Modeling and mathematical analysis of metastatic growth under angiogenic control

Sébastien Benzekry

LATP, University of Provence. Pharmacokinetic Laboratory UMR MD3. Marseille

AIMS Dresden. May 26, 2010.

Outline

Modeling

- Cancer
- EDO model of tumoral growth under angiogenic control (Folkman, 1999)
- PDE model for the metastasis density

Analysis

- A preliminary result
- Existence, uniqueness and regularity
- Qualitative behavior

Numerical simulations

Cancer

• EDO model of tumoral growth under angiogenic control (Folkman, 1999)

• PDE model for the metastasis density

2 Analysis

- A preliminary result
- Existence, uniqueness and regularity
- Qualitative behavior

3 Numerical simulations

Cancer

Cancer

Definition

The cancer is a disease characterized by a group of cells, the primitive tumor, showing abnormal cellular proliferation. All the cells derive from a same cell which underwent various genetic mutations. During the evolution of the disease, some groups of cells can detach and spread to form metastases.

- First cause of mortality in France
- Relatively badly treated : 52% of 5 years survival all cancers taken together

Cancer

Angiogenesis

Modeling 000●000000

Cance

Objectives of the model

• Predict the evolution of the number of **metastases**, especially the ones **not visible** with medical imaging (size $\leq 10^8$ cellules), by taking into account the **angiogenic process**.

• Take into account the effect of cytotoxic and cytostatic drugs in order to **optimize the temporal administration protocols**.

• The model is based on the conjugation of two existing models : Folkman et al., Cancer research 1999 and Iwata et al., Journal of theoretical biology 2000. EDO model of tumoral growth under angiogenic control (Folkman, 1999)

- Cancer
- EDO model of tumoral growth under angiogenic control (Folkman, 1999)
- PDE model for the metastasis density

2 Analysis

- A preliminary result
- Existence, uniqueness and regularity
- Qualitative behavior

3 Numerical simulations

Analysis 0000000000 Numerical simulation

EDO model of tumoral growth under angiogenic control (Folkman, 1999)

EDO model of tumoral growth under angiogenic control

Folkman et al., Cancer Research 1999

Gompertzian growth x =Size of the tumor

$\frac{dx}{dt} = ax \ln\left(\frac{\theta}{x}\right)$

Consider θ as a **variable** : the angiogenic capacity

Analysis 0000000000 Numerical simulations

EDO model of tumoral growth under angiogenic control (Folkman, 1999)

Phase plan of the system

Convergence to an equilibrium point $X^* = \left(\left(\frac{c}{d}\right)^{\frac{3}{2}}, \left(\frac{c}{d}\right)^{\frac{3}{2}}\right)$. Studied in Gandolfi and d'Onofrio et al., 2004.

- Cancer
- EDO model of tumoral growth under angiogenic control (Folkman, 1999)
- PDE model for the metastasis density

2 Analysis

- A preliminary result
- Existence, uniqueness and regularity
- Qualitative behavior

3 Numerical simulations

Analysis 000000000000 Numerical simulations

PDE model for the metastasis density

Conservation equation for the metastases

Primitive tumor and metastases follow the model Folkman.

Population of the metastases structured in size x and angiogenic capacity θ :

density $\rho \in L^1(\Omega)$. Conservation of the number of metastases $\Rightarrow \rho$ is transported by G

 $\partial_t \rho + \operatorname{div}(\rho G) = 0$

Analysis 000000000

PDE model for the metastasis density

Conservation equation for the metastases

Primitive tumor and metastases follow the model Folkman. Population of the metastases structured in size x and angiogenic capacity θ : density $\rho \in L^1(\Omega)$. Conservation of the number of metastases $\Rightarrow \rho$ is transported by G

 $\partial_t \rho + \operatorname{div}(\rho G) = 0$

Birth rate of new metastases of parameter σ per meta of size x and angiogenic capacity θ per unit of time :

 $B(\sigma, x, \theta) = N(\sigma)\beta(x, \theta), \quad \sigma \in \partial \Omega$

Two sources of new metastases :

- Primitive tumor $X_p(t)$ with $\frac{dX_p}{dt} = G(X_p)$: $N(\sigma)\beta(X_p(t)) = f(t,\sigma)$
- Metastases themselves : $N(\sigma) \int_{\Omega} \beta(x, \theta) \rho(t, x, \theta) dx d\theta$

PDE model for the metastasis density

Equation

$$\begin{cases} \partial_t \rho + \operatorname{div}(\mathbf{G}\rho) = 0 & \Omega \\ -\mathbf{G} \cdot \overrightarrow{\nu} \rho(t, \sigma) = \mathbf{N}(\sigma) \int_{\Omega} \beta \rho(t, \mathbf{x}, \theta) d\mathbf{x} d\theta + f(t, \sigma) & \partial \Omega \\ \rho(0) = \rho^0 & \Omega \end{cases}$$

Modeling	Analysis	
00000000		
PDE model for the metastasis density		

$$\begin{cases} \partial_t \rho + \operatorname{div}(\mathbf{G}\rho) = 0 & \Omega \\ -G \cdot \overrightarrow{\nu} \rho(t, \sigma) = N(\sigma) \int_{\Omega} \beta \rho(t, x, \theta) dx d\theta + f(t, \sigma) & \partial\Omega \\ \rho(0) = \rho^0 & \Omega \end{cases}$$

• Linear transport equation in dimension 2, with vanishing velocity field.

Modeling		
00000000	000000000	
PDE model for the metastasis density		

$$\begin{cases} \partial_t \rho + \operatorname{div}(\mathbf{G}\rho) = 0 & \Omega \\ -\mathbf{G} \cdot \overrightarrow{\nu} \rho(t, \sigma) = \mathbf{N}(\sigma) \int \beta \rho(\mathbf{t}, \mathbf{x}, \theta) d\mathbf{x} d\theta + f(t, \sigma) & \partial \Omega \\ \rho(0) = \rho^0 & \Omega \end{cases}$$

• Linear transport equation in dimension 2, with vanishing velocity field.

• Nonlocal boundary condition +

Modeling	Analysis	
00000000		
PDE model for the metastasis density		

$$\begin{cases} \partial_t \rho + \operatorname{div}(G\rho) = 0 & \Omega \\ -G \cdot \overrightarrow{\nu} \rho(t, \sigma) = N(\sigma) \int_{\Omega} \beta \rho(t, x, \theta) dx d\theta + \mathbf{f}(\mathbf{t}, \sigma) & \partial\Omega \\ \rho(0) = \rho^0 & \Omega \end{cases}$$

• Linear transport equation in dimension 2, with vanishing velocity field.

• Nonlocal boundary condition + Source term

Modeling		
00000000	000000000	
PDE model for the metastasis density		

$$\begin{cases} \partial_t \rho + \operatorname{div}(G\rho) = 0 & \Omega \\ -G \cdot \overrightarrow{\nu} \rho(t, \sigma) = N(\sigma) \int_{\Omega} \beta \rho(t, x, \theta) dx d\theta + f(t, \sigma) & \partial\Omega \\ \rho(0) = \rho^0 & \Omega \end{cases}$$

• Linear transport equation in dimension 2, with vanishing velocity field.

• Nonlocal boundary condition + Source term

• Existing 1D model structured only in size : Iwata et al., 2000. Benabdallah, Barbolosi, Hubert and Verga 2009.

- Cancer
- EDO model of tumoral growth under angiogenic control (Folkman, 1999)
- PDE model for the metastasis density

2 Analysis

- A preliminary result
- Existence, uniqueness and regularity
- Qualitative behavior

3 Numerical simulations

State of the art. Structured populations dynamics.

$$\begin{cases} \partial_t \rho + \operatorname{div}(F(t, X, \rho)) = -\mu(t, X, \rho) & \Omega \\ -G \cdot \nu \rho(t, \sigma) = \mathcal{B}(t, \sigma, \rho) & \sigma \in \partial\Omega \text{ s.t. } G \cdot \nu(\sigma) < 0 \\ \rho(0, X) = \rho^0(X) & \Omega \end{cases}$$

- Introduction of such equations : Sharpe-Lotka, 1911 et McKendrick, 1926.
- In a lot of cases, age structure \Rightarrow dimension 1 :

 $X = a \in \mathbb{R}, F(t, a, \rho) = \rho$

• Principally three approaches :

Integral equations. Ianelli, 1994 Semigroups. Diekmann-Metz, 1986 General relative entropy. Perthame, 2007

State of the art. Structured populations dynamics.

$$\begin{cases} \partial_t \rho + \operatorname{div}(F(t, X, \rho)) = -\mu(t, X, \rho) & \Omega \\ -G \cdot \nu \rho(t, \sigma) = \mathcal{B}(t, \sigma, \rho) & \sigma \in \partial\Omega \text{ s.t. } G \cdot \nu(\sigma) < 0 \\ \rho(0, X) = \rho^0(X) & \Omega \end{cases}$$

- Introduction of such equations : Sharpe-Lotka, 1911 et McKendrick, 1926.
- In a lot of cases, age structure \Rightarrow dimension 1 :

$$X = a \in \mathbb{R}, \ F(t, a, \rho) = \rho$$

• Principally three approaches :

Integral equations. Semigroups. Diekmann-Metz. 1986 Ianelli, 1994

General relative entropy. Perthame, 2007

c

Here, dimension 2 and source term

$$F(t, X, \rho) = G\rho, \quad \mu = 0, \quad \mathcal{B}(t, \sigma, \rho) = N(\sigma) \int_{\Omega} \beta \rho(t) dx d\theta + f(t, \sigma)$$

Analysis ••••••

A preliminary result

Straightening up the characteristics

$$\mathcal{N}_{ ext{div}}(\Omega) := \left\{ V \in L^1(\Omega) \, | \, \operatorname{div}(GV) \in L^1(\Omega)
ight\}$$

• Change of variables :

$$\begin{array}{c|c} \partial_{\tau} \Phi = G(\Phi) \\ \Phi(0) = \sigma \end{array} \middle| \begin{array}{c} \Phi : &]0, \infty [\times \partial \Omega^* & \to & \Omega \\ (\tau, \sigma) & \mapsto & \Phi_{\tau}(\sigma) \end{array} \middle| \begin{array}{c} "\partial_{\tau} V(\Phi_{\tau}(\sigma)) = G \cdot \nabla V" \end{array}$$

Φ is a locally bilipschitz homeomorphism.

Modeling	Analysis	
000000000	00000000	
A preliminary result		
Proliminary result		
I ICIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		

• The jacobian

$$J_{\Phi}(\tau,\sigma) = G \cdot \overrightarrow{\nu}(\sigma) e^{\int_0^{\tau} \operatorname{div}(G(\Phi_s(\sigma))) ds}$$

• From the singularity of G, $J_{\Phi}^{-1} \notin L^{\infty}$.

Proposition

The spaces $W_{\mathrm{div}}(\Omega)$ and $W^{1,1}((0,+\infty); L^1(\partial\Omega))$ are conjugated via Φ :

 $V \in W_{\operatorname{div}}(\Omega) \Leftrightarrow (V \circ \Phi) | J_{\Phi}| \in W^{1,1}((0, +\infty); L^1(\Gamma)).$

For $V \in W_{\mathrm{div}}(\Omega)$ we have

 $\partial_{\tau}(V \circ \Phi|J_{\Phi}|) = (\operatorname{div}(GV) \circ \Phi)|J_{\Phi}|.$

Benzekry, 2009

Modeling	Analysis	
000000000	00000000	
A preliminary result		

Preliminary result

• The jacobian

$$J_{\Phi}(au, \sigma) = G \cdot \overrightarrow{
u}(\sigma) e^{\int_0^{ au} \mathrm{div}(G(\Phi_s(\sigma))) ds}$$

• From the singularity of G, $J_{\Phi}^{-1} \notin L^{\infty}$.

Proposition

The spaces $W_{
m div}(\Omega)$ and $W^{1,1}((0,+\infty);\ L^1(\partial\Omega))$ are conjugated via Φ :

 $V \in W_{\operatorname{div}}(\Omega) \Leftrightarrow (V \circ \Phi) | J_{\Phi}| \in W^{1,1}((0, +\infty); L^1(\Gamma)).$

For $V \in W_{div}(\Omega)$ we have

 $\partial_{\tau}(V \circ \Phi|J_{\Phi}|) = (\operatorname{div}(GV) \circ \Phi)|J_{\Phi}|.$

\Rightarrow Trace

$$V_{|\partial\Omega}(\sigma) := V \circ \Phi(0,\sigma) \in L^1(\partial\Omega; G \cdot \nu d\sigma)$$

Sébastien Benzekry (LATP Marseille)

Benzekry, 2009

- Cancer
- EDO model of tumoral growth under angiogenic control (Folkman, 1999)
- PDE model for the metastasis density

2 Analysis

- A preliminary result
- Existence, uniqueness and regularity
- Qualitative behavior

Numerical simulations

Weak solutions

Definition

For $\rho^0 \in L^1(\Omega)$ and $f \in L^1(]0, \infty[\times \partial \Omega)$, a weak solution of the equation is a function $\rho \in C([0, \infty[; L^1(\Omega))$ such that : for all T > 0 and all $\psi \in C^1_c([0, T[\times \overline{\Omega}^*)$

$$\int_0^T \int_\Omega \rho[\partial_t \psi + G \cdot \nabla \psi] + \int_\Omega \rho^0(\cdot)\psi(0, \cdot) - \int_\Omega \rho(T, \cdot)\psi(T, \cdot) \\ - \int_0^T \int_{\partial\Omega} N(\sigma) \int_\Omega \beta(x, \theta)\rho(t, x, \theta) dx d\theta \psi(t, \sigma) d\sigma dt = 0$$

Weak solutions

Definition

For $\rho^0 \in L^1(\Omega)$ and $f \in L^1(]0, \infty[\times \partial \Omega)$, a weak solution of the equation is a function $\rho \in C([0, \infty[; L^1(\Omega))$ such that : for all T > 0 and all $\psi \in C^1_c([0, T[\times \overline{\Omega}^*)$

$$\int_{0}^{T} \int_{\Omega} \rho[\partial_{t}\psi + G \cdot \nabla\psi] + \int_{\Omega} \rho^{0}(\cdot)\psi(0,\cdot) - \int_{\Omega} \rho(T,\cdot)\psi(T,\cdot) \\ - \int_{0}^{T} \int_{\partial\Omega} N(\sigma) \int_{\Omega} \beta(x,\theta)\rho(t,x,\theta)dxd\theta\psi(t,\sigma)d\sigma dt = 0$$

• For regular solutions define the **domain** of the operator $A: V \mapsto -\operatorname{div}(GV)$:

$$D(A) = \left\{ V \in W_{\text{div}}; -G \cdot \overrightarrow{\nu} V_{|\partial\Omega}(\sigma) = N(\sigma) \int_{\Omega} \beta V \right\}$$

Assumptions on the data

$$\beta \in L^{\infty}, \ \beta \geq 0 \ pp, \ N \in Lip_{c}(\partial \Omega^{*}), \ N \geq 0, \ \int_{\partial \Omega} N = 1$$

Sébastien Benzekry (LATP Marseille)

0

Existence, uniqueness and regularity

Benzekry, 2009

Theorem

• For $\rho^0 \in L^1(\Omega)$ and $f \in L^1(]0, \infty[\times \partial \Omega)$, there is a unique weak solution and

 $\rho \in \mathcal{C}([0,\infty[; L^1(\Omega))).$

• For $\rho^0 \in D(A)$ and $f \in C^1([0,\infty[;L^1(\partial\Omega)))$, with f(0) = 0,

 $\rho \in \mathcal{C}^1([0,\infty[;L^1(\Omega)) \cap \mathcal{C}([0,\infty[;W_{\mathrm{div}}(\Omega))$

Existence, uniqueness and regularity

Benzekry, 2009

Theorem

• For $\rho^0 \in L^1(\Omega)$ and $f \in L^1(]0, \infty[\times \partial \Omega)$, there is a unique weak solution and

 $\rho \in \mathcal{C}([0,\infty[; L^1(\Omega))).$

• For $\rho^0 \in D(A)$ and $f \in C^1([0,\infty[;L^1(\partial\Omega)))$, with f(0) = 0,

 $\rho \in \mathcal{C}^1([0,\infty[;L^1(\Omega)) \cap \mathcal{C}([0,\infty[;W_{\mathrm{div}}(\Omega))$

Proof :

$$\rho = \underbrace{e^{tA}\rho^{0}}_{\text{semigroup}} + \underbrace{\mathcal{T}f}_{\text{fixed point}}$$

- Cancer
- EDO model of tumoral growth under angiogenic control (Folkman, 1999)
- PDE model for the metastasis density

2 Analysis

- A preliminary result
- Existence, uniqueness and regularity
- Qualitative behavior

3 Numerical simulations

Analysis

Numerical simulations

Qualitative behavior

Classical theory. Age structure Perthame

For the equation

$$\begin{cases} \partial_t \rho + \partial_a \rho = 0\\ \rho(t, a = 0) = \int \beta(\cdot) \rho(t, \cdot)\\ \rho(0, \cdot) = \rho^0 \end{cases}$$

Analysis

Qualitative behavior

Classical theory. Age structure Perthame

For the equation

$$\begin{cases} \partial_t \rho + \partial_a \rho = 0\\ \rho(t, a = 0) = \int \beta(\cdot) \rho(t, \cdot)\\ \rho(0, \cdot) = \rho^0 \end{cases}$$

- The growth of the system is governed by the principal eigenvalue $\lambda_0,$ the Malthus parameter.
- The direct eigenvector V gives the asymptotic age distribution.

$$ho(t,\cdot) \underset{+\infty}{\sim} e^{\lambda_0 t} m_0 V$$

• The convergence is controlled by the adjoint eigenvector Ψ .

$$\int \left| e^{-\lambda_0 t}
ho(t,a) - m_0 V(a)
ight| \Psi(a) da o 0,$$

where $m_0 = \int \rho^0(a) da$.

Modeling	Analysis	
00000000	0000000000	
Qualitative behavior		
Spectral problem		

Find

Benzekry, 2009

$$\left\{ \begin{array}{l} (\lambda,V,\Psi) \in \mathbb{R}^*_+ \times D(\mathcal{A}) \times D(\mathcal{A}^*) \\ \mathcal{A}V = \lambda V, \quad \mathcal{A}^*\Psi = \lambda \Psi \\ \int_{\Omega} V \Psi dx d\theta = 1, \quad \int_{\partial \Omega} \Psi \mathcal{N} = 1, \ \Psi \geq 0 \end{array} \right.$$

Proposition

Under the assumption $\int_0^{\infty} \int_{\partial\Omega} \beta(\Phi_{\tau}(\sigma))N(\sigma)d\tau d\sigma > 1$, there is a unique solution (λ_0, V, Ψ) . The principal eigenvalue λ_0 solves

$$\int_{0}^{+\infty} \int_{\partial\Omega} \beta(\Phi_{\tau}(\sigma)) N(\sigma) e^{-\lambda_{0}\tau} d\tau d\sigma = 1$$

The eigenvectors are given by $V(\Phi_{\tau}(\sigma)) = C_{\lambda_0} N(\sigma) e^{-\lambda_0 \tau} |J_{\Phi}|^{-1}, \Psi(\Phi_{\tau}(\sigma)) = e^{\lambda_0 \tau} \int_{\tau}^{\infty} \beta(\Phi_s(\sigma)) e^{-\lambda_0 s} ds$

Qualitative behavior

Modeling

Qualitative properties

Benzekry, 2009

Proposition

For weak solutions and all t > 0(i) $\int_{\Omega} |\rho(t)| \Psi \leq e^{\lambda_0 t} \left\{ \int_{\Omega} |\rho^0| \Psi + \int_{0}^{t} \int_{\partial \Omega} \Psi(\sigma) e^{-\lambda_0 s} |f|(s,\sigma) d\sigma ds \right\}$ (ii) (Evolution of the mean-value in L_{u}^{1}) $\int_{\Omega} \rho(t) \Psi = e^{\lambda_0 t} \left\{ \int_{\Omega} \rho^0 \Psi + \int_{0}^{t} \int_{\Omega} \Psi(\sigma) e^{-\lambda_0 s} f(s, \sigma) d\sigma ds \right\}$ (iii) (Comparison principle) If $f \ge 0$ $\rho_1^0 < \rho_2^0 \quad \Rightarrow \quad \rho_1(t) < \rho_2(t)$

Benzekry, 2009

Theorem

Assume that there exists $\mu > 0$ such that $\beta - \mu \Psi \ge 0$. Then

$$\begin{split} ||\rho(t)e^{-\lambda_0 t} - m(t)V||_{L^1_{\Psi}} &\leq e^{-\mu t}\{||\rho^0 - m_0V||_{L^1_{\Psi}} \\ &+ 2\int_0^t e^{-(\lambda_0 - \mu)s}\int_{\partial\Omega} |f|(s,\sigma)\Psi(\sigma)ds\}, \\ f||_{L^1_{\Psi}} &= \int_{\Omega} |f|\Psi \end{split}$$

Benzekry, 2009

Theorem

Assume that there exists $\mu > 0$ such that $\beta - \mu \Psi \ge 0$. Then

$$\begin{split} ||\rho(t)e^{-\lambda_0 t} - m(t)V||_{L^1_{\Psi}} &\leq \mathbf{e}^{-\mu \mathbf{t}}\{||\rho^0 - m_0V||_{L^1_{\Psi}} \\ &+ 2\int_0^t e^{-(\lambda_0 - \mu)s}\int_{\partial\Omega} |f|(s,\sigma)\Psi(\sigma)ds\}, \end{split}$$

• Convergence with exponential rate

Benzekry, 2009

Theorem

Assume that there exists $\mu > 0$ such that $\beta - \mu \Psi \ge 0$. Then

$$\begin{split} ||\rho(t)e^{-\lambda_{0}t} - \mathbf{m}(t)V||_{L^{1}_{\Psi}} &\leq e^{-\mu t}\{||\rho^{0} - m_{0}V||_{L^{1}_{\Psi}} \\ &+ 2\int_{0}^{t} e^{-(\lambda_{0}-\mu)s}\int_{\partial\Omega}|f|(s,\sigma)\Psi(\sigma)ds\}, \\ ||f||_{L^{1}_{\Psi}} &= \int_{\Omega}|f|\Psi \\ m(t) &= e^{-\lambda_{0}t}\int_{\Omega}\rho(t)\Psi = \int_{\Omega}\rho^{0}\Psi + \int_{0}^{t} e^{-\lambda_{0}s}\int_{\partial\Omega}f(s,\sigma)\Psi(\sigma)d\sigma ds. \end{split}$$

- Convergence with exponential rate
- Takes into account the source term

Benzekry, 2009

Theorem

Assume that there exists $\mu > 0$ such that $\beta - \mu \Psi \ge 0$. Then

$$\begin{split} ||\rho(t)e^{-\lambda_{0}t} - \mathbf{m}(\mathbf{t})V||_{L^{1}_{\Psi}} &\leq e^{-\mu t}\{||\rho^{0} - m_{0}V||_{L^{1}_{\Psi}} \\ &+ 2\int_{0}^{t}e^{-(\lambda_{0}-\mu)s}\int_{\partial\Omega}|f|(s,\sigma)\Psi(\sigma)ds\}, \\ ||f||_{L^{1}_{\Psi}} &= \int_{\Omega}|f|\Psi \\ m(t) &= e^{-\lambda_{0}t}\int_{\Omega}\rho(t)\Psi = \int_{\Omega}\rho^{0}\Psi + \int_{0}^{t}e^{-\lambda_{0}s}\int_{\partial\Omega}f(s,\sigma)\Psi(\sigma)d\sigma ds. \end{split}$$

- Convergence with exponential rate
- Takes into account the source term
- In the applications $\beta(x, \theta) = mx^{\alpha} \Rightarrow$ assumption is OK, and $\Psi \ge m > 0$.

1) Modeling

- Cancer
- EDO model of tumoral growth under angiogenic control (Folkman, 1999)
- PDE model for the metastasis density

2 Analysis

- A preliminary result
- Existence, uniqueness and regularity
- Qualitative behavior

3 Numerical simulations

Analysis 0000000000

Asymptotic behavior

 $\lambda_0 = 0.10682$

Spectral equation :

 $\int_0^\infty \int_{\partial\Omega} \beta(\Phi_\tau(\sigma)) e^{-\lambda_0 \tau} = 0.9909$

Number of metastases (log scale).

Analysis 0000000000

Asymptotic behavior

Number of metastases (log scale).

Spectral equation :

Direct eigenvector times $e^{\lambda_0 T}$ (projection in x).

Analysis 0000000000

Without treatment. Visible VS not visible.

With anti-angiogenic treatment

Testing various drugs :

Conclusion and perspectives

• Construction of a simple model (5 parameters) for the metastatic process.

• Theoretical study of the equation.

Conclusion and perspectives

• Construction of a simple model (5 parameters) for the metastatic process.

• Theoretical study of the equation.

Future :

- Validation of the model by comparison with mice experiments.
- Use the model to test *in silico* various administration protocols for the drugs. Combination of cytotoxic/anti-angiogenic drugs. Integrate more complex PK's, interface model and toxicities control.
- Address and solve the inverse problem. Parameters identification.

Thank you for your attention!