DilworthDecomposition User Manual
1

Version 1.0, by Sid-Ahmed-Ali Touati
In Memory of Vincent Bouchitté

Tue Aug 14 17:25:15 2007

Chapter 1

Dilworth Decomposition in C+-+
using the LEDA Graph library

Author:
: Sid-Ahmed-Ali Touati (in memory of Vincent Bouchitté)

1.1 Who was Vincent Bouchitté ?

Vincent Bouchitté was one of my former professors at Ecole Normale Supérieure de Lyon (France).
He taught me deep and excellent fundamental results of graph theory, lattices and orders. Thanks
to his courses, we were able to produce fundamental results on code optimisation published in the
following article:

Sid-Ahmed-Ali Touati. Register Saturation in Instruction Level Parallelism. International Journal
of Parallel Programming, Springer-Verlag, Volume 33, Issue 4, August 2005. 57 pages.

Vincent Bouchitté was member of the LIP laboratory at Ecole Normale Supérieure de Lyon. He
died after a long disease. He was 47 years old. Very discrete, he was very appreciated by all his
colleagues and students. He leaves major results in graph theory and advised beautiful Ph.D.
theses. He was buried at Salindre in France, his birthplace, on March 15th, 2005.

In memory of him, I implemented Dilworth decomposition. Vincent Bouchitté taught us beautiful
algorithms and formal proofs on the subject.

1.2 Quick Recall of Basic Notions and Notations on Graphs
and Orders

An order is simply a directed acyclic graph (DAG). Given a DAG G = (V, E), the following
notations were used by Vincent Bouchitté and are usually used in lattices and orders algebra:

o T'5(u) = {v € V|(u,v) € E} is the set of successors of u in the graph G ;
o I'(u) = {v e Vl|(v,u) € E} is the set of predecessors of w in the graph G ;

e Ve = (u,v) € E, source(e) = u A target(e) = v . u,v are called endpoints ;

2 Dilworth Decomposition in C++ using the LEDA Graph library

e Vu,v € V: u<wv<= Japath (u,...,v) in G;
o Vu,v € V: ul||lv <= —(u<v)A=(v<u).uand v are said to be parallel ;

e Vu eV Tu={veVpv=uVv < u}is the set of u’s ascendants including v . In other
terms, a node u is an ascendant of a node v iff u = v or if there exists a path from u to v ;

eVuecV |u={veVv=uVu<uv}is the set of u ’s descendants including u . In other
terms, a node u is a descendant of a node v iff uw = v or if there exists a path from v to u ;

e Two edges e, ¢’ are adjacent iff they share an endpoint;

e A C V is an antichain iff all nodes belonging to A are parallel. Formally, A C V is an
antichain in G iff Vu,v € A, u|v ;

e AM is a maximal antichain iff its size in terms of number of nodes is maximal. Formally,
AM is a mazimal antichain VA antichain in G, |A| < |AM] ;

e The size of a maximal antichain is called the width of the DAG and is noted w(G).

e C C V is a chain iff all nodes belonging to C' are not parallel. Simply, all nodes of a chain
belongs to the same path in the DAG. Formally, C C V is a chain in G iff Yu,v € C, u <
vVo<u;

e CD ={Cy,---,Cp} is a chain partition of G if any C; € CD is a chain and: Yu € V,3i €
[1,p] :ueC;.

e A chain decomposition C'D is minimal if its indice p is minimal. Such minimal indice is
noted p(G).

e In 1950, Dilworth proved that p(G) = w(G), and each maximal antichain is equivalent to a
minimal chain decomposition (and vice-versa).

1.3 Why do we choose LEDA Graph Library ?

LEDA is a famous C++ graphs and general data structures library. We have used it since many
years, and we can safely say that it is better than other existing C++ graph and data structures
libraries that we experimented (BOOST, STL, etc.). Initially, LEDA was an academic project from
Germany. LEDA sources was distributed for free under a specific academic license untill version
4.2 (with g++2.95). Then, in 2001 (when g++ changed to version 3), LEDA team changed the
free academic license into a low-priced academic license. LEDA is a high level library greatly
helping to implement complex algorithms in a quick, robust and modular way. According to our
deep experience, a C++ code using LEDA looks like a high level algorithm, allowing to easily
debug it without suffering from programming details. Furthermore, LEDA offers the largest set
of implementation of well known algorithms in graph theory and data structures.

1.4 Code Example for Usage

1.4 Code Example for Usage

int main(int argc, char *argv[])

{

graph G;

LEDA: :string filename;

set<node> MA; //maximal antichain
node_array<int> C; //indices of chains
node_list nl;

h_array<int,node_list*> chain(nil);

int i,status;

int size_ma, // size of a maximal antichain

size_mc; // size of a minimal chain decomposition

node u;
if (arge!=2){

cerr << argv[0] << ": Dilworth decomposition." << endl;
cerr << "Usage:'"<<argv[0] << " graph_filename" << endl;
cerr << "The filename extension should be .gw for a graph in leda/gw format, or in

return EXIT_FAILURE;
}

filename=LEDA: :string(argv([1]);

if (filename.contains(LEDA::string(".gw"))) {
cout<<"Reading GW" <<filename<<endl;
status=G.read(filename) ;

}

else if (filename.contains(LEDA::string(".gml"))) {
cout<<"Reading GML "<< filename<<endl;

status=G.read_gml(filename) ;

cerr << "The filename extension should be .gw for a graph in leda/gw format, or in

}

else {
cerr << "Usage:"<<argv[0] << " graph_filename" << endl;
return EXIT_FAILURE;

}

switch(status){

case O:

case 2: break;

case 1: cerr<< filename << " does not exist."<<endl; break;
case 3: cerr<<filename <<" does not contain a graph"<<endl;

default: return EXIT_FAILURE;
}

size_mc=MINIMAL_CHAIN(G, C);
cout<<"Minimal Chain Decomposition"<<endl;
COUt <L - "<<endl;
cout<<"There are "<<size_mc<<" chains"<<endl;
forall_nodes (u,G){
if ((chain[C[u]l])==nil){
chain[C[u]]=new node_list;
}
(chain[C[ul]l)->append(u) ;
}
for(i=0;i<size_mc;i++){
cout<<"chain "<<i<<": ";
forall(u, *chain[i]){
G.print_node(u);
}

cout<<endl;

size_ma=MAXIMAL_ANTI_CHAIN(G, MA);
cout<<"Maximal Antichain"<<endl;
cout<<"M—— - "<<endl;

cout<<"Size of this maximal anctichain : "<<size_ma<<" nodes'"<<endl;

.gml for a graph in (

.gml for a graph in (

4 Dilworth Decomposition in C++ using the LEDA Graph library

cout<<"Here are all these nodes:"<<endl;
i=0;
forall(u, MA){
cout<<"node "<<i<k<": ";
G.print_node(u);
cout<<endl;
i++;
}
return EXIT_SUCCESS;

1.5 Download the Sources

This implementation has been done by Sid-Ahmed-Ali Touati and distributed under GPL. The
first version is available here .

Chapter 2

DilworthDecomposition File
Documentation

2.1 dilworthdecomposition.cpp File Reference

2.1.1 Detailed Description

This file contains the C++ implémentation of Dilworth decomposition using the LEDA graph
library.

Functions

e template<class T> set< T > list to set (const list< T > 1)

This function returns the set of members in a list. I.e, it converts an ordered list to a set.

e int MAXIMAL ANTI CHAIN (const graph &G, set< node > &MA)

This function computes a mazimal antichain chain of a DAG (order).

e int MINIMAL CHAIN (const graph &G, node_array< int > &chain)

This function computes a minimal chain decomposition of a DAG (an order).

e template<class T> list< T > set to_ list (const set< T > 1)

This function returns the an ordered from a set.

2.1.2 Function Documentation

2.1.2.1 template<class T> template< class T > set< T > list to_set (const list<
T > 1)

This function returns the set of members in a list. I.e, it converts an ordered list to a set.

Parameters:

«— | The ordered list to convert.

6 DilworthDecomposition File Documentation

Returns:

the set of the elements of the ordered list.

2.1.2.2 template<class T> template< class T > list< T > set to_list (const set<
T > 1)

This function returns the an ordered from a set.
Parameters:

«— 1 The set to convert.
Returns:

the ordered list of the input set members.

2.1.2.3 int MAXIMAL ANTI CHAIN (const graph & G, set< node > & MA)

This function computes a maximal antichain chain of a DAG (order).

Parameters:

«— G The DAG.
— MA A Maximal antichain.

Returns:
w(@) the width of the DAG. It is equal to the size of a maximal antichain.
Remarks:

A maximal antichain may not be unique. This function returns an arbitrary one.

Precondition:

G is acyclic.

2.1.2.4 int MINIMAL CHAIN (const graph & G, node array< int > & chain)

This function computes a minimal chain decomposition of a DAG (an order).

Parameters:

— G The DAG.

— chain Yu € V, chainlu] € [0,p(G)—1] contains the number of the chain to which u belongs.
Returns:

p(G) the minimal number of chains of the DAG. Dilworth proved that p(G) = w(G) , that is,
it is equal to the size of a maximal antichain.

Remarks:

A minimal chain decomposition may not be unique. This function returns an arbitrary one.

Precondition:

G is acyclic.

2.2 dilworthdecomposition.h File Reference

2.2 dilworthdecomposition.h File Reference

2.2.1 Detailed Description

This is the C++ header file of Dilworth decomposition implementation. To be included for use.

Namespaces
e namespace LEDA
e namespace std
Functions

e template<class T> set< T > list to set (const list< T > 1)

This function returns the set of members in a list. IL.e, it converts an ordered list to a set.

e int MAXIMAL ANTI CHAIN (const graph &G, set< node > &MA)

This function computes a mazimal antichain chain of a DAG (order).

o int MINIMAL CHAIN (const graph &G, node_array< int > &chain)

This function computes a minimal chain decomposition of a DAG (an order).

e template<class T> list< T > set to_list (const set< T > 1)

This function returns the an ordered from a set.

2.2.2 Function Documentation
2.2.2.1 template<class T> list<T> set to list (const set< T >)

This function returns the an ordered from a set.

Parameters:

«— | The set to convert.

Returns:

the ordered list of the input set members.

2.2.2.2 template<class T> set<T> list to set (const list< T > I)
This function returns the set of members in a list. I.e, it converts an ordered list to a set.

Parameters:

< | The ordered list to convert.

Returns:

the set of the elements of the ordered list.

8 DilworthDecomposition File Documentation

2.2.2.3 int MAXIMAL ANTI CHAIN (const graph & G, set< node > & MA)

This function computes a maximal antichain chain of a DAG (order).

Parameters:

«— G The DAG.
— MA A Maximal antichain.

Returns:

w(@) the width of the DAG. It is equal to the size of a maximal antichain.

Remarks:

A maximal antichain may not be unique. This function returns an arbitrary one.

Precondition:

G is acyclic.

2.2.2.4 int MINIMAL CHAIN (const graph & G, node array< int > & chain)

This function computes a minimal chain decomposition of a DAG (an order).

Parameters:

— G The DAG.
— chain Yu € V, chainlu] € [0,p(G)—1] contains the number of the chain to which u belongs.

Returns:

p(G) the minimal number of chains of the DAG. Dilworth proved that p(G) = w(G) , that is,
it is equal to the size of a maximal antichain.

Remarks:

A minimal chain decomposition may not be unique. This function returns an arbitrary one.

Precondition:

G is acyclic.

