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Abstract. In the theory of abstract argumentation, the acceptance sta-
tus of arguments is normally determined for the complete set of argu-
ments at once, under a single semantics. However, this is not always
desired. In this paper, we extend the notion of an argumentation frame-
work to a multi-sorted argumentation framework, and we motivate this
extension using an example which considers practical and epistemic ar-
guments. In a multi-sorted argumentation framework, the arguments are
partitioned into a number of cells, where each cell is associated with a
semantics under which its arguments are evaluated. We prove the prop-
erties of the proposed framework, and we demonstrate our theory with a
number of examples. Finally, we relate our theory to the theory of modal
fibring of argumentation networks.

1 Introduction

Abstract argumentation frameworks [10] are used to model sets of arguments and
the attacks among these arguments. Given an abstract argumentation frame-
work, we can ask the question of which arguments are acceptable, and which
arguments are not. This question is answered by what is called an acceptability
semantics. Different modes of reasoning are possible, each giving rise to a differ-
ent acceptability semantics. Well-known examples are the grounded semantics
that minimizes the number of accepted arguments, and the preferred seman-
tics, that maximizes the number of accepted arguments. The choice of which
semantics is appropriate depends on the kind of arguments, and the attitude
towards these arguments. A skeptical attitude, for example, can be modeled
with grounded semantics, whereas a credulous attitude can be modeled using
preferred semantics [8]. In most literature on acceptability semantics (see for
instance [10, 3, 7, 9]), the assumption is made that all arguments of a framework
are evaluated under a single semantics.

In this paper, we argue for a generalization, and we answer the research
question how to define an abstract argumentation framework where the argu-
ments can be evaluated under different semantics? We motivate this through an



example about practical and epistemic arguments, and we introduce a system
called multi-sorted argumentation. The motivating example, which now follows,
is taken from Prakken [13], and adapted to an abstract argumentation frame-
work.

Consider a university lecturer (let us call him John) with two conflicting
desires. He wants to finish a paper on Friday, but he also promised to give a
talk in a town called Faraway on the same day. There are two ways to travel to
Faraway: by car and by bus. In neither case will he be able to finish the paper
while traveling; he cannot work while driving, and he gets sick when working in
a bus. Figure 1 shows an informal instantiation of an abstract framework for this
situation: the three arguments a, b and c represent the situation described so
far. Note that the arguments are forms of the practical syllogism. For example,
argument b is an inference consisting of John’s belief that traveling by bus (to
Faraway) allows him to give the lecture in Faraway, his desire to give a lecture
in Faraway, and the conclusion that he must therefore travel by bus. John has
more information: his friend Bob tells him that there is a train connection to
Faraway. So if John travels by train, he will be able to finish the paper (argument
d, another practical syllogism). Now, John’s other friend Mary warns him about
a railway strike, which would defeat d (argument e). On the other hand, Bob
believes there will be no strike (argument f). John has no reason to trust either
of his friends more than the other. To be on the safe side, John does not want to
act on the credulous belief that there will not be a train strike, and that there
will be a train to Faraway on Friday.

In this example, we have four arguments that pertain to actions (arguments
a, b, c, d) and two arguments expressing beliefs about the world (arguments e
and f). Prakken [13] calls them practical arguments and epistemic arguments,
and he argues that practical arguments should be evaluated credulously and
epistemic arguments skeptically. The reason is that for practical arguments, it is
rational for an agent to consider credulously all possible ‘action alternatives’ that
have skeptical support of epistemic arguments. Since a credulous attitude can be
modeled using preferred semantics, and a skeptical attitude using grounded se-
mantics, the evaluation of this framework is a combination of preferred semantics
for a, b, c and d, and grounded semantics for e and f .

This example motivates the evaluation of different parts of the same frame-
work under both preferred and grounded semantics. We believe that the point
made by this example extends to the more general case. Suppose we have a set
of frameworks {A1, . . . , An} and for each framework Ai there is an appropriate
semantics si. Then it is also possible that there is a framework A which is a
merge of the frameworks A1, . . . , An, where the n different parts of A may in-
teract mutually through additional attacks. Determining the acceptance status
of the arguments in A would amount to the application of the si semantics to
the part corresponding to Ai, for all parts 1 . . . n.

What we need, then, is a method to apply different semantics to different
parts of the same framework. To this end, we propose a system called multi-sorted
argumentation. The system is based on two elements: a regular argumentation
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Fig. 1. An example of an argumentation framework with both practical and epistemic
arguments.

framework and a sorting. A sorting supplements the argumentation framework
with information on how the framework is divided into cells, and which cell in
the sorting is to be evaluated under which semantics. A sorted extension is a set
of arguments that are acceptable with respect to the sorting. We prove a number
of desired properties of sorted extensions. For example, sorted extensions should
be conflict-free. Moreover, some properties of the semantics associated with each
cell are preserved, i.e., if the semantics of all cells are admissible (resp. complete),
then the sorted extensions should also be admissible (resp. complete).

Finally, we show how to formalize multi-sorted argumentation using the
modal fibring approach. Multi-sorted argumentation is expressed as a special
case of the fibring of modal argumentation frameworks. We present this kind of
multi-sorted argumentation by means of a number of examples, and we discuss
the properties which hold for this method of evaluating the cells under different
semantics.

The paper is organized as follows: Section 2 provides the basic concepts of
argumentation theory; in Section 3 we introduce the notions of sortings and
sorted extension, in Section 4 we study some properties of sorted extensions,
and in Section 5 we relate our theory to the theory of modal fibring. Finally,
Sections 6 and 7 present related work, conclusions and future work.



2 Preliminaries

The following definitions set forth the basics of Dung’s well-known theory of
abstract argumentation [10].

Definition 1 (Argumentation Framework) We assume as given a set U ,
called the universe of arguments. An argumentation framework AF is a pair
〈A,R〉 with finite A ⊆ U and a binary relation (used in infix) R ⊆ A×A, called
the attack relation.

Definition 2 (Conflict Free) Let AF = 〈A,R〉 be an argumentation frame-
work. A set S ⊆ A is conflict free iff there are no arguments a, b ∈ S such that
aRb. If S is conflict free, we write cf(S).

We follow Baroni & Giacomin’s [3] generalized approach, where the accept-
ability of arguments is considered with respect to a designated subset of ar-
guments. This set, which we call the set of qualified arguments, contains the
arguments that an extension may consist of. Intuitively, it is used to filter out
arguments that do not qualify for acceptance. This is necessary when we evaluate
only a subset of arguments, but at the same time we know that some arguments
in this subset cannot be accepted due to attacks from outside the subset.

Definition 3 (Defense) Let AF = 〈A,R〉 be an argumentation framework. A
set S ⊆ A defends a from A iff ∀b ∈ A such that bRa, ∃c ∈ S such that cRb.
Let DQ(S) = {a ∈ Q | S defends a from A}, where Q ⊆ A is called a qualified
set of arguments.

We will sometimes say that S ⊆ A defends a, without mentioning the set from
which S defends a. In that case, we mean that S defends a from all arguments,
i.e. from A.

Definition 4 (Acceptance Function) An acceptance function

E : 2U × 2U×U × 2U → 22
U

is a partial function that associates each argumentation framework 〈A,R〉 and
each set of qualified arguments Q ⊆ A, with sets of subsets of A, called exten-
sions: E(〈A,R〉, Q) ⊆ 2A.

Dung [10] presents several acceptability semantics which produce zero, one,
or several sets of accepted arguments. These semantics are grounded on the
two main concepts of conflict-freeness and defense. The following definitions are
equivalent to those in Dung’s original theory, if we set Q = A.

Definition 5 (Acceptability Semantics) Let AF = 〈A,R〉 be an argumen-
tation framework and Q ⊆ A a set of qualified arguments. Acceptance functions
for conflict free (Ecf), admissible (Ead), complete (Eco), grounded (Egr) and

preferred (Epr) extensions are defined as follows:



– S ∈ Ecf(AF , Q) iff S ⊆ Q and cf(S).

– S ∈ Ead(AF , Q) iff cf(S) and S ⊆ DQ(S).
– S ∈ Eco(AF , Q) iff cf(S) and S = DQ(S).
– S ∈ Egr(AF , Q) iff S is minimal in Eco(AF , Q) w.r.t. set inclusion.
– S ∈ Epr(AF , Q) iff S is maximal in Eco(AF , Q) w.r.t. set inclusion.
– S ∈ Est(AF , Q) iff S ∈ Ecf(AF , Q) and ∀a ∈ A, a 6∈ S → ∃b ∈ S s.t. bRa.

The definitions above are reformulations of those proposed by Baroni & Gi-
acomin [3].

Example 1 (Admissible extension). Consider the framework of Figure 1. Let Q =
{a, b, c, d}. Given Q, the set {a} is an admissible extension, i.e., it is included in
Ead (AF , Q). This can be seen as follows: we have that {a} is conflict free, and
{a} ⊆ DQ({a}) = {a}. However, the set {a, d} is not an admissible extension,
and is not included in Ead (AF , Q). The reason is that the set does not defended
itself from the attack by f : {a, d} 6⊆ DQ({a, d}) = {a}.

Note, in the running example, that the arguments of an admissible set need
to be defended from all arguments in A, so not only from arguments in Q.

Example 2 (Complete extension). Consider the framework of Figure 1. Let Q =
{a, b, c, d}. Given Q, the set {b} is a complete extension, i.e., it is included in
Eco(AF , Q). This can be seen as follows: we have that {b} is conflict free, and
{b} = DQ({b}) = {b}. However, the set {a, d} is not a complete extension,
namely for the same reason that it is not an admissible extension (see above).
Now, let Q = {b, c, d, e, f}. The set {d, f} is a complete extension, because
{d, f} = DQ({d, f}). However, the set {f} is not, because {f} 6= DQ({f}) =
{d, f}.

Example 3 (Grounded, preferred extensions). Consider the framework of Fig-
ure 1. Let Q = {b, c, d, e, f}. Given Q, the complete extensions are {b, e}, {b, f},
{b}, {c, e}, {c, f}, {c}, {d, f},{f} and ∅. The extensions {b, e}, {b, f}, {c, e},
{c, f} and {d, f} are preferred extensions, since they are maximal with respect
to set-inclusion. The extension ∅ is the grounded extension, since it is minimal
with respect to set-inclusion.

3 Multi-sorted Argumentation

We now define the main ingredients of our system: sortings and sorted exten-
sions. A sorting supplements the argumentation framework with information on
how the framework is divided into cells, and which cell in the sorting is to be
evaluated under which semantics. In the following definitions, we assume a fixed
argumentation framework AF = 〈A,R〉.

Definition 6 (Sorting) A sorting S is a pair 〈P, T 〉, where P is a partition
of A and T : P → {cf, ad, co, gr, pr} a function associating each cell in P to a
semantics.



The following example demonstrates this representation, for the framework
shown in Figure 1, and discussed in the introduction.

Example 4. The situation shown in Figure 1 is formally represented by a frame-
work AF = 〈{a, b, c, d, e, f}, R〉, where aRb, bRa, aRc, cRa, bRc, cRb, bRd, dRb,
cRd, dRc, eRd, eRf , fRe and sorting S = 〈{C1, C2}, T 〉, where C1 = {a, b, c, d},
C2 = {e, f}, T (C1) = pr and T (C2) = gr , i.e., arguments a, b, c, d are evalu-
ated under the preferred semantics, and arguments e, f are evaluated under the
grounded semantics.

We will shortly give the condition, given a sorting, for a set of arguments to
be a multi-sorted extension of an argumentation framework. Before we do so, we
introduce the concepts of a subframework and of the set of qualified arguments
of a subframework. These concepts define a way of evaluating the arguments
in a cell, given an extension S. The intuition behind them is as follows. Given
a cell C and extension S, we determine whether S ∩ C is an extension for C,
by first restricting C to those arguments that are not defeated by arguments
outside C. This set, denoted by C ′, makes up the arguments of what we call the
subframework for C. Next, we further restrict the arguments of C ′ to those that
are defended by S from attacks outside C. This set, denoted by C ′′, contains the
arguments in C that are qualified for acceptance.

Definition 7 (Subframework) Let P be a partition of A, C ∈ P a cell and
S ⊆ A an extension. The subframework for C, given S, is the argumentation
framework 〈C ′, R ↓ C ′〉 where C ′ = {a ∈ C | @b ∈ S \C, bRa} and where R ↓ C ′
is the attack relation R restricted to the arguments in C ′, i.e. R ↓ C ′ = {(a, b) ∈
R | a, b ∈ C ′}.

Definition 8 (Qualified Arguments of a Subframework) Let 〈C ′, R ↓ C ′〉
be a subframework for a cell C and extension S. The qualified arguments of
〈C ′, R ↓ C ′〉, denoted by C ′′, are defined as follows.

C ′′ = {a ∈ C ′ | ∀b ∈ A \ C, (bRa→ ∃c ∈ S, cRb)}

Given an extension S, we can determine whether it is a sorted extension
by checking that for each C ∈ P , we have that C ∩ S is an extension of the
subframework for C, given the qualified arguments of the subframework for C.
The semantics under which the subframework for C is evaluated, is the semantics
associated with C.

Definition 9 (Sorted Extension) A set S ⊆ A is a sorted extension of AF =
〈A,R〉 and S = 〈P, T 〉 iff for all C ∈ P , we have

C ∩ S ∈ ET (C)(〈C ′, R ↓ C ′〉, C ′′)

The sorted acceptance function Esrt is defined as follows: S ∈ Esrt(AF,S)
iff S is a sorted extension of AF and S.



a

b

c

Finish paper

Give lecture in Faraway,
Travel by car

Give lecture in Faraway,
Travel by bus

d

There will be a train strike

e

f
There will be no train strike

Give lecture in Faraway,
Travel by train

Preferred Grounded

Fig. 2. The multi-sorted argumentation framework of the running example about prac-
tical and epistemic arguments.



The following example demonstrates the computation of the sorted exten-
sions for the framework used in our running example.

Example 4 (Continued). Consider the following extensions for the framework
AF shown in Figure 2: S1 = ∅, which is the grounded extension of AF ; S2 =
{a, d, f}, which is a preferred extension of AF ; and S3 = {b}, which is neither
the grounded nor a preferred extension of AF . We determine whether they are
multi-sorted extensions of AF , given the sorting S introduced earlier. That is to
say, we determine whether S1,S2,S3 ∈ Esrt (AF,S).

– Given S1, we have C ′1 = {a, b, c, d} and C ′2 = {e, f} (no argument in C1

defeats an argument in C2 or vice versa); and C ′′1 = {a, b, c} and C ′′2 = {e, f}
(d is not defended from e). We have that S1 ∩ C1 = ∅ and ∅ 6∈ Epr (〈C ′1, R ↓
C ′1〉, C ′′1 ) and S1 ∩ C2 = ∅ and ∅ ∈ Egr (〈C ′2, R ↓ C ′2〉, C ′′2 ). While S1 ∩ C2 is
the grounded extension of 〈C ′2, R ↓ C ′2〉, S1 ∩C1 is not a preferred extension
of 〈C ′1, R ↓ C ′1〉. It follows that S1 6∈ Esrt (AF,S).

– Given S2, we have C ′1 = {a, b, c, d} and C ′2 = {e, f} (no argument in C1

defeats an argument in C2 or vice versa); and C ′′1 = {a, b, c, d} and C ′′2 =
{e, f} (no argument is undefended from attacks by other cells). We have
that S2 ∩C1 = {a, d} and {a, d} ∈ Epr (〈C ′1, R ↓ C ′1〉, C ′′1 ) and S1 ∩C2 = {f}
and {f} 6∈ Egr (〈C ′2, R ↓ C ′2〉, C ′′2 ). While S1 ∩ C1 is a preferred extension
of 〈C ′1, R ↓ C ′1〉, S1 ∩ C2 is not the grounded extension of 〈C ′2, R ↓ C ′2〉. It
follows that S2 6∈ Esrt (AF,S).

– Given S3, we have C ′1 = {a, b, c, d} and C ′2 = {e, f}; and C ′′1 = {a, b, c} (d
is not defended from e) and C ′′2 = {e, f}. We have that S3 ∩ C1 = {b} and
{b} ∈ Epr (〈C ′1, R ↓ C ′1〉, C ′′1 ) and S3∩C2 = ∅ and ∅ ∈ Egr (〈C ′2, R ↓ C ′2〉, C ′′2 ).
It follows that S3 ∈ Esrt (AF,S).

In conclusion, S3 is a sorted extension, and S1 and S2 are not. The only
other sorted extensions are {a} and {c}. Switching back to the language of the
running example in the introduction, the three acceptable options are to either
finish the paper (extension {a}), to give the lecture and travel by bus (extension
{b}) or to give the lecture and travel by car (extension {c}). As desired, the
option to travel by train and both give the lecture and finish the paper, which
would correspond to the extension {a, d, f}, is not supported.

4 Properties

In this section, we present some desired properties of sorted extensions. In par-
ticular, we aim to show that the sorted extensions presented in Section 3 satisfy
conflict-freeness, admissibility, and completeness. We say that a semantics s sat-
isfies conflict-freeness (resp. admissibility, completeness) if, given any framework
〈A,R〉 and any Q ⊆ A, all extensions Es(〈A,R〉, Q) are conflict-free (resp. ad-
missible, complete). We then have that all the semantics considered here satisfy



conflict-freeness; that all semantics except conflict-free satisfy admissibility; and
that all semantics except conflict-free and admissible satisfy completeness.

We first prove the preservation of the conflict-free, admissible and complete-
ness properties of sorted extensions, i.e., whenever the semantics associated with
all cells of the partitioning satisfy these properties, then the sorted extensions
satisfy them as well.

Proposition 1. For any AF and S = 〈P, T 〉, if ∀C ∈ P , T (C) is a conflict-free
semantics, then ∀S ∈ Esrt(AF,S), S is conflict-free.

Proof. Let AF = 〈A,R〉, S = 〈P, T 〉, and S ∈ Esrt (AF,S). We know that
∀C ∈ P, T (C) is a conflict-free semantics. Note that it follows that ∀C ∈ P ,
S ∩ C is conflict free. Now suppose the contrary, i.e. there are a, b ∈ S s.t.
bRa. Let C ∈ P be the cell s.t. a ∈ C. Because S ∩ C is conflict-free, we have
b ∈ S \ C. Then by Definition 7, a /∈ C ′. Because we have that C ′′ ⊆ C ′ ⊆ C
and S ∩ (C \ C ′′) = ∅, it follows that a /∈ S. Contradiction. ut

Note that, since all the semantics that we consider satisfy conflict-freeness,
we have that every sorted extension is conflict-free.

Proposition 2. For any AF and S = 〈P, T 〉, if ∀C ∈ P , T (C) is an admissible
semantics, then ∀S ∈ Esrt(AF,S), S is admissible.

Proof. Let AF = 〈A,R〉, S = 〈P, T 〉, and S ∈ Esrt (AF,S). By Proposition 1 we
have that S is conflict-free. We also know that ∀C ∈ P, T (C) is an admissible
semantics. Note that it follows that ∀C ∈ P , S ∩ C is admissible w.r.t. the
framework 〈C ′, R ↓ C ′〉. Suppose now that S is not admissible, i.e., there are
a ∈ S, b ∈ A, bRa and @c ∈ S s.t. cRb. Because S is conflict free, we know
that b /∈ S. Let C ∈ P be the cell s.t. a ∈ C. Because S ∩ C is admissible w.r.t.
the framework 〈C ′, R ↓ C ′〉, we have that b /∈ C ′. By Definition 7 we have that
∀b′ ∈ (C \ C ′), ∃c′ ∈ S s.t. c′Rb′. Therefore, b /∈ (C \ C ′) and so b ∈ A \ C.
By Definition 8 it now follows that a /∈ C ′′. But then, because we have that
C ′′ ⊆ C ′ ⊆ C and S ∩ (C \ C ′′) = ∅, it follows that a /∈ S. Contradiction. ut

Proposition 3. For any AF and S = 〈P, T 〉, if ∀C ∈ P , T (C) satisfies com-
pleteness, then ∀S ∈ Esrt(AF,S), S is complete.

Proof. Let AF = 〈A,R〉, S = 〈P, T 〉, and S ∈ Esrt (AF,S). Suppose S defends
a from A. We need to show that a ∈ S (i.e. that S is complete). Let C ∈ P be
the cell s.t. a ∈ C. First we show that S ∩ C ′ defends a from C ′. Let b ∈ C ′ be
an argument from which S ∩ C ′ needs to defend a, i.e. bRa. Because S defends
a from A, there is a c ∈ S s.t. cRb. There are two possibilities: either c ∈ C ′ or
c 6∈ C ′. Suppose c 6∈ C ′. Then by definition 9, c 6∈ C and by definition 7, b 6∈ C ′.
Contradiction. It follows that c ∈ C ′, and that S ∩C ′ defends a from b. Because
this holds for any b ∈ C ′, we have that S ∩ C ′ defends a from C ′. Finally, from
definition 9, and from the assumption that T (C) is complete, it follows that (for
any C ′′ ⊆ C ′) a ∈ S. ut



These properties are highly desirable in a multi-sorted argumentation frame-
work, because they allow us to guarantee that the properties which hold for the
standard Dung framework, are preserved in the multi-sorted one.

Consider now the case where the sorting associates all cells with the same
semantics. We call this the uniform case. A natural question to ask is whether
the set of sorted extensions will then be equivalent to the set of extensions of the
framework evaluated under this semantics in the conventional way. We formalize
this property as follows.

Definition 10 (Uniform Case Extension Equivalence) Let AF = 〈A,R〉
and S = 〈{C1, . . . , Cn}, T 〉. Uniform case equivalence holds if and only if

T (C1) = . . . = T (Cn) = s implies Esrt(AF,S) = Es(AF,A)

This property does not hold in all the cases. Consider the following example:

Example 5. Let AF = 〈{a, b}, R〉, where aRb, bRa; and S = 〈{C1, C2}, T 〉, where
C1 = {a}, C2 = {b} and T (C1) = T (C2) = gr . The grounded extension of AF
is ∅. We now show that ∅ /∈ Esrt (AF,S): we have C ′1 = {a}, and C ′2 = {b}
(no argument is defeated); and C ′′1 = ∅, and C ′′2 = ∅ (both arguments are
undefended). We have that S ∩ C1 = ∅ and ∅ /∈ Egr (〈C ′1, R ↓ C ′1〉, C ′′1 ) (the
grounded extension of 〈C ′1, R ↓ C ′1〉 is not a subset of C ′′1 ). It follows that ∅ /∈
Esrt (AF,S).

The reason why the uniform case extension equivalence does not hold is the
following: every cell is evaluated separately, and the separate evaluation of a cell
C under a semantics s may lead to a result that is different from the result of
evaluating the complete framework under semantics s. Consider for instance to
adopt multi-sorted argumentation to model the merging of the argumentation
frameworks of single agents. Even if these agents adopt the same semantics,
the evaluation of their single frameworks may lead to different extensions of the
merged framework. However, if the multi-sorted framework is used in a context
where this property is required to hold, then the equivalence can be guaranteed
by replacing the cells associated with the same semantics with their union.

Finally, we underline that, given a cell associated with a certain semantics,
say grounded, a sorted extension may not represent a grounded evaluation of
the arguments in this cell, when we consider this cell in isolation. Consider the
following example.

Example 6. The framework shown in Figure 3 is formally represented by AF =
〈{a, b, c, d}, R〉, where aRb, bRa, bRc, cRb, cRd and dRc; and a sorting 〈{C1, C2}, T 〉,
where C1 = {a, b}, C2 = {c, d}, and T (C1) = gr , and T (C2) = pr .

Consider the extension S = {a, c}. Note that a is accepted, while the cell
{a, b} is associated with the grounded semantics. Let us check if S satisfies the
conditions for being a sorted extension.

– Given S, we have C ′1 = {a}, and C ′2 = {c, d} (b is defeated by c); and
C ′′1 = {a}, and C ′′2 = {c, d} (no argument is undefended). We have that
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Fig. 3. A sorted argumentation framework.

S ∩ C1 = {a}, and {a} ∈ Egr (〈C ′1, R ↓ C ′1〉, C ′′1 ), and S ∩ C2 = {c}, and
{c} ∈ Epr (〈C ′2, R ↓ C ′2〉, C ′′2 ). It follows that S ∈ Esrt (AF,S).

In the example above, selecting c to be accepted accords with the preferred
evaluation of the cell {c, d}. But given this selection, the only complete extension
is {a, c}. Note also that the extension {a} is in fact a grounded extension for
the subframework 〈C ′1, R ↓ C ′1〉, where C ′1 = {a}. Consider again the informal
example concerning the merging of the single frameworks of the agents. We can
note that the merging of the single frameworks may lead to an evaluation such
that the arguments accepted under a particular semantics, are then not accepted
into the merged framework in the same semantics.

If the multi-sorted framework is used in a context where this behavior needs
to be avoided, then a possible way to deal with this behavior is to apply a
selection criteria for extensions based on a notion of preference. For example,
another sorted extension of the framework described above is {d}. If actual
groundedness for the cell C1 is important, then this extension would be preferred
over {a, c}.

5 The Modal Fibring Approach

In this section we present an alternative representation for multi-sorted argu-
mentation frameworks. Here, we represent every cell as a separate argumentation
framework, of which the argument status can be evaluated independently of the
arguments in the other cells. We apply the well known concept of the possibility
modality from modal logic to express inter-cell attacks within these frameworks.
The approach here is based on the idea of fibring modal argumentation frame-
works presented by Barringer and Gabbay [4].

A modal argumentation framework represents a regular Dung framework
extended with information on possible attacks from outside the framework, and
with a semantics under which the framework is to be evaluated. The possible
attacks are modeled using an additional set of arguments and attacks, called
meta-arguments and meta-attacks.

Definition 11 (Modal Argumentation Framework) A modal argumenta-
tion framework MAF is a tuple 〈A,R,MA,MR, s〉 where A is the set of argu-
ments, R ⊆ A × A the attack relation, MA the set of meta-arguments, MR ⊆
MA×A the set of meta-attacks and s ∈ {cf, ad, co, gr, pr}.



A cell of a sorting may be represented by a MAF (modal argumentation
framework). An argument x from an outside cell attacking an argument y inside
the cell is translated into a meta-argument 3x and a meta-attack 3xMRy.
These meta-arguments represent possible attacks, in that they may or may not be
accepted, depending on the evaluation of arguments in other MAFs. A framework
AF = 〈A,R〉 and sorting S = 〈P, T 〉 can thus be translated into a set of MAFs.

This scheme induces a dependency relation between different MAFs: for a
given MAF p containing a meta-argument 3x, there is a MAF q in which x
may be an accepted argument. This dependency relation is represented using
a modal accessibility relation AR. We call a set W of MAFs, together with an
accessibility relation AR over W a DAF (distributed argumentation framework).
If the MAFs in W represent the cells of the sorting S of the framework AF , and
if AR reflects the dependency relation just described, then we say that 〈W,AR〉
is based on AF and S.

Definition 12 (Distributed Argumentation Framework) A distributed ar-
gumentation framework DAF is a tuple 〈W,AR〉 where W is the set of MAFs
and AR ⊆ W ×W the accessibility relation. We say that a DAF 〈W,AR〉 is
based on the argumentation framework 〈A,R〉 and sorting 〈P, T 〉 if and only if:

– For each C ∈ P , there is a unique p ∈W , where p = 〈Ap, Rp,MAp,MRp, sp〉
is defined as follows:
• Ap = C
• Rp = R ↓ C
• MAp = {3x | x ∈ A \ C, y ∈ C, xRy}
• MRp = {(3x, y) | x ∈ A \ C, y ∈ C, xRy}
• sp = T (C)

– AR = {(q, r) | q, r ∈W, ∃3x ∈ MAq, x ∈ Ar}

The evaluation of arguments in a modal argumentation framework is defined
using the concepts of a modal subframework and of a set of qualified arguments.
The intuition is similar to the one described in section 3: the subframework
of a MAF p, given an extension S, is the restriction of Ap to those arguments
that are not defeated by a meta-argument. The set of qualified arguments further
restricts this set to all the arguments that are defended by S from outside attacks.
Additionally, to determine the subframework and qualified arguments of a MAF
p, we can restrict S to only those arguments on which the status of the meta-
arguments in p actually depends. We will call this the relevant subextension of
S for p. In the following definitions, we assume a fixed argumentation framework
AF = 〈A,R〉 and sorting S = 〈P, T 〉, and a DAF 〈W,AR〉 based on AF and S.

Definition 13 (Relevant subextension) Let p ∈ W and let S ⊆ A be an
extension. The relevant subextension of S for p is the set

⋃
q∈W,pARq S ∩Aq

Definition 14 (Modal Subframework) Let p ∈ W . The modal subframe-
work for p, given an extension S, is the framework 〈A′, R′〉 where A′ = {x ∈
Ap | @y ∈ S ′ s.t. 3y ∈ MAp and 3yMRpx} and R′ = Rp ↓ A′, and where S ′ is
the relevant subextension of S for p.



Definition 15 (Qualified arguments of a Modal Subframework) Let p ∈
W and let 〈A′, R′〉 be the modal subframework for p, given the extension S. The
qualified arguments of 〈A′, R′〉, given S, is the set A′′ = {x ∈ A′ | ∀3y ∈
MAp s.t. 3yMRpx, ∃z ∈ S ′ s.t. zRy}, where S ′ is the relevant subextension of
S for p.

Given an extension S, we can determine whether it is a sorted extension of
a DAF by checking that for each p ∈W , we have that Ap ∩S is an extension of
the subframework for p, given the qualified arguments of the subframework for
p. The semantics under which the subframework for p is evaluated is sp.

Definition 16 (Sorted Extension of a DAF) Let AF = 〈A,R〉, S = 〈P, T 〉
and let 〈W,AR〉 be the DAF based on AF and S. A set S ⊆ A is a sorted
extension of 〈W,AR〉 if and only if ∀p ∈ W , Ap ∩ S ∈ Esp(〈A′, R′〉, A′′), where,
given S, 〈A′, R′〉 is the modal subframework for p and C ′′ is the set of qualified
arguments of the subframework.

Note that the definition above does not exploit the fact that the evaluation
of arguments of a MAF p depends only on all MAFs q such that pARq.

a

b

c

Finish paper

Give lecture in Faraway,
Travel by car

Give lecture in Faraway,
Travel by bus

d

There will be a train strike

e

f
There will be no train strike

Give lecture in Faraway,
Travel by train

Preferred Grounded

◇e

p q

Fig. 4. The sorting-based DAF corresponding to the framework in Figure 1.

Example 7. Figure 4 shows the DAF based on the framework AF and sorting S
used in example 4. The DAF 〈W,AR〉 consists of W = {p, q} with

p = 〈{a, b, c, d}, {(a, b), . . . , (d, c)}, {3e}, {(3e, d)}, pr〉



and
q = 〈{e, f}, {(e, f), (f, e)}, ∅, ∅, gr〉

and AR = {(p, q)}.
Consider the extension S = {b}. Given S, the argument d is not a qualified

argument for p, because 3e attacks d and the argument e is not defended from
all attacks. Hence, for p, we have the preferred extensions {a}, {b} and {c} (the
extension {a, d} is suppressed). For q we have the grounded extension ∅. We
have that S ∩ Ap = {b} and S ∩ Aq = ∅. The extension S is therefore a sorted
extension of the DAF, as are the extensions {b} and {c}.

a b c d

◇c ◇b

Grounded Preferred

p q

Fig. 5. The sorting-based DAF corresponding to the framework in Figure 3.

Example 8. Figure 5 shows the DAF based on the framework AF and sorting S
used in example 3. The DAF 〈W,AR〉 consists of W = {p, q} with

p = 〈{a, b}, {(a, b), (b, a)}, {3c}, {(3c, b)}, gr〉

and
q = 〈{c, d}, {(c, d), (d, c)}, {3b}, {(3b, c)}, pr〉

and AR = {(p, q), (q, p)}.
Consider the extension S = {a, c}. Given S, only the argument a in the

modal subframework for p (3c is activated and attacks b. Hence, for p, we
have the grounded extension {a}. For q both arguments c and d are in the
modal subframework and are qualified (3b is deactivated). Hence we have two
preferred extensions {c} and {d}. We have that S ∩Ap = {a} and S ∩Aq = {c}.
The extension S is therefore a sorted extension of the DAF, as is the extension
{d}.

In conclusion, the benefit of the modal fibring approach to multi-sorted ex-
tension lies in the modular representation. While our definitions



6 Related Work

The proposal that is most related to ours comes from Prakken [13], from which
we also took our running example. He proposes an argument-based semantics
that combines grounded and preferred semantics. The motivation, as we dis-
cussed in the introduction, is that reasoning about beliefs should be skeptical,
while reasoning about actions should be credulous. Prakken’s formalism can be
seen as a special case of ours: there are just two cells: a preferred cell, containing
practical arguments; and a grounded cell, containing epistemic arguments. More-
over, arguments in the preferred cell do not attack arguments in the grounded
cell. This reflects the principle that no Is should be derived from an Ought. Other
than that, the formalism takes an approach similar to ours: an extension of a
framework AF is the preferred extension of the framework obtained by removing
all arguments not defended by the epistemic part of the grounded extension of
AF (of course, this includes the grounded extension of AF itself).

An interesting feature of Prakken’s formalism is a dialectical proof proce-
dure which is sound and complete with respect to the 2-sorted semantics. This
proof procedure combines previously developed proof procedures for the skeptical
grounded and credulous preferred semantics (see e.g., [12]). It would be interest-
ing to see whether a generalized dialectical proof procedure could be developed
for our semantics. This would, of course, depend on the existence of dialectical
proof procedures for the semantics associated with the individual cells.

Another related formalism comes from Brewka & Eiter [6]. They propose a
framework for group argumentation, which they call argument context systems.
It allows a collection of abstract argument systems to interact via mediators,
where a mediator consists of so called bridge rules that associate arguments
from one framework with a context to another framework. A context for a frame-
work consists of a set of expressions that determine certain properties of that
framework. One framework may then decide on these properties for another
framework through the acceptance status of the arguments that appear in the
body of the bridge rules. Among the properties controlled by the context are
values and preferences, i.e., the framework supports value based and preference
based argumentation [1, 5]. Another property is the acceptance status of an ar-
gument. This is effectuated through an extra argument def, that may invalidate
or validate an argument, by attacking it or attacking its attackers. The resulting
framework allows the interaction between different frameworks in the argument
context system, where one framework may decide about values, preferences and
argument acceptance status of other frameworks.

Like in our work, different frameworks may be evaluated under different
semantics. Moreover, the semantics under which a framework is evaluated, is
also part of the framework’s context. This means that, in addition to values,
preferences and acceptance status, the semantics under which a framework is
evaluated is also a property about which another framework may decide. Of
course, this goes beyond the expressivity of our system. On the other hand,
different cells of a sorting in our system are part of the same framework, and
may interact through attacks. Brewka & Eiter’s system does not allow different



frameworks in the same argument context system to this. This may be simulated
by bridge rules that validate and invalidate arguments, but only partially. Their
approach does not account for the distinction between defeated and undefended
arguments.

Other related work includes Amgoud & Prade [2], who introduce explanatory,
rewards and threats arguments for negotiation dialogues. In practical reasoning,
Rotstein et al. [14] propose different types of arguments to represent catego-
rized domain information, like belief, goals or plans. These works, however, do
not explicitly apply different semantics to the different types of arguments they
define.

7 Conclusion and Future Work

We have presented a theory of multi-sorted argumentation, that generalizes
Dung’s theory of abstract argumentation in that it allows different parts of a
framework to be evaluated under different semantics. We have proven some basic
properties, namely the preservation of conflict-freeness, admissibility and com-
pleteness. Moreover, we have analyzed the behavior of the multi-sorted frame-
work in the cases where the same semantics is used to evaluate all the cells of
the framework, or where the arguments are not accepted in the framework using
the same semantics applied to evaluate the cells.

We justify the introduction of a multi-sorted argumentation framework by
using a running example from Prakken [13]. In this example, some arguments
pertain to actions, and some others pertain to beliefs about the world. As ar-
gued by Prakken [13] practical arguments and epistemic arguments have to be
evaluated in a different way. We propose to perform this evaluation using a
multi-sorted framework.

The modal fibring approach adds another interesting angle to our theory.
The fact that multi-sorted argumentation is expressible in modal argumentation
frameworks demonstrates the generality of modal argumentation. We expect that
modal argumentation will be a useful framework to investigate more sophisti-
cated forms of multi-sorted argumentation.

There is much work still to be done, on all the aspects described above.
First of all, a further generalization is possible if we make some of the assump-
tions that we made optional. For example, instead of a strict partitioning of
the framework, we could allow overlapping subsets. This is natural, because the
same argument may be put forward by different agents, each associated with a
different semantics.

Secondly, we have applied our theory only to some small examples. It will
be interesting to apply it to real-world examples, and to compare it with other
approaches to multi-agent argumentation and reasoning about trust.

Third, we are applying our theory to different challenges in multiagent sys-
tems. One of the possible applications is bounded reasoning in multi-agent sys-
tems: dividing a framework into different sets could facilitate a stepwise eval-
uation of smaller parts of a larger framework. In addition, arguments that are



not the focus of a particular issue, could be evaluated using a computation-
ally cheaper semantics. For example, a ‘don’t care’ attitude towards a set of
arguments could result in only requiring conflict-freeness for this set. Another
application is, as mentioned in the paper, the merging of the argumentation
frameworks of single agents into a common framework, in order to allow an
easier collaboration among the agents.

Forth, we aim to redefine multi-sorted argumentation in terms of argument
labelling [8], instead of argument semantics. The labelling approach is widely
adopted in the argumentation community, and it may allow a simpler represen-
tation of the sorted extension.

References

1. Leila Amgoud and Claudette Cayrol. On the acceptability of arguments in
preference-based argumentation. In Gregory F. Cooper and Seraf́ın Moral, editors,
UAI ’98: Proceedings of the Fourteenth Conference on Uncertainty in Artificial In-
telligence, pages 1–7. Morgan Kaufmann, 1998.

2. Leila Amgoud and Henri Prade. Handling threats, rewards, and explanatory ar-
guments in a unified setting. Int. J. Intell. Syst., 20(12):1195–1218, 2005.

3. P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence, 168(1-2):162–210, 2005.

4. Howard Barringer and Dov M. Gabbay. Time for verification. chapter Modal and
temporal argumentation networks, pages 1–25. Springer-Verlag, Berlin, Heidelberg,
2010.

5. Trevor J. M. Bench-Capon. Value-based argumentation frameworks. In Salem
Benferhat and Enrico Giunchiglia, editors, NMR, pages 443–454, 2002.

6. Gerhard Brewka and Thomas Eiter. Argumentation context systems: A framework
for abstract group argumentation. In Esra Erdem, Fangzhen Lin, and Torsten
Schaub, editors, Logic Programming and Nonmonotonic Reasoning, 10th Inter-
national Conference, LPNMR 2009, volume 5753 of Lecture Notes in Computer
Science, pages 44–57. Springer, 2009.

7. M. Caminada. Semi-stable semantics. In Computational Models of Argument;
Proceedings of COMMA, pages 121–130, 2006.

8. Martin Caminada. On the issue of reinstatement in argumentation. In Michael
Fisher, Wiebe van der Hoek, Boris Konev, and Alexei Lisitsa, editors, JELIA,
volume 4160 of Lecture Notes in Computer Science, pages 111–123. Springer, 2006.

9. S. Coste-Marquis, C. Devred, and P. Marquis. Prudent semantics for argumenta-
tion frameworks. 2005.

10. Phan Minh Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

11. Dov M. Gabbay. Fibring argumentation frames. Studia Logica, 93(2-3):231–295,
2009.

12. S. Modgil and M. Caminada. Proof theories and algorithms for abstract argu-
mentation frameworks. Argumentation in Artificial Intelligence, pages 105–129,
2009.

13. Henry Prakken. Combining sceptical epistemic reasoning with credulous practical
reasoning. In Paul E. Dunne and Trevor J. M. Bench-Capon, editors, COMMA,



volume 144 of Frontiers in Artificial Intelligence and Applications, pages 311–322.
IOS Press, 2006.

14. Nicolás D. Rotstein, Alejandro Javier Garćıa, and Guillermo Ricardo Simari. Rea-
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