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Abstract—An important issue in belief revision is the possible
loss of previous information which later might turn to be
correct when new information becomes available to the agent.
Starting from the fuzzy argument labeling based on trust, we
mirror argument reinstatement in belief reinstatement, and
we show the conditions under which the belief reinstatement
is total, partial, or nonexistent.
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I. INTRODUCTION

In da Costa Pereira et al. [1], we present a labeling
algorithm which assigns to the arguments, proposed by the
agents, a fuzzy evaluation. This fuzzy evaluation is origi-
nated by the observation that some arguments may come
from only partially trusted sources. The arguments then
support the agents’ beliefs, represented as the conclusions
of structured arguments.

A schematic illustration of the framework proposed in [1]
is provided in Figure 1. The framework may be regarded as a
belief revision model based on argumentation. An agent in-
teracts with the world by receiving arguments A from one or
more sources. The agent’s internal mental state is completely
described by a fuzzy set of arguments A, from which the
beliefs of the agent may be derived. A trust module assigns
a trust degree τ to each source. As new arguments A are
received, they are added to A with the same membership
degree as the degree τ to which their source is trusted. Fuzzy
labeling of A yields a fuzzy reinstatement labeling α, which
may be regarded as a fuzzy set of acceptable arguments,
whose consequences induce a possibility distribution π, from
which an explicit representation B of the agent’s beliefs
is constructed as the necessity measure N of possibility
distribution π.

In this paper, we investigate in details the belief reinstate-
ment proposed in [1]. In particular, we provide and discuss
the condition under which a belief reinstatement is total,
i.e., the belief previously discarded is reintegrated with a
degree B(ϕ) = 1, or partial, i.e., the belief is reintegrated
with a certain degree B(ϕ) > 0, or no reinstatement is
allowed. We adopt the representation of uncertain beliefs
proposed in [2], [3], and we share the observation of [4],
[5] that the “priority to incoming information” presents some
drawbacks in mutliagent systems where the original belief
may be somehow reintegrated.

Figure 1. A schematic illustration of the framework [1].

II. BACKGROUND

A Dung’s abstract argumentation [6] is a pair ⟨A,→⟩. A
is a set of elements called arguments and →⊆ A × A is
a binary relation called attack. Dung defines a number of
acceptability semantics [6].

Dung’s semantics are originally stated in terms of sets of
accepted arguments. It is equal to express these concepts
using argument labeling as proposed by Caminada [7].

Definition 1: (Reinstatement labeling [7]) Let lab be an
AF-labeling. We say that lab is a reinstatement labeling if
and only if it satisfies the following:

• ∀Ai ∈ A : (lab(Ai) = out ≡ ∃Aj ∈ A : (Aj →
Ai ∧ lab(Aj) = in)) and

• ∀Ai ∈ A : (lab(Ai) = in ≡ ∀Aj ∈ A : (Aj → Ai ⊃
lab(Aj) = out)) and

• ∀Ai ∈ A : (lab(Ai) = undec ≡ ∃Aj ∈ A : (Aj →
Ai ∧ ¬(lab(Aj) = out)) ∧ @Ak ∈ A : (Ak → Ai ∧
lab(Ak) = in).

A classical propositional language may be used to repre-
sent information for manipulation by a cognitive agent.

Definition 2: (Language) Let Prop be a finite. set of
atomic propositions and let L be the propositional language
such that Prop ∪ {⊤,⊥} ⊆ L, and, ∀ϕ, ψ ∈ L, ¬ϕ ∈ L,
ϕ ∧ ψ ∈ L, ϕ ∨ ψ ∈ L.

As usual, one may define additional logical connectives
and consider them as useful shorthands for combinations of
connectives of L, e.g., ϕ ⊃ ψ ≡ ¬ϕ ∨ ψ.

We will denote by Ω = {0, 1}Prop the set of all inter-
pretations on Prop. An interpretation I ∈ Ω is a function
I : Prop → {0, 1} assigning a truth value pI to every



atomic proposition p ∈ Prop and, by extension, a truth value
ϕI to all formulas ϕ ∈ L. We will denote by [ϕ] the set of
all models of ϕ, [ϕ] = {I : I |= ϕ}.

We can give arguments a structure, and the attack relation
will be defined in terms of such a structure of the arguments.

Definition 3: An argument is a pair ⟨Φ, ϕ⟩, with ϕ ∈ L
and Φ ⊂ L, such that (i) Φ 0 ⊥, (ii) Φ ⊢ ϕ, (iii) Φ is
minimal w.r.t. set inclusion. We call ϕ the conclusion and Φ
the support of the argument. An undercut for an argument
⟨Φ, ϕ⟩ is an argument ⟨Ψ, ψ⟩ where ψ = ¬(ϕ1 ∧ . . . ∧ ϕn)
and {ϕ1, . . . , ϕn} ⊆ Φ. A rebuttal for an argument ⟨Φ, ϕ⟩
is an argument ⟨Ψ, ψ⟩ if and only if ψ ⇔ ¬ϕ is a tautology.

III. FUZZY ARGUMENT LABELING

In order to account for the fact that arguments may
originate from sources that are trusted only to a certain
degree, we [1] extend the (crisp) abstract argumentation
structure by allowing gradual membership of arguments in
the set of arguments A. A is a fuzzy set of arguments, and
A(A), the membership degree of argument A in A is given
by the trust degree of the most reliable (i.e., trusted) source
that offers argument A,

A(A) = max
s∈src(A)

τs, (1)

where τs is the degree to which source s ∈ src(A) is trusted.
This fuzzification of A provides a natural way of asso-

ciating strengths to arguments, and suggests rethinking the
labeling of an argumentation framework in terms of fuzzy
degrees of argument acceptability.

Definition 4: (Fuzzy AF-labeling) Let ⟨A,→⟩ be an ab-
stract argumentation framework. A fuzzy AF-labeling is a
total function α : A → [0, 1].

Such an α may also be regarded as (the membership
function of) the fuzzy set of acceptable arguments: α(A) = 0
means the argument is outright unacceptable, α(A) = 1
means the argument is fully acceptable, and all cases inbe-
tween are provided for.

Definition 5: (Fuzzy Reinstatement Labeling) Let α be a
fuzzy AF-labeling. We say that α is a fuzzy reinstatement
labeling if and only if, for all arguments A,

α(A) = min{A(A), 1− max
B:B→A

α(B)}. (2)

Such labeling can be computed, by means of an iterative
labeling algorithm [1], starting from an initial labeling α0 =
A. Given labeling αt, the next labeling αt+1 is obtained by
applying, for all arguments A, the transition step

αt+1(A) =
1

2
αt(A) +

1

2
min{A(A), 1− max

B:B→A
αt(B)}. (3)

Equation 3 defines a sequence {αt}t=0,1,... of labelings
which converges to a fuzzy reinstatement labeling, as it is
proved in [1]. Therefore, we define the fuzzy labeling of a
fuzzy argumentation framework as the limit of {αt}t=0,1,....

Definition 6: Let ⟨A,→⟩ be a fuzzy argumentation
framework. A fuzzy reinstatement labeling for such argu-
mentation framework is, for all argument A,

α(A) = lim
t→∞

αt(A). (4)

The convergence speed of the labeling algorithm is linear
and a small number of iterations is enough to get so close
to the limit that the error is less than the precision with which
the membership degrees are represented in the computer.

IV. BELIEFS

In the proposed framework, belief reinstatement is guar-
anteed thanks to the integration of the argumentation frame-
work with the belief-change phase. More precisely, when
a new argument arrives from a partially trusted source,
the argumentation framework is updated using the fuzzy
labeling algorithm. Therefore, each argument reinstated by
the algorithm will induce the reinstatement, to some extent,
of the conclusion of the argument in the belief set and of
all the formulas that logically follow from the belief set.

As convincingly argued by Dubois and Prade[2], a belief
should be regarded as a necessity degree induced by a
normalized possibility distribution on the set of all interpre-
tations. Starting from such an insight, a fuzzy reinstatement
labeling α determines a set of beliefs in a natural way, as
we now explain in detail, after reviewing some background
on possibility theory.

A. From Arguments to Possibilities

A possibility distribution may be defined as the mem-
bership function of a fuzzy set that describes the more
or less possible and mutually exclusive values of one (or
more) variable(s) [8]. Indeed, if F designates the fuzzy set
of possible values of a variable X , πX = µF is called
the possibility distribution associated to X . The identity
µF (v) = πX(v) means that the membership degree of v
to F is equal to the possibility degree of X being equal to
v when all we know about X is that its value is in F . A
possibility distribution for which there exists a completely
possible value (∃v0 : π(v0) = 1) is said to be normalized.

Definition 7: (Possibility and Necessity Measures) A pos-
sibility distribution π induces a possibility measure and its
dual necessity measure, denoted by Π and N respectively.
Both measures apply to a crisp set A and are defined as
follows:

Π(A) = sup
s∈A

π(s); (5)

N(A) = 1−Π(Ā) = inf
s∈Ā

{1− π(s)}. (6)

In words, the possibility measure of set A corresponds to
the greatest of the possibilities associated to its elements;
conversely, the necessity measure of A is equivalent to the
impossibility of its complement Ā.



A few properties of possibility and necessity measures
induced by a normalized possibility distribution on a finite
universe of discourse Ω are the following. For all subsets
A,B ⊆ Ω:

1) Π(A ∪B) = max{Π(A),Π(B)};
2) Π(∅) = N(∅) = 0, Π(Ω) = N(Ω) = 1;
3) N(A ∩B) = min{N(A), N(B)};
4) Π(A) = 1−N(Ā) (duality);
5) N(A) ≤ Π(A);
6) N(A) > 0 implies Π(A) = 1;
7) Π(A) < 1 implies N(A) = 0;

A consequence of these propoerties is that
max{Π(A),Π(Ā)} = 1. In case of complete ignorance on
A, Π(A) = Π(Ā) = 1.

The beliefs of an agent may thus be completely described
by a normalized possibility distribution

π : Ω → [0, 1], (7)

which represents a plausibility order of possible states of
affairs: π(I) is the possibility degree of interpretation I.

Given argument A = ⟨Φ, ϕ⟩, let con(A) denote the
conclusion of A, i.e., con(⟨Φ, ϕ⟩) = ϕ. The possibility
distribution π induced by a fuzzy argumentation framework
α may be constructed by letting, for all interpretation I,

π(I) = min{1, 1 + max
A:I|=con(A)

α(A)− max
B:I̸|=con(B)

α(B)}. (8)

The first maximum in the above equation accounts for
the most convincing argument compatible with world I,
whereas the second maximum accounts for the most con-
vincing argument against world I. A world will be possible
to an extent proportional to the difference between the most
convincing argument supporting it and the most convincing
argument against it. The world will be considered completely
possible if such difference is positive or null, but it will
be considered less and less possible (or plausible) as such
difference grows more and more negative.

Theorem 1: Any π defined as per Eq. 8 is normalized.
Proof: Either π(I) = 1 for all I, and π is trivially

normalized, or there exists an interpretation, say I0, such
that π(I0) < 1. By Equation 8, then, it must be

max
A:I0|=con(A)

α(A) < max
B:I0 ̸|=con(B)

α(B).

But then, let us consider the complementary interpretation
I0, which maps all atoms to a truth value that is the opposite
of the truth value they are mapped to by I0. Clearly, all
formulas satisfied by I0 are not satisfied by I0 and vice
versa. Therefore,

π(I0) = min{1, 1 + max
B:I̸|=con(B)

α(B)− max
A:I|=con(A)

α(A)} = 1.

In other words, if a world is not completely plausible, its
opposite must be completely plausible, and for this reason
π is always normalized.

B. Belief Set

The degree to which a given arbitrary formula ϕ ∈ L is
believed can be calculated from the possibility distribution
induced by the fuzzy argumentation framework as

B(ϕ) = N([ϕ]) = 1−max
I̸|=ϕ

{π(I)}. (9)

Such B may be regarded, at the same time, as a fuzzy modal
epistemic operator or as a fuzzy subset of L.

A powerful feature of such an approach based on a
possibility distribution is that B(ϕ) can be computed for any
formula ϕ, not just for formulas that are the conclusion of
some argument. E.g., if A is an argument whose conclusion
is p and B is an argument whose conclusion is p ⊃ q, and
α(A) = α(B) = 1, then not only B(p) = B(p ⊃ q) = 1,
but also B(q) = 1, B(p ∧ q) = 1, etc.

Straightforward consequences of the properties of pos-
sibility and necessity measures are that B(ϕ) > 0 ⇒
B(¬ϕ) = 0, which means that if the agent somehow believes
ϕ then it cannot believe ¬ϕ at all, and

B(⊤) = 1, (10)
B(⊥) = 0, (11)

B(ϕ ∧ ψ) = min{B(ϕ),B(ψ)}, (12)
B(ϕ ∨ ψ) ≥ max{B(ϕ),B(ψ)}. (13)

C. Changing Beliefs

We can now investigate the degree of the agent’s belief
in terms of the labeling values of the arguments.

The following theorem states that a necessary and suffi-
cient condition for formula ϕ to be believed to some extent
is that, for all interpretation I which does not satisfy ϕ,
there exists an argument whose consequence is not satisfied
by I that is more accepted than every argument whose
consequence is satisfied by I.

Theorem 2: Let A, B, A0, and B0 represent arguments,
and let µ ∈ (0, 1] be a degree of belief. Then, for all ϕ ∈ L,

B(ϕ) ≥ µ

⇔ ∀I ̸|= ϕ∃B0 : I ̸|= con(B0),∀A : I |= con(A),

α(B0)− α(A) ≥ µ.

Proof:

B(ϕ) ≥ µ

⇔ ∀I ̸|= ϕ π(I) ≤ 1− µ (Eq. 9)
⇔ ∀I ̸|= ϕ

1 + max
A:I|=con(A)

α(A)− max
B:I̸|=con(B)

α(B) ≤ 1− µ

(Eq. 8)
⇔ ∀I ̸|= ϕ max

B:I̸|=con(B)
α(B)− max

A:I|=con(A)
α(A) ≥ µ

⇔ ∀I ̸|= ϕ∃B0 : I ̸|= con(B0),∀A : I |= con(A),

α(B0)− α(A) ≥ µ.



Corollary 1: A belief reinstatement of ϕ is total, i.e., the
belief previously discarded is reintegrated with a degree
B(ϕ) = 1, if and only if, for all interpretation I which does
not satisfy ϕ, there exists an argument whose consequence
is not satisfied by I that is fully accepted and every argu-
ment whose consequence is satisfied by I is not accepted.
Formally,

B(ϕ) = 1

⇔ ∀I ̸|= ϕ ∃B0 : I ̸|= con(B0),∀A : I |= con(A),

α(B0)− α(A) = 1,

⇔ ∀I ̸|= ϕ ∃B0 : I ̸|= con(B0),∀A : I |= con(A),

α(B0) = 1, α(A) = 0.

There remains to be established the conditions under
which belief in ϕ does not get reinstated at all.

The following theorem states that a formula ϕ is not (or
no more) believed by an agent if and only if there exists
an interpretation I0 which does not satisfy ϕ and is such
that there exists an argument whose consequence is satisfied
by I0 and is more accepted than all the arguments whose
consequence is not satisfied by I0.

Theorem 3: The necessary and sufficient condition for
formula ϕ not to be believed may be stated as follows:

B(ϕ) = 0

⇔ ∃I0 ̸|= ϕ, ∃A0 : I0 |= con(A0), ∀B : I0 ̸|= con(B),

α(A0) ≥ α(B).

Proof:

B(ϕ) = 0

⇔ ∃I0 ̸|= ϕ : π(I0) = 1,

⇔ ∃I0 ̸|= ϕ :

min{1, 1 + max
A:I0|=con(A)

α(A)− max
B:I0 ̸|=con(B)

α(B)} = 1,

⇔ ∃I0 ̸|= ϕ : max
A:I0|=con(A)

α(A) ≥ max
B:I0 ̸|=con(B)

α(B).

To sum up, if at some point belief in ϕ is lost due to
the arrival of an acceptable argument A whose conclusion
is satisfied by an interpretation I0 ̸|= ϕ, which causes the
labeling (and therefore the belief set) to change so that
B(ϕ) = 0, three things may happen when a new argument
A′ arrives:

1) I0 ̸|= con(A′), and the new labeling is such that
α(A′) = 1 and α(A) = 0; in this case, ϕ is fully
reinstated, i.e., B(ϕ) = 1;

2) I0 ̸|= con(A′), and the new labeling is such that
α(A′) = α(A) + µ, with 0 < µ < 1; in this case,
ϕ is partially reinstated, i.e., B(ϕ) = µ;

3) I0 |= con(A′), or I0 ̸|= con(A′) but the new labeling
is such that α(A′) ≤ α(A); in both cases, there is no
reinstatement of ϕ, and B(ϕ) = 0.

It should be noted, however, that, unlike in the crisp case,
when (full or partial) reinstatement of a belief happens, the

reinstated belief may be stronger than, equal to, or weaker
than the belief that had been lost. The actual outcome of
reinstatement depends on how much the sources of the
arguments responsible for the loss, in the first place, and the
subsequent recovery of the belief are trusted by the agent.

This speaks in favor of the realism of our theory, which
agrees with, and may be regarded as a possible explanation
of, experimental results recently reported by Rahwan and
colleagues [9]. In a number of psychological experiments,
they found out that reinstatement does not always yield
the full recovery of the attacked argument, which is to
be expected if the source of the argument responsible for
reinstatement is not fully trusted.

V. CONCLUSION

We have characterized the conditions under which the
belief reinstatement is total, partial, or nonexistent in a
fuzzy argumentation-based approach to possibilistic belief
revision.

The proposed framework can be further improved fol-
lowing two directions: (i) specifying the trustworthiness
degree by a cognitive model of trust and, (ii) embedding
the proposed framework into an integrated one where also
desires and, afterwards, goals are taken into account.
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