precise stores when executing c from κ.

Kf = {(κf , o′) | I♮, F ⊢ (c, κ, p, w) ( o1−⇁)n (c′, κf , pf , wf )}

For any (κf , o′) ∈ Kf , for each (µf , νf ) ∈ γK(κf ),

∃ o ∈ O∗, (µ, ν) ∈ γK(κ) : I = JI♮K(ν) ∧ I, F ⊢ (c, µ, p, w) ( o2−→)n (c′, µf , pf , wf ) ∧
ν ⪯ νf ∧ o1 = o2.

Theorem 9 states that given a collecting execution of the symbolic taint-tracker, if no relevant
observations happen, and no end statement is reached, the program is weak secret.

Theorem 9 (Symbolic taint-tracker implies weak secrecy). For any program c, any pointer p,
any abstract input channels set I♮, and any set of functions F . Let

Kskip = {(κ′, o′) | I♮, F ⊢ (c, ([ ], tt), p0, w0, ) ( o−⇁)∗ (skip, κ′, p′, w′) } (execution finished succesfully)

Kend = {(κ′, o′) | I♮, F ⊢ (c, ([ ], tt), p0, w0, ) ( o−⇁)∗ (end, κ′, p′, w′) } (execution reached unfolding bound)

Then,
∀(κ′, o) ∈ Kskip : o

R= [ ] ∧ Kend = ∅ ⇒ WS ⊨ c.
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Note that the double implication does not hold: let c = while tt do skip, then WS ⊨ c but
Kend ̸= ∅. Also, the assumption Kend = ∅ is important. Let us assume there is a program where
the initial value of i is zero. Then, there is a loop that adds one to i in each iteration, and an
if statement that has a vulnerability, but the guard of the if is i > n where n is a large enough
number to be greater than the iteration limit. This program is not weak secret, given that after
n iterations, the attack happens. However, given that no symbolic trace reaches the body of the
if, the illegal flow is never explored. Such executions belong in set Kend.

Lastly, Theorem 10 states that given a symbolic trace that annotates a relevant observation,
a concrete trace behaves similarly. Thus, the program is not weak secret and a counter-example
can be generated.

Theorem 10 (SE gives counter-example). For any program c, any pointer p, any abstract input
channels set I♮, and any set of functions F . Let

Kskip = {(κ′, o′) | I♮, F ⊢ (c, ([ ], tt), p0) ( o−⇁)∗ (skip, κ′, p′) } (execution finished successfully)

Kend = {(κ′, o′) | I♮, F ⊢ (c, ([ ], tt), p0) ( o−⇁)∗ (end, κ′, p′) } (execution reached unfolding limit)

If ∃µ′, ν ′, κ′, o1 : (κ′, o1) ∈ Kskip ∪ Kend ∧ o1 ̸R= [ ] ∧ (µ′, ν ′) ∈ γK(κ′), then

I, F ⊢ (c, [ ], p) ( o2−→)∗ (skip, µ′, p′) with I = JI♮K(ν ′) ∧ o1 = o2.

Proof is done by applying Lemma 3.

3.2 Soundness up-to-a-bound

If the symbolic taint-tracker reaches the bound of iterations, the execution is ended abruptly,
discarding a valid trace. When this happens, we cannot consider the symbolic taint-tracker
sound. However, if set Kend is empty, it means that no traces were disregarded, and the symbolic
taint-tracker covered the whole semantics of the program with respect to the concrete taint-tracker
semantics.

Theorem 11. For any program c, abstract input-channel I♮, set of functions F . Let Kend denote
the set

Kend = {κ′ | ∃p′, w′ : I♮, F ⊢ (c, ([ ], tt), p0, w0)( o−⇁)∗(end, κ′, p′, w′)}.

Then, Kend = ∅ if and only if

∀µ, o : (c, [ ], p0)( o−→)∗(skip, µ, p) ⇒ ∃ν, ρ, π, w : (c, [ ], p0, w0)( o−⇁)∗(skip, (ρ, π), p, w)
∧ (µ, ν) ∈ γKT(ρ, π).

Given I♮, and F , when a program c is such that Kend = ∅, we say that the semantics is sound
with respect to c.

The proof of this theorem is done by structural induction over statements. Based on the
assumption that Kend is empty, we know that at no point the symbolic semantics can reach the

89



Chapter 12. Symbolic execution taint-tracker

bound of iterations. Then, we show that each step taken by the concrete semantics corresponds
to a step in the symbolic semantics.
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Chapter 13
A combined taint-tracker

In Chapter 12, we presented a symbolic taint-tracking semantics. This symbolic taint-tracker is
language-agnostic and complete. The downside of it, is that it does not scale: it explores programs
exhaustively, approximately duplicating the amount of states for each branching statement. In
this chapter, we assume the existence of a sound taint-tracker analyzer, and we propose a method
to combine both the sound and the complete taint-trackers. Through the combination of the
analyzers, we aim to achieve a more encompassing result than when using the tools on their own.

1 Sound taint-tracker

For the combined analysis we require an alternative taint-tracker than the symbolic one presented
in Chapter 12. Instead of defining it ourselves, we allow any third-party taint-tracker to be used,
as long as it satisfies two conditions:

1. the taint-tracker must be sound with respect to the concrete semantics;

2. it must return an over-approximation of the set of observations generated by the concrete
semantics.

We assume the existence of some abstract domain A, with a concretization function γA from
an abstract element to a concrete store µ ∈ M. We assume the existence of a sound taint-tracker
analyzer denoted by J_K♯ : A → (A × P(O)). We write a0 for the initial state in A. This sound
taint-tracker is parameterized by a program c. Given an abstract state, it generates a new
abstract state that over-approximates the concrete semantics of c, plus an over-approximated set
of observations.

Assumption 1 (Sound taint-tracker). For a given command c0, and a set of functions F ,

∀a0, µ0, µ, c, p : µ0 ∈ γA(a0) ∧ (c0, µ0, p0)( o−→)∗(c, µ, p) =⇒
∃a : Jc0K♯

F
a0 = (a, os) ∧ µ ∈ γA(a) ∧ o ⊆ os.

While in the symbolic taint-tracker, the semantics split at branching statements, the sound
taint-tracker joins different paths producing a single abstract state as output. Together with the
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1 def f():
2 return input()
3 def g(x):
4 print(x)
5 x = f()
6 if (x > 0):
7 y = g(x)

Figure 13.1: A program with a sink that is accessed only if x is bigger than zero.

abstract state, a set of observations is outputted. When no relevant observations were generated,
we assume the program is secure with respect to weak secrecy.

Theorem 12. For a given command c0, and a set of functions F ,(
∃a, os : Jc0K♯

F
a0 = (a, os) ∧ os

R= [ ]
)

=⇒ WS ⊨ c

Proof outline. Assuming that a0 comprehends all initial memories, and assuming the hypothe-
sis of the theorem. Let us take any initial memory such that µ0 ∈ γA(a0). Then, by Assumption 1,
we have that any concrete execution (c0, µ0, p0)( o−→)∗(c, µ, p) is such that o ⊂ os, where os is
the observations generated by the abstract taint-tracker: Jc0K♯

F
a0 = (a, os). Then, this plus the

hypothesis of the theorem implies that, no concrete execution generated observations. Therefore,
the program is weak secret.

Example 28. We focus on the program found in Figure 13.1. This program is insecure, since
the tainted value flows to function g when the value is positive.

The sound taint-tracker over-approximates the concrete semantics, meaning that it reports
the illegal trace. We have that the set os of observations is such that

(input↓, print↑) ⊆ os.

2 Theoretical basis for combined taint-tracker

Based on previous theorems, we can write a new theorem that indicates in which conditions a
program is weak secret, or not.

Theorem 13. Given a program c, a set of functions F . For any abstract input channel I♮. Let

Kskip = { (κ, o) | I♮ ⊢ (c, κ0, p0, w0)( o−⇁)∗(skip, κ, p, w) }

Kend = { (κ, o) | I♮ ⊢ (c, κ0, p0, w0)( o−⇁)∗(end, κ, p, w) }.
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Then,

1.
(
∃a, os : JcK♯

F
a0 = (a, os) ∧ os

R= [ ]
)

∨
(
∀(κ, o) ∈ Kskip : o

R= [ ] ∧ Kend = ∅
)

⇓
WS ⊨ c

2.
(
∃(κ, o) ∈ Kskip ∪ Kend : o ̸R= [ ]

)
⇓

WS ̸⊨ c

To prove this, we require previous theorems from this chapter and Chapter 12.

Proof. To prove this theorem, we are going to consider the two main cases.

Case 1. Let us assume that(
∃a, os : JcK♯

F
a0 = (a, os) ∧ os

R= [ ]
)

∨
(
∀(κ, o) ∈ Kskip : o

R= [ ] ∧ Kend = ∅
)

.

We split the disjunction in two, and check each case separately.

Case 1.1. Taking the left side of the disjunction:
(
∃a, os : JcK♯

F
a0 = (a, os) ∧ os

R= [ ]
)
.

Directly from Theorem 13, we have that WS ⊨ c.

Case 1.2. Taking the right side of the disjunction:
(
∀(κ, o) ∈ Kskip : o

R= [ ] ∧ Kend = ∅
)
.

Directly from Theorem 9, we have that WS ⊨ c.

Case 2. Let us assume that (
∃(κ, o) ∈ Kskip ∪ Kend : o ̸R= [ ]

)
.

Directly from Theorem 10, we have that WS ̸⊨ c.

3 A combined taint-tracker algorithm

Given a command c and a set of functions F , we would like to check if this program is weak
secret. If the program is not weak secret, we would like to generate a counter-example. To do
so, we can use both the sound and the symbolic taint-trackers to craft a combined analysis, as
illustrated in Figure 13.2. This algorithm consists of two main steps.

1. Execution of sound taint-tracker analysis. If there are no issues found, the analysis finishes
successfully—that is, the program is secure.

2. When issues are found in step 1, execution of symbolic taint-tracker analysis. Given than
an issue was raised, we want to check if it is a false-positive (program is secure) or if it is a
real issue (program is insecure) providing a counter-example.
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Complete T.T.

Sound T.T.program ✓

✗

?
INCONCLUSIVE

RESULT

SECURE

INSECURE

no
issue

issue
foundtrace

found
false

positive

Figure 13.2: Overview of combined taint-tracker analysis. “T.T.” referst to “taint-tracker”.

If neither the sound taint-tracker, nor the symbolic taint-tracker, can provide an answer, it is not
possible to conclude whether the program is weak secret.

• Step 1: Application of sound taint semantics. If no relevant observations are
generated, the program is weak secret.

JcK♯
F

a0 = (a, os) ∧ os
R= [ ]

If relevant observations were generated, the analysis cannot conclude whether the program
is weak explicit secret or not. Thus, we go to the second step.

• Step 2: Application of symbolic taint semantics. In the symbolic taint-tracker, we
start executing with an initial state κ0 = ([ ], tt), from command c. Let us assume that

Kskip = { (κ, o) | I♮ ⊢ (c, κ0, p0, w0)( o−⇁)∗(skip, κ, p, w) }

Kend = { (κ, o) | I♮ ⊢ (c, κ0, p0, w0)( o−⇁)∗(end, κ, p, w) }

– Case 2.1: If there is no final configuration in Kskip that generated relevant observa-
tions, and Kend = ∅, then the program is weak secret.

– Case 2.2: If there was an element (κ, o) ∈ Kskip ∪ Kend such that o ̸R= [ ], the program
c is not weak secret and there is a concrete execution that is a counter-example, that
is, a concrete execution that generates a relevant observation.

• Inconclusive result. If neither cases 2.1 and 2.2 yield a positive answer, that implies
two things:

1. Kend ̸= ∅ (by case 2.1) and,

2. ∄ (κ, o) ∈ Kskip ∪ Kend : o ̸R= [ ] (by case 2.2)

Elements in the set Kend imply that there are executions of the symbolic semantics that
were stopped at the loop-unrolling bound. These elements represent concrete traces that
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are not covered in the symbolic execution, thus, not allowing us to prove that the program
is weak secret. Simultaneously, all the traces lack any relevant observation.

Therefore, the program may or may not be weak secret, and the combined analysis is
inconclusive.

Example 29. We again focus on the program found in Figure 13.1. As we have seen in
Example 28, the sound taint-tracker reports that there is an illegal observation.

Then, we need to use the symbolic taint-tracker to check whether the program is secure with
respect to weak secrecy.

Since the program has no loops, set Kend is empty. Therefore, either all traces in Kskip

generated no relevant observations, or at least one trace did.
For any input channel I such that the first input value of input is positive, the concrete

execution triggers the relevant observation. By the completeness of the symbolic taint-tracker,
there is a symbolic trace in Kskip that abstracts the concrete trace. Therefore, this corresponds to
case 2 of Theorem 13.
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Chapter 14
An Implementation of Pysta

In the previous chapter, we presented a combined analysis to test weak secrecy. The analysis
works by first applying a sound taint-tracker to prove weak secrecy. If the sound taint-tracker
fails, we recur to the symbolic taint-tracker from Chapter 12. Since the symbolic taint-tracker
is more precise, it can potentially prove weak secrecy, or, if not, provide a counter-example to
refute the program.

The sound taint-tracker assumed in the previous chapter is completely abstracted. In this
chapter our aim is to present a specific sound taint-tracker for Python named Pysa, and to
instantiate it to the algorithm, exploiting further its output. Coincidentally, we instantiate the
symbolic taint-tracker with Pysta, an OCaml-implemented taint-tracker, that can communicate
with Pysa to raise its effectiveness. We end by discussing the limitations of this approach, and
the design choices taken to develop Pysta.

1 Pysa

Pysa is an open source python taint-tracker developed by Meta [Meta, 2023]. This taint-tracker
uses abstract interpretation to perform a sound over-approximation of unwanted flows in Python
code repository.

To use this tool, the user must define special stubs—Python signatures—that establish which
functions or methods are sources, and which ones are sinks. By knowing which are the sources
and sinks beforehand, the analysis can progressively build a call graph. Then, with the call
graph, it must find a path from a source to a sink. This concept is illustrated in Figure 14.1.

In Figure 14.1, we assume there is function f0. Each circle in the graph, represents the
distance of the function call. For instance, f1 calls f0 directly. Similarly to f1, there are other
functions that call f0, but then these functions are not called by other functions. On a higher
layer of the graph, function h calls f1, meaning that it has distance two to f0 in the call graph.
Function g0 is in a similar situation: it is called by g1, which is then called by h.

Then, Pysa can find a possible issue when function h is called. However, Pysa performs an
over-approximation, meaning that this issue may be a false-alarm.
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f0

g0

f1

h

g1

def f1():
return f0()

def h():
x = f1()
g1(x)

def g1(x):
return g0(x)

Figure 14.1: Hypothetical function-call graph where function h calls f1, and f1 calls f0. Then,
function h calls g1, which then calls function g0.

1.1 Example

In order to get a grasp of Pysa, we propose to inspect an example using the formalism presented
previously in this part. We focus on the program found in Figure 13.1. This program is insecure,
since the tainted value flows to function g when the value is positive.

We define functions input and print as previously done.

def input input( ) : input↓

def sink print(obj : print↑) : ∅

We assume the set of sources, sinks, and rules are defined as follows:

T↓ = {input↓} T↑ = {print↑}
R = {(input↓, print↑)}

This program is unsafe with respect to weak secrecy based on rules R.

1.2 Instantiation

We now adapt the example to work on Pysa. Pysa uses two confuration files are taint.config
and general.pysa. Rules from R are defined in taint.config. Meanwhile, general.pysa
defines the signature of functions.

Taints. Sources, sinks and rules are defined in taint.config, as illustrated in Figure 14.2, in
JSON format. These are completely decided by the user.

Taint-signatures. For defining taint-signatures, we need to define stubs in general.pysa.
These determine which functions or methods are sources, and which functions or methods are
sinks. For the purpose of our example, we provide the signatures for input and print. Notice
that, while in the formal model we provide a definition for these two functions, in Pysa, we
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"sources": [
{ "name": "UserControlled",

"comment": "use␣to␣annotate␣user␣input" }
],
"sinks": [

{ "name": "Print",
"comment": "use␣to␣annotate␣printing" }

],
"rules": [

{ "name": "Possible␣data␣leakeage",
"sources": [ "UserControlled" ],
"sinks": [ "Print" ]
}

]

Figure 14.2: Extract of taint.config.

def input(__prompt) -> TaintSource[UserControlled ]: ...
def print(* objects: TaintSink[Print], sep , end , file , flush ): ...

Figure 14.3: Signature definition in Pysa for input and print.

only provide the function signature. This is because these functions are defined in the standard
library of Python already.

1.3 Execution of Pysa

Pysa is included in Pyre. Once the configurations are done, and the source directory is specified,
to execute the analysis over the code we execute the command

pyre analyze --save-results-to output_dir

This executes the analyzer and save all the output in output_dir.
The execution of Pysa generates several JSON files. In file errors.json a summary of all

found issues can be found, stating when sources met with a sink. In taint-output.json there is
highly detailed information about the traces that generated these issues. However, this information
needs to be processed first to be interpreted by humans. Processing taint-output.json can
be done with Static Analysis Post Processor (or SAPP), generating a SQLite database that
concisely contains every issue with details about the sequence of calls that generated it. Then,
SAPP also allows us to explore this issues in the command line.

1. To process taint-output.json we use the command

sapp --database -name sapp.db analyze output_dir/taint -output.json
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where sapp.db is the name of the database created.

2. Then, command

sapp --database -name sapp.db explore

allows to interactively explore the issues and their respective traces.

3. Once we are exploring the database, we can request to check the issue generated:

>>> issues
Issue 1

Code: 5001
Callable: prog_stt_1.toplevel
Sources: UserControlled

Sinks: Print
Location: source/prog_stt_1.py :7|11|11

Min Trace Length: Source (0) | Sink (1)

Here, we can observe that the issue is a input↓ taint reaching a sink print↑, as expected.

4. Finally, we can inspect the trace from that issue.

>>> trace
# [ callable ] [port] [ location ]
1 [Missing trace frame: prog.f:result]
2 prog.f result source/prog.py :5|5|7

--> 3 prog.toplevel root source/prog.py :7|11|11
4 prog.g formal(x) source/prog.py :7|11|11
5 [Missing trace frame: prog.g:formal(x)]

We can observe that the trace is composed of five levels. At level 3, there is toplevel,
which is the root where functions f and g are called. As we can observe, at level 2, there is
a call to function f, at line 5. And a call to g happens at line 7. This trace shows us which
source and sink meet, and what is the flow of the taint. However, this trace is missing
information about the execution of the program, that is, we have no certainty that the
trace is possible, since Pysa performs an over-approximation.

Normally, at this stage, a developer has to manually check the issue and determine whether
the issue is real, or if it is a false alarm.

Based on Theorem 13, since Program 13.1 generates relevant observations in Pysa, we need
to apply a symbolic taint-tracker to refine the result and verify if the alarm is real or a false
positive.
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2 Pysta

Pysta is our symbolic taint-tracker implementation for Python, hosted at github.com/ignatirabo/pysta.
Pysta is implemented in OCaml, consisting of approximately 4000 lines of code. Much of the
code is reused from the symbolic executor from Part I. The Python parsing is done with pyre-ast,
which features full-fidelity to the official Python spec. The tool does not provide full coverage of
the Python language. It accepts programs with: assignments, functions, if conditions, while
loops, for loops, a subset of classes, and dictionaries and lists without their operations.

Pysta can be used as a stand-alone tool, but the main goal of Pysta is to use output of
Pysa to refute or validate alarms. Currently, when an issue is found using Pysa, the only option
is to have a developer manually check the issue. All the examples that have been used previously
are fairly short and simple. However, what happens when the code being analyzed is potentially
thousands of lines, coming from different Python modules? The goal of Pysta is to help sort
out alarms automatically, reducing the workload of developers.

Pysta performs taint-tracking, following closely the semantics presented in Chapter 12. The
main differences to the formal semantics, is that it is specifically for Python, thus, it admits
various types of instructions not in the syntax of the taint-language that was used in the formalism.
The configuration of Pysta is done by reusing the configuration files of Pysta.

2.1 Implementation

In Pysta, executions are performed with configurations. Configurations represent the state of a
trace at a certain point of the execution, and hold all variable information. These are a 5-tuple,

(c, κ, f, i, w)

composed of:

1. a command c;

2. a symbolic precise store κ;

3. a flag f ;

4. a ID i;

5. and a counter w.

Two of these elements are used for debugging, so we skip their details. However, we can
briefly summarize them. A flag f is used to store comments and different statuses. An ID i is
unique, and it is utilized to differentiate traces and check details about the steps it went through.

To display these different elements that conform a configuration, we go through each one of
them, decomposing how they are defined.
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2.1.1 Commands, statements and expressions

Command, similarly to the formal definition, are a sequence of statements. These statements
vary since Pysta performs analysis over the Python language. We define the set of language
statements purely syntactically at this stage, with these consisting of:

• assignment;

• conditional if statements;

• while statements;

• for statements;

• an expression statement;

• and a return statement.

Assignments are straightforward, so as if and while statements. Expression statements are used
for function calls that are not modifying the memory, such as print. The return statement is
used for returning a value from a function call.

All of these statements make use of language expressions. We call language expressions to
expressions that can be found in the source code that is being executed, since later we describe a
different kind of expressions.

Expressions consist of the following:

• a constant—either integer, boolean or string;

• a unary or a binary operation;

• a function call;

• a subscript—that is, expressions of the form x[’a’];

• an attribute—for example, x.a where x is a variable and a is an attribute;

• and joined strings.

The binary operations allowed are comparison between integers and arithmetic operations.

2.1.2 Symbolic precise store and taint expressions

In the concrete setting, evaluating language expressions returns values. Thus, in the symbolic
setting, values turn into symbolic expressions, and since Pysta is a taint-tracker, these symbolic
expressions must also hold taints. We call this type of expressions taint expressions.

The symbolic store maps variables to taint expressions, and the symbolic path is a set of
taint expressions. Taint expressions are composed of:

• a constant with a taint;
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• a symbolic variable with a taint;

• a unary or binary taint expression;

• a list of taint expressions;

• a map to taint expressions;

• and an object—similar to a map.

To illustrate how these expressions are composed, we can inspect a few of them. For instance, a
taint expression constant is a constant plus a possible source and sink.

(10,SO[{Input,1}],SI[])

A taint expression list is a sequence of tainted expressions.

[(x,SO[{Input,1}],SI[{Print,2}]), (x + y,SO[],SI[])]

Symbolic precise store The symbolic precise store is defined as a pair of a symbolic store—also
called a symbolic variable map—and a symbolic path.

κ = (ρ, π)

A symbolic store is a mapping from program variables to taint expressions, and a symbolic
path is a set of taint expressions that can evaluate to true or false.

2.1.3 Counter

In Part I, Chapter 3, we define classic counters in Definition 3. This same definition is used for
the implementation of counters in Pysta. The counter is now implemented as a stack of integers,
adding one element for every new loop entered. Once the bound of iterations—a constant—is
reached, the configuration goes to statement end.

2.1.4 Semantics

The symbolic taint-tracker starts from an initial configuration with a command c, and an empty
symbolic state. Rule evaluation is similar to that of the formal symbolic semantics presented
in Chapter 12. However, this is a collecting semantics. These can be seen in Program 12.5b,
as illustrated in Figure 14.4. The left-hand graph is a control-flow graph, showing how the
program normally behaves. In this graph, number 5 indicates the program exited, after the
while statement. Meanwhile, the graph on the right-hand side shows the possible paths taken by
the symbolic execution analysis, where f indicates the false branch, e indicates that the program
reached the iteration bound and finished abruptly, and t indicating that the true branch was
taken.
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Figure 14.4: Control-flow graph for Program 12.5b on the left, and path graph for Program 12.5b
on the right. Numbers to the right of the label indicate line of code to be executed next. In
trace graph, label f indicates false branch taken, label e indicated end branch taken, and label
t indicates true branch taken. The trace graph can continue infinitely until iteration bound is
reached.

Inspecting the right-hand graph, each leaf in this graph represents a final trace generated by
Pysta. Then, Pysta outputs the collection of all final traces and present that to the user.

In the formal semantics, we use the primitive may, which now is implemented through a
satisfiability query with the SMT solver. When the query returns “unsatisfiable”, the trace is
dropped. When a relevant observation is generated, the trace is automatically terminated to
eliminate overhead created by extra exploration.

2.2 Analyzer usage

Given a program of interest program.py to analyze, Pysta is executed as follows:

pysta.exe program.py

Pysta tries to access the database generated by SAPP based on the output of Pysa. If it
succeeds, that is, if there is information about the execution of that program in the database,
Pysta attempts to execute the analysis starting from the root of the program. That way,
unimportant sections of the program are pruned. If the program has not been analyzed by Pysa,
it will not appear in the database. Thus, no starting location will be available. In such a case,
the analyzer will analyze the code from top to bottom, similarly to the Python interpreter.

Coming back to Program 13.1, where function f calls input, flowing a value to print through
g. Since the call to g is guarded by a condition x > 0, there are two possible symbolic traces, and
Pysta outputs the following information. This can be seen in Figure 14.5. In this figure, both
branches are final, meaning that they reached skip. The symbolic store, also called symbolic
variable map, is denoted by SVM. Elements in SVM are tuples with: the symbolic value of the
variable, the set of sources, and the set of sinks. In the first trace, x maps to value symb 0 with
only a source UserControlled, and the symbolic path, denoted by SP, only constraints symb 0 to
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Final branches for programs/thesis/prog_14_1.py: 2
FINAL STATE:

id: (2, Final)
SVM: x -> (symb_0 ,SO[{ UserControlled ,2}]);
SP: (symb_0 <= 0,SO[{ UserControlled ,2}])

No return value.

FINAL STATE , RULE TRIGGERED:
id: (1, Final)

SVM: objects -> (symb_0 ,SO[{ UserControlled ,2}],SI[{Print ,4}]);
x -> (symb_0 ,SO[{ UserControlled ,2}]);

SP: (symb_0 > 0,SO[{ UserControlled ,2}])
Rule 5001 triggered. ’Possible␣data␣leakage ’
MODEL:
(define -fun symb_0 () Int 1)
No return value.

Figure 14.5: Output of Pysta for Program 13.1

be less than 1. For that reason, the program does not enter the if statement and the execution
finishes with no observations generated.

The second trace is also final, and it triggers a rule. The symbolic path is complementary to
that of the previous trace and this causes the execution to access the body of the if. For that
reason, a call to g is done, and finally the sink is met. This interrupts the execution of that trace
and returns the current symbolic store, where objects is the name of the argument of print.

When Pysta finds a rule is triggered, by using the SMT solver, a model can be generated
to provide concrete values that lead the execution. For this example, since there is only one
input value, the only requirement is that symb 0 = 1. In the formal model, this would imply
the following: the input channel I(input) = [symb0 ; . . . ], and there is a valuation ν such that
ν(symb 0) = 1.

3 Limitations

Neither Pysa nor Pysta are free of limitations. While some limitations might be theoretical,
also design choices impact on which limitations appear.

Language subset. Pysta does not implement the full syntax of Python. However, some
Python statements can be split into several simpler statements that do not alter the taint analysis.
For instance, the following statement can be transformed in two statements.

data_json = json.dumps(charge_cash).encode(’utf-8’)

≡

data_json = json.dumps(charge_cash)
data_json = encode(data_json,’utf-8’)
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Since the functionality of encode is not important, this transformation is admissible. However,
each case must be treated carefully, as it might not be the case. Currently, this changes have to
be made to the source code of the program manually which is not optimal. Ideally, Pysta should
have an intermediate step where it spots cases such as the one above, transforming the program
automatically and without altering the semantics of the program. The problem associated with
these transformations is that if Pysa was executed on the origianl program with no modifications,
its output might correspond the altered program. For instance, a source was originally in line 5
of the program, but due to these alterations, it is now in like 10, and the information extracted
is no longer useful.

In Pysa, all Python programs can be analyzed, which is a desirable feature. However,
Pysa performs over-approximations. This makes the work of covering the language easier.
In contrast, implementing language statements in Pysta is extremely tricky as performing
over-approximations completely defeats the goal of the analysis. Features implemented at the
moment are still rudimentary. For instance, not all features of classes have been implemented.

Regarding program transformations, exceptions and imports are not implemented, thus,
they are just commented. Shortly, we explain further why imports are not implemented. Basic
operations on data structures are not implemented either, for instance, pop in a list. Also,
assignments to labelled values in functions are not implemented.

The consequence of not covering all the Python language is that, programs of interest might
not be analyzable by Pysta for containing unimplemented statements.

Taint signatures (Primitives and modules) A logical limitation shared between Pysa
and Pysta is that primitives, such as input, need to be implemented manually. This limitation
cannot be avoided.

Regarding taint-signatures, Pysa makes use of module signatures in .pyi format. By using
Python interface files, it can automatically extract information about classes, functions, and
values coming from modules. This is very important for making the process of executing Pysa
as automatic as possible. While we are parsing the taint-signature file from Pysa automatically,
the rest of the modules are not know to Pysta. This could be easily fixed.

Symbolic objects and functions As explained in the previous paragraph, there are possibly
primitives, functions from a module, or classes from a module, whose code is unknown to Pysta.
Instead of crashing, the analyzer can continue executing with a placeholder symbolic value. For
instance, let us assume that there is a function f that is unknown. When called, it returns a
new symbol with the taint of its input arguments—a pass-through function. For functions that
are mentioned in the taint-signature file, we can expand this behavior. If the function is sinking
an argument, not knowing the function does not alter the fact that the argument can be sunk.
Similarly, if a function is a source, producing a tainted value, the placeholder symbolic value can
be tainted. This allows Pysta to successfully perform taint analysis without having a perfectly
precise representation of values. This approach has a limitation: if the placeholder is used as
part of a guard in a control-flow statement, the analyzer loses completeness since the value,
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technically, is an over approximation.

Lists and “for” loops For simplicity, the implementation of lists is not as general as it should
be. We assume that every function that returns lists, returns a singleton list. This assumption is
imprecise, but it is necessary to use for loops easily, which are heavily used in Python.

The imprecision can affect negatively certain programs, for instance, a guard asking if a list
is empty, or if it has more than one element.

Sanitizers Sanitizers are used to model functions that clear taints from a value. Sanitizers are
important in taint analysis as they can be used to model functions such as hashing functions in
cryptography. For instance, an unhashed password is confidential, but hashing it makes it more
secure. In this context, the hashing function is modeled as a sanitizer, clearing the taint of the
original value. In Pysta, only the simplest sanitizers can be defined. This consist of removing
all the taint of the input argument. This would be enough to implement the example of the
hashing function.

SMT solvers are slow The most common problem with symbolic execution is that SMT
solvers are computationally expensive. Thus, we want to minimize the amount of queries
performed by the SMT solver to minimize the overhead. While there is pruning in Pysta, the
tool is still a prototype and there are several parts of the analysis that can be optimized.

Besides that limitation, another problem is that, being very precise adds overhead by design,
even when a statement is not relevant for taint-tracking. Let us assume there is a function cmplx
that has a great computational complexity. Already executing this function concretely is not
optimal. Now, symbolically executing such function could potentially crash the analysis, or drop
a trace. The question is then, is the semantics of this function important for taint-tracking? In
Pysa, such problems are greatly avoided by the lack of numerical computations. But in Pysta,
we care about numerical precision. This situation imposes a limitation because we can choose
two sub-optimal paths: the first path is to leave the analysis as it is, and let the trace be dropped,
losing coverage. The other solution is to manually spot this functions and give a special definition
for them such that their semantics are lost, but the “spirit of the program” is preserved.
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Chapter 15
Evaluation of Pysta

In this chapter, we try to answer whether Pysta can effectively reduce the amount of human
work required to check Pysa alarms, and reflect on what aspects of Pysta are limiting the
integration of the two tools. To do so, we inspect three different research questions.

RQ1. Validation of issues. For an unsafe Python program, in the case where Pysa raises
an alarm, is Pysta able to find a trace triggering the bug?

RQ2. Analysis refinement. For a safe Python program, in the case where Pysa raises an
alarm, is Pysta able to disregard the false positive?

RQ3. Scalability. Given that Pysa is used to analyze immense codebases, what is the
largest program that can be analyzed by Pysta, and what is limiting Pysta to cope with larger
programs?

To answer these questions, we have split them into three sections, each one answering an
individual question.

Setup. Experiments were performed on a laptop with an Apple M1 Pro with 16GB of RAM.
The initial configuration has an empty symbolic state.

1 Validation of issues (RQ1)

When a real issue is raised by Pysa, we want Pysta to attest that the issue is real—that is, to
find a trace that triggers the unwanted flow.

We start by detailing different examples extracted from different sources. One of them comes
from a CVE regarding CPython. Two of the examples are from Cloudgoat. Last one is taken
from the tutorial of Pysa. For performing the analysis of these examples, we have adapted them
to be compatible with both Pysa and Pysta, while keeping the behavior of the code that is
relevant to us.
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All the examples are unsafe programs that raise alarms in Pysa.

1.1 Example “CPython”

Context CPython is the reference implementation of the Python interpreter, and it is written
in C and Python. In 2018, a vulnerability was found in CPython, version 2.7, that can result
in denial of service and information gain by exploiting the incorrect neutralization of special
elements in a command constructed by externally-influenced input.

The code analyzed is 23 lines long, and can be found in Appendix 1. The vulnerability is
registered as CVE-2018-1000802, and it was closed in a commit [Pierce, 2018]. This CVE had a
CVSS score of 7.5 and 9.8.

Attack Module shutil.py of CPython contains utility functions for copying and archiving
files and directory trees. The problem specifically arises from _call_external_zip function,
which compresses a directory by using the CLI command zip. To do so, function spawn was
being used, which does not neutralize shell injection attacks. The solution is to replace spawn
with subprocess.check_call(cmd).

Configuration of analyzers Since the problematic function is spawn, we consider it the sink,
while the source is the input strings provided to the function. For that matter, we assume the
source is coming from input function, and the configuration for spawn is as follows.

def distutils.spawn.spawn(cmd: TaintSink[RemoteCodeExecution],
search_path , verbose , dry_run ): ...

Pysa response Analyzing the code found in Appendix 1, Pysa is able to determine that the
second argument of _call_external_zip is a sink, given that it flows to spawn. And since the
value provided in the call comes directly from input, an issue is raised.

Pysta response The output from Pysa is taken by Pysta. Thanks to the output, Pysta can
determine that the execution starts at line 21, the origin of the source. It executes, producing a
single trace, until it reaches spawn, causing a relevant observation to be generated. Since function
spawn is inside a try block, and Pysta does not implement exceptions, we need to adapt the
program. To do so, we have commented the try, and left the spawn.

In this example, Pysa raised an issue, and Pysta was able to corroborate the veracity of the
issue, informing the user that there is a bug.

1.2 Example “Vulnerable-λ”

Context This example, consists on 38 lines of code, and it can be found in Appendix 2, comes
from a “vulnerable by design” AWS (Amazon Web Services) repository called CloudGoat. This
repository has AWS deployment code that is vulnerable on purpose, and it is used as training for
people working in cybersecurity.
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In AWS, a feature is AWS lambda functions. These functions are event-driven, serverless
functions provided by Amazon. These run in Amazon servers and can be triggered by different
events, and can be used for multiple purposes, such as file processing, stream processing, IoT
backends, and more.

Attack In this specific scenario, the AWS bucket has a lambda function policy_applier that
is “vulnerable”, meaning that it can be exploited. This lambda function is used to apply a set of
policies to a user. To do so, a SQL statement is crafted to get all the policies passed as an input.
However, the SQL statement is created using one of the standard ways to join strings in Python.

statement = f"select␣policy_name␣from␣policies
where␣policy_name =’{policy}’␣and␣public=’True’"

Using these type of string concatenation is exploitable by injecting SQL command through
variable policy. Through this exploit, it is possible, for instance, to give administrator rights to
a user.

Configuration of analyzers To perform taint-tracking on this example, we have to consider
the payload as a source. Meanwhile, the sink is the execution of the SQL query. Its taint
signature is as follows.

def sqlite_utils.db.Database.query(sql: TaintSink[SqlInjection],
params ): ...

Pysa response For this example, Pysa is able to determine that the first argument of function
handler is a sink, because of the call to db.query in its body. This raises an issue pointing to
an SQL injection, informed in the output of the tool.

Pysta response Pysta analyzes the output of Pysa, and it determines that the execution
must start from the input statement, and goes through the body of handler until it reaches line
27, generating the relevant observation and stopping the execution.

In this example, Pysa raised an issue, and Pysta was able to corroborate the veracity of the
issue, informing the user that there is a bug.

1.3 Example “SQS-λ”

Context This example, similarly to example “Vulnerable-λ”, comes from the CloudGoat
repository. The code is 29 lines long, and can be found in Appendix 3. In this example, the
application is an online shop where the user can buy items. The secret is hidden in the most
expensive item that costs 100 million credits, and the user starts with 3000 credits. Credits can
be charged through the webpage but only at fixed amounts of 1, 5, and 10. Hence, to buy the
secret the user should click around 10 million times.
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This example is also deployed on AWS, and clicking one of the buttons to charge money, calls
a Python function charge_cash with the amount chosen by the user. This Python function, then
uses function sqs.sqs_client.send_message to send a Simple Queue Service (SQS) message,
which ends up calling an AWS Lambda function.

Attack Part of the attack lies in doing privilege escalation to be able to send forged SQS
messages. While technically the first part of the attack lies on the privilege escalation, the other
security issue is that the lambda function does not check the input. By this, we mean that the
amount to charge, coming from the input, is not checked. This type of vulnerability is different
from the ones presented previously, since the flow from the input must be allowed, but only when
the input is “valid”.

Configuration of analyzers With this reasoning, we assume that the source is function
input, and the sink is function urrlib.request.urlopen that takes has been crafted with the
payload. The configuration of the sink is as follows.

def urllib.request.urlopen(url: TaintSink[AuthorizedChannel],
data , timeout , cafile , capath , cadefault , context ): ...

Pysa response Pysta is able to report the issue, pointing to the call to input, reaching
urlopen.

Pysta response First, the output of Pysa is analyzed. Pysta determines that the execution
must start at line 28. The analysis spans into two traces. One of the traces does not raise an
alarm, concluding that the trace is safe. The other trace does generate a relevant observation.
This is reported by Pysa, together with a counter-example providing a possible value for
charge_cash["charge_amount"]. In the original program, Python checks for the existence of
the field "charge_amount". In Pysta, we simplify this by changing the if guard to check
whether "charge_amount" is greater than 0. We also removed the exceptions, as this are not
handled in Pysta.

1.4 Example “Django Application”

Context Django is a Python framework for developing web applications. It is widely used for
its ease of use.

Applications in Django consist on a series of views. Views are functions that represent
different states of the web application. For instance, there is a view for the index of the webpage,
meaning that, every time the index is requested, the index view function is executed, and the
webpage is generated.

The example is 12 lines long, and can be found in Appendix 4. In the example, we have the
definition of function operate_on_twos that gets an HttpRequest. In this request, it expects to
get two values: "operator" and "range". Then, depending on the value of range that is stored
in r, the program might return 0, or calculate an arithmetic operation.
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Attack To calculate the arithmetic operation, function eval is used. This function takes a
string input, and it evaluates that input in the Python interpreter. If the request brings numbers
as expected, this program works fine. But the way the input is being passed to eval can be
maliciously targeted because of the incorrect neutralization of special elements.

Configuration of analyzers We assume that the source is the HttpRequest object that the
function takes as an argument, and the sink is function eval. The configuration is as follows.

django.http.HttpRequest.GET: TaintSource[UserControlled] = ...
def eval(__source: TaintSink[CodeExecution], __globals , __locals ): ...

Pysa response Pysa reports an issue as expected.

Pysta response In this example, the output of Pysa is crucial, since there is no code at the
top-level of the program. The analysis of the output of Pysa determines that the execution
must begin at line 3: the definition of function operate_on_twos. Pysa assumes the existence
of the input of the function, which has type HttpRequest. Based on the configuration files,
the argument has a taint. Line 4 and 5, assigns values from the input argument into variables
operator and r, making these variables tainted as well. To traces are generated: when r is
zero, the trace is safe. However, if r is different than zero, sink function eval is executed, and a
relevant observation is generated.

The ouput from Pysta is as follows.
Final branches for programs/thesis/rq1/django/views.py: 2
FINAL STATE , RULE TRIGGERED:

id: (-1, Temporary , Final; Function evaluation)
SVM: __source ->(joined_0 ,SO[{ UserControlled ,}],SI[{ CodeExecution ,10}]);

operator ->(operator_0 ,SO[{ UserControlled ,}]);
r->(range_0 + 1);

range ->(range_1 );
request ->{ ’GET’ : { ’operator ’ : (operator_0 ,SO[{ UserControlled ,}]) } };

SP: (range_1 != 0)
Rule 5001 triggered. ’Possible␣shell␣injection ’
MODEL: range_1 = 1
No return value.

FINAL STATE:
id: (1, Final; IF true)

SVM: operator ->(operator_0 ,SO[{ UserControlled ,}]);
r->(range_0 + 1);

range ->(range_1 );
request ->{ ’GET’ : { ’operator ’ : (operator_0 ,SO[{ UserControlled ,}]) } };
result - >(0);

SP: (range_1 = 0)
Return value: (0)
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1.5 Example “Billion Laughs”

The following example varies from the previous ones as it does not focus on a specific attack but
on a type of attack. It is a denial-of-services attack called “Billion Laughs” that targets XML
parsers.

Context Extensible Markup Language (XML) is a markup language used widely for storing
and transmitting data over the internet. At the core of XML, is an XML parser that transforms
XML strings to objects in memory, and attacks to the parser exist as studied in [Späth, 2016].

One important feature of XML is entities: these bind to XML values. An entity is defined as
follows: <!ENTITY entity-name "entity-value">, where entity-name is a binding to value
entity-value. Entities can be used for making more maintainable XML files. However, entities
must be resolved at run-time, meaning that XML files have to be inflated. Inflating an XML file
translates to parsing the XML file and creating an instance in the memory. This creates the
possibility of denial-of-service attacks.

Attack A famously known attack is the Billion Laughs attack, where a well-formed XML string
expands exponentially in the memory when inflated. While this problem was first reported in 2002,
there are still vulnerable applications. For instance, in Python, module xml.etree.ElementTree
is not secure against maliciously constructed data, meaning that it is the obligation of the
developer to prevent the attack.

Configuration of analyzers Since the attack only consists of an XML input flowing to the
XML parser, we do not provide an interesting example on an application. We have the attack
encoded in example xml.unsafe.py. The input XML string must be tainted, while function
xml.etree.ElementTree.XML is the sink. To remove the vulnerability in xml.safe.py, there is
a sanitization function that removes the source from the value.

This example can be analyzed both by Pysa and Pysta, and it counts as a different type of
problem that we can aim to model.

1.6 Discussion

These five examples display realistic levels of complexity of Python programs, while also consid-
ering limitations of our tool Pysta regarding language coverage. Considering this, the examples
are unsafe and Pysa, a sound tool, reports the issues. Likewise, Pysta is able to find a trace for
each of the examples, asserting that the programs are not safe.

At the moment, some of the examples have been modified manually to be able to be accepted
by Pysta, but this limitation can be easily resolved.

2 Analysis refinement (RQ2)

Pysa is a sound tool, and as such, it performs over approximations. This causes the generation
of false-positives—issues reporting flows that are actually unrealizable. Meanwhile, Pysta is
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1 if b:
2 x = rand()
3 else:
4 x = input ()
5 if b:
6 print(x)

(a)

1 def foo():
2 return [int(input ()),
3 int(input ()),
4 int(input ()),
5 3]
6 ls = foo()
7 print(ls[3])

(b)

Figure 15.1: Safe programs that raises an alarm in Pysa. Program 15.1a, on the left, belongs to
the first category of false-positives. Program 15.1b, on the right, belongs to the second category
of false-positives.

complete, making it well-fitted for rebutting such false-positives. If Pysta cannot find a feasible
path for the reported flow, then Pysta is refining Pysa, raising the precision of the analysis.

We call false-positives issues raised by Pysa that are not reporting an actual unwanted
flow. We assume that sources and sinks are correctly set, and that the programs are indeed
safe—that is, sanitizers are well set, and the tainted information does not reach the sink. Then,
false-positives are only caused by the imprecision of Pysa. We focus on two, very comprehensive,
categories:

1. issues caused by imprecision on expression evaluations;

2. issues caused by collapsing of structures.

The first kind of false-positive happens when Pysa, by not keeping track of values, assumes
all possible paths of branching statements feasible.

The second kind of false-positive happens when structures, such as lists and dictionaries have
tainted values. At a certain threshold, Pysa collapses the structure—that is, spreading the taint
to all the elements of the structure. This mechanism is used to minimize the memory usage of
the analysis.

2.1 Imprecise evaluation of expressions

Academic example. Program 15.1a is safe with respect to weak secrecy, assuming input is a
source, and print is a sink. We denote this program c. We assume that b is valid guard. It is
clear that the execution of input can only happen if guard b does not hold. Then the program
has to be safe.

• Tool Pysa, by ignoring the guard, raises an alarm.

• Tool Pysta, in the other hand, determines the program is safe.

Example “SQS-λ”. The first scenario comes by fixing the “SQS-λ” example from RQ1. The
problem that we want to model is that of the lack of verification of the message. The amount of
money to add to the account should be either 1, 5 or 10, but the attacker sends 100 million as
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the amount. To fix the program, we can modify the code to check that the amount is correct,
making the sink only reachable at certain amounts.

The cleanest solution is to define a function called valid that takes the input and returns
true or false. If the function returns false, the execution stops. Otherwise, the function continues
executing as normal. In Pysa, it would be possible to configure function valid as a sanitizer,
removing the taints. Thus, removing the alarm.

Currently, to make this example work in our analyzer, we force the input to have either value
1, 5 or 10.

• Tool Pysa continues to raise alarms since it ignores the validation of the input. This can
potentially be fixed by marking the input validation as a sanitizer.

• Tool Pysta is able to check that the input must be one of the allowed values (1, 5, 10). If
the values is not 1, 5 or 10, the path will never be taken. The fixed version of the program
does not raise an alarm.

2.2 Collapsing of structures

Academic example. Program 15.1b is safe with respect to weak secrecy, assuming input is a
source, and print is a sink.

By configuring Pysa with setting maximum_model_source_tree_width lower than 4, Pysa
collapses any structure larger than that.

In Program 15.1b, list ls has four elements, and assuming that the tree width option is 3 or
lower, Pysa collapses the list, tainting every element. In Pysta, this is not the case, and taints
are fully tracked, allowing the analyzer to determine that the program is safe.

• Tool Pysa raises an alarm, indicating an unwanted flow.

• Tool Pysta does not raise and alarm and considers the program safe.

Real-life example.

3 Scalability (RQ3)

The largest programs that we have performed analysis on are those of RQ1, specifically example
“Vulnerable-λ” with 38 lines.. Currently, the main limitation is the lack of coverage of Python
instructions, hence, we cannot test the scalability of the tool properly.

Instead, two scripts have been implemented to at least test two aspects of the analyzer. The
first script checks the maximum length of the stack. The second one checks roughly how fast the
analyzer explodes when multiplying its branches.
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Program Name User time System time

long_if1.py 0.08s 0.01s
long_if2.py 0.16s 0.02s
long_if3.py 0.30s 0.04s
long_if4.py 0.61s 0.03s
long_if5.py 1.25s 0.06s
long_if6.py 2.46s 0.09s

Table 15.1: Execution times for different programs.

3.1 Stack length (function call depth)

Script long_call_generator.py takes an integer n as input, and generates a python program
that performs n nested function calls. The output program is stored, and then the analyzer can
be executed.

At the moment of writing this work, we have found that the depth limit of function calls is
24999. By trying with 25000 function calls, the analyzer terminates with a segmentation fault.

We think that this is more than enough to accommodate real world scenarios given that with
the information taken from the Pysa execution, we are starting Pysta from the closest point
possible to the source.

3.2 Branching limit

For every if statement in the program, there are at-most two possible traces, and symbolic
execution is know for space explosion.

Script long_call_if.generator takes an integer n as input, and generates a python program
that performs n nested if statements. The output program is stored, and then the analyzer can
be executed.

As expected, the complexity of the analyzer, with respect to branching statements, is n2,
where n is the amount of nested if statements. Results can be seen in Table 15.1.

3.3 Discussion

While we do not have large examples to inspect, where we can approximate the amount of
branches, the examples and situations we have observed in RQ1, seem to indicate that the
amount of if in these applications is not great, and the guards of the if statements are not
highly complex, lowering the difficulty for the SMT solver.

We also believe that the length of the stack call in larger programs will never be as large as
25 thousand.

Finally, we think that it is possible in the future to perform the analysis of larger code bases.
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Related work

1 Semantic properties

In [Volpano, 1999], the authors introduce the security property of weak secrecy. This property
aims to identify instances where a program discloses information through explicit flows, deviating
from the traditional noninterference concept. Weak secrecy is important because it formalizes
the behavior displayed by taint-trackers. However, weak secrecy only explores simple languages,
assuming that the only statemets that create explicit flows are assignments.

Later, [Schoepe, 2016] introduces explicit secrecy, a more generic property that aims to
generalize weak secrecy to other languages, including high-level languages and machine code.
The problem that arises with these languages is that there are semantic statements, other than
assignments, that can also modify the program state. Their framework is adaptable to various
languages, and it uses a special statement out that generates observations. The attacker can
solely observe information through such outputs. Their framework can be adapted to work with
functions such as we do. However, they separate the memory in high (H) and low (L). This
translates to assuming variables are either tainted or not tainted, while we provide customized
taints, and which combinations of sources and sinks trigger alarms. Also, variables are high from
the beginning, similarly to [Volpano, 1999]. Instead, taints are introduced by functions that work
as souces.

2 Taint analysis

Much have been done for performing dynamic taint analysis.
[Busse, 2022] is a recent work that examines the combination of dynamic symbolic execution

and static analyzers, focusing on the automation of the process of confirming potential bugs
found by static analyzers for C and C++ programs. The bugs considered are memory safety
bugs (such as use-after-free), memory leaks, and runtime errors. The static analyzers used in this
work are Clang Static Analyzer [LLVM Projec, ], Infer [Calcagno, 2011] and Klee [Cadar, 2008].
Traces generated by these static analyzers are used to create constraints, guiding the execution in
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dynamic symbolic execution. However, it is noted that the real-time nature of dynamic symbolic
execution leads to reduced coverage. In the best-case scenario, a bug is identified, but in the
worst case, manual verification is required if no issue is detected.

In [Corin, 2012], the authors develop a dynamic symbolic execution analysis with tainting
mechanics, using KLEE [Cadar, 2008], for the C language. This analysis does not only consider
explicit flows, but also implicit flows. The tainting mechanics are applied on top of the checks
already done by KLEE, while we only perform taint analysis for weak secrecy.

Frama-C [Kirchner, 2015], which stands for Framework for Modular Analysis of C programs,
is an open-source platform designed for the static analysis of C code. Since release 24.0 of
Frama-C there is support for a taint domain, that can also generate graphs of dependencies.
Other work has been done on Frama-C to implement taint analysis [Ceara, 2010].
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Chapter 17
Conclusion

1 Relational sound symbolic execution for noninterference

In Part I, we proposed a series of symbolic execution analyses, summarized in Figure 2.1. The
goal of these analyses is to perform verification of programs with respect to the security property
noninterference. To do so, the analyses must provide full coverage over the concrete execution
semantics, in other words, be sound analyses. When executing loops, these might iterate for
a great amount of times, or even infinitely from the perspective of a symbolic executor. To
address this limitation, the analyses perform an over approximation of the loops. One of our
main contributions is the combination of symbolic execution with abstract interpretation to
perform these over approximations, in order to retain precision.

The first sound symbolic semantics presented is SoundSE. In SoundSE, when the bound of
iterations is met, we perform a trivial over approximation. The over approximation consists in
replacing the value of all variables that might have been modified to unused symbolic values. This
over approximation makes the semantics sound. However, it is not precise, causing SoundSE to not
be able to infer interesting properties of programs. However, when no over approximation is done,
this semantics, and all the following semantics that are presented, can generate counter-examples.

To make SoundSE more precise, we define RedSoundSE. RedSoundSE swaps the over approxi-
mation mechanism to use either intervals or convex polyhedra analysis. When a loop bound is
met, a reduction function is used to extract the constraints from the abstract states, and insert
them into the symbolic path of the symbolic state. This raises the precision of the analysis, but
it is still not a relational semantics, meaning that we cannot verify noninterference.

The next symbolic execution semantics presented is SoundRSE. SoundRSE is a relational
symbolic execution semantics, mapping variables to either a single, or a pair of symbolic values.
It is the first semantics that we present that can be used for the verification of noninterference.
We offer two flavors: the first one uses the trivial over approximation from SoundSE. The second
flavor, uses the over approximation of RedSoundSE. However, the over approximation applied
in the RedSoundSE cannot convey information about two executions, making it not enough to
prove a variety of examples.
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The last symbolic semantics we present is RedSoundRSE. This semantics uses a dependences
analysis to perform loop over approximation. This method works by: first, when a loop bound is
met, it generates a dependences state based on the symbolic state. Then, the loop is analyzed
with said dependences state. Finally, the symbolic state assigns one unused symbolic value
per variable mapped to low in the final dependences state. On top of using dependences to
perform the over approximation, we also offer a combination using dependences and one of the
non-relational abstract domains (intervals or convex polyhedra). This is done by first performing
the dependences over approximation, and then using the reduction function. This raises the
precision of the analysis even further.

Our results, summarized in Table 7.1, show that on a set of challenging examples for
noninterference, our analysis performs better than the dependency analysis, and is able to
precisely conclude whether the programs are noninterferent, providing counter-examples when
possible.

2 Static symbolic tainting analysis

In Part II, we explored static symbolic taint analysis. This is done by adapting the security
property weak secrecy [Volpano, 1999] to a more modern language that has functions, and
defining relevant observations as the illegal flows that can be observed in a program execution.
Functions work as both sources and sinks in the language.

Next, we present a concrete taint semantics that work with programs in this language. This
concrete taint semantics can be seen as a dynamic taint-tracker, tracking taints while also
performing concrete execution of the program. This semantics does not time-out, and behave
exactly like standard concrete semantics plus taint-tracking.

Then, we contribute our symbolic taint semantics, meant to work as a static taint analysis for
the taint language. The symbolic taint semantics does not perform over approximations, making
it complete. To do so, it uses counters that allow for a bound of iterations of loops. When the
threshold is passed, the semantics stops the execution. However, the observations generated
are still valid. This way, it allows us to get counter-examples when a relevant observation is
generated, in other words, when an illegal flow happens.

By assuming the existence of a sound taint semantics, we design a combined taint analysis
that uses both the sound and symbolic taint semantics, to provide a more precise response. In
the best case scenarios, the symbolic taint semantics filters false alarms, or find a valid trace
displaying the illegal flow. We took the combined taint analysis and instantiate to the Python
programming language by using two analyzers: Pysa [Meta, 2023], a sound taint analyzer by
Meta, and Pysta, a symbolic taint analyzer created by us. Pysta, while still a prototype,
illustrates the symbolic taint-tracker semantics, and the limitations of such an approach, which
we see as future opportunities to enhance it. In the instantiation of the combined analysis, Pysta
utilizes the output of Pysa to refine the starting point of the analysis and minimize the overhead
of symbolic execution. The combination of Pysta with Pysa was displayed in several cases of
interest, allowing to gain insight in some of the problems that could be solved with these tools.
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3 Future work

Given these encouraging results in both parts, we have thought about different ways to expand
the work presented.

The first point of interest would involve picking a different language for both the sound
symbolic execution, and the symbolic taint analysis. Languages such as C, where memory can be
modified through pointers, and guards of if statements can have effects, make this task not trivial.
In the case of the taint analysis, a property such as weak secrecy would not work anymore when
working with low-level languages. For that reason, in the work of Schoepe et al. [Schoepe, 2016],
the authors introduce property explicit secrecy with this goal.

For the sound symbolic execution, we have not explored replacing dependences for a different
abstraction, such as the cardinality domain presented in [Assaf, 2017].

Another line of work would be replacing noninterference for a different property, even non-
relational. For instance, weak secrecy, as used in Part II, could potentially be an interesting
property to study. This adaptation would turn SoundRSE to a sound symbolic execution taint
analysis.

Regarding the tools, both the implementation of RedSoundRSE and Pysta are prototypes
that could be optimized to be faster, and sturdier. Specifically, we are interested in covering
a bigger portion of Python with Pysta, and using more information of the output of Pysa.
Potentially, we could define a new analyzer that uses the abstract representation of Pysa directly,
instead of using its output. Another upgrade for Pysta would be mixing it with concrete values
to evaluate expensive functions while not losing completeness. For instance, in the context of
cryptography, many functions are designed to avoid being invertible, which symbolic execution
cannot deal with. By using concrete values, we could accelerate the execution while not losing
completeness. A step further would be to use a fuzzer with deferred concretization, introduced
in [Pandey, 2019], to handle the instances where symbolic objects and functions are causing
imprecisions. This would allow to mitigate the loss of completeness introduces by this mechanic.
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Appendix A
Evaluation examples for Pysa

1 Example “CPython”

1 def _call_external_zip(base_dir , zip_filename , verbose=False , dry_run=False ):
2 # XXX see if we want to keep an external call here
3 if verbose:
4 zipoptions = "-r"
5 else:
6 zipoptions = "-rq"
7 from distutils.errors import DistutilsExecError
8 from distutils.spawn import spawn
9 cmd = ["zip", zipoptions , zip_filename , base_dir]

10 try:
11 spawn(cmd , dry_run=dry_run)
12 except DistutilsExecError:
13 # XXX really should distinguish between " couldn ’t find
14 # external ’zip ’ command " and " zip failed ".
15 raise ExecError \
16 ("unable to create zip file ’%s’: "
17 "could neither import the ’zipfile ’ module nor "
18 "find a standalone zip utility") % zip_filename
19
20 base_dir = "/Users/ignacio"
21 zip_filename = input("Enter zip name: ")
22
23 _call_external_zip(base_dir , zip_filename)
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2 Example “Vulnerable-λ”

1 import boto3
2 from sqlite_utils.db import Database
3
4 db = sqlite_utils.db.Database("my_database.db")
5 iam_client = boto3.client(’iam’)
6
7 def handler(event , context ):
8 target_policies: list[int] = event[’policy_names ’]
9 user_name = event[’user_name ’]

10 print(f"target policies are : {target_policies}")
11
12 for policy in target_policies:
13 statement_returns_valid_policy = False
14 statement = f"select policy_name from policies where" \
15 f"policy_name =’{policy}’ and public=’True’"
16 q: list[int] = db.query(statement)
17 for row in q:
18 statement_returns_valid_policy = True
19 print(f"applying {row[’policy_name ’]} to {user_name}")
20 response = iam_client.attach_user_policy(
21 UserName=user_name ,
22 PolicyArn=f"arn:aws:iam::aws:policy /{row[’policy_name ’]}"
23 )
24 print("result: " +
25 str(response[’ResponseMetadata ’][’HTTPStatusCode ’]))
26
27 if not statement_returns_valid_policy:
28 invalid_policy_statement = f"{policy} is not an approved policy , " \
29 f"please only choose from approved " \
30 f"policies and don’t cheat. :) "
31 print(invalid_policy_statement)
32 return invalid_policy_statement
33
34 return "All managed policies were applied as expected."
35
36 payload = input ()
37 ret = handler(payload , ’uselessinfo ’)
38 print(ret)
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3 Example “SQS-λ”

1 import json
2 import os
3 import urllib.request
4
5 def lambda_handler(event , context ):
6 print("event : ", event)
7 url = os.environ[’web_url ’]
8 print("url : ", url)
9

10 charge_cash = event["Records"][0]["body"]
11 charge_cash = json.loads(charge_cash)
12
13 if charge_cash["charge_amount"]:
14 try:
15 charge_cash[’auth’] = os.environ[’auth’]
16 charge_cash[’sqs_request ’] = charge_cash.pop(’charge_amount ’)
17 data_json = json.dumps(charge_cash ). encode(’utf -8’)
18 req = urllib.request.Request(url , data=data_json ,
19 headers ={’content -type’: ’application/json’})
20 res = urllib.request.urlopen(req)
21 return "Message sent to EC2 server successfully!"
22
23 except Exception as e:
24 return "Error sending request to EC2 server"
25 else:
26 return "another request"
27
28 event = input ()
29 lambda_handler(event , "something")
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4 Example “Django”

1 from django.http import HttpRequest , HttpResponse
2
3 def operate_on_twos(request: HttpRequest) -> HttpResponse:
4 operator = request.GET["operator"]
5 r = abs(request.GET["range"]) + 1
6
7 if r == 0:
8 result = 0
9 else:

10 result = eval(f"(2 {operator} 2) * {r}")
11
12 return result
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5 Example “Billion Laughs”

1 import xml.etree.ElementTree
2
3 billion_laughs = input ()
4 billion_laughs = library.funs.sanitize(billion_laughs)
5 root = xml.etree.ElementTree.XML(billion_laughs)

1 import xml.etree.ElementTree
2
3 billion_laughs = input ()
4 root = xml.etree.ElementTree.XML(billion_laughs)
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MOTS CLÉS

analyse statique, flux d’informations, interprétation abstraite, exécution symbolique

RÉSUMÉ

Ce travail se concentre sur l’application de l’analyse statique pour la vérification ou la réfutation automatique de propriétés
de flux d’information, en se concentrant sur l’interprétation abstraite et l’exécution symbolique. et l’exécution symbolique.
Plus précisément, nous nous concentrons sur deux propriétés de flux d’informations : non-interférence, et secret faible.
La thèse est divisée en deux parties. Dans la première partie de la thèse, nous explorons une analyse statique basée sur
des symboles qui communique avec une analyse des dépendances pour la vérification de l’intégrité du système. avec
une analyse des dépendances pour la vérification de la non-interférence. Notre contribution est un domaine de produit
réduit entre un domaine symbolique et un domaine de dépendances pour l’analyse solide de la non-interférence dans un
langage impératif simple. Nous proposons également un produit réduit entre une exécution symbolique non relationnelle
et des domaines numériques tels que les intervalles et les polyèdres convexes.

La deuxième partie consiste à explorer le concept d’un taint-tracker symbolique statique. Nous développons une séman-

tique formelle pour un traqueur de taches symbolique, ainsi que l’adaptation du secret faible pour les cas d’utilisation mod-

ernes. Ensuite, en supposant l’existence d’un taint-tracker sain mais imprécis, nous proposons une analyse combinée qui

utilise à la fois le taint-tracker sain et le taint-tracker imprécis. analyse combinée qui utilise à la fois les traqueurs de taches

sonores et symboliques. Enfin, nous instancions l’analyse combinée avec PYSA, un taint-tracker sonore développé par

Meta, et notre outil PYSTA. Notre outil affine les résultats de l’analyseur de taches sonores, réduisant ainsi la charge de

travail des développeurs pour l’examen manuel des alarmes. d’examiner manuellement les alarmes.

ABSTRACT

This work focuses on the application of static analysis for the automatic verification or refutation of information flow
properties, focusing on abstract interpretation and symbolic execution. More specifically, we focus on two information flow
properties: noninterference, and weak secrecy.
The thesis is split in two parts. In the first part of the thesis we explore a symbolically driven static analysis that commu-
nicates with a dependences analysis for the verification of noninterference. Our contribution is a reduced product domain
between a symbolic domain and a dependences domain for the sound analysis of Noninterference in a simple imperative
language. We also offer a reduced product between a non-relational symbolic execution and numerical domains such as
intervals and convex polyhedra.

The second part consists on exploring the concept of a static symbolic taint-tracker. We develop a formal semantics for

a symbolic taint-tracker, together with the adaptation of weak secrecy for modern use-cases. Then, by assuming the

existence of a sound-but-imprecise taint-tracker, we contribute a combined analysis that uses both the sound and the

symbolic taint-trackers. Finally, we instantiate the combined analysis with PYSA, a sound taint-tracker developed by Meta,

and our tool PYSTA. Our tool refines the output of the sound taint-tracker, lowering the load of developers to manually

review alarms.

KEYWORDS

static analysis, information flow, abstract interpretation, symbolic execution
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