
Argumentation Patterns

Serena Villata1 and Guido Boella1 and Leendert van der Torre2

1 Dipartimento di Informatica, University of Turin
{villata,boella}@di.unito.it

2 Computer Science and Communication, University of Luxembourg
leendert@vandertorre.com

Abstract. Argumentation patterns are general reusable solutions to
commonly occurring problems in the design of argumentation frame-
works, such as the relation between claim and data in the Toulmin
scheme. We introduce a formal approach for the semantics of argumenta-
tion patterns describing relationships and interactions among arguments,
without instantiating the involved abstract arguments. Argumentation
patterns are a multi-labeling of a set of arguments, together with con-
straints on this labeling. Constraints express the relations among the
labels of the arguments of the pattern when they interact with other ar-
guments. Moreover, we define argumentation patterns using a two sorted
argumentation framework where focal arguments are distinguished from
auxiliary arguments, and we show how to compute their semantics by
reusing a semantics introduced by Dung. We show how patterns are ap-
plied to design conjunction and disjunction of arguments, accrual, proof
standards, and second-order attacks.

1 Introduction

An argumentation framework [9] is composed by a set of elements called argu-
ments and a binary relation over the arguments called attack. A core issue in
argumentation theory is the relation between abstract arguments. In modelling
argumentation frameworks, this relation has been investigated following differ-
ent lines [3, 1, 5, 13, 8, 6]. In this paper, we propose to reuse software engineering
ideas like patterns to investigate the relation between abstract arguments.

Our context deals with situations where argumentation frameworks are not
generated from a knowledge base, but where the knowledge engineer has to
directly design the arguments and attacks. In many cases, for the engineer is
easier to reuse parts of existing frameworks, so a methodology for representing
abstractions facilitating such reuse and for defining their meaning is needed. As
methodology we introduce argumentation patterns. Argumentation patterns are
visual descriptions for how to solve design problems of argumentation frame-
works, that can be used in many situations.

Argumentation patterns are sets of arguments related to each other in such
a way that they cannot be expressed directly with the basic attack relation.
For example, assume that a modeler believes that the argument “Jones is not

liable” is attacked if both “Jones has a contract” and “Jones has breached the
contract” are acceptable. Then how to relate these three arguments such that
this property holds? This is an instance of the conjunctive attack pattern: the
former argument is attacked only if each of the latter is accepted. To express
situations like this one the usual solution is to define extended argumentation
frameworks, i.e., introducing a conjunctive attack relation with its own seman-
tics. However, when more solutions must be put together it becomes problematic
to unify everything into a single extended argumentation framework. This is why
we propose patterns.

Our challenge to define argumentation patterns leads to the following re-
search questions:

1. How to visualize argumentation patterns?
2. How to define argumentation patterns?
3. Which argumentation patterns can be identified in the literature?

First, the problem of finding a good visualization for argumentation patterns
is not trivial. We mainly focus on the existing well-known visualizations such as
boolean gates and transistors, and we provide the argumentative counterpart of
such visualizations. In particular, we use the logic gate AND for visualizing the
conjunctive pattern where each “input” argument needs to be acceptable to get
the “output” argument unacceptable (or acceptable), and the OR gate for visual-
izing the disjunctive pattern, where at least one of the “input” arguments needs
to be acceptable to get the “output” argument unacceptable (or acceptable). We
introduce transistors to represent the second-order pattern where the collector
is the attacking argument, the emitter is the attacked argument, and the base
is the argument raising the second-order attack. Transistors can be composed
to visualize the higher-order pattern. Transistors are used also to visualize part
of the Toulmin scheme where the data is the collector, the claim is the emitter,
and the warrant is the base.

Second, there are many ways to define argumentation patterns. Formal tech-
niques are needed since the visualization may be ambiguous, and, in particular,
not expressive enough to define how to combine argumentation patterns. For-
mal semantics is needed to define patterns and their use, and a formal syntax is
needed to embed them in the overall argumentation framework. We consider two
dimensions. First, the perspective of the designer, who knows the meaning of the
pattern and how it behaves once inserted in a larger framework. We define an
argumentation pattern as a set of arguments together with the specification of
their behavior, which is not simply a set of attacks among the arguments of the
pattern. We express the meaning of the pattern with a multi-labeling function
and a set of propositional formulas called constraints. The multi-labeling shows
the values assigned to the arguments in the pattern while the constraints express
relations between these values. In particular, constraints allow to compute the
labels of the arguments in the pattern, in case they are attacked by arguments
outside the pattern. The multi-labeling, instead, restricts the possible labels of
the arguments in the pattern, independently of attacks by arguments outside
the pattern. The second dimension concerns the semantics of a framework which

DATA CLAIM

WARRANTBACKING REBUTTAL

unless
since

because

thus

Fig. 1. The Toulmin scheme.

includes patterns. We could define an extended argumentation framework with
an ad hoc semantics to cope with all the allowed patterns. Instead, we decide
to flatten the patterns to abstract argumentation frameworks, by adding, when
necessary, auxiliary arguments and suitable attacks. The flattening is driven
by the definition of the pattern in terms of multi-labeling and constraints. The
advantage of our solution is that it allows to reuse standard semantics, and to in-
troduce further patterns without having to revise the semantics like in extended
argumentation frameworks.

Third, the formal framework must be able to model argumentation patterns
discussed in the literature. Fig. 1 visualizes the well-known Toulmin scheme [15].
The arrows represent unspecified relations between the elements, e.g., the war-
rant connects the data and the claim and it is supported with some backing,
the rebuttal indicates circumstances in which the authority of the warrant has
to be set aside. The framework has to be able to give a formal meaning to these
relations – there may even be competing semantics of the Toulmin scheme, e.g.,
the claim is accepted only if the rebuttal is not accepted and if the warrant is
supported by a backing.

Whereas most research in argumentation theory is driven by theoretical con-
cerns, the work reported in this paper is driven by practical concerns. Even if
ultimately arguments must be instantiated, in our experience of modeling argu-
mentation [5, 3, 4], there is a need at the abstract level to define argumentation
patterns. Our work raises also theoretical questions, but in this paper we restrict
ourselves to concepts and examples.

This paper follows the research questions and it is organized as follows. Sec-
tion 2 introduces the visualization, syntax and semantics of argumentation pat-
terns, and how they are used. Section 3 defines patterns from the argumentation
literature. Related work and conclusions end the paper.

2 Formal framework

2.1 Dung’s abstract argumentation

We express Dung’s [9] complete semantics of abstract argumentation using Jakobovits-
Vermeir-Caminada’s three valued labelings [11, 7], where an argument a can be
labeled in, out or undecided. To define the meaning of patterns, we must be able

to express whether arguments are in, out or undecided, and which is the label of
an argument given the label of other arguments.

We write the fact that an argument can have one of the three labels by means
of propositions a∈, a6∈, and a?, meaning, respectively, that argument a is in, out
or undecided. Given this notation we can express the relation between labelings
and extensions in the following way. A labeling corresponds to the extension
{a | a∈}, and given an extension E ⊆ A of argumentation framework 〈A,→〉,
the corresponding labeling is given by a∈ iff a ∈ E, a6∈ iff a 6∈ E and ∃b ∈ E such
that b→ a, and a? otherwise. A simple example to start with is the equivalence
between two arguments which can be expressed as a∈ ≡ b∈ ∧ a6∈ ≡ b6∈. We
write ⇒ for material implication.

Definition 1 (Complete semantics). Let U be a set of arguments called the
universe of arguments. For any finite set of arguments A ⊆ U , a three valued
labeling function l : A→ {∈, 6∈, ?} is a complete function that partitions a set of
arguments into the in (∈), out (6∈) and undecided (?) arguments. An acceptance
function ε is a function that associates with every argumentation framework
〈A,→〉 with A ⊆ U and →⊆ A × A, the set of three valued labelings of A
satisfying the following conditions:

– ∀a, b ∈ A : a→ b⇒ ¬(a∈ ∧ b∈): an extension is conflict free.
– ∀b ∈ A : b∈ ⇔ ∀a : a → b ⇒ a6∈: an argument is in, if and only if all its

attackers are out.
– ∀b ∈ A : b 6∈ ⇔ ∃a : a → b ∧ a∈: an argument is out, if and only if at least

one of its attackers is in.

We call these labelings the complete labelings of argumentation framework 〈A,→〉.

The following example due to Caminada [7] illustrates the complete semantics
and our notation.

Example 1 (Two cycles). Fig. 2 visualizes the argumentation framework 〈A,→〉
with A = {a, b, c, d, e} and→= {a→ b, b→ a, b→ c, c→ d, d→ e, e→ c},where
a=“Jones is a spy”, b=“Jones is not a spy” c=“Mary says that Jones lies”,
d=“Jones says that Harry lies,” and e=“Harry says that Mary lies.” This figure
must be read as follows: a circle visualizes an argument, and an arrow visualizes
an attack. The complete semantics is given by three labelings: a∈∧b6∈∧c?∧d?∧e?,
a?∧b?∧c?∧d?∧e?, a 6∈∧b∈∧c 6∈∧d∈∧e 6∈. Other semantics return other labelings,
for example the grounded semantics returns only a?∧b?∧c?∧d?∧e?, the maximal
number of undecided arguments, whereas the preferred or stable semantics only
return a6∈ ∧ b∈ ∧ c 6∈ ∧ d∈ ∧ e 6∈, the minimal number of undecided arguments.

2.2 Semantics of argumentation patterns

An argumentation pattern is a multi-labeling (i.e., a set of labels for each ar-
gument) of a set of arguments, together with propositional constraints on the
labeling. Roughly, the multi-labeling contains the labelings of the arguments

a cb

e

d

OUTINOUT OUTComplete Labeling3 IN
Complete Labeling2 ? ????
Complete Labeling1 ??IN ?OUT

edcba

Fig. 2. Two cycles (Example 1)

when none of the arguments of the pattern is attacked by arguments not in
the pattern, and the constraints represent an invariant expressing the properties
which always hold between the labels of the arguments of the pattern, regardless
whether the arguments are attacked by other arguments or not. The constraints
are expressed in terms of propositions x∈, x 6∈, and x? for all x ∈ A which repre-
sent if an argument is in, out or undecided. Note that this is a possible choice,
but other choices are possible too, as we discuss in the conclusion. One criterion
to decide is the expressive power of the pattern language.

Definition 2 (Argumentation pattern). An n-ary argumentation pattern is
a triple 〈A,M,C〉 where A ⊆ U is a sequence of n arguments, M : A→ 2{∈, 6∈,?} a
function from the arguments to the powerset of the labels (called a multi-labeling)
and C is a propositional formula on signature x∈, x 6∈, and x? for all x ∈ A. The
labelings of an argumentation pattern are the labelings where the label of each
argument is one of its multi-labels, and that satisfy the constraints of the pattern.

At first sight it may seem that the multi-labeling is a constraint too, namely
the constraint that the label of the argument contains one of the values of the
multi-label. However, the multi-label expresses the values the arguments can
have when the pattern is not attacked by other arguments, and the constraints
express the relations between the values of the arguments, whether they are
attacked by other arguments or not. Both the multi-labeling and the constraints
are needed for the case in which patterns are used in a larger argumentation
framework, and when they are combined with other argumentation patterns, as
explained in Examples 7 and 8.

Example 2 illustrates the definition of semantics of argumentation patterns
by maybe the simplest patterns, namely conjunction and disjunction. We express
the patterns as patternName: constraints, e.g., ∧n+1(a1, . . . , an, b) is the name
of the conjunction pattern.

Example 2 (Conjunction and disjunction). Both patterns are defined by multi-
labeling M(a1) = . . . = M(an) = M(b) = {∈}, together with respectively:

∧n+1(a1, . . . , an, b) : (a∈1 ∧ . . . ∧ a∈n ⇐ b∈) ∧ (a6∈1 ∨ . . . ∨ a6∈n ⇒ b6∈)

∨n+1(a1, . . . , an, b) : (a∈1 ∨ . . . ∨ a∈n ⇐ b∈) ∧ (a6∈1 ∧ . . . ∧ a6∈n ⇒ b6∈)

Fig. 3 visualizes a1=“Jones has a contract”, a2=“Jones has breached the con-
tract” and b=“Jones is liable” with ∧3 and ∨3, together with an additional

c cb
a1

a2
b

a1

a2

cba1
INOUT

a2
IN⋀3 labeling OUT

cba1
ININ

a2
IN⋁3 labeling OUT

Fig. 3. Conjunction and disjunction (Example 2)

argument c=“Jones did not sign the contract” attacking a1. In the figures, we
visualize in grey accepted arguments. In Fig. 3, the whole component is called
b, and the two incoming ports are called a1 and a2. Attacking a1 is attacking
the port of the component. In the former case we have that Jones is not liable,
because a6∈1 ∧ a∈2 ∧ b6∈ ∧ c∈ is the unique labeling, in the latter case we have that
Jones is liable, because a6∈1 ∧ a∈2 ∧ b∈ ∧ c∈ is the unique labeling. Notice that
the labels of the pattern are different from the multi-labeling defined above.
The multi-labeling assigns to each argument the label ∈, but the existence of
argument c attacking the argument of the pattern a1, leads to a change in the
labels. Given the presence of this external argument c we cannot assign the label
defined by the multi-labeling to the arguments of the pattern, thus we have to
satisfy the constraints posed by the patterns.

We have to underline that a multi-label is assigned to an argument if there is
the presence of a cycle in the pattern, otherwise, as in the example above, only
a single label is assigned. Example 3 illustrates that some extended argumenta-
tion frameworks can also be represented by argumentation patterns, by defining
second-order attacks as an argumentation pattern. Roughly, second-order at-
tacks “disconnect” the attack relations among the arguments.

Example 3 (Second-order attack). The pattern is given by the multi-labeling
M(a) = M(b) = M(c) = {∈}, because the attack relation among a and c is
attacked by the second order attack, together with the constraint

#3(a, b, c) : (a6∈ ∨ b∈ ⇐ c∈) ∧ (a∈ ∧ b 6∈ ⇒ c 6∈)

Fig. 4 visualizes the second-order attack as a transistor where the collector is
the attacking argument, the emitter is the attacked argument, and the base is
the argument raising the second-order attack. The arguments can be read as
a=“Jones was honored at a special ceremony”, b=“Intelligence wants to study
Jones’s behaviour” and c=“Jones is a spy”.

We now have to consider the behavior of the pattern when it belongs to
a wider argumentation framework. For example, consider what happens when
argument d attacks the different arguments composing the pattern. We have
the following possible situations a∈ ∧ b∈ ∧ c∈ ∧ d∈, and respectively d → a,
a6∈ ∧ b∈ ∧ c∈ ∧ d∈, d→ b, a∈ ∧ b 6∈ ∧ c 6∈ ∧ d∈, d→ a∧ d→ b, a6∈ ∧ b 6∈ ∧ c∈ ∧ d∈. So
we have c 6∈ only if a∈ and thus d does not attack a, together with b6∈ and thus
d attacks b.

d

a b c

d

a b c

d

a b c

d

a b c

Fig. 4. Second-order attack (Example 3)

2.3 Syntax of argumentation patterns

In the previous section we described how to express the meaning of an argumen-
tation pattern for the designer. It remains to define the structure of the patterns
when they appear in an argumentation framework. Rather than proposing an
extended argumentation framework with an ad hoc semantics to cope with all
the allowed patterns, we decide to flatten the argumentation patterns to abstract
argumentation frameworks, by adding auxiliary arguments and suitable attacks.
In this paper, we are interested in argumentation patterns that can be expressed
as a two sorted argumentation framework, distinguishing between auxiliary and
focal arguments.

Definition 3 (Two sorted AF). A two sorted argumentation framework is a
triple 〈A,B,→〉 with A ⊆ B ⊆ U and →⊆ B × B, where A are called the focal
arguments, and B\A the auxiliary arguments.

We have to consider two directions. First, an argumentation pattern can be
flattened into a two sorted AF by respecting the multi-labeling and constraints.
Second, a two sorted argumentation framework induces an argumentation pat-
tern. This direction is more complicated, since we have to abstract away the
auxiliary arguments. Moreover, given the constraints on the two sorted AF cor-
responding to the attack relations, we have to abstract away the propositions
concerning the labeling of auxiliary arguments. This abstraction process means
that we have to forget the variables referring to arguments which we abstract
away, in the technical sense of forgetting defined by Lang and Marquis [12].
Generally, it is sometimes the case that ignoring a small set of propositional
atoms of the formulas from an inconsistent set renders it consistent. Lang and
Marquis [12] define a framework for reasoning from inconsistent propositional
bases, using forgetting as a basic operation for weakening formulas. Belief bases
are viewed as finite vectors of propositional formulas, conjunctively interpreted.
Forgetting a set X of atoms in a formula consists in replacing it by its logi-
cally strongest consequence which is independent of X, in the sense that it is
equivalent to a formula in which no atom from X occurs. The key notion is
that of recoveries, which are sets of atoms whose forgetting enables restoring
consistency. Forgetting is defined by Lang and Marquis [12] as follows. For more
details about forgetting, see [12].

Definition 4 (Forgetting [12]). Let φ be a formula from PROPPS and V ⊆
PS. The forgetting of V in φ, noted ∃V.φ, is a formula from PROPPS that is
inductively defined up to logical equivalence as follows:

– ∃∅.φ ≡ φ;
– ∃{x}.φ ≡ φx←0 ∨ φx←1;
– ∃({x} ∪ V).φ ≡ ∃V.(∃{x}.φ);

where PROPPS denotes the propositional language built up from a finite set
PS of atoms, the Boolean constants > and ⊥, and the standard connectives
and φx←0 (resp. φx←1) denotes the formula obtained by replacing in φ every
occurrence of symbol x by ⊥ (resp. >).

Definition 5. The argumentation pattern 〈A,M,C〉 induced by the two sorted
argumentation framework 〈A,B,→〉 is given by the constraint that takes the
conjunction of the constraints given in Definition 1 for the auxiliary arguments,
i.e.:

∀b ∈ B \A : b∈ ⇔ ∀a : a→ b⇒ a 6∈

∀b ∈ B \A : b 6∈ ⇔ ∃a : a→ b ∧ a∈

and then forgetting the variables referring to the arguments from which we have
abstracted away.

The following two examples illustrate how the argumentation patterns for
conjunction, disjunction and second-order attacks are induced by the two sorted
argumentation framework.

Example 4 (Conjunction and disjunction).
ANDn+1=〈A,B,→〉 with

A = {a1, . . . , an, b}, B = A ∪ {x1, . . . , xn}

a1 → x1, . . . , an → xn, x1 → b, . . . , xn → b

ORn+1=〈A,B,→〉 with

A = {a1, . . . , an, b}, B = A ∪ {x}

a1 → x, . . . , an → x, x→ b

The patterns ANDn+1 and ORn+1 are visualized in Fig. 5. It can be verified that
ANDn+1 induces ∧n+1(a1, . . . , an, b) and that ORn+1 induces ∨n+1(a1, . . . , an, b)
by:

1. The multi-labeling of the pattern is that a1 to an are not attacked so they
are in, and therefore the auxiliary arguments are out, and therefore b is in;

a1

an

a2
x b.

.

a1

an

a2

x1

b≡
.
.

xn

x2b

a1

a2

an

.

.

b

a1

a2

an

.

.

≡

Fig. 5. Conjunction and disjunction (Example 4).

2. The constraint of conjunction is that if either one of the ai is out, then xi

is in. The reason is that xi is an auxiliary argument, and therefore, if it is
not attacked by ai, it is not attacked at all. If xi is in, then b is out. vice
versa, if b is in, then the xi are out, and thus the ai are in. The constraint of
disjunction is that if all of the ai are out, then x is in. If x is in, then b is out.
Vice versa, if b is in, then x is out, and thus one of the ai is in. By trying out
all possibilities, it can be checked that these are the only constraints that
hold.

Example 5 (Second-order attack).
ATTACK3=〈A,B,→〉 with

A = {a, b, c}, B = A ∪ {x, y}

a→ x, x→ y, y → c, b→ y

The pattern ATTACK3 is visualized in Fig. 6. It can be verified that ATTACK3

induces #3(a, b, c) by

1. The multi-labeling of the pattern is that a and b are not attacked so they
are in, and therefore the auxiliary arguments are out, and therefore c is in;

2. The constraint of second-order attacks is that if a is in, then x is out. More-
over, if b and x are out, then y is in. If y is in, then c is out. The converse can
be checked in the same way. By trying out all possibilities, it can be checked
that this is the only constraint that holds.

Example 6 (Equivalence).
EQUIV2=〈A,B,→〉 with

A = {a, b}, B = A ∪ {z1, z2}

a→ z1, z1 → b, b→ z2, z2 → a

. It can be verified that EQUIV2 induces ≡2 (a, b) : a∈ ≡ b∈ ∧ a6∈ ≡ b 6∈.

Examples 7 and 8 illustrate the difference between the multi-label and the
constraints.

≡ a x cy

b

a b c

Fig. 6. Second-order attack pattern (Example 5).

Example 7. Consider the argumentation pattern 〈A,M,C〉, visualized in Fig. 7.a,
where A = {b, d}. The pattern is given by multi-labeling M(b) = M(d) = {∈
, 6∈, ?} together with an empty set of constraints. The two sorted argumentation
framework is 〈A,B,→〉 with

A = {b, d}, B = A ∪ {a, c}

a→ b, b→ a, c→ d, d→ c

Consider now another pattern, represented in Fig. 7.b, where A = {b, d}. The
pattern is given by multi-labeling M(b) = M(d) = {∈, 6∈, ?} together with the
following constraint:

(d∈ ⇐ b 6∈) ∧ (b∈ ⇐ d6∈)

Consider now the introduction of argument e which is attacked by the two
arguments b, d of the pattern. In the first case, argument e can have any label
{∈, 6∈, ?} while in the second case, it cannot be ∈, since b and d cannot both be 6∈,
as given by the constraint of the pattern. Fig. 7 shows in the tables the labelings
allowed for each pattern. The two patterns have the same set of arguments and
the same multi-labeling but distinct constraints. Notice that only a subset of the
labelings satisfying the constraints of the first pattern satisfies the constraints
of the second pattern.

Example 8. Consider the two two-sorted AF:

1. a single focal argument a, no attacks,
2. a single focal argument a and an auxiliary argument b which attack each

other.

Moreover, consider the use of this pattern. The first should say that a is in,
the second that a is either in, out or undecided. The constraints induced by
the two multi-sorted AFs are the same (empty constraint), but the difference is
represented by the multi-label.

In the context of flattening, Gabbay [10] discusses the notion of critical sub-
sets. Given two argumentation frameworks where the set of arguments S1 of the
first AF is a subset of the set S2 of the second AF , Gabbay [10] claims that S2

is a critical subset of S1 if and only if every Caminada labeling on S2 can be
extended uniquely to a labeling on S1. This means that the additional arguments

dca

e

b dca

e

b

OUTINOUTlabeling9 ? ?
INlabeling8 ??OUT ?

OUT?? OUTlabeling7 IN
?labeling6 ? ?IN OUT

?? ?labeling5 ? ?
INOUT OUTINlabeling4 OUT
INOUT OUT OUTINlabeling3

IN
e

OUTOUT
OUT
INOUT

IN
b

INlabeling2

dc
OUTlabeling1 IN

a

?? ?labeling3 ? ?
INOUT OUTINlabeling2 OUT

e
OUTOUT INOUT

b
INlabeling1

dca

(a) (b)

db

e

db

e

db db

Fig. 7. Two patterns with the same multi-labeling and different constraints.

of S1 only help in clarifying what is going on in S2 and do not add any addi-
tional information. Critical subsets may recall the notion of actual arguments,
whose labels are assigned, and depending on them, the labels of the auxiliary
arguments are assessed.

2.4 Combining patterns

Patterns can be combined, just like boolean operators. For example, we can
combine ∧2 to ∧3 and ∧4. Since attack works as a negation, we can form all
kind of propositional combinations. For example, we can combine conjunction
and attack to a combined conjunctive attack, known as accrual.

Example 9 (Accrual). Consider the following accrual attack pattern:

#n+1(a1, . . . , an, b) : (a6∈1 ∨ . . . ∨ a
6∈
1 ⇐ b∈) ∧ (a∈1 ∧ . . . ∧ a∈1 ⇒ b6∈)

This is ∧n+1(a1, . . . , an, c) extended with an attack b→ c. Here, the latter attack
acts as a kind of negation.

When combining two patterns, we can identify some of their arguments, and
then abstract these arguments away. The definition of patterns’ combination is
left for further research.

3 Patterns

In this section, we present how to define the argumentation patterns of well-
known extended argumentation frameworks and structures.

3.1 The Toulmin scheme

Dung’s argumentation framework introduces a unique binary relation among ar-
guments, called attack relation. The notion of support is rather controversial in
argumentation theory. Here, without taking a position in the debate about the
representation of this notion, we present an argumentation pattern for model-
ing support which we adopt in the Toulmin pattern. Our support pattern idea
is driven by structured argumentation where argument a supports argument b
if a attacks those arguments contradicting b’s conclusion, i.e., undercutting b.
We move this case to abstract argumentation and the two-sorted argumentation
framework in Figure 8 models support with the auxiliary argument ¬b with the
meaning that a 6∈ implies b 6∈. This interpretation of support in abstract argumen-
tation has been proposed by Cayrol and Lagasquie-Schiex [8] and we represent
it by means of patterns.

Example 10 (Support). The support pattern is defined by multi-labelingM(c1) =
. . . = M(cn) = {∈} and M(a) = M(b) = {6∈}, together with:

.n+2(a, b, c1, . . . , cn) : ((c∈1 ∧ . . . ∧ c∈n)⇒ b6∈ ∧ a6∈)∧

((a∈ ∧ (c6∈1 ∧ . . . ∧ c 6∈n))⇐ b∈)

Consider .4 a=“Jones was born in England”, b=“Jones is a British citizen”,
c1=“Jones does not have a British passport” and c2=“Jones has a dutch accent”.
Now consider the pattern together with argument d. We have the following
situation: d = “Mary says she saw Jones’ British passport and he has no dutch
accent”, so d→ c1∧c2, leading to the labeling d∈∧c6∈1 ∧c

6∈
2 ∧b∈∧a∈. If d = “Jones’

birth certificate is Bermudian”, so d→ a, with the labeling d∈∧c∈1 ∧c∈2 ∧b6∈∧a6∈.
SUPPORTn+2=〈A,B,→〉 with

A = {a, c1, . . . , cn}, B = A ∪ {b,¬b}

a→ ¬b,¬b→ b, c1 → b, . . . , cn → b, c1 → a, . . . , cn → a

a b

≡
cnc1 . . .

cn

c1

.

.

.
a b¬b

Fig. 8. The support pattern (Example 10).

Notice that the support pattern includes all attackers ci of b. This means
that we embed them in the pattern and argument b cannot be attacked by any
argument external to the pattern. Thus b is an auxiliary argument which cannot

be attacked, but it still can attack other arguments. Argument b is an “output”
node of the pattern. Another approach to support has been introduced by Boella
et al. [4], but in this case a deductive model of support is provided where the
label out of argument a does not imply the same label for argument b.

The Toulmin scheme, in Fig. 1, is one of the most famous patterns in ar-
gumentation theory. There is not a unique model for representing the Toulmin
scheme, there are many versions in which the warrant and the rebuttal sup-
port and attack different elements of the scheme. We provide a possible pattern
but many other patterns are suitable for this scheme. Consider the following
well-known example about the British citizenship.

Example 11 (Toulmin scheme). Jones tries to convince Mary that he is a British
citizen. The claim is “I am a British citizen”. Then Jones can support his claim
with the data “I was born in Bermuda”. In order to move from the data to
the claim, Jones has to supply a warrant to bridge the gap between them with
the rule “A man born in Bermuda will legally be a British citizen”. If Mary
does not deem the warrant as credible, Jones should supply the legal provisions
as backing statement to show that it is true that the rule holds. Finally, the
rebuttal of Mary is exemplified as follows “A man born in Bermuda will legally
be a British citizen, unless he has betrayed Britain and has become a spy of
another country.”

In Example 11, the warrant, which can be modeled as a strict rule in struc-
tured argumentation, connects the data and the claim and it is supported by
the backing. Moreover, the warrant is attacked by the rebuttal. We model the
rules, i.e., the warrant, in the Toulmin pattern following the example of Wyner
et al. [16] for the strict rule where z → c. Moreover we have to model the support
given by the backing to the warrant and finally, the attack from the rebuttal to
the warrant and the claim. Note that the Toulmin scheme is the combination of
patterns we defined thus far, as shown in Fig. 9. It combines a transistor where
the collector is the data, the emitter is the claim, and the base is the warrant, a
support pattern, and a conjunctive pattern.

Example 12 (Continued). The Toulmin pattern is defined by multi-labelingM(d) =
{∈}, M(r) = {∈} and M(b) = M(w) = M(c) = {6∈}, together with:

TS(d, c, w, b, r) : (r 6∈ ∧ (w∈ ∧ b∈)⇐ c∈) ∧ (d 6∈ ⇒ w 6∈ ∧ c6∈)

The pattern is visualized in Fig. 9. Now consider the pattern together with
argument e. We have the following situation: e = “Mary lies asserting that
Jones is a spy”, so e→ r, the labeling is e∈∧r 6∈∧b∈∧d∈∧w∈∧c∈. The labeling
satisfies the invariant expressed by the constraints. TS=〈A,B,→〉 with

A = {d, c, w, b, r}, B = A ∪ {¬z, z,¬c,¬w, x1, x2, y1, y2}

z → ¬z,¬z → z,¬z → w,w → ¬c, d→ ¬z,¬c→ c, c→ ¬c,
r → x1, r → x2, x1 → y1, x2 → y2, y1 → c, y2 → w, y2 → b, b→ ¬w,¬w → w

Notice that the relation between b and w is a support relation as modeled above
where the attacker ci is identified by auxiliary argument y2.

z ¬z ¬cw c

¬wb

y2 rx2

x1y1

d

y3 x3

d w c

b r

Fig. 9. The Toulmin pattern (Example 12).

3.2 Patterns for higher-order attacks

In Section 2, we introduced the pattern for second-order attacks where we follow
the model of Boella et al. [3] for the multi-sorted argumentation framework.
However, Modgil and Bench-Capon [13] and Baroni et al. [1] propose another
way to model second-order attacks. Using patterns, we can shows that the three
models are equivalent from the point of view of multi-labeling and constraints
while they differ for the two sorted argumentation frameworks which induce the
pattern.

Example 13 (Second-order patterns). The two patterns of Modgil and Bench-
Capon [13] and Baroni et al. [1] are given by the same multi-labeling of Example 3
M(a) = M(b) = M(c) = {∈}, together with the same constraints:

#3(a, b, c) : (a6∈ ∨ b∈ ⇐ c∈) ∧ (a∈ ∧ b 6∈ ⇒ c 6∈)

Fig. 4 visualizes the multi-sorted AF s proposed by [13], ATTACK3
1, and [1],

ATTACK3
2, which are formalized as follows: ATTACK3

1=〈A,B,→〉 with

A = {a, b, c}, B = A ∪ {r-c, r-a, a-def-c, b-def-(a-def-c), r-b}

a→ r-a, r-a→ a-def-c, a-def-c→ c, c→ r-c, b→ r-b,

r-b→ b-def-(a-def-c), b-def-(a-def-c)→ a-def-c

ATTACK3
2=〈A,B,→〉 with A = {a, b, c}, B = A ∪ {α, β}

α→ β, β → c

Now consider the pattern, where arguments have the same meaning as in
Example 3, together with argument d = “In the Intelligence’s documents there
is nothing about controlling Jones”, such that d → b, as visualized in Fig. 10.
We have the following situation for the first pattern [13]: a∈ ∧ d∈ ∧ b6∈ ∧ c 6∈, and
the same holds for the second pattern [1]. Notice that the two patterns are the
same pattern as the one of Example 3, and only the two-sorted argumentation
framework which induces the pattern differs. This means that they differ only in
the choice of the auxiliary arguments and the constraints which hold for these
auxiliary arguments.

a r-a

r-b b def(a def c)

a def c c

b

r-c

a β c

α b

≡

≡
γd

dr-d

d def b
d

a b c

d

a b c

γ

β α

Fig. 10. Second-order attack pattern (Example 13).

3.3 Patterns for Proof Standards

In everyday reasoning and in legal reasoning, proof standards play a relevant
role in those situations in which, involving risk, we apply higher standards rather
than in cases where there is not much to loose. Two standards of proof have been
recently analyzed by Brewka and Woltran [6] using the acceptability conditions
of the abstract dialectical frameworks. The proof standards we consider are: (i)
argument s is labeled ∈ if the set of arguments R contains no node attacking s
and at least one node supporting s and, (ii) s is labeled ∈ if R contains all nodes
supporting s and no node attacking s.

Example 14 (Proof standards). The patterns for proof standards are given by
the same multi-labeling M(t1) = . . . = M(tn) = M(s) = {∈} and M(r1) =
. . . = M(rm) = {6∈}, together with different constraints:

PS1n+m+1(t1, . . . , tn, r1, . . . , rm, s) :

(t∈i ∧ (r 6∈1 ∧ . . . ∧ r 6∈m)⇐ s∈) ∧ ((t 6∈1 ∧ . . . ∧ t 6∈n) ∨ r∈i ⇒ s6∈)

PS2n+m+1(t1, . . . , tn, r1, . . . , rm, s) :

((t∈1 ∧ . . . ∧ t∈n) ∧ (r 6∈1 ∧ . . . ∧ r 6∈m)⇐ s∈) ∧ (t 6∈i ∨ r
∈
i ⇒ s6∈)

Fig. 11 visualizes the two-sorted AF s which induce these patterns.
PS1n+m+1=〈A,B,→〉 with

A = {t1, . . . , tn, r1, . . . , rm}, B = A ∪ {s,¬s,¬r1, . . . ,¬rm}

t1 → ¬s, . . . , tn → ¬s,¬s→ s,

r1 → s, . . . , rm → s,¬r1 → r1, . . . ,¬rm → rm

PS2n+m+1=〈A,B,→〉 with

A = {t1, . . . , tn, r1, . . . , rm}, B = A ∪ {s, x1, . . . , xn}

t1 → x1, . . . , tn → xn, x1 → s, . . . , xn → s, r1 → s, . . . , rm → s

¬r1 → r1, . . . ,¬rm → rm

Notice that, in the two sorted argumentation framework, we avoid to have
argument s attacked by other arguments external to the pattern because we
consider every argument ri attacking s.

t1

tn

.

. s ≡

t1

tn

.

. s¬s

rmr1 . .rmr1 . .

t1

tn

.

. s

x1

rmr1 . .

xn

¬r1

¬rm

¬r1

¬rm

Fig. 11. Proof standards (Example 14).

4 Related work

Argumentation patterns may recall to mind the structure of syllogisms, rules as
modus ponens or argumentation schemes. Reed et al. [14] explain argumentation
schemes as argument forms that represent inferential structures of arguments
used in everyday discourse, and in special contexts like legal argumentation and
artificial intelligence. Besides forms of reasoning like modus ponens, some of the
most common schemes are neither deductive nor inductive, but defeasible and
presumptive. One of the issues which brings argumentation theory and computer
science closer together is the need to diagram such arguments [14]. Diagramming
is of interest both to those in argumentation as a tool in the analytical toolbox,
and to computer scientists as a precursor to implementable formalization. We
agree about the relevance of diagrams in representing the relationships of the
arguments but, as we have shown in the paper, it is not precise enough to define
all the relations among the arguments.

Our patterns together with their multi-labeling and constraints can be com-
pared to the abstract dialectical frameworks, defined by Brewka and Woltran [6],
and their acceptance functions. They provide a generalization of Dung’s argu-
mentation framework. Such a framework is defined as a tuple D = (S,L,C)
where S is a set of nodes, L ⊆ S × S is a set of links and C is an acceptance
condition associated to each node. Cs specifies the exact conditions under which
argument s is accepted. Summarizing, if for some R ⊆ par(s), where par(s) are
the parents of node s, we have Cs(R) = in then s will be accepted provided

the nodes in R are accepted. We can express the acceptability condition with
a conjunction pattern where the set R contains the arguments a1, . . . , an and
argument s corresponds to our argument b. An advantage in using patterns is
that we can compose them together to form a larger pattern while Brewka and
Woltran [6] need to define the acceptance function from scratch.

5 Conclusions

The success criteria of argumentation patterns lies for the 90% in the proposed
visualization. The contribution of this paper with respect to visualization is to
use transistors for second-order attack patterns, and introduce visualizations for
the conjunction and disjunction patterns inspired by visualizations of AND and
OR gates in boolean circuits. Moreover, we show how these visualizations can
be combined, as in the case of the Toulmin scheme.

Argumentation patterns are reusable solutions to common problems in argu-
mentation theory, and are driven by practical rather than theoretical concerns.
We define argumentation patterns by a multi-labeling, i.e., the labels of the argu-
ments inside the pattern, together with a set of constraints showing the relations
among the arguments, even if some of them are attacked by arguments external
to the pattern.

We identify, among others, the following patterns in the argumentation liter-
ature, and formalize them in our framework: the support relation, the Toulmin
scheme, second-order attacks, accrual, and the standards of proof. Patterns avoid
us to define extended argumentation frameworks ad hoc for particular applica-
tion domains.

Two main points emerge from this initial exploration of how to visualize
and formalize argumentation patterns. First, the language has to distinguish the
description of the behaviour of the pattern as standalone framework, and it has
to contain a description of how the behaviour of the pattern changes when it is
attacked from outside the framework. In this paper, we use multi-labelling for
the former, and constraints for the latter. The general point is that a pattern
definition has to provide the definition of part of an argumentation framework, or
an argumentation framework in an environment. The SCC recursive scheme [2]
can bring some inspiration since here also Dung’s semantics are associated to a
context to define the base function. The second technical issue which is emerged
is the soundness and completeness proofs needed for patterns. We define the
semantics of patterns in terms of multi-labelling and constraints, then the syntax
in terms of flattening. We need to show now that they are equivalent. All this is
left as future work.

References

1. Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida.
AFRA: Argumentation framework with recursive attacks. Int. J. Approx. Rea-
soning, 52(1):19–37, 2011.

2. Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. Scc-recursiveness: a
general schema for argumentation semantics. Artif. Intell., 168(1-2):162–210, 2005.

3. Guido Boella, Dov M. Gabbay, Leendert van der Torre, and Serena Villata. Meta-
argumentation modelling i: Methodology and techniques. Studia Logica, 93(2-
3):297–355, 2009.

4. Guido Boella, Dov M. Gabbay, Leendert van der Torre, and Serena Villata. Support
in abstract argumentation. In Procs. of the 3rd Int. Conf. on Computational Models
of Argument, pages 40–51. Frontiers in Artificial Intelligence, IOS Press, 2010.

5. Guido Boella, Leendert van der Torre, and Serena Villata. Analyzing coopera-
tion in iterative social network design. Journal of Universal Computer Science,
15(13):2676–2700, 2009.

6. Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Fangzhen
Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, KR. AAAI Press, 2010.

7. Martin Caminada. On the issue of reinstatement in argumentation. In Michael
Fisher, Wiebe van der Hoek, Boris Konev, and Alexei Lisitsa, editors, JELIA,
volume 4160 of Lecture Notes in Computer Science, pages 111–123. Springer, 2006.

8. Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Coalitions of arguments:
A tool for handling bipolar argumentation frameworks. Int. J. Intell. Syst.,
25(1):83–109, 2010.

9. Phan Minh Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

10. Dov M. Gabbay. Fibring argumentation frames. Studia Logica, 93(2-3):231–295,
2009.

11. Hadassa Jakobovits and Dirk Vermeir. Robust semantics for argumentation frame-
works. J. Log. Comput., 9(2):215–261, 1999.

12. Jérôme Lang and Pierre Marquis. Reasoning under inconsistency: A forgetting-
based approach. Artif. Intell., 174(12-13):799–823, 2010.

13. S. Modgil and T.J.M Bench-Capon. Metalevel argumentation. Technical report,
page www.csc.liv.ac.uk/research/ techreports/techreports.html, 2009.

14. Chris Reed, Douglas Walton, and Fabrizio Macagno. Argument diagramming in
logic, law and artificial intelligence. Knowledge Eng. Review, 22(1):87–109, 2007.

15. Stephen Toulmin. The Uses of Argument. Cambridge University Press, 1958.
16. Adam Wyner, Trevor Bench-capon, and Paul Dunne. Instantiating knowledge

bases in abstract argumentation frameworks. In The Uses of Computational Ar-
gumentation: Papers from the AAAI Fall Symposium, pages 76–83, 2009.

