
Optimizing the Core Computation with Social Networks
Luigi Sauro1 and Serena Villata2

Abstract. Cooperative boolean games are a family of coalitional
games where agents may depend on each other for the satisfaction of
their personal goals. In this work we investigate two different types
of social networks,abstract dependence networksandrefined depen-
dence networks, that are used to define the notion ofstable coalitions
and∆-reduction, respectively. Stable coalitions enable to focus on
a subset of the agents and use results to determinate thecoreof the
whole game.∆-reduction prunes the search space by returning a set
of actions that are not admissible to be executed. We presentan al-
gorithm based on stable coalitions and a∆-reduction implemented
in Prolog and experimental results that show how they effectively
improve the computation of the core.

1 Introduction

Cooperative Boolean Games [5] are a new particular family of
boolean games [7, 6]. In such type of games, agent’s primary aim
is to achieve its individual goal, which is represented as a proposi-
tional logic formula over some set of boolean variables. Each agent
is assumed to exercise a unique control over some subset of the over-
all set of boolean variables, and the set of truth assignments for these
variables corresponds to the set of actions the agent can take. As sec-
ondary aim, each agent wants to minimize the cost associatedto the
execution of its actions. As in typical coalitional games, an agent
can have the necessity to cooperate with the others because it does
not have sufficient control to ensure its goals are satisfied.However,
the desire to minimize costs leads to preferences over possible coali-
tions, and hence to strategic behavior. One of the solution concepts
proposed for such games is the notion of core that strengthens the
Nash equilibrium: a truth assignment of the boolean variables (strat-
egy profile) is in the core in case no subset of agents can unilaterally
deviate from it and improves the rewards of each of its members.

In this paper, we propose a new step to make the computation of
the core easier by means of the social dependence networks associ-
ated to the cooperative boolean game. The reasons of our choice are
twofold: first, we present a number of abstractions that allow to re-
duce the search space by means of a set of criteria principally based
on graphs visit algorithms which are computationally tractable; sec-
ond, we underline a number of hidden properties in the notionof core
showing how, in certain cases, this notion is too much strictand, thus,
it can lead to counterintuitive results.

We define two kinds of social dependence networks, representing
two different levels of abstraction of a cooperative boolean game.
Abstract dependence networks have already be used by Bonzonet
al. [2] to define stable coalitions which enable to divide theentire
problem in subproblems and then combine their solutions. While

1 Dipartimento di Scienze Fisiche, University of Naples
2 Dipartimento di Informatica, University of Turin

Bonzon et al. [2] show that the notion of stability is complete with re-
spect to the pure Nash equilibrium with non costly actions, we show
in this paper that the notion of stability is complete also with respect
to the solution concept of the core in case of cooperative boolean
games with costly actions. In Bonzon et al. [3], the authors extend
their previous results with a generalization to non-dichotomous pref-
erences, where agents can not only express plain satisfaction or plain
dissatisfaction, but also intermediate levels. This generalization suf-
fices to replace the preference component of a boolean game byan
input expressed in a propositional language for compact preference
representation.

After Castelfranchi [4], Boella et al. [1] and Sauro [9] showhow
to use social dependence networks to discriminate among different
potential coalitions during the coalition formation process. They de-
velop a criterion of admissibility called do-ut-des property describing
a condition of reciprocity: an agent gives a goal only if thisfact en-
ables it to obtain, directly or indirectly, the satisfaction of one of its
own goals. This criteria has only a qualitative connotation, it cannot
be directly applied to the solutions developed in game theory. In this
approach goals are not structured and they do not represent explicitly
the costs of the actions.

Refined dependence networks essentially provide a graph repre-
sentation of a cooperative boolean game where the numericalinfor-
mation about costs is abstracted and actions are simply partitioned in
free and costly actions. We present a reduction, called∆-reduction,
to pass from a cooperative boolean gameG to a cooperative boolean
game (CBG)G′, simpler to be solved because less actions can be
executed. In Sauro et al. [10], the introduction of abstractand refined
dependence networks is provided. We extend the results presented
in [10] with the definition of the algorithm allowing the application
of the∆-reduction and the experimental results it allows to achieve.

The reminder of the paper is as follows. In section 2 we formally
define cooperative boolean games. Section 3 shows the optimization
techniques relative to the core-membership problem. Sections 4 and
5 present the algorithms and the experimental results. Conclusions
end the paper.

2 Cooperative Boolean games

A Cooperative Boolean Game (CBG) [5] consists of a set of agents
1, . . . , n which desire to accomplish personal goals. Goals are rep-
resented by propositional formulasγi over some set of boolean vari-
ablesΦ. Each agent controls a (possibly empty) subsetΦi ⊆ Φ of
the overall set of boolean variables. The notion of control is used to
mean that agenti has the unique ability within the game to set the
value (either⊤ or⊥) of each variablep ∈ Φi. Variables are assumed
to be initially false, this way of setting a variablep ∈ Φ to be⊤ has
the meaning ofperforming the actionp, whereas settingp ∈ Φ to
⊥ meansdoing nothing. Since action (as opposed to inaction) typi-

cally incurs some cost, Dunne et al. [5] define the cost function cost

in such a way thatcost(p) denotes the cost of performing actionp

(i.e., settingp to⊤). Agents’ secondary goal is to minimize its costs.
Summing up briefly, if the only way an agent can achieve its goal is
by making all its variables true, then the agent prefers to tothis rather
than not achieve its goal but if there are different ways to achieve it,
then the agent prefers always those that minimize costs.

Definition 1 A cooperative boolean gameG is a (2n + 3)-tuple

G = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉

whereA = {1, ..., n} is a set of agents,Φ = {p, q, ...} is a finite
set of boolean variables,cost is a cost function defined inΦ → ℜ+,
γ1, ..., γn are the boolean formulas overΦ which represent the goals
of the agents andΦ1, ..., Φn is a partition of Φ over n, with the
intended interpretation thatΦi is the set of Boolean variables under
the control of agenti.

A subsetξ of Φ is a valuation, where the usual meaning is that the
value of the variables belonging toξ is true and the value of the other
ones is false.ξ |= φ means thatφ is true under the valuationξ under
the standard propositional semantics.

Valuations intuitively correspond to possible strategiesof the
agents, in Dunne et al. [5],costi(ξ) denotes the cost to agenti of
valuationξ ⊆ Φ, that is,

costi(ξ) =
X

v∈(ξ∩Φi)

cost(v)

As in Dunne et al. [5], we define an utility function that is always
positive if the valuationξ satisfies the goal of the agenti and oth-
erwise it is always negative. However, this is not an utilityfunction
in the classical way as discussed by von Neumann and Morgenstern
[8] such as, for example, a functionu : X → R from choices to the
real numbers assigning a real number to every outcome in a waythat
captures the agent’s preferences over both simple and compound lot-
teries. In [5], ifµ represents the total cost of all variables, the utility
for agenti of a valuationξ, ui(ξ) is defined as:

ui(ξ) =

1 + µ − costi(ξ) if ξ |= γi

−costi(ξ) otherwise

This utility function leads to a preference order�i over valuations:
ξ1 �i ξ2 iff ui(ξ1) ≥ ui(ξ2). The best utility for an agent is reached
if it has its goal satisfied without performing any action (utility of
µ + 1) while the worst utility for an agent is reached in the case it
does not get its goal satisfied but it performs actions such asto set all
its variables true (utility−costi(Φi)).

Typically, an agent has to cooperate with the other agents because
it does not have sufficient control to ensure its goal is satisfied. How-
ever, aiming at minimizing its costs, an agent is preferentially unwill-
ing to execute one of the actions under its control. Therefore, agents
cooperate only in the case in which a cooperative solution isprefer-
able to the alternatives, either because the agents cannot achieve their
goals independently or their can reduce their respective cost. The
utility achieved by agents within a coalition depends not just on their
actions but on the actions of the whole set of agents involvedin the
game.

A coalition D is represented as a (sub)set of agents,D ⊆ A and
thus it does not represent any kind of particular relationship among
the members composing it. LetD ⊆ A be a coalition, thenΦD

denotes the set of variables under the control of some memberof D,

ΦD =
S

i∈D
Φi. If a valuationξ2 is the same as a valuationξ1 except

at most in the value of the variables controlled byD thenξ1 = ξ2

mod D.
D blocksξ1 throughξ2 sinceξ2 could do better thanξ1 only by

flipping the value of some of the variables under the control of D.
From Dunne et al. [5], the definition of blocked valuation is as fol-
lows:

Definition 2 (Blocked Valuation)
A valuationξ1 is blocked by a coalitionD ⊆ A through a valuation
ξ2 if and only if:

1. ξ2 is a feasible objection by coalitionD which means thatξ2 = ξ1

mod D.
2. D strictly prefersξ2 overξ1: ∀i ∈ D : ξ2 ≻i ξ1.

The blocked valuation allows us to define the core of a cooperative
boolean game. The core is a fundamental concept behind coalitional
game theory. A valuation is in the core if and only if no coalition has
an incentive to defect.

Definition 3 (Core)
Given a cooperative boolean gameG, ξ ∈ core(G) if and only if it
is not blocked by any coalition.

We focus now on the problem of computing the core of a CBG. In
general, this problem can be seen as a generation and test problem:
generate a strategy, then check whether it belongs to the core accord-
ing to Definition 3. Thus, it is useful in the following to consider
a generation space, that is the set of strategiesξ we need to check
core-membership, and atest space, the set of strategiesξ′ we search
to establish whetherξ belongs to the core. Clearly, if no optimization
is implemented both the generation and the test space consist in the
set of all strategies and unfavorable have a cardinality equal to2|Φ|.

3 Reducing the generation space

In Sauro et al. [10], we introduce two optimization techniques that
enable to reduce the generation space. Both of them are basedon the
notion of social dependence network that can be defined starting from
a CBG. These social networks, on the one hand, explicitly represent
the inter-dependencies among agents according to their goals, on the
other hand they abstract from the quantitative aspects of a game as-
sociated to the cost function. In particular, the first type of social
dependence network, we named Abstract Dependence Networks, is
the same already used in Bonzon et al. [2] as decomposition method
for the Nash Equilibrium in Boolean Games without costly actions.
In Sauro et al. [10] we essentially extend the results in Bonzon et
al. [2] to the framework defined in Dunne et al. [5].

As in Bonzon et al. [2], in order to correctly establish the depen-
dencies among agents we need to define which variables are relevant
for the satisfaction of the agents’ goal. A variablep is said irrelevant
for a formulaφ in case there exists an equivalent formulaφ′ where
p does not occur. WithRVG(i) we represent the set of all variables
p ∈ Φ that are relevant forγi, whereasRAG(i), is the set of agents
j ∈ A such thatj controls at least one relevant variable ofi. The
notions of relevant agent and relevant variable are crucialin what
follows since they allow to define dependence networks and the way
to prune them. Using the notion of relevant agents, we define ade-
pendence network where nodes represent agents and an edge from i

to j represents the dependence ofi on j (j ∈ RAG(i)).

Definition 4 (Abstract Dependence Network)
Given the CBGG = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉, the ab-
stractdependence network ofG is the directed graph ADN(G) =
〈N, R〉 such that the set of nodesN correspond to the agents inG,
N = A, and(i, j) ∈ R iff j ∈ RAG(i).

As in Bonzon et al. [2] we say that a set of agents inADN(G) is
stable in case it isclosedunder the relationR. R(C) is the set of
players from whichC may need some action in order to be satisfied.

Definition 5 (Stable set) Given a directed graph〈N, R〉, C ⊆ N is
stable iffR(C) ⊆ C, i.e. for all i ∈ C, for all j such that(i, j) ∈ R

j ∈ C.

Definition 6 (ADN Projection)
LetG = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉 be a CBG, ADN(G) =
〈N, R〉 the corresponding abstract dependence graph andC =
{i1, . . . , im} ⊆ N a stable set, the projection ofG
on C is defined by GC = 〈C, ΦC , costC , γi1 , ..., γim ,

Φi1 , ..., Φim 〉, wherecostC : ΦC → ℜ+ is the restriction ofcost
on the set of boolean variable of C,ΦC .

By definition the goals occurring in the projection of a CBG ona
stable setC does not contain variables controlled by agents outside
C, therefore the projection is itself a CBG.

By using stable sets, Abstract Dependence Networks can be safely
used to split the original problem in subproblems without loosing
solutions. However, Abstract Dependence Networks may hidesome
useful information that can also be used to prune some strategies that
cannot belong to the core - and hence to reduce the search space.
For this reason we define another notion of dependence network at
a lower level of abstraction called Refined Dependence Networks
(RDNs). These social networks may seem actually equivalentto the
boolean game itself, except for the cost of the variables. These costs,
however, are not a minor point since two boolean games that result
in the same RDN can have different solutions.

A Refined Dependence Network represents how the goals can
be satisfied by means of AND-arcs among the agents whose sin-
gle edges are labeled with literals. Furthermore, costly actions are
markedin a set∆.

Definition 7 (Refined Dependence Network)
A Refined Dependence Network is a AND-graph
〈N, Φ, ∆, E, Φ1, ..., Φn〉 where N is the set of nodes,Φ is the
set of boolean variables,∆ ⊆ Φ is the subset of costly variables3,
E ⊆ N × 2(N×Litt(Φ)) whereLitt(Φ) = Φ ∪ {¬p|p ∈ Φ} and
Φi ⊆ Φ wheren is the cardinality ofN .

Given a literal l, we denote by|l| the corresponding boolean
variable. If l ∈ Φ, then | l |= l whereas if l = ¬p then
| l |= p. Furthermore, to simplify the formalism, we repre-
sent an AND-arc(i, {(j1, l1), . . . , (jm, lm)}) as the set of triples
{(i, j1, l1), . . . , (i, jm, lm)}. Of course, a set as{(1, 3, p), (3, 4, q)}
has no meaning in our context.

We use Refined Dependence Networks to reveal the structure of
interdependencies among agents. First, we assume that the goals of
the agents do not contain irrelevant variables and are givenin dis-
junctive normal form, i.e.γi = γi1 ∨ · · · ∨ γim where eachγij

is
a conjunction of literals [11]. To simplify again the formalism we
describe respectivelyγi as a set ofγij

and eachγij
as a set of liter-

als - the empty set has the usual meaning respectively of⊥ referred

3 The set of variables with an associated cost.

to γi and⊤ referred to theγij
. Roughly, each AND-arce outgoing

the agenti corresponds to aγij
∈ γi, where each single edge that

composese is labeled with a literal occurring inγij
and reaches the

agent that controls the corresponding variable. The set∆ consists of
the actions that have a strictly positive cost.

Definition 8 (From CBGs to RDNs)
Given the CBG G = 〈A,Φ, c, γ1, ..., γn, Φ1, ..., Φn〉,
RDN(G) = 〈N, Φ, ∆, E, Φ1, ..., Φn〉 is such thatN = A,
∆ = {p ∈ φ | c(p) > 0} and {(i, j1, l1), . . . ,
(i, jm, lm)} ∈ E iff {l1, . . . , lm} ∈ γi and for all 1 ≤ h ≤ m,
| lh |∈ Φjh

.

Example 1 Let G be a cooperative boolean game defined byA =
{1, 2, 3, 4}, Φ = {a, b, c, d, e}, cost(a) = cost(b) = cost(c) =
cost(d) = cost(e) = 1, γ1 = a, γ2 = c ∧ e, γ3 = b ∧ c,
γ4 = d, Φ1 = {b, e}, Φ2 = {d}, Φ3 = {a}, Φ4 = {c}. The associ-
ated refined dependence networkRDNG = 〈A, Φ, E, Φ1, ..., Φn〉,
whereE is composed by the following dependencies:{(1, 3, a)},
{(3, 1, b), (3, 4, c)}, {(2, 1, e), (2, 4, c)}, {(4, 2, d)}.

Given a Refined Dependence NetworkRDN(G) =
〈N, Φ, ∆, E, Φ1, ..., Φn〉, we mean withRE ⊆ N × N the
binary relation such that(i, j) ∈ RE just in the case there exists an
AND-arce ∈ E that starts fromi and reachesj, i.e. for some literal
l, (i, j, l) ∈ e. It is easy to see thatADN(G) = 〈N, RE〉 and hence
RDN(G) describesG at a lower level of abstraction with respect to
ADN(G).

We want to use Refined Dependence Networks to impose some
constraints to the setcore(G). To this scope some preliminary results
are needed. A boolean variablea ∈ Φi is said to beunfavorableif
and only ifa ∈ ∆, i.e.cost(a) > 0, and for each{l1, . . . , lm} ∈ γi,
a 6∈ {l1, . . . , lm}. In the following we denote by[i]− the set of
unfavorable variables of the agenti.

Proposition 1 Given a cooperative boolean gameG and an agent
i ∈ A, for eacha ∈ [i]−, ξ ∈ core(G) impliesa 6∈ ξ.

Proof 1 a ∈ [i]− means thatcost(a) > 0 and a does not occur
(positive) inγi. Assume thatξ |= γi, then, for some{l1, . . . , lm} ∈
γi, ξ |= {l1, . . . , lm}. Sincea 6∈ {l1, . . . , lm}, this means that also
ξ \ {a} |= {l1, . . . , lm}.

Now it remains to show that if for eachξ, ξ |= γi impliesξ\{a} |=
γi, thenξ ∈ core(G) impliesa 6∈ ξ. Assume thata ∈ ξ, clearly
ξ \ {a} = ξ mod {i} asa ∈ Φi. Furthermore, ascosti(ξ \ {a}) <

costi(ξ) and by hypothesisξ |= γi implies ξ \ {a} |= γi, then
ξ ≺i ξ \ {a}. But this means thatξ is blocked byi throughξ \ {a}.

Note that, according to Proposition 1, if all the variables are unfavor-
able, the core can contain only the empty strategy. We prove that a
goal depending on an unfavorable variablea can be reduced into one
that does not depend ona without affecting the possible solutions.
More precisely, we define the notion of reduction as follows.

Definition 9 Given a cooperative boolean gameG and an unfavor-
able variablea ∈ [i]−, we say that the cooperative boolean gameG′

is a∆-reduction ofG just in the case it is obtained fromG applying
the following steps:

1. removea fromΦi;
2. remove from eachγi any conjunction of type{l1, . . . , a, . . . , ln};
3. replace in eachγi any conjunction of type{l1, . . . ,¬a, . . . , ln}

with {l1, . . . , ln}.

Figure 1. Refined Dependence Network of Example 1.

Proposition 2 Let G′ be a∆-reduction of a CBGG, core(G) ⊆
core(G′).

Proof 2 For each valuationξ that does not contain the unfavorable
variablea, it clearly holds for each agenti that ui(ξ) in G is equal
to ui(ξ) in G′. Therefore, if inG′, ξ′1 is blocked byC throughξ′2,
then the same holds inG and hence core(G) ⊆ core(G′).

The converse does not hold. Note that the previous results donot
usequantitativevalues of the cost function but only the fact that
an action has a strictly positive value, therefore they reside in the
level of abstraction of RDNs. We can now define a procedure on
RDN(G) which uses unfavorable variables and∆-reductions to re-
duce the search space in finding the core.

Definition 10 (Reduction rule) Let RDN(G) be a Refined Depen-
dence Network and letω denoting a valuation initially set to∅, the
reduction rule RDN(G) is given by applying exhaustively the follow-
ing rule:

Condition: for somea ∈ Φi ∩ ∆, there does not exist an AND-arc
e outgoing fromi such that(i, j, a) ∈ e (i.e.a is unfavorable).

Action: remove any AND-arce′ such that(j, i, a) ∈ e′, a from Φi

and adda to ω.

Due to propositions 1 and 2, the valuationω we obtain from defi-
nition 10 constraints the strategies incore(G) to be also inΦ \ ω.
For more details and graphical examples about ADNs and RDNs,
see [10].

4 Reducing the test space

In the previous section, we have seen how to determinate the set of
unfeasible actionsω such that the generation space becomes the pow-
erset ofΦ \ ω. However, even if core-membership has to be checked
just for one strategy (for example theemptystrategy∅ ⊆ Φ \ ω), the
test space still remains the set of all strategiesξ′ ⊆ Φ, which is ex-
ponentially large in the size of a CBG. For this reason, in this section
we study optimization techniques that reduce the test space.

Before studying new optimization techniques, it is reasonable to
look for previous results that can be reused for our end. In particular,
two properties shown in Dunne et al. [5] can be taken into account.
Let contrib(ξ) be the set of agents that incur some positive cost in
ξ (contrib(ξ) = {i | ∃a ∈ ξ s.t.a ∈ Φi andcost(a) > 0}) and
ben(ξ) thebeneficiariesof ξ (ben(ξ) = {i | ξ |= γi}). Furthermore,
we writeξ ⊂C ξ′ if ξ ∩ ΦC ⊂ ξ′ ∩ ΦC and say thatξ is C minimal
for φ in caseξ |= φ and noξ′ ⊂C ξ, ξ′ |= φ. Then, the following
properties hold:

1. ξ ∈ core(G) =⇒ contrib(ξ) ⊆ ben(ξ)

2. ξ ∈ core(G) =⇒ ξ is contrib(ξ) minimal forγcontrib(ξ)

Eachξ in the generation space such that eithercontrib(ξ) 6⊆ ben(ξ)
or it is notcontrib(ξ) minimal forγcontrib(ξ) can be discarded with-
out checking whether it is blocked, thus, both the properties attempt
to reduce the test space to the empty set. Whether they can be prof-
itably used as optimization technique clearly depends on the compu-
tational complexity.

Since the conditioncontrib(ξ) 6⊆ ben(ξ) can be easily computed,
the first property is a possible optimization technique (actually it has
been implemented in our framework). On the contrary, with a proof
that is essentially the same as Theorem 1 in Dunne et al. [5], checking
thatξ is notcontrib(ξ) minimal forγcontrib(ξ) has the same compu-
tational complexity as checking thatξ belongs to the core (coNp-
complete). Therefore, it has not been considered as a possible candi-
date.

Note that, sincecontrib(∅) = ∅, the empty strategy cannot be
discarded according to the first property for at least one strategy we
still have a test space of exponential size. For this reason,we consider
some other criterion to reduce the test space. Clearly, as inthe case
of unfeasible actions, we need a computationally easy way toselect
a subset of2Φ that is complete with respect to the core-membership
problem.

On the one hand, when a strategyξ is optimal for an agenti, i.e.
ξ = argmax̄ξ ui(ξ̄), no other strategy can be strictly more profitable
for i, and hencei does not have any incentive to participate to a
coalition D in order to blockξ. On the other hand, assume thatξ

satisfies the goalγi, and for a givena ∈ Φi, cost(a) > costi(ξ), then
i has no incentive to performa. The following theorem expresses
these two considerations, the proof is straightforward andit is left to
the reader.

Proposition 3 Given a CBGG, a strategyξ and an agenti. Assume
thatD blocksξ throughξ′. We have that:

1. ξ = argmax̄ξ ui(ξ̄) =⇒ i 6∈ D;
2. ξ |= γi, a ∈ Φi and cost(a) > costi(ξ) =⇒ a 6∈ ξ′.

Proposition 3 can be used to reduce the test space as follows.If ξ

is optimal for the agentsO = {i1, . . . , im}, then a strategyξ′ that
blocksξ is such thatξ ∩ Φj = ξ′ ∩ Φj , for all j ∈ O. Thus, the test
space is reduced to

S

h6∈O Φh. Furthermore, ifcost(a) > costi(ξ),
the test space can be further reduced to those strategiesξ′ such that
a 6∈ ξ′.

Finally, note that to decide whether a strategyξ is optimal for an
agenti it is not required to check for all the other strategiesξ̄ with
ui(ξ) ≥ ui(ξ̄). As we are considering goals in disjunctive normal
form, i.e.γi = {γi1 , . . . , γim}, we just have to consider the strate-
giesξij

= {a ∈ Φ | a ∈ γij
}. Then, the maximal valueum

i of
the utility ui(ξij

), with 1 ≤ j ≤ m, corresponds to the maximal
utility agent i can obtain. Therefore, we simply have to check that
ui(ξ) = um

i .

5 Algorithms

We use the results in Sections 3 and 4 to implement in Prolog a
procedurefind core that, given as input a CBGG, returnscore(G).
A procedural description offind core is given in Algorithm 1. Es-
sentially, find core consists of two procedures,FIND CORE and
CORE MEM.

In FIND CORE, the ADN ofG is instantiated and it is partitioned
in its smallest subgraphsA = {A1, . . . , An} that are pairwise dis-
connected. Clearly, eachAi represents a stable coalition and no agent

occurs in two distinctAi andAj (lines 2-3). For eachA ∈ A, the pro-
jectionG′ of A is computed (line 6) and the core ofG′ is determined
as follows. First, the RDN ofG′ is instantiated and, according to Def-
inition 10, DELTA RED calculates the setω of unfeasible actions.
Then, for eachξ not containing actions inω, the core-membership
of ξ is decided byCORE MEM. If ξ ∈ core(G′), then it is added to
CORE

′.
The core ofG is computed by gathering any union of strate-

gies in eachcore(G′). This is done incrementally in line 14. In
CORE MEM, first it is checked whethercontrib(ξ) ⊆ ben(ξ),
in affirmative caseξ cannot belong to the core and hence false
is returned.CORE MEM computes in line 4 the setO of agents
such thatξ is optimal. According to Proposition 3, such agents
do not have any incentive in modifying their strategies. Thus,
their strategies arefreezed in ξO. Then, given the actionsTA

of the remaining agents, actionsa of the beneficiary agents with
cost(a) > cost(ξ) are discarded – again according to Proposition 3.

Input : A cooperative boolean game
G = 〈A,Φ, cost, γ1, ..., γn,Φ1, ..., Φn〉

Output : core(G)
CORE← {∅};1
ADN← CONVERT ADN(G);2
A← PAIRWISE DIS(ADN);3
forall A ∈ A do4

CORE
′ ← ∅;5

G′ ← PROJECT CBG(G, A);6
RDN← CONVERT RDN(G′);7
ω ← DELTA RED(RDN);8
forall ξ ⊆ Φ[G′] \ ω do9

if CORE MEM(ξ, G′) then10
CORE

′ ← CORE
′ ∪ {ξ}11

end12
end13
CORE← {ξ | ξ = ξ1∪ ξ2 whereξ1 ∈ CORE andξ2 ∈ CORE

′}14
end15
return CORE;16

Algorithm 1 : FIND CORE

Input : A cooperative boolean gameG and a strategyξ
Output : True if ξ ∈ core(G), false otherwise.
if contrib(ξ) 6⊆ ben(ξ) then1

return false;2
end3
O ← {i | ξ = argmax̄ξ ui(ξ̄)};4
ξO ← ξ ∩

S

i∈O Φi;5
TA←

S

j 6∈O Φj ;6
forall j ∈ ben(ξ) \O do7

TA← TA \ {a | a ∈ Φj andcost(a) > costj(ξ)};8
end9
forall ξ′ ⊆ TA do10

if BLOCKED(ξ, ξO ∪ ξ′) then11
return false;12

end13
end14
return true;15

Algorithm 2 : CORE MEM

After this last optimization, the core membership isbrutally com-
puted and a strategy blockingξ is searched in the set of strategies
ξO ∪ ξ′, whereξ′ is a subset of the resultingTA.

As noted in Bonzon et al. [2], a further optimization could bein
principle possible by removing some arc(i, j) in ADN(G) in case
all the actions ofj that occur inγi are irrelevant. However, selecting
irrelevant variablesa in a formulaφ means to check the validity of

φ⊤ ↔ φ⊥, whereφ⊤ andφ⊥ are obtained by substituting each oc-
currence ofa in φ with ⊤ and⊥ respectively. Thus, this would add
a coNP-complete step just to deal with a few cases ofpathological
goals and without being sure that, by removing an edge, two sub-
graphs result disconnected. For this reasonADN(G) is instantiated
from the initial goals, without determining irrelevant variables.

6 Experimental results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 7 7.5 8 8.5 9 9.5 10 10.5 11

T
im

e
(s

ec
)

Number of agents

[2,2,2,0,2]
[2,2,2,0,3]
[2,2,2,0,9]

 0

 50

 100

 150

 200

 250

 7 8 9 10 11

T
im

e
(s

ec
)

[2,1,1,1,10]
[2,2,2,1,10]
[2,3,3,1,10]
[2,4,4,1,10]
[2,5,5,1,10]

Figure 2. Experiments varying the costs of variables and the size of goals

We have implemented a generator that enables to instantiateCBGs
of different shapes. The generator takes as input 6 parameters: the
number of agentsNA, the number of actions per agentNAc, the
number of disjunctsND , the number of conjunctsNC , the mini-
mal and maximal cost valuesCmin andCmax. As output we obtain
a CBG withNA agents that controlNAc variables each. An agent’s
goal takes the formγ1 ∨ · · · ∨ γND

where eachγi consists in a
conjunctionl1 ∧ · · · ∧ lNC

of randomly generated literals. Finally,
an integer cost value fromCmin to Cmax is randomly assigned to
each propositional variable. In the figures, the ordinate axis repre-
sents the run-time expressed in seconds where, for each input set-
ting, the reported results correspond to the mean over 20 runs of
find core. In the figures the following tuple is used for the experi-
ments[NAc, ND, NC , Cmin, Cmax].

In Figure 2.a, the number of actions per agent as well as the struc-
ture of goals remain fixed (NAc = ND = NC = 2). Also, Cmin

is fixed to0 whereas the X axis corresponds to the number of agents
NA. Different lines correspond to different values of the maximal
costCmax. As can be seen, performances strongly depend onCmax

and the framework behaves better by increasing it. This is only ap-
parently surprising since costless actions cannot be discarded by ap-
plying ∆-reduction or in lines 7-9 ofCORE MEM. Now, as the cost
of each actiona is randomly chosen in the range0, . . . , Cmax, the
smallerCmax is the higher is the probability thatcost(a) = 0. In
particular, forCmax = 2 approximatively33% of the actions cannot
be unfeasible, this rate decreases to25% and10% for Cmax = 3
andCmax = 9, respectively. Furthermore, dealing with randomly
generated CBGs, by settingND = NC = 2 the resulting ADNs
are very likely to be strongly connected and hence stable coalitions
practically do not affect performances.

Figure 2.b shows how the framework behaves by increasing the
sizeof goals. As before,NAc = 2 and the X axis corresponds the
number of agentsNA, on the contrary the cost range is fixed to1−10
– note that all variables are costly. Each line corresponds to differ-
ent goal sizes,ND is set equal toNC and their value varies from
1 to 5. With goals composed by a single literalND = NC = 1,
even with 11 agents4, find core returns in0.2 seconds. By compar-
ing with the previous figure, one of the factors that improvesso much
performances is that the resulting ADNs present quite oftentwo or
more disconnected components and hence stable coalitions actually
decompose the original game.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

(6,2) (4,3) (3,4) (2,6)

T
im

e
(s

ec
)

test3

Figure 3. Varying the number of disjuncts and conjuncts in a goal

As said before, withNA = NC = 2 stable coalitions practically
do not affect performances anymore. However, by generatingran-
dom CBGs, goals are still enoughsmallwith respect to the number
of possible literals that it is very likely that all – or all except – actions
result to be unfeasible. So, in most of the cases, thefind core reduces
the search space to the only empty strategy and hence basically this
setting measures performances ofCORE MEM. For larger values of
ND andNC , performances get worse. One reason is that the proba-
bility that a costly action is unfeasible decreases with thenumber of
literals occurring in a goal. Thus, the∆-reduction becomes less and
less effective.

In Figure 2, bigger goals are obtained by increasing bothND and
NC at the same time, but which of these two values has a higher im-
pact on performances? Figure 3 shows a set of experiments where
the number of agents, actions per agents and cost range is fixed (re-
spectivelyNA = 7, NAc = 3, Cmin = 1 andCmax = 10). The

4 Note thatNA = 11 andNAc = 2 mean222 ≃ 4 · 106 possible strategies
composing initially both the generation and the test spaces.

X axis represents different pairs of values for(ND, NC) such that
the total number of literals composing a goal is constant, namely
(6, 2), (4, 3), (3, 4), (2, 6). As before, we can see a valuable variabil-
ity in performances and, to better understand why largeNC jeopar-
dizes more than largeND , we run a version of our framework with
only ∆-reduction on values(6, 2) and(2, 6). The run-times obtained
–respectively 457 and 449 seconds– are very close to the value ob-
tained in the original framework for(2, 6). This means that the op-
timizations designed to decide the core membership performbetter
with goals composed by several disjuncts of small size that those
with few disjuncts of big size.

7 Conclusion

In this paper we present an approach to optimize the computation
of the core in cooperative boolean games [5] which is essentially
based on dependence networks [9, 11]. The problem of computing
the core of a cooperative boolean gameG is a typical generation and
test problem. We provide optimization techniques using twokinds of
social dependence networks for the generation phase and extending
some the results provided by Dunne et al. [5] for the test phase.

On the one hand, the advantage, shown by the results of Section 6,
is that, also in the case of games with a number of strategies sized
in an order of some millions, results are obtained in few minutes.
On the other hand, the optimization techniques we propose inthis
paper are referred only to actions with a positive cost. Actions with
no cost have not been analyzed in order to propose new optimization
techniques and this is left for future research. Finally, the proposed
optimization techniques, concerning the core-membershipproblem,
return satisfactory results if they are applied to particular kinds of
goals in which the disjuncts are small.

REFERENCES
[1] G. Boella, L. Sauro, and L. van der Torre, ‘Strengtheningadmissi-

ble coalitions’, in17th European Conference on Artificial Intelligence,
ECAI, pp. 195–199, (2006).

[2] E. Bonzon, M. Lagasquie-Schiex, and J. Lang, ‘Dependencies between
players in boolean games’, inSymbolic and Quantitative Approaches
to Reasoning with Uncertainty, 9th European Conference, ECSQARU,
pp. 743–754, (2007).

[3] E. Bonzon, M. Lagasquie-Schiex, and J. Lang, ‘Dependencies between
players in boolean games’,Int. J. Approx. Reasoning, 50(6), 899–914,
(2009).

[4] C. Castelfranchi, ‘Social power. a point missed in multi-agent, dai and
hci.’, in Decentralized AI - Proceedings of MAAMAW’90. Elsevier Sci-
ence Publishers, (1990).

[5] P. Dunne, W. van der Hoek, S. Kraus, and M. Wooldridge, ‘Cooperative
boolean games’, in7th International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS, pp. 1015–1022, (2008).

[6] P. Harrenstein,Logic in Conflict, Ph.D. dissertation, Utrecht University,
2004.

[7] P. Harrenstein, W. van der Hoek, J. Meyer, and C. Witteveen, ‘Boolean
games’, in8th Conference on Theoretical Aspects of Rationality and
Knowledge, TARK, pp. 287–298, (2001).

[8] J. Neumann and O. Morgenstern,Theory of Games and Economic Be-
haviour, Princeton Univeristy Press, 1944.

[9] L. Sauro, Formalizing admissibility criteria in coalition formation
among goal directed agents, Ph.D. dissertation, University of Turin,
2005.

[10] L. Sauro, L. van der Torre, and S. Villata, ‘Dependency in cooperative
boolean games’, inAgent and Multi-Agent Systems: Technologies and
Applications, 3rd KES International Symposium, KES-AMSTA, volume
5559 ofLecture Notes in Computer Science, pp. 1–10, (2009).

[11] J. Sichman and R. Conte, ‘Multi-agent dependence by dependence
graphs’, in1st International Joint Conference on Autonomous Agents
& Multiagent Systems, AAMAS, pp. 483–490, (2002).

