
Checking Consistency in role oriented
Dependence Networks

G. Boellaa V. Genovesea L. van der Torreb S. Villataa

a University of Turin, Italy,{guido, genovese, villata}@di.unito.it
b University of Luxembourg, Luxembourg, leendert@vandertorre.com

Abstract

In this paper we first formalize dependence networks that canbe automaticaly build to model goal-
based relationships among agents. Then, we propose three algorithms to build and check the consistency
of a dependence network. We start presenting the elements composing our ontology such as agents, goals,
skills, dependencies with the addition of the institutional notions of roles, institutional goals, institutional
skills. We investigate the reasons behind the possible inconsistencies in building the combined dependence
network and we propose an algorithm to check them.

1 Introduction

The definition of appropriate mechanisms of communication and coordination in open Multiagent Systems
(MAS), motivates the development of models and methodologies with the aim to support the MAS designer
for the whole development process of the software, e.g., theTROPOS methodology [5], developed for agent-
oriented design of software systems. The TROPOS methodology [5] is based on the multiagent paradigm
consisting of a set of agents and their features but it does not consider the addition of an institutional per-
spective to this paradigm. Recently, institutions have emerged as a new mechanism in the design of artificial
social systems, which are used in conceptual modeling of multiagent organizations in agent oriented soft-
ware engineering [19, 2]. In the MAS design phase, there may exist two separate views specifying agents
interaction: the agent view and the institutional view. Thefirst one models the relationship among agents
represented by dependencies to achieve a particular goal, for instance agentA may rely on agentB for a
goalG.

In the institutional view, relationships are among roles, which are abstractions that model the expected
behaviour that an agent has to fulfill while playing a specificrole. In this case, the dependence of roleR on
role R

′

for the institutional goalIG represents the fact that an agent which enters the roleR has to adopt
the goalIG that, in order to be achieved, needs the cooperation of the agent who plays roleR

′

. E. g., in a
Grid-based virtual organization, nodea enters roleadm, the VO administrator role, and it can authorize the
other nodes to access to a resource.

In this paper we address the following research questions: How to automatically build a dependence
network from the agent view and from the institutional view describing the multiagent system and how to
check automatically the inconsistency causes during the building of the combined view of the multiagent
system.

First, starting from [2, 15], we present the elements composing the ontology of our model such as agents,
goals, facts, skills, dependencies with the addition of theinstitutional notions of roles, institutional goals,
institutional facts, institutional skills. Our model is a directed labeled graph whose nodes are instances
of the metaclasses of the metamodel, e.g., agents, goals, and whose arcs are instances of the metaclasses
representing relationships between them such as dependency. Second, we present two algorithms to build
the dependence network from the agent view and to build the institutional dependence network from the
institutional view. Third, we investigate the reasons behind the possible inconsistencies in building the
combined dependence network and we present an algorithm to check the presence of these inconsistencies.

The remainder of the paper is as follows. Section 2 describesa Grid computing scenario as case study
for the design of virtual organizations. In Section 3, we present the notions composing the ontology. In
Section 4, we define the algorithms to check the consistency of the dependence networks. Related work and
conclusions end the paper.

2 The Grid Scenario

The Grid Computing paradigm provides the technological infrastructure to facilitate e-Science and e-Research.
Grid technologies can support a wide range of research including amongst others: seamless access to a range
of computational resources and linkage of a wide range of data resources. It is often the case that research
domains and resource providers require more information than simply the identity of the individual in order
to grant access to use their resources. The same individual can be in multiple collaborative projects, each
of which is based upon a common shared infrastructure. This information is typically established through
the concept of a virtual organization (VO) [10]. A virtual organization allows the users, their roles and the
resources they can access in a collaborative project to be defined. In the context of virtual organizations,
there are numerous technologies and standards that have been put forward for defining and enforcing au-
thorization policies for access to and usage of virtual organizations resources. Role based access control
(RBAC) is one of the more well established models for describing such policies. In the RBAC model, vir-
tual organization specific roles are assigned to individuals as part of their membership of a particular virtual
organization. The general idea of the RBAC model is that, permissions are associated with functional roles
in organizations, and members of the roles acquire all permissions associated with the roles. Allocation of
permissions to users is achieved by assigning roles to users.

3 Institutional MAS: agents, roles and assignments

We divide our ontology in three submodels: the agent model, the institutional model, and the role assign-
ment model, as shown in Figure 1. Such a decomposition is common in organizational theory, because the
organization can be designed without having to take into account the agents that will play a role in it. Also,
if another agent starts to play a role, for example if a node with the role of simple user becomes a VO ad-
ministrator, then this remains transparent for the organizational model. Likewise, agents can be developed
without knowing in advance in which institution they will play a role.

Figure 1: The conceptual metamodel.

The notion of agent and all its features as goals, capabilities, are used in the conceptual modeling as
in TROPOS [5]. In our model, we add to these notions those related to the institution such as the notion
of role and its institutional goals, capabilities and facts. Both these notions, merged in the combined view,

are used in the conceptual modeling and to each agent it is possible to assign different roles depending on
the organization in which the agent is playing. Adding the institution, to each agent are associated both a
number of physical features and a role with all its institutional features. An agent can be defined as an entity
characterized by a number of features as his capabilities, called skills, his world description, called facts,
and his goals, such as the tasks he wants to achieve. The definition of the agent view is as follows:

Definition 1 (Agent view) 〈A, F, G, X, goals : A → 2G, skills : X → 2A, R : G → 2X〉 consists of a set
of agentsA, a set of factsF , a set of goalsG, a set of actionsX , a functiongoals that relates with each
agent the set of goals it is interested in, a functionskills that describes the actions each agent can perform,
and a set of rules, represented by the functionR that, given a goal, provides the set of actions that must be
done in order to achieve it.

Example 1 Considering a virtual organization on a Grid with a role based access control policy, the agent
view is used to describe the set of legitimate users of the system, represented inside the Grid as nodes. Each
user is provided by a set of actions he can do, represented by the setX , e.g., to save a file on his file system
or to start a computation on his personal computer, and by a set of goals he would fulfill, represented as
the setG, e.g., he wants to reserve half of his available memory for his data or he has to obtain the result
of a computation in two hours. These actionsX can be compared to the operations that are recognized
by the system. Functionsskills and goals link each agent with the actions he can perform and with the
goals he would obtain. FunctionR is a sort of action-consequence function, relating sets of actions with the
goals they allow to fulfill, e.g., to obtain the results of a computation in two hours, the user has to start the
computation on his personal computer.

A social structure is modeled as a collection of agents, playing roles regulated by norms where “interac-
tions are clearly identified and localized in the definition of the role itself” [19]. The notion of role is notable
in many fields of Artificial Intelligence and, particularly,in multiagent systems where the role is viewed as
an instance to be adjoined to the entities which play the role. The institutional view is defined as follows:

Definition 2 (Institutional view) 〈RL, IF, IG, X, igoals : RL → 2IG, iskills : RL → 2X , IR : G →
2X〉 consists of a set of role instancesRL, a set of institutional factsIF , a set of public goals attributed
to rolesIG, a set of actionsX , a functionigoals that relates with each role the set of public goals it is
committed to, a functioniskills that describes the actions each role can perform, and a set ofinstitutional
rulesIR that relates a set of actions and the set of institutional facts they see to.

Example 2 The institutional view represents in the Grid scenario a model for the role based access control
policy. For example, consider a Grid system with the two basic roles of VO administrator and VO member
where the VO administrator has the possibility to assign to the VO members the privileges they need to
enable the access to its resource. Our approach gives the opportunity to define not only the capabilities of
a particular role but it allows also the institutional goalsassociated to roles. For example, a user asks for
saving a file on the file system of another node. This user is associated to a role, since he belongs to a virtual
organization regulated by a RBAC policy. The request can be processed either by the local VO administrator
or by the user that has received the request. If the user requesting the service has a role that can perform
this action, the request is accepted and the file is saved.

In our model, we introduce the third submodel, the role assignment view, which links the agent and the
institutional view to each other, by relating agents to roles.

Definition 3 (Assignment view) 〈A, RL, roles : RL → A〉 consists of a set of agentsA, a set of role
instancesRL, and a functionroles assigning a role to its player inA.

Finally, the combined view unifies the agent view and the institutional view, thanks to the assignment
view, providing a unified conceptual metamodel:

Definition 4 (Combined view) Let 〈A, RL, roles : RL → A〉 be a role assignment view for the agents
and role instances defined in the agent view〈A, F, G, X, goals : A → 2G, skills : X → 2A, R : G → 2X〉
and institutional view〈RL, IF, IG, X, igoals : RL → 2IG, iskills : X → 2RL, IR : IG → 2X〉. The
role playing agents areRPA = {〈a, r〉 ∈ A × RL | r ∈ roles(a))}. The combined view associates with
the role playing agents the elements of the agent and institutional view.

Our model is a directed labeled graph whose nodes are instances of the metaclasses of the metamodel,
e.g., agents, goals, facts, and whose arcs are instances of the metaclasses representing relationships between
them, dependencies. Our modeling is based on the theory of the social power and dependence pioneered by
Castelfranchi [7] as starting point and then developed by Conte and Sichman [13]. In a multiagent system,
since an agent is put into a system that involves also other agents, he can be supported by the others to
achieve his own goals if he is not able to do them alone. This leads to the concept of power representing the
capability of a group of agents (possibly composed only by one agent) to achieve some goals (theirs or of
other agents) performing some actions without the possibility to be obstructed.

The notion of power brings to the definition of a structure with the aim to show the dependencies among
agents, called dependence network. In order to define these relations in terms of goals and powers, we adopt,
as said, the methodology of dependence networks as developed by [13] without distinguishing AND and OR
dependencies. Note that Definition 5 of dependence networks, differently from Boella et al. [6] in which the
functiondepis 2A×2A → 22

G

, definesdepin the view of the algorithmic approach where we are interested
in obtaining the relation of one agent, at each iteration cycle, with the other agents for a particular goal. A
dependence network is defined as follows:

Definition 5 (Dependence Networks (DN))A dependence network is a tuple〈A, G, dep〉 where:

• A is a set of agents andG is a set of goals;

• dep: A× 2A ×G is a relation which maps each pair of an agent and a set of agents with the goal on
which the first depends on the second.

In early requirements analysis, we model the dependencies among the agents and the roles associated
to the agents of the organization representing, in this way,the domain stakeholders. Figure 2 represents a
dependence networks where plain arrows represent materialdependencies while the dotted ones represent
institutional dependencies.

Figure 2: An example of dependence network.

4 Algorithms

In this section, we present three algorithms to automatize the building of the two dependence networks from
the agent view and the institutional one, and to check the consistency of the combined view which arises
from the previous two views. Moreover, we propose an evaluation of the combined view in the context of
coalition formation.

Algorithm 1CREATE DEPNETS takes as input the sets of agentsA, goalsG, actionsX and the functions
goals, skills andR composing the agent view and returns the dependencies whichcan be formed due to the
starting view. The algorithm works as follows: for each agent a in the setA, it checks what are its goalsg
thanks to the functiongoals and it finds what are the actionsac which can lead to an achievement of the goal
a thanks to the functionR. At this point, the algorithm finds the agents which have the power to perform the
selected actions thanks to the functionskills putting them in the setI. Finally, it takes the union of these
agentsθ on whicha depends on and it builds the dependencydep(a, θ, g). Trivially, the algorithm works in
O(|Ag| · |G| · |X |).

Algorithm 2 CREATE IDEPNETS starts with the sets of rolesRl, institutional goalsIG, actionsX

and the functionsigoals, iskills and IR composing the institutional view and returns the institutional
dependencies which can be formed due to the starting view. The algorithm works exactly as the previous
one, that is why we omit its detailed description. The presented algorithms leads to the automatization of
the building process of the two dependence networks representing them. These dependence networks are
independent to each other at this point of the design processand they are unified only when the necessity to
build the combined view arises. The building of the dependence network representing the combined view
is much more complex than the previous one since the unification of two independent networks could lead
to some inconsistencies. In particular, the causes of inconsistency are: given an agent of the agent view
playing a role, if there is one of the roles to which it dependson in the institutional view which is not played
by anyone, and if there is a conflict between a goal and an institutional goal of the same agent.

Algorithm 3 CHECK DEPNETS takes as input the functionRoles, previously defined in the assignment
view, the set of dependencies composing the dependence networkDEP , the set of dependencies composing
the institutional dependence networkIDEP and returns a consistent combined dependence networks. The
algorithm works as follows: for each agenta in A, it takes all the roles on which it depends on, given
its role thanks to the functionRoles(a), and the insitutional goalsIg on which the dependency is based.
Then it checks the incompatibility causes: if there is a conflict between the goals ofa and the institutional
goals of the roler of a then it returnsNON CONSISTENT otherwise it checks, for all the rolesr ∈ θ

′

on
which a depends on, if they have a player thanks to the functionPlayers(r), returning an inconsistency if
Players(r) = ∅. If no inconsistencies are found, the algorithm takes all the agentsAi which play a role on
whicha depends on. At the end, it takes the union of these agentsΓ and builds the conditional dependence
network composed by dependenciesCdep(a, Γ, Ig). The algorithm works inO(|Ag| · |2X | · |G|).

a

b

c

d

A = {a , b , c , d } , R = { r l1 , r l 2 , r l 3 }
G = { g 1 , g 4 , g 7 , g 8 }
I G = { g 2 , g 3 , g 5 , g 6 }
X = {x1 , . . . , x8 }
goa l s (a) : g1 , g8 ; i goa l s (a) : g3 , g5 .
goa l s (b) : g4 ; i goa l s (b) : g2 .
i goa l s (c) : g6 , goa l s (d) : g7 .
sk i l l s (x1) : b , i sk i l l s (x2) :a , i sk i l l s (x3) :b
sk i l l s (x4) :a , i sk i l l s (x5) :c , i sk i l l s (x6) :a
sk i l l s (x7) :a , sk i l l s (x8) :d .
R (g n) : x n , I R (i g n) : i x n .
ro les (a) : r l 1 , ro les (b) : r l 2 , ro les (c) : r l 2 , ro les (d) : r l 3

g 1

g 5

g 6

g 2

g 3

g 4

g 7

g 8

a

c

b r l1 r l2

r l3

ro les (a) : r l 1 , ro les (b) : r l 4 , ro les (c) : r l 3
S t a r t i n g f r o m a g e n t a , t h e r o l e o n w h i c h i t

d e p e n d s i s r o l e r l 2 B U T P l a y e r s (r l 2) = 0
T H E N N O N _ C O N S I S T E N T .

a

c

b r l1 r l2

r l3

ro les (a) : r l 1 , ro les (b) : r l 2 , ro les (c) : r l 3
S t a r t i n g f r o m a g e n t a , e a c h r o l e i s p l a y e d b y

a n a g e n t B U T c o n f l i c t (g , i g) = = T R U E
T H E N N O N _ C O N S I S T E N T .

R o l e - b a s e d i n c o n s i s t e n c y G o a l - b a s e d i n c o n s i s t e n c y

g ig

A

B C

Figure 3: An example of combined dependence network and the possible conflicts.

An example of the application of the algorithm is provided inFigure 3.A while in Figure 3.B-C are
provided two examples of the two kinds of conflicts which are detected by the automatic building of the
combined dependence networks.

Input : 〈A; G; X ; R : G → 2X ; goals : A → 2G; skills : X → 2A〉
Output : dep : A × 2A × G

forall a ∈ A do1

forall g ∈ goals(a) do2

forall ac ∈ R(g) do3

Ii = skills(ac);4

i + +;5

end6

end7

θ = ∪jIj ;8

dep(a, θ, g);9

end10

Algorithm 1 : CREATE DEPNETS

Input : 〈Rl; IG; X ; IR : IG → 2X ; igoals : Rl → 2IG; iskills : X → 2Rl〉
Output : Idep : Ag × 2Ag × G

forall r ∈ Rl do1

forall ig ∈ igoalsr do2

forall iac ∈ IR(ig) do3

Ii = iskills(iac);4

i + +;5

end6

end7

θ
′

= ∪jIj ;8

Idep(a, θ
′

, ig);9

end10

Algorithm 2 : CREATE IDEPNETS

Input : Roles : Ag → RT ; Players : RT → Ag; DEP ; IDEP ; goals(a) : x ∈ 2G

Output : Consistecy

forall a ∈ Ag do1

forall θ
′

: Idep(Roles(a), θ
′

, Ig) do2

forall g ∈ goals(a) do3

if conflict(g, Ig) then4

NON CONSISTENT;5

end6

end7

forall r ∈ θ
′

do8

if Players(r) = ∅ then9

NON CONSISTENT;10

end11

else12

Ai = Players(r)13

i + +;14

end15

end16

end17

Γ = ∪jAj18

Cdep(a, Γ, Ig)19

end20

CONSISTENT;21

Algorithm 3 : CHECK DEPNETS

5 Related work

The idea of focusing the activities that precede the specification of software requirements, in order to un-
derstand how the intended system will meet organizational goals, has been first proposed in requirements
engineering by Eric Yu his i* model [18]. The rationale of thei* model is that by doing an earlier analysis,
one can capture not only the what or the how, but also the why a piece of software is developed. As stated
throughout the paper, the most important inspiration source for our model is the TROPOS methodology
[5] that spans the overall software development process, from early requirements to implementation. Other
approaches to software engineering are those of KAOS [8], GAIA [17], AAII [12] and MaSE [11] and
AUML [1]. The comparison of these works is summarized in Figure 4. The main difference between these
approaches and our one consists in the use of the notion of institution.

Different approaches on the application of the notion of institution and role within open multiagent
systems are defined in Sierra et al. [14], Bogdanovych et al. [4] and Vazquez-Salceda et al. [16] and Dastani
et al. [9].

Figure 4: Comparison among different software engineeringmethodologies.

6 Conclusions

In this paper we formalize an extension of dependence networks by adding roles, presented in the institu-
tional and combined views. We present three algorithms which permit to build and check the consistency
among agent view and institutional view. Using dependence networks as methodology to model a multia-
gent systems advantage us from different points of view. First, they are abstract, so they can be used for
conceptual modeling, simulation, design and formal analysis. Second, they are used in high level design
languages, like TROPOS [5], so they can be used also in software implementation.

A first evaluation of the usefulness of the algorithmCHECK DEPNETS can be found in the context of
coalition formation. An improvement of the TROPOS approach[5] consists in the introduction of a notion of
coalition for dependence networks. We propose the usage of areciprocity-based coalition formation theory
in which each agent belonging to the coalition has to contribute something and to get something out of it. A
definition of reciprocity-based coalitions is provided in Boella et al. [3]. Considering our three views, three
kind of reciprocity based coalitions can be highlighted: coalitions based only on institutional dependencies
called institutional coalitions, coalitions based only onmaterial dependencies called material dependencies
and coalitions based on both the two kinds of dependencies called full coalitions. An example of these
kinds of coalitions is presented in Figure 3.A where coalition {a, b} is a full coalition, coalition{a, c} is
an institutional coalition and coalition{a, d} is a material coalition. These three classes of coalitions may
influence agents’ decisions about goals’ execution, establishing preferences on what coalition you want to
belong to. A deeper analysis of this issue is left for future research.

References

[1] B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism for specifying multiagent software
systems.Software Engineering and Knowledge Engineering, 11(3):207–230, 2001.

[2] Guido Boella, Leendert van der Torre, and Serena Villata. Changing institutional goals and beliefs of
autonomous agents. InPRIMA, pages 78–85. Springer, LNCS, 2008.

[3] Guido Boella, Leendert van der Torre, and Serena Villata. Social viewpoints for arguing about coali-
tions. InPRIMA, pages 66–77. Springer, LNCS, 2008.

[4] Anton Bogdanovych, Marc Esteva, Simeon J. Simoff, Carles Sierra, and Helmut Berger. A methodol-
ogy for developing multiagent systems as 3d electronic institutions. InAOSE, volume 4951 ofLecture
Notes in Computer Science, pages 103–117. Springer, 2007.

[5] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos. Tropos:
An agent-oriented software development methodology.Autonomous Agents and Multi-Agent Systems,
8(3):203–236, 2004.

[6] Patrice Caire, Serena Villata, Guido Boella, and Leendert van der Torre. Conviviality masks in multia-
gent systems. In Lin Padgham, David C. Parkes, Jörg Müller, and Simon Parsons, editors,AAMAS (3),
pages 1265–1268. IFAAMAS, 2008.

[7] C. Castelfranchi. The micro-macro constitution of power. Protosociology, 18:208–269, 2003.

[8] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.Sci. Comput.
Program., 20(1-2):3–50, 1993.

[9] Mehdi Dastani, Birna van Riemsdijk, Joris Hulstijn, Frank Dignum, and John-Jules Ch. Meyer. En-
acting and deacting roles in agent programming. In James Odell, Paolo Giorgini, and Jörg P. Müller,
editors,AOSE, volume 3382 ofLecture Notes in Computer Science, pages 189–204. Springer, 2004.

[10] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual organiza-
tions. Int. J. of Supercomputer Applications, 15, 2001.

[11] Juan C. Garcı́a-Ojeda, Scott A. DeLoach, Robby, Walamitien H. Oyenan, and Jorge Valenzuela. O-
mase: A customizable approach to developing multiagent development processes. InAgent-Oriented
Software Engineering VIII, 8th International Workshop, volume 4951 ofLecture Notes in Computer
Science, pages 1–15. Springer, 2007.

[12] David Kinny, Michael P. Georgeff, and Anand S. Rao. A methodology and modelling technique for
systems of bdi agents. In Walter Van de Velde and John W. Perram, editors,MAAMAW, volume 1038
of Lecture Notes in Computer Science, pages 56–71. Springer, 1996.

[13] Jaime Simão Sichman and Rosaria Conte. Multi-agent dependence by dependence graphs. InAAMAS,
pages 483–490. ACM, 2002.

[14] Carles Sierra, John Thangarajah, Lin Padgham, and Michael Winikoff. Designing institutional multi-
agent systems. In Lin Padgham and Franco Zambonelli, editors,AOSE, volume 4405 ofLecture Notes
in Computer Science, pages 84–103. Springer, 2006.

[15] Serena Villata. Institutional social dynamic dependence networks. In Guido Boella, Gabriella Pigozzi,
Munindar P. Singh, and Harko Verhagen, editors,NORMAS, pages 201–215, 2008.

[16] J. Vzquez-Salceda, V. Dignum, and F. Dignum. Organizing multiagent systems.Autonomous Agents
and Multi-Agent Systems, 11(3):307–360, 2005.

[17] M. Wooldridge, N. R. Jennings, and D. Kinny. The GAIA methodology for agent-oriented analysis
and design.Autonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

[18] E. Yu. Modeling organizations for information systemsrequirements engineering. InFirst IEEE
International Symposium on Requirements Engineering, pages 34–41, 1993.

[19] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems: The gaia methodol-
ogy. IEEE Transactions of Software Engineering and Methodology, 12:317370, 2003.

