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Ok Google: What is Machine Learning (ML)??

• Exists since decades

Turing, Mind, 1950

• New « hype » since ~ 2011 mostly thanks to :

• Computing power

• Big data

Definition: “Machine learning is the field of study that gives the computer the ability to learn without being
explicitly programmed “

Deep Learning

Enigma

Arthur Samuel, Computer Scientist, 1959 

Alphafold, 2021
Hassabis, Nobel Prize, 2024

G. Hinton, Nobel Prize, 2024
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Statistical Modeling: The Two Cultures
Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.

1. INTRODUCTION

Statistics starts with data. Think of the data as
being generated by a black box in which a vector of
input variables x (independent variables) go in one
side, and on the other side the response variables y
come out. Inside the black box, nature functions to
associate the predictor variables with the response
variables, so the picture is like this:

y xnature

There are two goals in analyzing the data:

Prediction. To be able to predict what the responses
are going to be to future input variables;
Information. To extract some information about
how nature is associating the response variables
to the input variables.

There are two different approaches toward these
goals:

The Data Modeling Culture

The analysis in this culture starts with assuming
a stochastic data model for the inside of the black
box. For example, a common data model is that data
are generated by independent draws from

response variables = f(predictor variables,
random noise, parameters)

Leo Breiman is Professor, Department of Statistics,
University of California, Berkeley, California 94720-
4735 (e-mail: leo@stat.berkeley.edu).

The values of the parameters are estimated from
the data and the model then used for information
and/or prediction. Thus the black box is filled in like
this:

y xlinear regression 
logistic regression
Cox model

Model validation. Yes–no using goodness-of-fit
tests and residual examination.
Estimated culture population. 98% of all statisti-
cians.

The Algorithmic Modeling Culture

The analysis in this culture considers the inside of
the box complex and unknown. Their approach is to
find a function f!x"—an algorithm that operates on
x to predict the responses y. Their black box looks
like this:

y xunknown

decision trees
neural nets

Model validation. Measured by predictive accuracy.
Estimated culture population. 2% of statisticians,
many in other fields.

In this paper I will argue that the focus in the
statistical community on data models has:

• Led to irrelevant theory and questionable sci-
entific conclusions;
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The data modeling culture The algorithmic modeling culture

What is Machine Learning?



Unsupervised VS supervised ML
Types of ML

categorical outcome

continuous outcome



Example: gene expression and metastatic relapse in 
breast cancer !"##"$% #& '(#)$"
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Unsupervised

van’t veer et al., Nature, 2002

Supervised



Supervised learning: classification vs regression

Regression: continuous outcome Classification: Categorical outcome

• Predict drug 
concentration

𝑥 =

𝑦 =

• Predict drug IC50 from genomic (138) + chemical (689) features

𝑡!, 𝐶! , ⋯ , 𝑡", 𝐶" , 𝑡#

𝐶#

Menden et al., PLoS One, 2013

• Cancer vs non-cancer from cfDNA fragmentomics

Cristino et al., Nature, 2019

• Response to immunotherapy from blood markers

Benzekry et al., Cancers, 2021



AI

ML

DL

Artificial Intelligence, Machine Learning and Deep
Learning

ML

Model

ML = machine (automatic) learning

Goal = predict outcome y as a function of input / features x1,…,xn

x1, x2, x3 y
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ML
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in familial adenomatous polyposis (FAP) syndrome
patients, yet cancers occur much more commonly
in the large intestine than in the small intestine
of these individuals.
If hereditary and environmental factors cannot

fully explain the differences in organ-specific can-
cer risk,howelse can thesedifferencesbe explained?
Here, we consider a third factor: the stochastic
effects associatedwith the lifetimenumber of stem
cell divisions within each tissue. In cancer epide-
miology, the term “environmental” is generally
used to denote anything not hereditary, and the
stochastic processes involved in the development
and homeostasis of tissues are grouped with ex-
ternal environmental influences in an uninforma-
tive way. We show here that the stochastic effects
of DNA replication can be numerically estimated
and distinguished from external environmental
factors. Moreover, we show that these stochastic
influences are in fact the major contributors to
cancer overall, often more important than either
hereditary or external environmental factors.
That cancer is largely the result of acquired

genetic and epigenetic changes is based on the
somatic mutation theory of cancer (9–13) and
has been solidified by genome-wide analyses
(14–16). The idea that the number of cells in a
tissue and their cumulative number of divisions
may be related to cancer risk, making themmore
vulnerable to carcinogenic factors, has been pro-
posed but is controversial (17–19). Other insight-

ful ideas relating to the nature of the factors
underlying neoplasia are reviewed in (20–22).
The concept underlying the current work is

that many genomic changes occur simply by
chance during DNA replication rather than as a
result of carcinogenic factors. Since the endog-
enous mutation rate of all human cell types ap-
pears to be nearly identical (23, 24), this concept
predicts that there should be a strong, quantitative
correlation between the lifetime number of divi-
sions among a particular class of cells within each
organ (stem cells) and the lifetime risk of cancer
arising in that organ.
To test this prediction, we attempted to iden-

tify tissues in which the number and dynamics
of stem cells have been described. Most cells in
tissues are partially or fully differentiated cells
that are typically short-lived and unlikely to be
able to initiate a tumor. Only the stem cells—
those that can self-renew and are responsible
for the development and maintenance of the tis-
sue's architecture—have this capacity. Stem cells
often make up a small proportion of the total
number of cells in a tissue and, until recently,
their nature, number, and hierarchical division
patterns were not known (25–28). Tissues were
not included in our analysis if the requisite pa-
rameters were not found in the literature or if
their estimation was difficult to derive.
Through an extensive literature search,we iden-

tified 31 tissue types in which stem cells had been

quantitatively assessed (see the supplementary
materials). We then plotted the total number of
stem cell divisions during the average lifetime of
a human on the x axis and the lifetime risk for
cancer of that tissue type on the y axis (Fig. 1)
(table S1). The lifetime risk in the United States
for all included cancer types has been evaluated
in detail, such as in the Surveillance, Epidemiol-
ogy, and End Results (SEER) database (3). The
correlation between these two very different
parameters—number of stem cell divisions and
lifetime risk—was striking, with a highly positive
correlation (Spearman’s rho = 0.81; P < 3.5 × 10−8)
(Fig. 1). Pearson’s linear correlation 0.804 [0.63
to 0.90; 95% confidence interval (CI)] was equiv-
alently significant (P < 5.15 × 10−8). One of the
most impressive features of this correlation was
that it extended across five orders of magnitude,
thereby applying to cancers with enormous differ-
ences in incidence. No other environmental or in-
herited factors are known to be correlated in this
way across tumor types. Moreover, these correla-
tionswere extremely robust; when the parameters
used to construct Fig. 1 were varied over a broad
range of plausible values, the tight correlation re-
mained intact (see the supplementarymaterials).
A linear correlation equal to 0.804 suggests

that 65% (39% to 81%; 95% CI) of the differences
in cancer risk among different tissues can be ex-
plained by the total number of stem cell divisions
in those tissues. Thus, the stochastic effects of

SCIENCE sciencemag.org 2 JANUARY 2015 • VOL 347 ISSUE 6217 79

Fig. 1. The relationship between the number of stem cell divisions in the lifetime of a given tissue and the lifetime risk of cancer in that tissue.
Values are from table S1, the derivation of which is discussed in the supplementary materials.
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y = a*x + b



AI

ML

DL

Artificial Intelligence, Machine Learning and Deep
Learning

ML

Supervised machine learning

y1

a1*x1 + a2*x2 + a3*x3

patient 1

patient 2

patient 3

x1, x2, x3
1 1 1

x1, x2, x3
2 2 2

x1, x2, x3
3 3 3

y2

y3

a1, a2, a3

Model

Features Outcome



Example: predicting respone to immunotherapy in non-
small cell lung cancer

p = 10 features = 𝑥!, . . . , 𝑥!"
n 

=2
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pa
tie
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𝑦 = response



Types of data
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COLLAGEN, TYPE III, ALPHA 1 
COLLAGEN, TYPE I, ALPHA 1
COLLAGEN, TYPE I, ALPHA 2
COLLAGEN, TYPE III, ALPHA 1 
COLLAGEN, TYPE III, ALPHA 1 
COLLAGEN, TYPE I, ALPHA 2
THY-1 CELL SURFACE ANTIGEN
HOMO SAPIENS, ALPHA-1 VI COLLAGEN
COLLAGEN, TYPE VI, ALPHA 1
COLLAGEN, TYPE VI, ALPHA 1
ALPHA-2 COLLAGEN TYPE VI 
HUMAN METHIONINE SYNTHASE 
265694

TROPONIN I, SKELETAL, FAST
MATRIX METALLOPROTEINASE 14
LAMININ, GAMMA 2 
ANNEXIN VIII
EST SIMILAR TO ATAXIA-TELANGIECTASIA D PROTEIN
KERATIN 17
KERATIN 17
ESTS, HIGHLY SIMILAR TO KERATIN K5
KERATIN 5 
ESTS, HIGHLY SIMILAR TO KERATIN K5
BULLOUS PEMPHIGOID ANTIGEN 1
S100 CALCIUM-BINDING PROTEIN A2
INTEGRIN, BETA 4
INTEGRIN, BETA 4
2255577
LAMININ, ALPHA 3 
COLLAGEN, TYPE XVII, ALPHA 1
BASONUCLIN

IMMUNOGLOBULIN GAMMA 3 GM MARKER
COLONY STIMULATING FACTOR 1 MACROPHAGE
NEUTROPHIL CYTOSOLIC FACTOR 1
IMMUNOGLOBULIN LAMBDA-LIKE POLYPEPTIDE 2
IMMUNOGLOBULIN LAMBDA LIGHT CHAIN
IMMUNOGLOBULIN LAMBDA LIGHT CHAIN
IMMUNOGLOBULIN LAMBDA LIGHT CHAIN
HUMAN IG J CHAIN GENE
IMMUNOGLOBULIN J CHAIN
HUMAN IG J CHAIN GENE
MHC CLASS II, DQ BETA 1
IMMUNOGLOBULIN MU
EARLY DEVELOPMENT REGULATOR 2
MAX-INTERACTING PROTEIN 1

MESENCHYME HOMEO BOX 1
INSULIN-LIKE GROWTH FACTOR 1 SOMATOMEDIN C
CYCLIN-DEPENDENT KINASE INHIBITOR 1C P57, KIP2
78946
FATTY ACID BINDING PROTEIN 4, ADIPOCYTE
FATTY ACID BINDING PROTEIN 4, ADIPOCYTE
FATTY ACID BINDING PROTEIN 4, ADIPOCYTE
MDGI/FATTY ACID BINDING PROTEIN 3
CD36 ANTIGEN COLLAGEN TYPE I RECEPTOR
CD36 ANTIGEN COLLAGEN TYPE I RECEPTOR
GLUTATHIONE PEROXIDASE 3 PLASMA
FOUR AND A HALF LIM DOMAINS 1
ALCOHOL DEHYDROGENASE 2 CLASS I, BETA
AQUAPORIN 7
484535
LIPOPROTEIN LIPASE
GLYCEROL-3-PHOSPHATE DEHYDROGENASE 1
RETINOL-BINDING PROTEIN 4, INTERSTITIAL
INTEGRIN, ALPHA 7
85660
PHOSPHOLEMMAN
AQUAPORIN 1 CHANNEL-FORMING INTEGRAL PROTEIN
APOLIPOPROTEIN A-I
SMALL INDUCIBLE CYTOKINE SUBFAMILY A CYS-CYS
PPAR, GAMMA
ENDOTHELIN RECEPTOR TYPE B
ESTS SIMILAR TO !!!! ALU SUBFAMILY SX WARNING
CHITINASE 1
53341
SMALL INDUCIBLE CYTOKINE SUBFAMILY A, MEMBER 18
FOLYLPOLYGLUTAMATE SYNTHASE
LYSOZYME RENAL AMYLOIDOSIS
LYSOZYME RENAL AMYLOIDOSIS
AP-2 ALPHA ACTIVATING ENHANCER-BINDING PROTEIN 2
LIPASE A, LYSOSOMAL ACID
CD68 ANTIGEN
ACID PHOSPHATASE 5, TARTRATE RESISTANT
FC FRAGMENT OF IGE, HIGH AFFINITY I, RECEPTOR FOR
CATHEPSIN Z

INTERLEUKIN 10 RECEPTOR, ALPHA
INTEGRIN, ALPHA L, CD11A
742143
T-CELL RECEPTOR, BETA CLUSTER
80186
T-CELL RECEPTOR, DELTA V,D,J,C
ESTS SIMILAR TO S-ACYL FATTY ACID SUNTHETASE 
LYMPHOCYTE-SPECIFIC PROTEIN TYROSINE KINASE
CD3D ANTIGEN, DELTA
CD3G ANTIGEN, GAMMA
DP-2 E2F DIMERIZATION PARTNER 2

HUMAN ENDOGENOUS RETROVIRUS ENVELOPE PL1
X-BOX BINDING PROTEIN 1
HEPATOCYTE NUCLEAR FACTOR 3, ALPHA
GATA-BINDING PROTEIN 3
GATA-BINDING PROTEIN 3
GATA-BINDING PROTEIN 3
GATA-BINDING PROTEIN 3
ESTROGEN RECEPTOR 1
ESTROGEN RECEPTOR 1
ANNEXIN XXXI
ANNEXIN XXXI

1:1 >2 >4 >6 >8>2>4>6>8 >16>16

© 2000 Macmillan Magazines Ltd

Tabular Imaging

Text (unstructured)Longitudinal



Preprocessing

Garbage in = garbage out

• Load data and possibly merge different sources / types

• Document the data : dictionary + types (categorical / numeric)

• Clean the data (outliers? aberrant values? units errors? exclusion criteria?)

• Define features of interest (e.g., BMI) and feature sets (e.g., monotherapy patients)

• Dummify categorical variables, transform numerics (e.g., log)

• Missing values (not covered in this course but ++)

• Scaling

⇒ First, look at the data and perform exploratory data analysis



Formalism



Machine (Statistical) (supervised) Learning

• Goal = predict 𝑦 from 𝑥 = learn $𝑓 that is “close” to 𝑓 à prediction &𝑦 = $𝑓(𝑥)

𝒚 = 𝒇 𝒙 + 𝜺

Types of ML

CENSORED: 
SURVIVAL MODELING

UNCENSORED: 
LINEAR/NONLINEAR REGRESSION

• 𝑦 ∈ {𝑌!, 𝑌"} qualitative/categorical ⇒ classification

• 𝑦 ∈ ℝ quantitative/continuous ⇒ regression

• 𝑥 = 𝑥!, 𝑥", … , 𝑥# set of variables / features / predictors (e.g., biomarkers)

𝜀 = irreducible error



Training / test split

• How to evaluate the predictive performance of !𝑓 ?

• It is trivial to find a model that perfectly predicts the data it has seen (the training data)

• We want to test the performances of !𝑓 on unseen data

• Best solution: have an external validation set (e.g., from a different study / hospital)

• If not: randomly split the data between a training (usually 2/3 or 3/4) and a test set

• Warning! from the moment you see the test data and the model performances, if 

you further change anything, you cheat! (there is leakage)



Training / test split

n 
=2

98
pa

tie
nt

s Training set = 2/3 = 200 pts

Test set = 1/3 = 98 patients



Evaluating performances: regression

• Let 𝑥( = 𝑥(! , … , 𝑥(" the test set variables and 𝑦( = 𝑦(! , … , 𝑦(" the associated test outcomes

Mean squared error = 𝑀𝑆𝐸()*+, = 𝐴𝑣𝑒 𝑦 − !𝑓 𝑥
-
, 𝑀𝑆𝐸(./( = 𝐴𝑣𝑒 𝑦( − !𝑓 𝑥(

-

Should we minimize the 𝑀𝑆𝐸$%&'( ?

𝑀𝑆𝐸$)*$

𝑀𝑆𝐸$%&'(



Bias and variance

• Bias = how accurate is the prediction, in average

𝐸 𝑓 𝑥 − $𝑓 𝑥

where the average is to be understood as if we repeatedly estimated f using a large number of training sets

• Variance = how variable is the prediction, in average

𝐸 $𝑓 𝑥 − 𝐸 $𝑓 𝑥
"



Bias versus variance trade-off

Theorem:        𝐸 𝑦$ − $𝑓 𝑥$
"
= 𝑉𝑎𝑟 $𝑓 𝑥$ + 𝐵𝑖𝑎𝑠 $𝑓 𝑥$

"
+ 𝑉𝑎𝑟 𝜀



Resampling methods

• No external test set available

• Gives information about the variability and sensitivity of the model (model assessment)

• Select a model among candidates (model selection)

• Tune the hyperparameters (e.g., tree depth or minimal number of samples in each leaf)

• Two main resampling methods: cross-validation and bootstrap

Resampling method = drawing samples from a training set 
and refitting a model of interest



Cross validation
5.1 Cross-Validation 199
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FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 13, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.

even better results. We answer this question in Chapter 3 by looking at
the p-values associated with a cubic term and higher-order polynomial
terms in a linear regression. But we could also answer this question using
the validation method. We randomly split the 392 observations into two
sets, a training set containing 196 of the data points, and a validation set
containing the remaining 196 observations. The validation set error rates
that result from fitting various regression models on the training sample
and evaluating their performance on the validation sample, using MSE
as a measure of validation set error, are shown in the left-hand panel of
Figure 5.2. The validation set MSE for the quadratic fit is considerably
smaller than for the linear fit. However, the validation set MSE for the cubic
fit is actually slightly larger than for the quadratic fit. This implies that
including a cubic term in the regression does not lead to better prediction
than simply using a quadratic term.

Recall that in order to create the left-hand panel of Figure 5.2, we ran-
domly divided the data set into two parts, a training set and a validation
set. If we repeat the process of randomly splitting the sample set into two
parts, we will get a somewhat different estimate for the test MSE. As an
illustration, the right-hand panel of Figure 5.2 displays ten different vali-
dation set MSE curves from the Auto data set, produced using ten different
random splits of the observations into training and validation sets. All ten
curves indicate that the model with a quadratic term has a dramatically
smaller validation set MSE than the model with only a linear term. Fur-
thermore, all ten curves indicate that there is not much benefit in including
cubic or higher-order polynomial terms in the model. But it is worth noting
that each of the ten curves results in a different test MSE estimate for each
of the ten regression models considered. And there is no consensus among
the curves as to which model results in the smallest validation set MSE.
Based on the variability among these curves, all that we can conclude with
any confidence is that the linear fit is not adequate for this data.

The validation set approach is conceptually simple and is easy to imple-
ment. But it has two potential drawbacks:

Train/test

5.1 Cross-Validation 201
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FIGURE 5.3. A schematic display of LOOCV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error is then estimated by averaging the n resulting MSE’s. The first training set
contains all but observation 1, the second training set contains all but observation
2, and so forth.

using its value x1. Since (x1, y1) was not used in the fitting process, MSE1 =
(y1 − ŷ1)2 provides an approximately unbiased estimate for the test error.
But even though MSE1 is unbiased for the test error, it is a poor estimate
because it is highly variable, since it is based upon a single observation
(x1, y1).

We can repeat the procedure by selecting (x2, y2) for the validation
data, training the statistical learning procedure on the n− 1 observations
{(x1, y1), (x3, y3), . . . , (xn, yn)}, and computing MSE2 = (y2−ŷ2)2. Repeat-
ing this approach n times produces n squared errors, MSE1, . . . , MSEn.
The LOOCV estimate for the test MSE is the average of these n test error
estimates:

CV(n) =
1

n

n∑

i=1

MSEi. (5.1)

A schematic of the LOOCV approach is illustrated in Figure 5.3.
LOOCV has a couple of major advantages over the validation set ap-

proach. First, it has far less bias. In LOOCV, we repeatedly fit the sta-
tistical learning method using training sets that contain n − 1 observa-
tions, almost as many as are in the entire data set. This is in contrast to
the validation set approach, in which the training set is typically around
half the size of the original data set. Consequently, the LOOCV approach
tends not to overestimate the test error rate as much as the validation
set approach does. Second, in contrast to the validation approach which
will yield different results when applied repeatedly due to randomness in
the training/validation set splits, performing LOOCV multiple times will

Leave-one-out cross-validation (LOOCV) 5.1 Cross-Validation 203
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FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.

or linear discriminant analysis, or any of the methods discussed in later
chapters. The magic formula (5.2) does not hold in general, in which case
the model has to be refit n times.

5.1.3 k-Fold Cross-Validation

An alternative to LOOCV is k-fold CV. This approach involves randomly
k-fold CV

dividing the set of observations into k groups, or folds, of approximately
equal size. The first fold is treated as a validation set, and the method
is fit on the remaining k − 1 folds. The mean squared error, MSE1, is
then computed on the observations in the held-out fold. This procedure is
repeated k times; each time, a different group of observations is treated
as a validation set. This process results in k estimates of the test error,
MSE1,MSE2, . . . ,MSEk. The k-fold CV estimate is computed by averaging
these values,

CV(k) =
1

k

k∑

i=1

MSEi. (5.3)

Figure 5.5 illustrates the k-fold CV approach.
It is not hard to see that LOOCV is a special case of k-fold CV in which k

is set to equal n. In practice, one typically performs k-fold CV using k = 5
or k = 10. What is the advantage of using k = 5 or k = 10 rather than
k = n? The most obvious advantage is computational. LOOCV requires
fitting the statistical learning method n times. This has the potential to be
computationally expensive (except for linear models fit by least squares,
in which case formula (5.2) can be used). But cross-validation is a very
general approach that can be applied to almost any statistical learning
method. Some statistical learning methods have computationally intensive

k-fold cross-validation (k = 5)



Bootstrap

• Randomly select n times a subject, with 

replacement

• A bootstrapped dataset has the same size 

but contains only 63.2% of the initial cases



Even less data (because of splitting)

All data (150)

Train (100)

Effective train (80) Validation 
(20)

Test (50)

Test (50)

A rule of thumb is to have 15 times more patients than biomarkers to 
conduct statistically significant studies



Linear regression



Example: concentration of a drug (sunitinib in rats) over 
time

Concentration at t = 9 hours?

y = log(concentration), x = time
 y = f(x) ?

Training Test



Example: concentration of a drug (sunitinib in rats) over 
time

𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙

Linear

Underfitting!

𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙𝟐 + 𝜽𝟐𝒙𝟑 +𝜽𝟑 𝒙𝟒 + 𝜽𝟒𝒙𝟓

Polynomial

Overfitting!



Linear regression

𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙 + 𝜺

3 data points 4 data points 5 data points



Linear regression: under the hood
𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙 + 𝜺

How to find =𝜷𝟎 ≈ 𝜷𝟎 and =𝜷𝟏 ≈ 𝜷𝟏? 

𝑆𝑆 =@
'-!

(

𝑦' − 𝛽. + 𝛽!𝑡'
"

• C𝜷 = =𝜷𝟎, =𝜷𝟏 is the value that minimizes the sum of squared residuals

ML training ⇔ Optimization of an objective function (also called "loss")



Multiple linear regression

3.2 Multiple Linear Regression 73

X1

X2

Y

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression esti-
mates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV,
radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000 on
radio advertising is associated with approximately 189 units of additional
sales. Comparing these coefficient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper

2 variables

RSE = 40.3

R2 = 0.16

𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + 𝜺

...

𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 +⋯+ 𝜷𝟓𝟗𝒙𝟓𝟗 + 𝜺

Predict tumor size (SLD) from 59 variables

RSE = 36.0

R2 = 0.44

Categorical variables? à dummified (= one-hot-encoding)

• SEX = M, F à SEX = {0, 1}

• NB_META = {0, 1, 2, ≥ 3} à NB_META_1, NB_META_2 and NB_META_≥3

⚠ Variables need to be scaled



Linear classification: logistic regression



Example: breast cancer diagnosis

p = 32 features = 𝑥!, . . . , 𝑥#$

n 
=5

69
su

bj
ec

ts

𝑦

Training set = 3/4

Test set = 1/4



Logistic regression
𝑝 = ℙ 𝑌 = 1 ∈ 0,1

𝑦

?
ℝ

ln
𝑝

1 − 𝑝
= 𝛽) + 𝛽*𝑥* +⋯+ 𝛽+𝑥+

⇔ 𝑝 =
𝑒,!-,"."-⋯-,#.#

1 + 𝑒,!-,"."-⋯-,#.#
= 𝜋(𝑥)

Interpretation: for one variable 𝑥, odds 𝑥 = 𝑒0,!-0,".

⇒ 𝑒1, =
odds(𝑥 + 1)
odds(𝑥)

= odds ratio =𝑂𝑅

𝑝
1 − 𝑝 ∈ 0,+∞ =

ℙ 𝑌 = 1
ℙ 𝑌 = 0 = odds ≃ chance

if 𝑂𝑅 = 1.5 there is a 50% increase of chance of having 𝑌 = 1 for an increase of 𝑥 of one unit

Estimation: likelihood maximization L𝛽2

𝑦 = &𝜋(𝑥!)

&𝜋 𝑥! = 0.5

⇔ 𝑥! = −
=𝛽.
=𝛽!

&𝜋 𝑥! < 0.5
N𝒚 = 𝟎

Why not linear regression?

&𝜋 𝑥! > 0.5
N𝒚 = 𝟏

benign

malignant

𝑥R =

Training set



Logistic regression = linear classification

ln
𝑝

1 − 𝑝 = 𝛽. + 𝛽!𝑥! + 𝛽"𝑥"

• 2 features: radius and texture

Fit on training set
(Likelihood maximization)

=𝜷𝟎, =𝜷𝟏, =𝜷𝟐
=𝛽. +=𝛽!𝑥! + =𝛽" 𝑥" < 0

=𝛽. +=𝛽!𝑥! + =𝛽" 𝑥" > 0

Training set Test set



Classification: additional prediction metrics



Performance evaluation: Confusion matrix

Data 
𝑥*
⋮
𝑥3

Predictions 
N𝑦*
⋮
N𝑦3

=
P𝑀(𝑥*)
⋮

P𝑀 (𝑥3)
vs reality 

𝑦*
⋮
𝑦3

1 0

+ TP
(Sensitivity) FP

- FN TN
(Specificity)

M
od

el

Actual

Sensitivity = 𝑆𝐸 = ℙ |+ 1 = 𝑇𝑃𝑅 = 45
45-63

Specificity = 𝑆𝑃 = ℙ |− 0 = 𝑇𝑁𝑅 = 43
65-43

𝛽 = ℙ − 1 = 𝐹𝑁𝑅 = 1 − 𝑆𝐸 = proba of type II error

𝛼 = ℙ + 0 = 𝐹𝑃𝑅 = 1 − 𝑆𝑃 = proba of type I error

(classify as benign what is cancer)

(classify as tumor what is benign)

Accuracy = 45-43
45-43-65-43



Performances

1 0

+ 124 13

- 31 258

Radius

1 0

+ 122 15

- 33 256

Accuracy = 0.887 Accuracy = 0.897

Radius + texture

Training set

All

Test set

1 0

+ 42 4

- 15 82

1 0

+ 52 7

- 5 79

1 0

+ 44 6

- 13 80

1 0

+ 155 0

- 0 271

Accuracy = 1

Accuracy = 0.867 Accuracy = 0.867 Accuracy = 0.916



ROC curve analysis

• In practical cases a classification model often
assigns a score (e.g. proba)

• For each value of a threshold, one 𝑆𝐸 and one 
𝑆𝑃 value

• Global quantification of performances = area 
under the curve (AUC)

• In practice, one threshold needs to be defined
from the train set

1 - Specificity
Se

ns
iti

vi
ty



AUCs of logistic regression (test set)

Radius Radius + texture All

AUC = 0.937 AUC = 0.952 AUC = 0.967



Interpretation of AUC

𝐴𝑈𝐶 = probability that a random pair of predictions &𝑦!, &𝑦" is concordant with the observations i.e
that the score of &𝑦! is larger than the score of &𝑦" if 𝑦! > 𝑦".

• 𝑆* = score in class we want to classify as positive (say, malignant), density
𝑓*

• 𝑆) = score in other class (say, healthy/benign), density 𝑓)
• 𝑇 = threshold

𝐴𝑈𝐶 = ^
4$%&

4$'(
𝑆𝐸 𝑇 𝑑 𝐹𝑃𝑅(𝑇)

𝑆𝐸 𝑇 = ℙ 𝑆 ≥ 𝑇|1 = ^
4

4$%&
𝑓* 𝑥 𝑑𝑥

𝐹𝑃𝑅 𝑇 = ℙ 𝑆 ≥ 𝑇|0 = ^
4

4$%&
𝑓) 𝑥 𝑑𝑥

𝐴𝑈𝐶 = ^
4$'(

4$%&
^
4

4$%&
𝑓* 𝑥 𝑓) 𝑇 𝑑𝑇

= ℙ 𝑆* ≥ 𝑆)



Positive and negative predictive value

𝑃𝑃𝑉 = ℙ 1 + =
ℙ + 1 ℙ(1)

ℙ(+)

ℙ + = ℙ + 0 ℙ 0 + ℙ + 1 ℙ 1 = 1 − ℙ − 0 1 − ℙ 1 + 𝑆𝐸 ⋅ ℙ(1)

= 1 − 𝑆𝑃 ⋅ 1 − 𝑝 + 𝑆𝐸 ⋅ 𝑝

𝑝 prevalence

𝑃𝑃𝑉 =
𝑆𝐸 ⋅ 𝑝

1 − 𝑆𝑃 ⋅ 1 − 𝑝 + 𝑆𝐸 ⋅ 𝑝

• Other metrics: 𝐹1 = harmonic mean of 𝑃𝑃𝑉 (precision) and sensitivity (recall) = 2 𝑃𝑃𝑉7* + 𝑆𝐸7* 7*

• We are often more interested in ℙ(1|+) (= positive predictive value, 𝑃𝑃𝑉) and ℙ(0|−)
(= negative predictive value, 𝑁𝑃𝑉)

• From Bayes

• Accuracy, sensitivity and specificity are not sufficient to assess a model



Example: Lung cancer and smoking status

𝑃𝑃𝑉 = ℙ(lung cancer during lifetime |smoker)= 18.9%

• Percentage of smokers among lung cancer patients = 90%, i.e. 𝑆𝐸 of a model based on 

smoking status is 0.9

• Approx. 30% of population is composed of smokers ⇒ 𝑆𝑃(= 𝑇𝑁𝑅, i.e. proportion of 

people who don’t smoke and don’t have cancer) is 70%.

• Assuming a lifetime risk of having lung cancer of 7.19% (= prevalence) 



Nonlinear methods: decision trees



Classification and regression trees (CART) = Progression

= Response

x1

x2

t1

t2
t3

• Classification tree: vote in each branch

x1

x2 x2

< t1 > t1

> t2
< t3

< t2
> t3

• Regression tree: average in each branch

• Stratifying or segmenting the predictor/variable space into simple regions

Here, no need to scale J
Breiman et al., CART, 1984

• Hyperparameters?

• Tree depth

• Minimal node size

• Cost-complexity

https://parsnip.tidymodels.org/reference/details_decision_tree_rpart.html


Node splitting
Classification

• Minimize the Gini index = total variance across the K classes
 = purity index

where            = proportion of the k-th class in node m.

For each potential split (i.e., variable 𝑥$ and cutoff s)

• Calculate G in the two child nodes
• Calculate the difference between parent and childs
• Choose the split with maximum difference

Regression

left child node based on 
variable j and cutoff s

• For each node, recursively find value of j and s that minimize



Pruning

Pruning

Main issue = overfitting
Cost-complexity 𝛼 = 0 Cost-complexity 𝛼 = 0.02

𝑅2 𝑇 = 𝑅 𝑇 + 𝛼|𝑇|

nb of 
terminal nodes

Misclassificati
on error



Ensemble method: random forest

M. Dmitrievsky, https://www.mql5.com/en/articles/3856

Breiman, Random forests, Machine Learning, 2001



Random forest: hyperparameters

• Number of trees : trees [R ranger, default 500], n_estimators [python sklearn, default 100]

• Number of variables randomly selected to split each node: mtry [R], max_features [sklearn], default = 𝑝

• Minimal node size min_n [R, default 10], min_samples_leaf [sklearn, default 1] 

• Additional parameters in sklearn: criterion (default: Gini), max_depth, min_impurity_decrease,...

https://parsnip.tidymodels.org/reference/details_rand_forest_ranger.html


Example on predict NSCLC response to ICI

Benzekry et al., Cancers, 2021



Artificial neural networks



Artificial neural networks

AI

ML

DL



Perceptron

y = f(b + a1x1+…+anxn)

x1

x2

xn

x3

a1

a2

a3

an

f



Feed-forward neural network

𝑤!,!
𝑤",!

𝑤4,5

𝐴 = 𝑊 a 𝑋
𝑌 = 𝑓(𝑊 a 𝑋)𝑊 ∈ ℝ4,5

Multiple layers

𝑌 = 𝑓"(𝑊" a 𝑓!(𝑊! a 𝑋))

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-
propagating errors. Nature 323, 533–536 (1986). 

Training = minimize loss           gradient descent

Backpropagation uses the chain rule and matrix products



Success example of DL: computer vision

• 1.2 million images (ImageNet, Stanford) used to train a deep convolutional neural network

Krizhevsky, Sutskever, Hinton, ImageNet classification with deep convolutional neural networks, 
NIPS, 2012 (cited 135 158)

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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Classification of skin lesions

• 129 450 anntotated images

• Task = prediction benign/malignant

• Similar performances as dermatologists
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 

Acral-lentiginous melanoma
Amelanotic melanoma
Lentigo melanoma
…

Blue nevus
Halo nevus
Mongolian spot
…

Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task) 

92% malignant melanocytic lesion

8% benign melanocytic lesion

Skin lesion image

Convolution
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax

Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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by choosing a threshold probability t and defining the prediction ŷ for 
each image as ŷ = P ≥ t. Varying t in the interval 0–1 generates a curve 
of sensitivities and specificities that the CNN can achieve.

We compared the direct performance of the CNN and at least 
21 board-certified dermatologists on epidermal and melanocytic 

lesion classification (Fig. 3a). For each image the dermatologists 
were asked whether to biopsy/treat the lesion or reassure the patient. 
Each red point on the plots represents the sensitivity and specificity 
of a  single  dermatologist. The CNN outperforms any dermatologist 
whose  sensitivity and specificity point falls below the blue curve of 
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Figure 3 | Skin cancer classification performance of the CNN and 
dermatologists. a, The deep learning CNN outperforms the average of 
the dermatologists at skin cancer classification using photographic and 
dermoscopic images. Our CNN is tested against at least 21 dermatologists 
at keratinocyte carcinoma and melanoma recognition. For each test, 
previously unseen, biopsy-proven images of lesions are displayed, and 
dermatologists are asked if they would: biopsy/treat the lesion or reassure 
the patient. Sensitivity, the true positive rate, and specificity, the true 
negative rate, measure performance. A dermatologist outputs a single 
prediction per image and is thus represented by a single red point. The 
green points are the average of the dermatologists for each task, with 
error bars denoting one standard deviation (calculated from n =  25, 22 
and 21 tested dermatologists for keratinocyte carcinoma, melanoma 
and melanoma under dermoscopy, respectively). The CNN outputs a 
malignancy probability P per image. We fix a threshold probability t 

such that the prediction ŷ for any image is ŷ = P ≥ t, and the blue curve is 
drawn by sweeping t in the interval 0–1. The AUC is the CNN’s measure 
of performance, with a maximum value of 1. The CNN achieves superior 
performance to a dermatologist if the sensitivity–specificity point of 
the dermatologist lies below the blue curve, which most do. Epidermal 
test: 65 keratinocyte carcinomas and 70 benign seborrheic keratoses. 
Melanocytic test: 33 malignant melanomas and 97 benign nevi. A second 
melanocytic test using dermoscopic images is displayed for comparison: 
71 malignant and 40 benign. The slight performance decrease reflects 
differences in the difficulty of the images tested rather than the diagnostic 
accuracies of visual versus dermoscopic examination. b, The deep learning 
CNN exhibits reliable cancer classification when tested on a larger dataset.  
We tested the CNN on more images to demonstrate robust and reliable 
cancer classification. The CNN’s curves are smoother owing to the larger 
test set.

Squamous cell carcinomas

Basal cell carcinomas 

Nevi

Melanomas

Seborrhoeic keratoses

Epidermal benign
Epidermal malignant
Melanocytic benign
Melanocytic malignant

Figure 4 | t-SNE visualization of the last hidden layer representations 
in the CNN for four disease classes. Here we show the CNN’s internal 
representation of four important disease classes by applying t-SNE,  
a method for visualizing high-dimensional data, to the last hidden layer 
representation in the CNN of the biopsy-proven photographic test sets 

(932 images). Coloured point clouds represent the different disease 
categories, showing how the algorithm clusters the diseases. Insets show 
images corresponding to various points. Images reprinted with permission 
from the Edinburgh Dermofit Library (https://licensing.eri.ed.ac.uk/i/
software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Esteva et al. (Stanford), Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017



Convolutional neural network

©3Blue1Brown

https://www.youtube.com/watch?v=KuXjwB4LzSA&ab_channel=3Blue1Brown


Convolutional neural network

©3Blue1Brown

https://www.youtube.com/watch?v=KuXjwB4LzSA&ab_channel=3Blue1Brown


Other NNs used

• Avg/MaxPool = reduce the image dimension by subdividing and taking the average/max in each region

• Concat = concatenates the outputs

• Dropout = randomly drops a subset of neurons during a training iteration (disabled during testing)

• Fully connected

• Softmax = generalization of logistic to K classes
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 

Acral-lentiginous melanoma
Amelanotic melanoma
Lentigo melanoma
…

Blue nevus
Halo nevus
Mongolian spot
…

Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task) 

92% malignant melanocytic lesion

8% benign melanocytic lesion

Skin lesion image

Convolution
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MaxPool
Concat
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Fully connected
Softmax

Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 
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Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).
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Support vector machines

• Developed in the computer science community in the 1990s

• Considered one of the best “out of the box” classifiers
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FIGURE 9.1. The hyperplane 1 + 2X1 + 3X2 = 0 is shown. The blue region is
the set of points for which 1+ 2X1 +3X2 > 0, and the purple region is the set of
points for which 1 + 2X1 + 3X2 < 0.

9.1.2 Classification Using a Separating Hyperplane

Now suppose that we have a n×p data matrix X that consists of n training
observations in p-dimensional space,

x1 =

⎛

⎜⎝
x11
...

x1p

⎞

⎟⎠ , . . . , xn =

⎛

⎜⎝
xn1
...

xnp

⎞

⎟⎠ , (9.5)

and that these observations fall into two classes—that is, y1, . . . , yn ∈
{−1, 1} where −1 represents one class and 1 the other class. We also have a

test observation, a p-vector of observed features x∗ =
(
x∗
1 . . . x∗

p

)T
. Our

goal is to develop a classifier based on the training data that will correctly
classify the test observation using its feature measurements. We have seen
a number of approaches for this task, such as linear discriminant analysis
and logistic regression in Chapter 4, and classification trees, bagging, and
boosting in Chapter 8. We will now see a new approach that is based upon
the concept of a separating hyperplane.

separating
hyperplaneSuppose that it is possible to construct a hyperplane that separates the

training observations perfectly according to their class labels. Examples
of three such separating hyperplanes are shown in the left-hand panel of
Figure 9.2. We can label the observations from the blue class as yi = 1 and
those from the purple class as yi = −1. Then a separating hyperplane has
the property that

β0 + β1xi1 + β2xi2 + · · ·+ βpxip > 0 if yi = 1, (9.6)

𝛽. + 𝛽!𝑋! + 𝛽"𝑋" > 0

𝛽. + 𝛽!𝑋! + 𝛽"𝑋" < 0

𝛽. + 𝛽!𝑋! + 𝛽"𝑋" = 0
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FIGURE 9.2. Left: There are two classes of observations, shown in blue and
in purple, each of which has measurements on two variables. Three separating
hyperplanes, out of many possible, are shown in black. Right: A separating hy-
perplane is shown in black. The blue and purple grid indicates the decision rule
made by a classifier based on this separating hyperplane: a test observation that
falls in the blue portion of the grid will be assigned to the blue class, and a test
observation that falls into the purple portion of the grid will be assigned to the
purple class.

and
β0 + β1xi1 + β2xi2 + · · ·+ βpxip < 0 if yi = −1. (9.7)

Equivalently, a separating hyperplane has the property that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) > 0 (9.8)

for all i = 1, . . . , n.
If a separating hyperplane exists, we can use it to construct a very natural

classifier: a test observation is assigned a class depending on which side of
the hyperplane it is located. The right-hand panel of Figure 9.2 shows
an example of such a classifier. That is, we classify the test observation x∗

based on the sign of f(x∗) = β0+β1x∗
1+β2x∗

2+· · ·+βpx∗
p. If f(x

∗) is positive,
then we assign the test observation to class 1, and if f(x∗) is negative, then
we assign it to class −1. We can also make use of the magnitude of f(x∗). If
f(x∗) is far from zero, then this means that x∗ lies far from the hyperplane,
and so we can be confident about our class assignment for x∗. On the other
hand, if f(x∗) is close to zero, then x∗ is located near the hyperplane, and so
we are less certain about the class assignment for x∗. Not surprisingly, and
as we see in Figure 9.2, a classifier that is based on a separating hyperplane
leads to a linear decision boundary.

3 separating hyperplanes 
among many possibles
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9.1.2 Classification Using a Separating Hyperplane

Now suppose that we have a n×p data matrix X that consists of n training
observations in p-dimensional space,

x1 =

⎛

⎜⎝
x11
...

x1p

⎞

⎟⎠ , . . . , xn =

⎛

⎜⎝
xn1
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xnp

⎞

⎟⎠ , (9.5)

and that these observations fall into two classes—that is, y1, . . . , yn ∈
{−1, 1} where −1 represents one class and 1 the other class. We also have a

test observation, a p-vector of observed features x∗ =
(
x∗
1 . . . x∗

p

)T
. Our

goal is to develop a classifier based on the training data that will correctly
classify the test observation using its feature measurements. We have seen
a number of approaches for this task, such as linear discriminant analysis
and logistic regression in Chapter 4, and classification trees, bagging, and
boosting in Chapter 8. We will now see a new approach that is based upon
the concept of a separating hyperplane.

separating
hyperplaneSuppose that it is possible to construct a hyperplane that separates the

training observations perfectly according to their class labels. Examples
of three such separating hyperplanes are shown in the left-hand panel of
Figure 9.2. We can label the observations from the blue class as yi = 1 and
those from the purple class as yi = −1. Then a separating hyperplane has
the property that

β0 + β1xi1 + β2xi2 + · · ·+ βpxip > 0 if yi = 1, (9.6)
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in purple, each of which has measurements on two variables. Three separating
hyperplanes, out of many possible, are shown in black. Right: A separating hy-
perplane is shown in black. The blue and purple grid indicates the decision rule
made by a classifier based on this separating hyperplane: a test observation that
falls in the blue portion of the grid will be assigned to the blue class, and a test
observation that falls into the purple portion of the grid will be assigned to the
purple class.

and
β0 + β1xi1 + β2xi2 + · · ·+ βpxip < 0 if yi = −1. (9.7)

Equivalently, a separating hyperplane has the property that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) > 0 (9.8)

for all i = 1, . . . , n.
If a separating hyperplane exists, we can use it to construct a very natural

classifier: a test observation is assigned a class depending on which side of
the hyperplane it is located. The right-hand panel of Figure 9.2 shows
an example of such a classifier. That is, we classify the test observation x∗

based on the sign of f(x∗) = β0+β1x∗
1+β2x∗

2+· · ·+βpx∗
p. If f(x

∗) is positive,
then we assign the test observation to class 1, and if f(x∗) is negative, then
we assign it to class −1. We can also make use of the magnitude of f(x∗). If
f(x∗) is far from zero, then this means that x∗ lies far from the hyperplane,
and so we can be confident about our class assignment for x∗. On the other
hand, if f(x∗) is close to zero, then x∗ is located near the hyperplane, and so
we are less certain about the class assignment for x∗. Not surprisingly, and
as we see in Figure 9.2, a classifier that is based on a separating hyperplane
leads to a linear decision boundary.

Assume two classes: y = 1 or y = -1
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and
β0 + β1xi1 + β2xi2 + · · ·+ βpxip < 0 if yi = −1. (9.7)

Equivalently, a separating hyperplane has the property that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) > 0 (9.8)

for all i = 1, . . . , n.
If a separating hyperplane exists, we can use it to construct a very natural

classifier: a test observation is assigned a class depending on which side of
the hyperplane it is located. The right-hand panel of Figure 9.2 shows
an example of such a classifier. That is, we classify the test observation x∗

based on the sign of f(x∗) = β0+β1x∗
1+β2x∗

2+· · ·+βpx∗
p. If f(x

∗) is positive,
then we assign the test observation to class 1, and if f(x∗) is negative, then
we assign it to class −1. We can also make use of the magnitude of f(x∗). If
f(x∗) is far from zero, then this means that x∗ lies far from the hyperplane,
and so we can be confident about our class assignment for x∗. On the other
hand, if f(x∗) is close to zero, then x∗ is located near the hyperplane, and so
we are less certain about the class assignment for x∗. Not surprisingly, and
as we see in Figure 9.2, a classifier that is based on a separating hyperplane
leads to a linear decision boundary.

linear decision boundary



Maximal margin classifier

Which of the infinite possible separating hyperplanes to use?

à Maximal margin hyperplane = separating hyperplane that 

is the farthest from train observations

à Maximal margin classifier

372 9. Support Vector Machines

−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

FIGURE 9.3. There are two classes of observations, shown in blue and in pur-
ple. The maximal margin hyperplane is shown as a solid line. The margin is the
distance from the solid line to either of the dashed lines. The two blue points and
the purple point that lie on the dashed lines are the support vectors, and the dis-
tance from those points to the hyperplane is indicated by arrows. The purple and
blue grid indicates the decision rule made by a classifier based on this separating
hyperplane.

cross the boundary set by the margin. The fact that the maximal margin
hyperplane depends directly on only a small subset of the observations is
an important property that will arise later in this chapter when we discuss
the support vector classifier and support vector machines.

9.1.4 Construction of the Maximal Margin Classifier

We now consider the task of constructing the maximal margin hyperplane
based on a set of n training observations x1, . . . , xn ∈ Rp and associated
class labels y1, . . . , yn ∈ {−1, 1}. Briefly, the maximal margin hyperplane
is the solution to the optimization problem

maximize
β0,β1,...,βp,M

M (9.9)

subject to
p∑

j=1

β2
j = 1, (9.10)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M ∀ i = 1, . . . , n. (9.11)

This optimization problem (9.9)–(9.11) is actually simpler than it looks.
First of all, the constraint in (9.11) that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M ∀ i = 1, . . . , n

= support vectors

• It depends strongly on the support vectors but not on 

the other observations

à robust to the behavior of observations far from 

hyperplane (outliers)



How to find the maximal margin classifier?
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cross the boundary set by the margin. The fact that the maximal margin
hyperplane depends directly on only a small subset of the observations is
an important property that will arise later in this chapter when we discuss
the support vector classifier and support vector machines.

9.1.4 Construction of the Maximal Margin Classifier

We now consider the task of constructing the maximal margin hyperplane
based on a set of n training observations x1, . . . , xn ∈ Rp and associated
class labels y1, . . . , yn ∈ {−1, 1}. Briefly, the maximal margin hyperplane
is the solution to the optimization problem

maximize
β0,β1,...,βp,M

M (9.9)

subject to
p∑

j=1

β2
j = 1, (9.10)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M ∀ i = 1, . . . , n. (9.11)

This optimization problem (9.9)–(9.11) is actually simpler than it looks.
First of all, the constraint in (9.11) that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M ∀ i = 1, . . . , n

Optimization problem!

correct side of hyperplane
distance ≥ M
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guarantees that each observation will be on the correct side of the hyper-
plane, provided that M is positive. (Actually, for each observation to be on
the correct side of the hyperplane we would simply need yi(β0 + β1xi1 +
β2xi2+· · ·+βpxip) > 0, so the constraint in (9.11) in fact requires that each
observation be on the correct side of the hyperplane, with some cushion,
provided that M is positive.)

Second, note that (9.10) is not really a constraint on the hyperplane, since
if β0 + β1xi1 + β2xi2 + · · · + βpxip = 0 defines a hyperplane, then so does
k(β0+β1xi1+β2xi2+ · · ·+βpxip) = 0 for any k ̸= 0. However, (9.10) adds
meaning to (9.11); one can show that with this constraint the perpendicular
distance from the ith observation to the hyperplane is given by

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip).

Therefore, the constraints (9.10) and (9.11) ensure that each observation
is on the correct side of the hyperplane and at least a distance M from the
hyperplane. Hence, M represents the margin of our hyperplane, and the
optimization problem chooses β0,β1, . . . ,βp to maximize M . This is exactly
the definition of the maximal margin hyperplane! The problem (9.9)–(9.11)
can be solved efficiently, but details of this optimization are outside of the
scope of this book.

9.1.5 The Non-separable Case

The maximal margin classifier is a very natural way to perform classifi-
cation, if a separating hyperplane exists. However, as we have hinted, in
many cases no separating hyperplane exists, and so there is no maximal
margin classifier. In this case, the optimization problem (9.9)–(9.11) has no
solution with M > 0. An example is shown in Figure 9.4. In this case, we
cannot exactly separate the two classes. However, as we will see in the next
section, we can extend the concept of a separating hyperplane in order to
develop a hyperplane that almost separates the classes, using a so-called
soft margin. The generalization of the maximal margin classifier to the
non-separable case is known as the support vector classifier.

9.2 Support Vector Classifiers

9.2.1 Overview of the Support Vector Classifier

In Figure 9.4, we see that observations that belong to two classes are not
necessarily separable by a hyperplane. In fact, even if a separating hyper-
plane does exist, then there are instances in which a classifier based on
a separating hyperplane might not be desirable. A classifier based on a
separating hyperplane will necessarily perfectly classify all of the training

find  that maximize the margin M 
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FIGURE 9.4. There are two classes of observations, shown in blue and in pur-
ple. In this case, the two classes are not separable by a hyperplane, and so the
maximal margin classifier cannot be used.

observations; this can lead to sensitivity to individual observations. An ex-
ample is shown in Figure 9.5. The addition of a single observation in the
right-hand panel of Figure 9.5 leads to a dramatic change in the maxi-
mal margin hyperplane. The resulting maximal margin hyperplane is not
satisfactory—for one thing, it has only a tiny margin. This is problematic
because as discussed previously, the distance of an observation from the
hyperplane can be seen as a measure of our confidence that the obser-
vation was correctly classified. Moreover, the fact that the maximal mar-
gin hyperplane is extremely sensitive to a change in a single observation
suggests that it may have overfit the training data.

In this case, we might be willing to consider a classifier based on a hy-
perplane that does not perfectly separate the two classes, in the interest of

• Greater robustness to individual observations, and

• Better classification of most of the training observations.

That is, it could be worthwhile to misclassify a few training observations
in order to do a better job in classifying the remaining observations.

The support vector classifier, sometimes called a soft margin classifier,
support
vector
classifier
soft margin
classifier

does exactly this. Rather than seeking the largest possible margin so that
every observation is not only on the correct side of the hyperplane but
also on the correct side of the margin, we instead allow some observations
to be on the incorrect side of the margin, or even the incorrect side of
the hyperplane. (The margin is soft because it can be violated by some
of the training observations.) An example is shown in the left-hand panel

à extend the concept to a hyperplane that almost separates the classes, using a soft-margin 

No solution exist to the 
optimization problem!



Even when separable
9.2 Support Vector Classifiers 375

−1 0 1 2 3

−
1

0
1

2
3

−1 0 1 2 3

−
1

0
1

2
3

X1X1

X
2

X
2

FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the maximal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the maximal margin
hyperplane shown as a solid line. The dashed line indicates the maximal margin
hyperplane that was obtained in the absence of this additional point.

of Figure 9.6. Most of the observations are on the correct side of the margin.
However, a small subset of the observations are on the wrong side of the
margin.

An observation can be not only on the wrong side of the margin, but also
on the wrong side of the hyperplane. In fact, when there is no separating
hyperplane, such a situation is inevitable. Observations on the wrong side of
the hyperplane correspond to training observations that are misclassified by
the support vector classifier. The right-hand panel of Figure 9.6 illustrates
such a scenario.

9.2.2 Details of the Support Vector Classifier

The support vector classifier classifies a test observation depending on
which side of a hyperplane it lies. The hyperplane is chosen to correctly
separate most of the training observations into the two classes, but may
misclassify a few observations. It is the solution to the optimization problem

maximize
β0,β1,...,βp,ϵ1,...,ϵn,M

M (9.12)

subject to
p∑

j=1

β2
j = 1, (9.13)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M(1− ϵi), (9.14)

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C, (9.15)

à the maximal margin classifier has high variance! (linked to overfit)

à solution = allow for some observations to be misclassified 



Support vector classifier
Separate most of the training observations, but allow some misclassification
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FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the maximal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the maximal margin
hyperplane shown as a solid line. The dashed line indicates the maximal margin
hyperplane that was obtained in the absence of this additional point.

of Figure 9.6. Most of the observations are on the correct side of the margin.
However, a small subset of the observations are on the wrong side of the
margin.

An observation can be not only on the wrong side of the margin, but also
on the wrong side of the hyperplane. In fact, when there is no separating
hyperplane, such a situation is inevitable. Observations on the wrong side of
the hyperplane correspond to training observations that are misclassified by
the support vector classifier. The right-hand panel of Figure 9.6 illustrates
such a scenario.

9.2.2 Details of the Support Vector Classifier

The support vector classifier classifies a test observation depending on
which side of a hyperplane it lies. The hyperplane is chosen to correctly
separate most of the training observations into the two classes, but may
misclassify a few observations. It is the solution to the optimization problem

maximize
β0,β1,...,βp,ϵ1,...,ϵn,M

M (9.12)

subject to
p∑

j=1

β2
j = 1, (9.13)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M(1− ϵi), (9.14)

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C, (9.15)

Optimization problem
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guarantees that each observation will be on the correct side of the hyper-
plane, provided that M is positive. (Actually, for each observation to be on
the correct side of the hyperplane we would simply need yi(β0 + β1xi1 +
β2xi2+· · ·+βpxip) > 0, so the constraint in (9.11) in fact requires that each
observation be on the correct side of the hyperplane, with some cushion,
provided that M is positive.)

Second, note that (9.10) is not really a constraint on the hyperplane, since
if β0 + β1xi1 + β2xi2 + · · · + βpxip = 0 defines a hyperplane, then so does
k(β0+β1xi1+β2xi2+ · · ·+βpxip) = 0 for any k ̸= 0. However, (9.10) adds
meaning to (9.11); one can show that with this constraint the perpendicular
distance from the ith observation to the hyperplane is given by

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip).

Therefore, the constraints (9.10) and (9.11) ensure that each observation
is on the correct side of the hyperplane and at least a distance M from the
hyperplane. Hence, M represents the margin of our hyperplane, and the
optimization problem chooses β0,β1, . . . ,βp to maximize M . This is exactly
the definition of the maximal margin hyperplane! The problem (9.9)–(9.11)
can be solved efficiently, but details of this optimization are outside of the
scope of this book.

9.1.5 The Non-separable Case

The maximal margin classifier is a very natural way to perform classifi-
cation, if a separating hyperplane exists. However, as we have hinted, in
many cases no separating hyperplane exists, and so there is no maximal
margin classifier. In this case, the optimization problem (9.9)–(9.11) has no
solution with M > 0. An example is shown in Figure 9.4. In this case, we
cannot exactly separate the two classes. However, as we will see in the next
section, we can extend the concept of a separating hyperplane in order to
develop a hyperplane that almost separates the classes, using a so-called
soft margin. The generalization of the maximal margin classifier to the
non-separable case is known as the support vector classifier.

9.2 Support Vector Classifiers

9.2.1 Overview of the Support Vector Classifier

In Figure 9.4, we see that observations that belong to two classes are not
necessarily separable by a hyperplane. In fact, even if a separating hyper-
plane does exist, then there are instances in which a classifier based on
a separating hyperplane might not be desirable. A classifier based on a
separating hyperplane will necessarily perfectly classify all of the training

ensures that 
distance is given by

find  that maximize the margin M 
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necessarily separable by a hyperplane. In fact, even if a separating hyper-
plane does exist, then there are instances in which a classifier based on
a separating hyperplane might not be desirable. A classifier based on a
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distance can be smaller than M

tuning hyperparameter
number and severity of violations of the 

margin we tolerate

= 0 à correct side of margin
> 0 à wrong side of margin
> 1 à wrong side of hyperplane



Examples

C = tuning hyperparameter, choosen by cross-validation, determines bias-variance tradeoff
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FIGURE 9.7. A support vector classifier was fit using four different values of the
tuning parameter C in (9.12)–(9.15). The largest value of C was used in the top
left panel, and smaller values were used in the top right, bottom left, and bottom
right panels. When C is large, then there is a high tolerance for observations being
on the wrong side of the margin, and so the margin will be large. As C decreases,
the tolerance for observations being on the wrong side of the margin decreases,
and the margin narrows.

the within-class covariance matrix computed using all of the observations.
In contrast, logistic regression, unlike LDA, has very low sensitivity to ob-
servations far from the decision boundary. In fact we will see in Section 9.5
that the support vector classifier and logistic regression are closely related.
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tuning parameter C in (9.12)–(9.15). The largest value of C was used in the top
left panel, and smaller values were used in the top right, bottom left, and bottom
right panels. When C is large, then there is a high tolerance for observations being
on the wrong side of the margin, and so the margin will be large. As C decreases,
the tolerance for observations being on the wrong side of the margin decreases,
and the margin narrows.

the within-class covariance matrix computed using all of the observations.
In contrast, logistic regression, unlike LDA, has very low sensitivity to ob-
servations far from the decision boundary. In fact we will see in Section 9.5
that the support vector classifier and logistic regression are closely related.

C large, high bias, low variance C small, low bias, high variance



Large dimension and variable selection



Linearity in large dimension

n = number of observations: 𝑦 = 𝑦!, … , 𝑦(
p = number of variables

𝑦 = 𝑓 𝑥 + 𝜀 ≈ 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽2𝑥2 + 𝜀
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• If 𝑓 close to linear à low bias

• If n >> p à low variance

• If n ~ p à high variance

• If n << p à infinite variance (no unique least-squares 

estimate)

à in addition, a lot of variables might be irrelevant, setting 𝛽6 = 0 for them improves interpretability 

and reduces complexity

à constraining (or shrinking) the coefficients (𝛽6) can 

substantially reduce variance at moderate bias cost

à variable selection

à improved accuracy



Elementary variable selection

• Rule of thumb: 𝑛 = 10 ∗ 𝑝

• Best subset selection: perform all models based on all possible subsets of variables, select best 
using cross-validation error

• Costly (2p possibilities, 215 = 1.13 x 1015) !!

• Stepwise selection
• Forward: start with no variable, add variables one-at-time 

by selecting the one leading to greatest improvement of 
fit until all, select best by CV

• Backward: same but starting by all and removing each 
on-at-a-time

• However, such methods are usually not advised by the statistical community (usually, due to overfitting)

Sc
or

e

Variables



Three classes of variable selection methods
1. Filters: Select features based on statistical properties of data, independent of any specific machine learning algorithm.

+ Fast and computationally efficient.

- Does not capture feature interactions

•  Examples: Variance, t-tests or chi-square.

2. Wrappers : Select features based on a ML model performance by iteratively adding or removing features.
+  Can capture feature interactions.

+  Often provides high accuracy for selected features.

- Computationally expensive, especially with large feature sets.

•  Examples: Forward/backward selection, recursive feature elimination (RFE).

3. Embedded : Feature selection occurs within the training process of the model.

+  Efficient and often provides high accuracy.

+  Integrates selection into model training.

+  Examples: Lasso (L1 regularization), decision tree feature importance, Elastic Net.



Ridge regression
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6.2 Shrinkage Methods

The subset selection methods described in Section 6.1 involve using least
squares to fit a linear model that contains a subset of the predictors. As an
alternative, we can fit a model containing all p predictors using a technique
that constrains or regularizes the coefficient estimates, or equivalently, that
shrinks the coefficient estimates towards zero. It may not be immediately
obvious why such a constraint should improve the fit, but it turns out that
shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates
β0,β1, . . . ,βp using the values that minimize

RSS =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

.

Ridge regression is very similar to least squares, except that the coefficients
ridge
regressionare estimated by minimizing a slightly different quantity. In particular, the

ridge regression coefficient estimates β̂R are the values that minimize

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa-
tuning
parametertion 6.5 trades off two different criteria. As with least squares, ridge regres-

sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is

shrinkage
penaltysmall when β1, . . . ,βp are close to zero, and so it has the effect of shrinking

the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.

Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but
not to the intercept β0. We want to shrink the estimated association of
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will produce the least squares estimates. However, as λ→∞, the impact of
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will approach zero. Unlike least squares, which generates only one set of co-
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λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.

Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but
not to the intercept β0. We want to shrink the estimated association of

• different set of coefficient estimates $𝛽 for each value of 𝜆

• 𝜆 increases à increased bias, decreased variance

• 𝜆 = tuning parameter, to be determined separately, by cross-validation

• Computational advantage over best subset selection (2p)

note this does not contain 𝛽. = mean value with no variables
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FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of λ and ∥β̂R

λ ∥2/∥β̂∥2. The horizontal dashed lines indicate the minimum
possible MSE. The purple crosses indicate the ridge regression models for which
the MSE is smallest.

function of λ. At the least squares coefficient estimates, which correspond
to ridge regression with λ = 0, the variance is high but there is no bias. But
as λ increases, the shrinkage of the ridge coefficient estimates leads to a
substantial reduction in the variance of the predictions, at the expense of a
slight increase in bias. Recall that the test mean squared error (MSE), plot-
ted in purple, is closely related to the variance plus the squared bias. For
values of λ up to about 10, the variance decreases rapidly, with very little
increase in bias, plotted in black. Consequently, the MSE drops consider-
ably as λ increases from 0 to 10. Beyond this point, the decrease in variance
due to increasing λ slows, and the shrinkage on the coefficients causes them
to be significantly underestimated, resulting in a large increase in the bias.
The minimum MSE is achieved at approximately λ = 30. Interestingly,
because of its high variance, the MSE associated with the least squares
fit, when λ = 0, is almost as high as that of the null model for which all
coefficient estimates are zero, when λ = ∞. However, for an intermediate
value of λ, the MSE is considerably lower.

The right-hand panel of Figure 6.5 displays the same curves as the left-
hand panel, this time plotted against the ℓ2 norm of the ridge regression
coefficient estimates divided by the ℓ2 norm of the least squares estimates.
Now as we move from left to right, the fits become more flexible, and so
the bias decreases and the variance increases.

In general, in situations where the relationship between the response
and the predictors is close to linear, the least squares estimates will have
low bias but may have high variance. This means that a small change in
the training data can cause a large change in the least squares coefficient
estimates. In particular, when the number of variables p is almost as large
as the number of observations n, as in the example in Figure 6.5, the
least squares estimates will be extremely variable. And if p > n, then the

on
 te

st
n = 50

p = 45

Bias (squared)

Variance

Test MSE

𝜆 = 0 : least squares

• ridge regression works best in situations where the 

least squares estimates have high variance
• disadvantage = includes all p variables

Minimum possible MSE
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least squares estimates do not even have a unique solution, whereas ridge
regression can still perform well by trading off a small increase in bias for a
large decrease in variance. Hence, ridge regression works best in situations
where the least squares estimates have high variance.

Ridge regression also has substantial computational advantages over best
subset selection, which requires searching through 2p models. As we dis-
cussed previously, even for moderate values of p, such a search can be
computationally infeasible. In contrast, for any fixed value of λ, ridge re-
gression only fits a single model, and the model-fitting procedure can be
performed quite quickly. In fact, one can show that the computations re-
quired to solve (6.5), simultaneously for all values of λ, are almost identical
to those for fitting a model using least squares.

6.2.2 The Lasso

Ridge regression does have one obvious disadvantage. Unlike best subset,
forward stepwise, and backward stepwise selection, which will generally
select models that involve just a subset of the variables, ridge regression
will include all p predictors in the final model. The penalty λ

∑
β2
j in (6.5)

will shrink all of the coefficients towards zero, but it will not set any of them
exactly to zero (unless λ =∞). This may not be a problem for prediction
accuracy, but it can create a challenge in model interpretation in settings in
which the number of variables p is quite large. For example, in the Credit

data set, it appears that the most important variables are income, limit,
rating, and student. So we might wish to build a model including just
these predictors. However, ridge regression will always generate a model
involving all ten predictors. Increasing the value of λ will tend to reduce
the magnitudes of the coefficients, but will not result in exclusion of any of
the variables.

The lasso is a relatively recent alternative to ridge regression that over-
lasso

comes this disadvantage. The lasso coefficients, β̂L
λ , minimize the quantity

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

|βj | = RSS + λ
p∑

j=1

|βj |. (6.7)

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have
similar formulations. The only difference is that the β2

j term in the ridge
regression penalty (6.5) has been replaced by |βj | in the lasso penalty (6.7).
In statistical parlance, the lasso uses an ℓ1 (pronounced “ell 1”) penalty
instead of an ℓ2 penalty. The ℓ1 norm of a coefficient vector β is given by
∥β∥1 =

∑
|βj |.

As with ridge regression, the lasso shrinks the coefficient estimates to-
wards zero. However, in the case of the lasso, the ℓ1 penalty has the effect
of forcing some of the coefficient estimates to be exactly equal to zero when

• Difference with ridge = ℓ! penalization versus ℓ"
• Forces some coefficients to be zero 

à variable selection 

à better interpretability

242 6. Linear Model Selection and Regularization

the tuning parameter λ is sufficiently large. Hence, much like best subset se-
lection, the lasso performs variable selection. As a result, models generated
from the lasso are generally much easier to interpret than those produced
by ridge regression. We say that the lasso yields sparse models—that is, sparse
models that involve only a subset of the variables. As in ridge regression,
selecting a good value of λ for the lasso is critical; we defer this discussion
to Section 6.2.3, where we use cross-validation.

As an example, consider the coefficient plots in Figure 6.6, which are gen-
erated from applying the lasso to the Credit data set. When λ = 0, then
the lasso simply gives the least squares fit, and when λ becomes sufficiently
large, the lasso gives the null model in which all coefficient estimates equal
zero. However, in between these two extremes, the ridge regression and
lasso models are quite different from each other. Moving from left to right
in the right-hand panel of Figure 6.6, we observe that at first the lasso re-
sults in a model that contains only the rating predictor. Then student and
limit enter the model almost simultaneously, shortly followed by income.
Eventually, the remaining variables enter the model. Hence, depending on
the value of λ, the lasso can produce a model involving any number of vari-
ables. In contrast, ridge regression will always include all of the variables in
the model, although the magnitude of the coefficient estimates will depend
on λ.
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |β1|+ |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red ellipses are the contours of

the RSS.

equivalent to best subset selection. Unfortunately, solving (6.10) is com-
putationally infeasible when p is large, since it requires considering all

(p
s

)

models containing s predictors. Therefore, we can interpret ridge regression
and the lasso as computationally feasible alternatives to best subset selec-
tion that replace the intractable form of the budget in (6.10) with forms
that are much easier to solve. Of course, the lasso is much more closely
related to best subset selection, since the lasso performs feature selection
for s sufficiently small in (6.8), while ridge regression does not.

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient esti-
mates that are exactly equal to zero? The formulations (6.8) and (6.9) can
be used to shed light on the issue. Figure 6.7 illustrates the situation. The
least squares solution is marked as β̂, while the blue diamond and circle
represent the lasso and ridge regression constraints in (6.8) and (6.9), re-
spectively. If s is sufficiently large, then the constraint regions will contain
β̂, and so the ridge regression and lasso estimates will be the same as the
least squares estimates. (Such a large value of s corresponds to λ = 0 in
(6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie out-
side of the diamond and the circle, and so the least squares estimates are
not the same as the lasso and ridge regression estimates.

Each of the ellipses centered around β̂ represents a contour: this means
contour

that all of the points on a particular ellipse have the same RSS value. As

LASSO Ridge
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Another Formulation for Ridge Regression and the Lasso

One can show that the lasso and ridge regression coefficient estimates solve
the problems

minimize
β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

|βj | ≤ s

(6.8)
and

minimize
β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

β2
j ≤ s,

(6.9)
respectively. In other words, for every value of λ, there is some s such that
the Equations (6.7) and (6.8) will give the same lasso coefficient estimates.
Similarly, for every value of λ there is a corresponding s such that Equa-
tions (6.5) and (6.9) will give the same ridge regression coefficient estimates.
When p = 2, then (6.8) indicates that the lasso coefficient estimates have
the smallest RSS out of all points that lie within the diamond defined by
|β1| + |β2| ≤ s. Similarly, the ridge regression estimates have the smallest
RSS out of all points that lie within the circle defined by β2

1 + β2
2 ≤ s.

We can think of (6.8) as follows. When we perform the lasso we are trying
to find the set of coefficient estimates that lead to the smallest RSS, subject
to the constraint that there is a budget s for how large

∑p
j=1 |βj | can be.

When s is extremely large, then this budget is not very restrictive, and so
the coefficient estimates can be large. In fact, if s is large enough that the
least squares solution falls within the budget, then (6.8) will simply yield
the least squares solution. In contrast, if s is small, then

∑p
j=1 |βj | must be

small in order to avoid violating the budget. Similarly, (6.9) indicates that
when we perform ridge regression, we seek a set of coefficient estimates
such that the RSS is as small as possible, subject to the requirement that∑p

j=1 β
2
j not exceed the budget s.

The formulations (6.8) and (6.9) reveal a close connection between the
lasso, ridge regression, and best subset selection. Consider the problem

minimize
β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

I(βj ̸= 0) ≤ s.

(6.10)
Here I(βj ̸= 0) is an indicator variable: it takes on a value of 1 if βj ̸= 0, and
equals zero otherwise. Then (6.10) amounts to finding a set of coefficient
estimates such that RSS is as small as possible, subject to the constraint
that no more than s coefficients can be nonzero. The problem (6.10) is
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respectively. In other words, for every value of λ, there is some s such that
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to find the set of coefficient estimates that lead to the smallest RSS, subject
to the constraint that there is a budget s for how large

∑p
j=1 |βj | can be.

When s is extremely large, then this budget is not very restrictive, and so
the coefficient estimates can be large. In fact, if s is large enough that the
least squares solution falls within the budget, then (6.8) will simply yield
the least squares solution. In contrast, if s is small, then
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j=1 |βj | must be

small in order to avoid violating the budget. Similarly, (6.9) indicates that
when we perform ridge regression, we seek a set of coefficient estimates
such that the RSS is as small as possible, subject to the requirement that∑p

j=1 β
2
j not exceed the budget s.

The formulations (6.8) and (6.9) reveal a close connection between the
lasso, ridge regression, and best subset selection. Consider the problem

minimize
β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

I(βj ̸= 0) ≤ s.

(6.10)
Here I(βj ̸= 0) is an indicator variable: it takes on a value of 1 if βj ̸= 0, and
equals zero otherwise. Then (6.10) amounts to finding a set of coefficient
estimates such that RSS is as small as possible, subject to the constraint
that no more than s coefficients can be nonzero. The problem (6.10) is

⟺
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Unsupervised learning



Challenge of unsupervised learning

• For supervised learning, we have ways to assess the 
performances

• In unsupervised learning, there is no truth to refer to
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variance (information) as possible.

- The new variables are not interpretable anymore

• first eigenvector = direction of the data of maximal variance

• first eigenvalue = variance of the data in this direction
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Dimensionality reduction: Principal Component Analysis
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Clustering

• Finding subgroups (or clusters) in the data

• Ex: (unknown!) subgroups classifying different breast 
cancers

• Observations that are “similar” or “different”

• Problem = Define “similar” and “different”
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K-means clustering

• Partitioning the data into K distinct, non-overlapping clusters

• K is chosen518 12. Unsupervised Learning

K=2 K=3 K=4

FIGURE 12.7. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure.

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.

Solving (12.15) seems like a reasonable idea, but in order to make it
actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Euclidean distance. That is, we define

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2, (12.16)

where |Ck| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (12.15) and (12.16) gives the optimization problem that defines
K-means clustering,

minimize
C1,...,CK

⎧
⎨

⎩

K∑

k=1

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2

⎫
⎬

⎭ . (12.17)

Now, we would like to find an algorithm to solve (12.17)—that is, a
method to partition the observations into K clusters such that the objective



K-means formalism

• Idea: good clustering = within-cluster variation is as small as possible

12.4 Clustering Methods 517

Since clustering is popular in many fields, there exist a great number of
clustering methods. In this section we focus on perhaps the two best-known
clustering approaches: K-means clustering and hierarchical clustering. In

K-means
clustering

hierarchical
clustering

K-means clustering, we seek to partition the observations into a pre-specified
number of clusters. On the other hand, in hierarchical clustering, we do
not know in advance how many clusters we want; in fact, we end up with
a tree-like visual representation of the observations, called a dendrogram,

dendrogram
that allows us to view at once the clusterings obtained for each possible
number of clusters, from 1 to n. There are advantages and disadvantages
to each of these clustering approaches, which we highlight in this chapter.

In general, we can cluster observations on the basis of the features in
order to identify subgroups among the observations, or we can cluster fea-
tures on the basis of the observations in order to discover subgroups among
the features. In what follows, for simplicity we will discuss clustering obser-
vations on the basis of the features, though the converse can be performed
by simply transposing the data matrix.

12.4.1 K-Means Clustering

K-means clustering is a simple and elegant approach for partitioning a
data set into K distinct, non-overlapping clusters. To perform K-means
clustering, we must first specify the desired number of clusters K; then the
K-means algorithm will assign each observation to exactly one of the K
clusters. Figure 12.7 shows the results obtained from performing K-means
clustering on a simulated example consisting of 150 observations in two
dimensions, using three different values of K.

The K-means clustering procedure results from a simple and intuitive
mathematical problem. We begin by defining some notation. Let C1, . . . , CK

denote sets containing the indices of the observations in each cluster. These
sets satisfy two properties:

1. C1 ∪ C2 ∪ . . . ∪ CK = {1, . . . , n}. In other words, each observation
belongs to at least one of the K clusters.

2. Ck ∩ Ck′ = ∅ for all k ̸= k′. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. The
idea behindK-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation
for cluster Ck is a measure W (Ck) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

minimize
C1,...,CK

{
K∑

k=1

W (Ck)

}
. (12.15)

• Let C1, ..., CK be the K clusters

each observation belongs to at least one of the K clusters 1.

2.
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the clusters are non- overlapping: no observation belongs to more 
than one cluster 
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2. Ck ∩ Ck′ = ∅ for all k ̸= k′. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. The
idea behindK-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation
for cluster Ck is a measure W (Ck) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

minimize
C1,...,CK

{
K∑

k=1

W (Ck)

}
. (12.15)
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K=2 K=3 K=4

FIGURE 12.7. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure.

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.

Solving (12.15) seems like a reasonable idea, but in order to make it
actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Euclidean distance. That is, we define

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2, (12.16)

where |Ck| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (12.15) and (12.16) gives the optimization problem that defines
K-means clustering,

minimize
C1,...,CK

⎧
⎨

⎩

K∑

k=1

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2

⎫
⎬

⎭ . (12.17)

Now, we would like to find an algorithm to solve (12.17)—that is, a
method to partition the observations into K clusters such that the objective

Squared Euclidian distance
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of (12.17) is minimized. This is in fact a very difficult problem to solve
precisely, since there are almost Kn ways to partition n observations into K
clusters. This is a huge number unless K and n are tiny! Fortunately, a very
simple algorithm can be shown to provide a local optimum—a pretty good
solution—to the K-means optimization problem (12.17). This approach is
laid out in Algorithm 12.2.

Algorithm 12.2 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Algorithm 12.2 is guaranteed to decrease the value of the objective
(12.17) at each step. To understand why, the following identity is illu-
minating:

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2 = 2

∑

i∈Ck

p∑

j=1

(xij − x̄kj)
2, (12.18)

where x̄kj = 1
|Ck|

∑
i∈Ck

xij is the mean for feature j in cluster Ck.

In Step 2(a) the cluster means for each feature are the constants that
minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve (12.18). This means that as the algorithm
is run, the clustering obtained will continually improve until the result no
longer changes; the objective of (12.17) will never increase. When the result
no longer changes, a local optimum has been reached. Figure 12.8 shows
the progression of the algorithm on the toy example from Figure 12.7.
K-means clustering derives its name from the fact that in Step 2(a), the
cluster centroids are computed as the mean of the observations assigned to
each cluster.

Because the K-means algorithm finds a local rather than a global opti-
mum, the results obtained will depend on the initial (random) cluster as-
signment of each observation in Step 1 of Algorithm 12.2. For this reason,
it is important to run the algorithm multiple times from different random
initial configurations. Then one selects the best solution, i.e. that for which
the objective (12.17) is smallest. Figure 12.9 shows the local optima ob-
tained by running K-means clustering six times using six different initial
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Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

FIGURE 12.8. The progress of the K-means algorithm on the example of Fig-
ure 12.7 with K=3. Top left: the observations are shown. Top center: in Step 1
of the algorithm, each observation is randomly assigned to a cluster. Top right:
in Step 2(a), the cluster centroids are computed. These are shown as large col-
ored disks. Initially the centroids are almost completely overlapping because the
initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

cluster assignments, using the toy data from Figure 12.7. In this case, the
best clustering is the one with an objective value of 235.8.

As we have seen, to perform K-means clustering, we must decide how
many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 12.4.3.
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320.9 235.8 235.8

235.8 235.8 310.9

FIGURE 12.9. K-means clustering performed six times on the data from Fig-
ure 12.7 with K = 3, each time with a different random assignment of the ob-
servations in Step 1 of the K-means algorithm. Above each plot is the value of
the objective (12.17). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

12.4.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.

In this section, we describe bottom-up or agglomerative clustering.
bottom-up

agglomerative
This is the most common type of hierarchical clustering, and refers to

final value of the 

objective function



Hierarchical clustering

• Disadvantage of K-means : need to specify K

• Hierarchical clustering gives an interpretrable 

tree-based output: a dendrogram

• Bottom-up = starting from the leaves

vs

• Top-down = starting from all data
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Example: dendrograms
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FIGURE 12.11. Left: dendrogram obtained from hierarchically clustering the
data from Figure 12.10 with complete linkage and Euclidean distance. Center:
the dendrogram from the left-hand panel, cut at a height of nine (indicated by the
dashed line). This cut results in two distinct clusters, shown in different colors.
Right: the dendrogram from the left-hand panel, now cut at a height of five. This
cut results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

the tree where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis, indicates how
different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.

This highlights a very important point in interpreting dendrograms that
is often misunderstood. Consider the left-hand panel of Figure 12.12, which
shows a simple dendrogram obtained from hierarchically clustering nine
observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 12.12, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
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FIGURE 12.10. Forty-five observations generated in two-dimensional space. In
reality there are three distinct classes, shown in separate colors. However, we will
treat these class labels as unknown and will seek to cluster the observations in
order to discover the classes from the data.

the fact that a dendrogram (generally depicted as an upside-down tree; see
Figure 12.11) is built starting from the leaves and combining clusters up to
the trunk. We will begin with a discussion of how to interpret a dendrogram
and then discuss how hierarchical clustering is actually performed—that is,
how the dendrogram is built.

Interpreting a Dendrogram

We begin with the simulated data set shown in Figure 12.10, consisting of
45 observations in two-dimensional space. The data were generated from a
three-class model; the true class labels for each observation are shown in
distinct colors. However, suppose that the data were observed without the
class labels, and that we wanted to perform hierarchical clustering of the
data. Hierarchical clustering (with complete linkage, to be discussed later)
yields the result shown in the left-hand panel of Figure 12.11. How can we
interpret this dendrogram?

In the left-hand panel of Figure 12.11, each leaf of the dendrogram rep-
resents one of the 45 observations in Figure 12.10. However, as we move
up the tree, some leaves begin to fuse into branches. These correspond to
observations that are similar to each other. As we move higher up the tree,
branches themselves fuse, either with leaves or other branches. The earlier
(lower in the tree) fusions occur, the more similar the groups of observa-
tions are to each other. On the other hand, observations that fuse later
(near the top of the tree) can be quite different. In fact, this statement
can be made precise: for any two observations, we can look for the point in
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Algorithm 12.3 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the

(n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 12.3. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

single linkage are most popular among statisticians. Average and complete
linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby

inversion
two clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)
of the hierarchical clustering algorithm will depend on the type of linkage
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FIGURE 12.13. An illustration of the first few steps of the hierarchical
clustering algorithm, using the data from Figure 12.12, with complete linkage
and Euclidean distance. Top Left: initially, there are nine distinct clusters,
{1}, {2}, . . . , {9}. Top Right: the two clusters that are closest together, {5} and
{7}, are fused into a single cluster. Bottom Left: the two clusters that are closest
together, {6} and {1}, are fused into a single cluster. Bottom Right: the two clus-
ters that are closest together using complete linkage, {8} and the cluster {5, 7},
are fused into a single cluster.

used, as well as on the choice of dissimilarity measure. Hence, the resulting
dendrogram typically depends quite strongly on the type of linkage used,
as is shown in Figure 12.14.

Choice of Dissimilarity Measure

Thus far, the examples in this chapter have used Euclidean distance as the
dissimilarity measure. But sometimes other dissimilarity measures might
be preferred. For example, correlation-based distance considers two obser-
vations to be similar if their features are highly correlated, even though the
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Algorithm 12.3 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the

(n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 12.3. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

single linkage are most popular among statisticians. Average and complete
linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby

inversion
two clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)
of the hierarchical clustering algorithm will depend on the type of linkage
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Average Linkage Complete Linkage Single Linkage

FIGURE 12.14. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.

observed values may be far apart in terms of Euclidean distance. This is
an unusual use of correlation, which is normally computed between vari-
ables; here it is computed between the observation profiles for each pair
of observations. Figure 12.15 illustrates the difference between Euclidean
and correlation-based distance. Correlation-based distance focuses on the
shapes of observation profiles rather than their magnitudes.

The choice of dissimilarity measure is very important, as it has a strong
effect on the resulting dendrogram. In general, careful attention should be
paid to the type of data being clustered and the scientific question at hand.
These considerations should determine what type of dissimilarity measure
is used for hierarchical clustering.

For instance, consider an online retailer interested in clustering shoppers
based on their past shopping histories. The goal is to identify subgroups
of similar shoppers, so that shoppers within each subgroup can be shown
items and advertisements that are particularly likely to interest them. Sup-
pose the data takes the form of a matrix where the rows are the shoppers
and the columns are the items available for purchase; the elements of the
data matrix indicate the number of times a given shopper has purchased a
given item (i.e. a 0 if the shopper has never purchased this item, a 1 if the
shopper has purchased it once, etc.) What type of dissimilarity measure
should be used to cluster the shoppers? If Euclidean distance is used, then
shoppers who have bought very few items overall (i.e. infrequent users of
the online shopping site) will be clustered together. This may not be desir-
able. On the other hand, if correlation-based distance is used, then shoppers
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Detection of lymph node metastases from histological images

• One pathology slide = several gigapixels

• Best algorithms of the challenge =  Deep Learning

• Same performances as pathologists without time constraint, but 
significatively better than 11 pathologists with constraint (WTC)

Figure 2. Probability Maps Generated by the Top 3 Algorithms From the CAMELYON16 Competition

A Test set B HMS and MIT II C HMS and MGH III D CULab III
1.0
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0
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200 µm
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250 µm

For abbreviations, see the legend of Figure 3. The color scale bar (top right) indicates
the probability for each pixel to be part of a metastatic region. For additional examples,
see eFigure 5 in the Supplement. A, Four annotated micrometastatic regions in

whole-slideimagesofhematoxylinandeosin–stainedlymphnodetissuesectionstaken
fromthetestsetofCancerMetastasesinLymphNodesChallenge2016(CAMELYON16)
dataset. B-D, Probability maps from each team overlaid on the original images.
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system generalization and performance seemed more impor-
tant. For example, team HMS and MIT improved their AUC in task
2 from 0.923 (HMS and MIT I) to 0.994 (HMS and MIT II) by add-
ing a standardization technique34 to help them deal with stain
variations. Other strategies include exploiting invariances to
augment training data (eg, tissue specimens are rotation invari-
ant) and addressing class imbalance (ie, more normal tissue than
metastases) by different training data sampling strategies (for

further examples of properties that distinguish the best-
performing methods, see eDiscussion in the Supplement).

Previous studies on diagnostic imaging tasks in which
deep learning reached human-level performance, such as de-
tection of diabetic retinopathy in retinal fundus photo-
graphs, used a reference standard based on the consensus
of human experts.3 This study, in comparison, generated a
reference standard using additional immunohistochemical

Figure 3. ROC Curves of the Top-Performing Algorithms vs Pathologists for Metastases Classification (Task 2) From the CAMELYON16 Competition
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AUC indicates area under the receiver operating characteristic curve;
CAMELYON16, Cancer Metastases in Lymph Nodes Challenge 2016;
CULab, Chinese University Lab; HMS, Harvard Medical School;
MGH, Massachusetts General Hospital; MIT, Massachusetts Institute of
Technology; WOTC, without time constraint; WTC, with time constraint;
ROC, receiver operator characteristic. The blue in the axes on the left panels
correspond with the blue on the axes in the right panels. Task 2 was
measured on the 129 whole-slide images (for algorithms and the pathologist
WTC) and corresponding glass slides (for 11 pathologists WOTC) in the test data
set, which 49 contained metastatic regions. A, A machine-learning system
achieves superior performance to a pathologist if the operating point of the

pathologist lies below the ROC curve of the system. The top 2 deep
learning–based systems outperform all the pathologists WTC in this study.
All the pathologists WTC scored glass slide images using 5 levels of confidence:
definitely normal, probably normal, equivocal, probably tumor, definitely tumor.
To generate estimates of sensitivity and specificity for each pathologist,
negative was defined as confidence levels of definitely normal and probably
normal; all others as positive. B, The mean ROC curve was computed using the
pooled mean technique. This mean is obtained by joining all the diagnoses of
the pathologists WTC and computing the resulting ROC curve as if it were 1
person analyzing 11 × 129 = 1419 cases.
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Microscope 2.0

Chen et al. (Google AI Healthcare), Microscope 2.0: An Augmented Reality Microscope with Real-time Artificial Intelligence Integration, arXiv, 2018

 

Figures 

 
Figure 1 | Hardware components of the Augmented Reality Microscope (ARM) system enable 
real-time capture of the field of view and display of information in the eyepiece of the microscope. 
The images of the sample are continuously captured. Next, a deep learning algorithm processes each 
image to produce an inference output (such as a heatmap) with an accelerated compute unit. Finally, the 
inference output is post-processed to display the most pertinent information without obscuring the original 
image. For example, outlines of various colors can be used to aid detection and diagnosis tasks, and text 
such as size measurements can be displayed as well. Technical details can be found in Methods and 
Extended Data Figure 1. 
 



Quantitative analysis of histopathological slides in CRC
before. As can be seen in Fig 2D, the tissue structures that were learned by the network are
well understandable for human vision: examples are loosely aligned tissue fibers in muscle and
stroma, the regular textures present in normal colonic mucosa, and the more irregular texture
present in colorectal carcinoma epithelium. We applied the neural network to larger images,
with examples shown in S4A–S4M Fig, and to whole-slide images, two representative images
of which are shown in Fig 3A and 3B. Especially in the whole-slide images, the neural network
achieved a high classification accuracy that matches human perception. For two major tissue
classes, tumor and stroma, we visualized deep layer activations using tSNE (S5A and S5B Fig).

Fig 3. A CNN can segment histopathological whole-slide images. The neural network classifier was used to classify real-world images from the DACHS cohort. (A)
and (B) show two representative example images. Left: original HE image; right: classification map. Even fine structures are recognized by the neural network even in
regions of suboptimal tissue quality. Only the tissue is shown in this example, and because the tissue does not occupy a rectangular area on the pathology slide, the
whole-slide image was manually segmented by an observer trained in pathology to show only tissue without background for better clarity (background is white). ADI,
adipose tissue; BACK, background; CNN, convolutional neural network; DACHS, Darmkrebs: Chancen der Verhütung durch Screening; DEB, debris; HE,
hematoxylin–eosin; LYM, lymphocyte aggregates; MUC, mucus; MUS, muscle; NORM, normal mucosa; STR, stroma; TUM, tumor epithelium.

https://doi.org/10.1371/journal.pmed.1002730.g003

Predicting survival from histology in colorectal cancer using deep learning

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002730 January 24, 2019 10 / 22

Predicting survival from histology in colorectal cancer using deep learning

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002730 January 24, 2019 12 / 22

• 100,000 patches of histological slides

• Stroma

• 94% classification accuracy on test data set

established predictor of survival, and by itself, it is a better predictor than the deep stroma
score alone. However, as the multivariable analysis shows (Fig 5), the deep stroma score
remains a significant predictor of survival in a multivariable risk model that includes TNM
stage.

Deep stroma score generalizes to an independent validation cohort from a
different institution

Having shown that the deep stroma score carries prognostic information, we validated this
approach in an independent patient cohort. Complex biomarkers often fail when applied to
validation cohorts from different institutions, partly because of high variability in tissue sam-
ples. We used HE-stained slides from formalin-fixed paraffin-embedded (FFPE) tissue from
409 CRC patients in the DACHS study, a large multicenter study in southwest Germany [31].
We calculated the deep stroma score in these patients, using exactly the same cutoff values as
found in the TCGA cohort. We performed multivariate analysis for OS, disease-specific
(CRC-specific) survival (DSS), and RFS. Corresponding to the results from the TCGA cohort,
we found that the deep stroma score was a highly significant prognosticator for OS (HR 1.63
[1.14–2.33], p = 0.008), DSS (HR 2.29 [1.5–3.48], p = 0.0004), and RFS (HR 1.92 [1.34–2.76],

Fig 5. Deep stroma score is an independent prognosticator for shorter OS in the TCGA cohort. HRs with 95% CI in multivariable Cox models including cancer stage
(I–IV), sex, and age for a CAF gene expression score, pathologist’s manual quantification of stromal percentage as provided in the TCGA metadata and the deep stroma
score. The deep stroma score was binarized into high/low at the median. The other scores (CAF, pathologist) were binarized at an optimal threshold (optimal Youden
index). Only the deep stroma score was significantly associated with prognosis in the whole cohort (stage I–IV). The horizontal axis is scaled logarithmically (log 10).
CAF, cancer-associated fibroblast; CI, confidence interval; HR, hazard ratio; OS, overall survival; TCGA, The Cancer Genome Atlas.

https://doi.org/10.1371/journal.pmed.1002730.g005
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analysis of the effects of the non-radiomic features on the 
performance of the signature was also done. To assess the 
association between radiomic signature and the histology 
of tumour-infiltrating lymphocytes, biopsy samples that 
corresponded to primary tumours of patients in the TCGA 
dataset were retrieved from the Cancer Digital Slide 
Archive.31 77 formalin-fixed paraffin-embedded tissues 
that were stained with haematoxylin and eosin were 
available; these were analysed by an independent 
pathologist (SRH), who was masked to the radiomic 
results, to quantify the tumour-infiltrating lymphocytes as 
a proportion of the tumour area occupied by infiltrating 
lymphocytes (LIHCC=10, HNSC=38, LUSC=12, LUAD=6, 
and BLCA=11; appendix p 11). No multiple imputation was 
made for the missing data.

Statistical analysis
The Wilcoxon signed-rank or Kruskal-Wallis tests were 
used for numerical variables, and Fisher’s exact test was 
used for categorical variables. We determined the area 
under the curve (AUC) of the receiver operator 
characteristic and its confidence interval, in accordance 
with the Delong method, to assess whether the radiomic 
signature score could separate patients into two groups 
dependent on CD8 cell infiltration into the tumour. For 

MOSCATO and TCGA datasets, high or low CD8 cell 
infiltration was determined by stratifying patients into two 
groups on the basis of their median value of the gene 
expression signature of CD8 cells. For the immune 
phenotype, these two groups of patients were those with 
immune-desert tumours and those with immune-
inflamed tumours. We assessed the associations between 
the abundance of infiltrating CD8 cells, assessed by gene 
expression or radiomics in the TCGA and MOSCATO 
datasets, and the other microenvironment cell populations, 
estimated by examination of gene expression signatures.19 
We assessed correlations with Spearman’s correlation 
coefficient.

In the immunotherapy-treated dataset, the median 
value of the radiomic score was used to cluster patients 
into high or low score groups (relative to the median 
value). Follow-up and survival times were calculated from 
the start of immunotherapy. We defined clinical responses 
in accordance with RECIST version 1.1 as com-
plete response, partial response, stable disease, or 
progressive disease, which were evaluated at 3 months 
and 6 months. We evaluated overall survival and 
progression-free survival with the Kaplan-Meier method 
and Cox’s proportional hazards model. 95% CIs were 
calculated with the Wald test. Endpoints were death from 

For the Cancer Digital Slide 
Archive see: http://cancer.digital 
slidearchive.net/

Figure 2: Radiomics workflow
PD-1=programmed cell death protein-1. PD-L1=programmed cell death ligand 1.
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Figure 3: Performance of the radiomic signature in training and validation datasets
(A) AUC of the receiver operator characteristic of radiomic scores in the MOSCATO training set, TCGA validation set, and immune phenotype-based dataset. 
(B) Objective response to anti-PD-1/PD-L1 monotherapy relative to the CD8 T cells radiomic score, and overall survival of patients relative to the radiomic score 
(high or low, as defined by the median value). (C) Heatmap of correlations between the genomic signatures and radiomic signatures of CD8 T cells and the other cell 
populations, as estimated by the MCP-counter gene signatures28 in the MOSCATO training set and the TCGA validation set. AUC=area under the curve. TGCA=The 
Cancer Genome Atlas. PD-1=programmed cell death protein-1. PD-L1=programmed cell death ligand 1.
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FIGURE S3. Performance of the radiomic signatures in function of the inclusion of non-radiomics variables in the model (kVp and VOI localization).  
Red line: signature described in the manuscript, including kVp and VOI location (reference). Orange and yellow: radiomic signature without non-radiomics variables, for 
different values of alpha penalization (lower penalization of the model when alpha tends to 0). These figures show that without the non-radiomics variables, performances of 
the radiomic signature are lower, even with a lower penalization of the model. 
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a b s t r a c t
Purpose: Refinement of radiomic results and methodologies is required to ensure progression of the field.

In this work, we establish a set of safeguards designed to improve and support current radiomic method-

ologies through detailed analysis of a radiomic signature.

Methods: A radiomic model (MW2018) was fitted and externally validated using features extracted from

previously reported lung and head and neck (H&N) cancer datasets using gross-tumour-volume contours,

as well as from images with randomly permuted voxel index values; i.e. images without meaningful

texture. To determine MW2018’s added benefit, the prognostic accuracy of tumour volume alone was

calculated as a baseline.
Results: MW2018 had an external validation concordance index (c-index) of 0.64. However, a similar

performance was achieved using features extracted from images with randomized signal intensities

(c-index = 0.64 and 0.60 for H&N and lung, respectively). Tumour volume had a c-index = 0.64 and

correlated strongly with three of the four model features. It was determined that the signature was a sur-

rogate for tumour volume and that intensity and texture values were not pertinent for prognostication.

Conclusion: Our experiments reveal vulnerabilities in radiomic signature development processes and

suggest safeguards that can be used to refine methodologies, and ensure productive radiomic develop-

ment using objective and independent features.

! 2018 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 130 (2019) 2–9 This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Cancer imaging features used to inform medical decisions are

generated by experienced radiologists, often involving qualitative

and experiential interpretation [1,2]. However, utilization of quan-

tified patient imaging data for pattern recognition has recently

increased. Radiomics involves the automated extraction of imaging

features for use in multivariate predictions models and has demon-

strated promise in defining predictive and prognostic factors [3] for

disease relapse and mortality after treatment [4–7], and biological

correlates [8,9]. The largest study to date was published in 2014 by

Aerts et al. [7], and showed the prognostic power of a radiomic sig-

nature for overall survival in lung, and head and neck (H&N) can-

cer. Radiomic features corresponding to shape, texture and image

intensity were extracted from within the gross-tumour-volume

(GTV) of 1019 pre-treatment CT images. A four-feature signature

(First order-Energy, Shape-Compactness, Texture-Gray level non-

uniformity (GLNU), andWavelet HLH-GLNU) was defined by focus-

ing on the most stable features for prognostication in a lung data-

set, and validated using independent lung and H&N patient

cohorts.
Aerts et al.’s study [7] provided detailed descriptions of their

methods and data, permitting usage of their signature by multiple

groups. Leijenaar et al. [10] externally validated the model and sig-

nature using a H&N dataset from The Princess Margaret Cancer

Centre. Grossman et al. [8] and Vallières et al. [6] also successfully

used the model and signature for lung and H&N prognostication

and outcome predictions. However, the original model was devel-

oped using in-house Matlab code [11], which was not openly

released and thus limited reproducibility studies to groups with

access to this software.Accessibility of software is a substantial concern since radiomic

platforms are not interchangeable [12]; therefore, reducing gener-

alization and potential impact of published studies and models.
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Mechanistic modeling of metastatic relapse



Mechanistic modeling of time to relapse

• Number of metastases with size 

larger than the visible size Vvis

τvis = time to reach Vvis

• Time to relapse (TTR) = time elapsed
from diagnosis to the appearance of a 
first visible metastasis

TTR = inf {t > 0 : Nvis(tdiag + t) � 1}
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Mixed-effects statistical model

(Observation model)

Survival function to account for censoring in the likelihood

Lavielle, CRC press, 2014

Likelihood maximization performed using the SAEM algorithm implemented in 
the saemix R package

Comets, Lavenu, Lavielle, J Stat Softw,  2017

ln

1
T i

2
= ln

1
TTR

1
V i

diag; –i, µi
22

+ Ái, Ái ≥ N (0, ‡2
)

S
1
t|–i, µi

2
= P

1
T i > t|–i, µi

2

›

hi
(t; T i

e , s) =

s
T i

e

1
t

T i
e

2s≠1

1 +

1
t

T i
e

2s

Si
(t) = P(T i Ø t) = e≠

s t

0 hi(s)ds

T i
e = T pop

e + —µi
+ ÷i, ÷i ≥ N (0, Ê)

‹t = E

S

U
ÿ

iØ1
”{v=Vi(t)}

T

V

fl =
d‹t

dv

TTR = inf {t > 0; Nvis(t) > 1}

TTRi
= inf

Ó
t > 0; Nvis

1
t, ◊i

2
> 1

Ô

–P , –ther, –reb

µ, –

⁄

Nvis(t) =

⁄ t≠·vis

0
d(Vp(t))1Vp(t)ÆVd

dt

Nvis(t) =

⁄ +Œ

Vvis

fl(t, v)dv =

⁄ t≠·vis

0
d(Vp(t))dt

1

ln

1
T i

2
= ln

1
TTR

1
V i

diag; –i, µi
22

+ Ái, Ái ≥ N (0, ‡2
)

S
1
t|–i, µi

2
= P

1
T i > t|–i, µi

2

›

hi
(t; T i

e , s) =

s
T i

e

1
t

T i
e

2s≠1

1 +

1
t

T i
e

2s

Si
(t) = P(T i Ø t) = e≠

s t

0 hi(s)ds

T i
e = T pop

e + —µi
+ ÷i, ÷i ≥ N (0, Ê)

‹t = E

S

U
ÿ

iØ1
”{v=Vi(t)}

T

V

fl =
d‹t

dv

TTR = inf {t > 0; Nvis(t) > 1}

TTRi
= inf

Ó
t > 0; Nvis

1
t, ◊i

2
> 1

Ô

–P , –ther, –reb

µ, –

⁄

Nvis(t) =

⁄ t≠·vis

0
d(Vp(t))1Vp(t)ÆVd

dt

Nvis(t) =

⁄ +Œ

Vvis

fl(t, v)dv =

⁄ t≠·vis

0
d(Vp(t))dt

1

ln

1
–i

2
= ln (–pop) + ÷i

–, ÷i
– ≥ N (0, Ê2

–)

ln

1
µi

2
= ln (µpop) + ÷i

µ, ÷i
µ ≥ N (0, Ê2

µ)

ln

1
T i

2
= ln

1
TTR

1
V i

diag; –i, µi
22

+ Ái, Ái ≥ N (0, ‡2
)

S
1
t|–i, µi

2
= P

1
T i > t|–i, µi

2

›

hi
(t; T i

e , s) =

s
T i

e

1
t

T i
e

2s≠1

1 +

1
t

T i
e

2s

Si
(t) = P(T i Ø t) = e≠

s t

0 hi(s)ds

T i
e = T pop

e + —µi
+ ÷i, ÷i ≥ N (0, Ê)

‹t = E

S

U
ÿ

iØ1
”{v=Vi(t)}

T

V

fl =
d‹t

dv

TTR = inf {t > 0; Nvis(t) > 1}

TTRi
= inf

Ó
t > 0; Nvis

1
t, ◊i

2
> 1

Ô

–P , –ther, –reb

µ, –

⁄

Nvis(t) =

⁄ t≠·vis

0
d(Vp(t))1Vp(t)ÆVd

dt

1

ln

1
–i

2
= ln (–pop) + ÷i

–, ÷i
– ≥ N (0, Ê2

–)

ln

1
µi

2
= ln (µpop) + ÷i

µ, ÷i
µ ≥ N (0, Ê2

µ)

ln

1
T i

2
= ln

1
TTR

1
V i

diag; –i, µi
22

+ Ái, Ái ≥ N (0, ‡2
)

S
1
t|–i, µi

2
= P

1
T i > t|–i, µi

2

›

hi
(t; T i

e , s) =

s
T i

e

1
t

T i
e

2s≠1

1 +

1
t

T i
e

2s

Si
(t) = P(T i Ø t) = e≠

s t

0 hi(s)ds

T i
e = T pop

e + —µi
+ ÷i, ÷i ≥ N (0, Ê)

‹t = E

S

U
ÿ

iØ1
”{v=Vi(t)}

T

V

fl =
d‹t

dv

TTR = inf {t > 0; Nvis(t) > 1}

TTRi
= inf

Ó
t > 0; Nvis

1
t, ◊i

2
> 1

Ô

–P , –ther, –reb

µ, –

⁄

Nvis(t) =

⁄ t≠·vis

0
d(Vp(t))1Vp(t)ÆVd

dt

1



Descriptive power: fit to the data
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Patient ID Tumor size (mm) Ki67 HER2 CD44 TRIO EGFR Observed TTR (cens) Predicted TTR Prediction error (days)
255 25 1 60 90 60 0 1812 (1) 1609 203
47 20 32 100 0 0 50 739 (1) 447 292
143 18 60 0 50 0 0 2798 (1) 434 2364
12 10 20 0 23 0 0 5970 (0) +1 -

Parameter Estimate r.s.e. (%)
log↵pop -6.34 12.6
logµpop -26.8 3.68
� 0.542 28.4
!↵ 3.37 36.4
!µ 3.78 15.9
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Predictive power: covariates
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Random survival forests
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c-index = 0.69
(cross-validation)
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Comparison of predictive metrics
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Table 1: Performance metrics for prediction of 2-year DMFS

AUROC Accuracy PPV NPV F1

RSF 0.82 0.97 0.80 0.78 0.79

Mechanistic model 0.80 0.97 0.76 0.87 0.82

Cox 0.82 0.97 0.80 0.87 0.84

Table 2: Performance metrics for prediction of 5-year DMFS

AUROC Accuracy PPV NPV F1

RSF 0.75 0.90 0.71 0.71 0.71

Mechanistic model 0.73 0.90 0.72 0.70 0.70

Cox 0.75 0.91 0.77 0.71 0.72

Table 3: Performance metrics for prediction of 10-year DMFS

AUROC Accuracy PPV NPV F1

RSF 0.69 0.82 0.68 0.66 0.66

Mechanistic model 0.69 0.81 0.71 0.64 0.62

Cox 0.71 0.82 0.70 0.68 0.68

1

Table 1: Performance metrics for prediction of 2-year DMFS

AUROC Accuracy PPV NPV F1

RSF 0.82 0.97 0.80 0.78 0.79

Mechanistic model 0.80 0.97 0.76 0.87 0.82

Cox 0.82 0.97 0.80 0.87 0.84

Table 2: Performance metrics for prediction of 5-year DMFS

AUROC Accuracy PPV NPV F1

RSF 0.75 0.90 0.71 0.71 0.71

Mechanistic model 0.73 0.90 0.72 0.70 0.70

Cox 0.75 0.91 0.77 0.71 0.72

Table 3: Performance metrics for prediction of 10-year DMFS

AUROC Accuracy PPV NPV F1

RSF 0.69 0.82 0.68 0.66 0.66

Mechanistic model 0.69 0.81 0.71 0.64 0.62

Cox 0.71 0.82 0.70 0.68 0.68

1

5 years metastatic-free survival

10 years metastatic-free survival

Mechanistic RSF

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty

other tested ML models (support vector machine, k-nearest
neighbors, gradient boosting) had similar or worse
performances
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Conclusions and perspectives
• Similar predictive performances of Cox regression (c-index 0.67 - 0.72), random survival forest (c-index 0.67-

0.71) and a novel mechanistic model (c-index 0.63 - 0.70)  for pure prediction

• Other machine learning algorithms tested for classification of 5-years relapse (logistic regression, support 

vector machine, random forests, k-nearest neighbors and gradient boosting)) gave similar results

• Mechanistic modeling provides biological and clinical insights that ML does not:

• Ki67 correlates with proliferation rate 𝛼 (expected but reassurring)

• HER2 correlates with 𝛼, EGFR with 𝜇 (metastatic potential)

• prediction of the invisible metastatic state at diagnosis ⇒ potential for personalized adjuvant therapy

• This is a first attempt of a mechanistic, individual-level, predictive metastatic model. A lot remains to be done: 

• Refinement to well-established breast cancer molecular subtypes

• Further investigations to refine the modeling (dormancy, etc…)

• Predictive power to be confirmed in external data sets



Pharmacometrics and precision dosing



Inter-individual variability



Pharmacometrics = the science of quantitative 
pharmacology

Garrido and Trocóniz, 2019

Pharmacokinetics Pharmacodynamics



Historical overview of PMX in oncology

• 1980’s: Principles of population PK modeling by 
Lewis Sheiner and Stuart Beal

• 1990’s: pop PK models of cytotoxics

Friberg et al., J Clin Oncol, 2002

• 2000’s: models of hematopoietic toxicity

• 2010’s: tumor growth inhibition models



•    Most anticancer agents are given as:

• mg/m²
• mg/kg
• mg (flat-dose)

•    Only carboplatin is given in a tailored 
fashion  (i.e., AUC5 or AUC6 dosing).  

How can standard dosing be part of personalized medicine?

•    « One dose fits all » 
    (standard dosing) 



Mixed-effects modeling
Population data

Individual structural model

𝜓h = 𝜓iji + 𝜂h, 𝜂h ∼ 𝒩 0,Ω

fixed effects random effects

Population fit (MLE)

Individual fit



Médecine de précision et bioguidage des 
ITK

Suivi Thérapeutique Pharmacologique  des ITKs (imatinib,  sunitinib, dasatinib, cabozantinib, 
sorafenib, ibrutinib…).

Estimation
Bayesienne

Identification PK

Pop-PK

Nouveau patient

Paramètres PK inconnus

CtUne 
observation

Simulations

MONC
Modeling in ONCology

A. Boyera, DC Imbsa, R. El Cheikha, J. Ciccolinia, S. Benzekryb 

aSMARTc Unit, Inserm S_911, Marseille, France 
bMONC team, Inria, Bordeaux, France

Optimization of the timing 
of sequential administration of bevacizumab + 
cytotoxics in NSCLC by a mathematical model



Sunitinib in metastatic kidney cancer

80% of AP-HM 
patient have dose 

modification of 
Sutent®

12.5 <>100 mg
(-75% ⇨ + 100%!)

Standard dose:
50 mg

J. Ciccolini

Unpublished data - do not post



Model-based dosing regimen for a phase I/II clinical trial

Goal: safe densification of docetaxel (DTX) + epirubicin (EPI) in metastatic breast cancer

Meille et al. (Iliadis), Clin Pharmacokinet, 2016

PK models

PK 
EPI

PD models

PK 
DTX

TOXICITY
(Friberg-like)

EFFICACY
(Gompertz-like)Interface 

model

(+ G-CSF rescue)



Model equations

Neutrophils kinetics

Tumor kinetics

Constraints
Optimization

under toxicity constraints

G-CSF

drug effect



Scheduling optimization

S Opt. S Opt. S Opt.

S = standard, Opt = optimized

• PK: popPK previous studies
• PD toxicity: estimated from previous phase I study
• PD efficacy: in vitro cytotoxicity + fit to previously 

published clinical studies

Optimization

under toxicity constraints

Parameter estimation

Meille et al. (Iliadis), Clin Pharmacokinet, 2016



Standard 
Dosing

Model-I 
Dosing

MODEL1 clinical results

Hénin et al. (Iliadis, Freyer), Breast Cancer Res Treat, 2016

Previously: life-threatening toxicities
• 100% grade ≥ 3 neutropenia
• 1 death
Viens et al., J Clin Oncol, 2001

MODEL1: no lethal toxicities
• 0% grade ≥ 3 neutropenia



Individualization of parameter estimates



Other model-based trials

• Metronomic vinorelbine in NSCLC (NCT02555007)

• Combination of radiotherapy and immune-checkpoint inhibition 
(NCT03509584)

Barbolosi et al., Nat Rev Clin Oncol, 2016 
Ciccolini et al. (Benzekry), J Clin Oncol: Precision Oncology, 2020



Conclusion



Conclusion

• Great success of machine learning methods when

there are a lot of features and annotated data:

• genetic sequencing data

• imaging (pathology, imaging)

• So far, almost no study validated prospectively

• Very few studies using ML/DL in clinical oncology. Almost none in pharmacometrics.

• IBM Watson. Tried to « learn » how oncologists are treating their patients and to digest literature. 

So far, failed.

• AI will not replace radiologist/pathologist but will become a supplementary tool for daily medical

practice
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researchers understand brain circuitry and build brain–machine 
interfaces172,178,179. Machine vision tracking of human and animal 
behavior with a transfer-learning algorithm is yet another example 
of the progress being made180.

Drug discovery is being revamped with the use of AI at many 
levels, including sophisticated natural language processing searches 
of the biomedical literature, data mining of millions of molecular 
structures, designing and making new molecules, predicting off-
target effects and toxicity, predicting the right dose for experimen-
tal drugs, and developing cellular assays at a massive scale181–184. 
There is new hope that preclinical animal testing can be reduced 
via machine-learning prediction of toxicity185. AI cryptography has 
been used to combine large proprietary pharmaceutical company 
datasets and discover previously unidentified drug interactions186. 
The story of the University of Cambridge and Manchester’s robot 
‘Eve’ and how it autonomously discovered an antimalarial drug that 
is a constituent of toothpaste has galvanized interest in using AI to 
accelerate the process, with a long list of start-ups and partnerships 
with major pharmaceutical firms181,187,188.

Limitations and challenges
Despite all the promises of AI technology, there are formidable 
obstacles and pitfalls. The state of AI hype has far exceeded the 
state of AI science, especially when it pertains to validation and 
readiness for implementation in patient care. A recent example is 
IBM Watson Health’s cancer AI algorithm (known as Watson for 
Oncology). Used by hundreds of hospitals around the world for 
recommending treatments for patients with cancer, the algorithm 
was based on a small number of synthetic, nonreal cases with very 
limited input (real data) of oncologists189. Many of the actual out-
put recommendations for treatment were shown to be erroneous,  
such as suggesting the use of bevacizumab in a patient with severe 

bleeding, which represents an explicit contraindication and ‘black 
box’ warning for the drug189. This example also highlights the poten-
tial for major harm to patients, and thus for medical malpractice, by 
a flawed algorithm. Instead of a single doctor’s mistake hurting a 
patient, the potential for a machine algorithm inducing iatrogenic 
risk is vast. This is all the more reason that systematic debugging, 
audit, extensive simulation, and validation, along with prospective 
scrutiny, are required when an AI algorithm is unleashed in clinical 
practice. It also underscores the need to require more evidence and 
robust validation to exceed the recent downgrading of FDA regula-
tory requirements for medical algorithm approval190.

There has been much written about the black box of algorithms, 
and much controversy surrounding this topic191–193; especially in 
the case of DNNs, it may not be possible to understand the deter-
mination of output. This opaqueness has led to both demands 
for explainability, such as the European Union’s General Data 
Protection Regulation requirement for transparency—deconvolu-
tion of an algorithm’s black box—before an algorithm can be used 
for patient care194. While this debate of whether it is acceptable to use 
nontransparent algorithms for patient care is unsettled, it is notable 
that many aspects of the practice of medicine are unexplained, such 
as prescription of a drug without a known mechanism of action.

Inequities are one of the most important problems in healthcare 
today, especially in the United States, which does not provide care 
for all of its citizens. With the knowledge that low socioeconomic 
status is a major risk factor for premature mortality195, the dispro-
portionate use of AI in the ‘haves,’ as opposed to the ‘have-nots,’ 
could widen the present gap in health outcomes. Intertwined with 
this concern of exacerbating pre-existing inequities is embedded 
bias present in many algorithms due to lack of inclusion of minori-
ties in datasets. Examples are the algorithms in dermatology that 
diagnose melanoma but lack inclusion of skin color47 and the use 
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No
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cruise control.
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Driver
assistance

Systems that help 
drivers maintain 
speed or stay in 
lane but leave the 
driver in control.

2

Partial
automation

The combination of 
automatic speed 
and steering 
control—for example, 
cruise control and 
lane keeping.

Human driver monitors environment

Humans and machine doctors

3

Conditional
automation

Automated systems 
that drive and 
monitor the 
environment but 
rely on a human 
driver for backup.

4

High
automation

Automated systems 
that do everything—
no human backup 
required—but only 
in limited 
circumstances.

5

Full
automation

The true electronic 
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full vehicle control, 
needs no human 
backup, and drives 
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System monitors environment
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Now Unlikely

Fig. 5 | The analogy between self-driving cars and medicine. Level 5, full automation with no potential for human backup of clinicians, is not the objective. 
Nor is Level 4, with human backup in very limited conditions. The goal is for synergy, offsetting functions that machines do best combined with those that 
are best suited for clinicians. Credit: Debbie Maizels/Springer Nature
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Thank you for your attention!



Additional 2



Prediction results



Title
Author - Date



Title
Author - Date

A bestiary for machine learning

Introduction to Machine Learning for Biology 28 June 2019
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FIGURE 1.4. Left: Representation of the NCI60 gene expression data set in
a two-dimensional space, Z1 and Z2. Each point corresponds to one of the 64
cell lines. There appear to be four groups of cell lines, which we have represented
using different colors. Right: Same as left panel except that we have represented
each of the 14 different types of cancer using a different colored symbol. Cell lines
corresponding to the same cancer type tend to be nearby in the two-dimensional
space.

The left-hand panel of Figure 1.4 addresses this problem by represent-
ing each of the 64 cell lines using just two numbers, Z1 and Z2. These
are the first two principal components of the data, which summarize the
6,830 expression measurements for each cell line down to two numbers or
dimensions. While it is likely that this dimension reduction has resulted in
some loss of information, it is now possible to visually examine the data
for evidence of clustering. Deciding on the number of clusters is often a
difficult problem. But the left-hand panel of Figure 1.4 suggests at least
four groups of cell lines, which we have represented using separate colors.

In this particular data set, it turns out that the cell lines correspond
to 14 different types of cancer. (However, this information was not used
to create the left-hand panel of Figure 1.4.) The right-hand panel of Fig-
ure 1.4 is identical to the left-hand panel, except that the 14 cancer types
are shown using distinct colored symbols. There is clear evidence that cell
lines with the same cancer type tend to be located near each other in this
two-dimensional representation. In addition, even though the cancer infor-
mation was not used to produce the left-hand panel, the clustering obtained
does bear some resemblance to some of the actual cancer types observed
in the right-hand panel. This provides some independent verification of the
accuracy of our clustering analysis.


