

Inserm Institut nationa de la santé et de la recherche médical

Introduction to Machine Learning S.Benzekry Inria – Inserm team COMPO

Ok Google: What is Machine Learning (ML)??

Definition: "Machine learning is the field of study that gives the computer the ability to learn *without being explicitly programmed* "Arthur Samuel, Computer Scientist, 1959

Exists since decades

Enigma

M I N D a quarterly review or PSYCHOLOGY AND PHILOSOPHY

> I.—COMPUTING MACHINERY AND INTELLIGENCE

> > BY A. M. TURING

Turing, Mind, 1950

- New « hype » since ~ 2011 mostly thanks to :
 - Computing power
 - Big data

- **Deep Learning**
- G. Hinton, Nobel Prize, 2024

Alphafold, 2021 Hassabis, Nobel Prize, 2024

Statistical Modeling: The Two Cultures

Leo Breiman

Unsupervised VS supervised ML

Example: gene expression and metastatic relapse in breast cancer

Supervised learning: classification vs regression

Regression: continuous outcome

Predict drug
concentration

 $x = \{(t_1, C_1), \cdots, (t_k, C_k), t_K\}$

 $y = C_K$

• Predict drug IC_{50} from genomic (138) + chemical (689) features

Classification: Categorical outcome

• Cancer vs non-cancer from cfDNA fragmentomics

Response to immunotherapy from blood markers

Artificial Intelligence, Machine Learning and Deep Learning

Artificial Intelligence, Machine Learning and Deep Learning

Corrected 23 January 2015; see full text.

Artificial Intelligence, Machine Learning and Deep Learning

Features

Outcome

Example: predicting respone to immunotherapy in nonsmall cell lung cancer

p = 10 features = $(x_1, ..., x_{10})$

y = response

PROG

ID	Age	Hemoglobin	Platelets	Leukocytes	Neutrophils	Lymphocytes
2	61	12.8	527	11.52	9.15	1.43
4	55	12	130	4.46	2.93	1.07
5	55	12	347	11.77	9.06	1.53
6	58	11.4	424	26.7	24.83	1.02
7	72	9.4	513	10.9	8.53	1.77
8	62	8.7	687	7.46	5.66	1.16
10	65	8.3	231	3.89	2.41	1.16
11	52	10.3	357	11.27	7.69	2.6
13	60	16	183	7.97	3.78	3.12
15	58	10.2	447	10.4	7.41	2.05
17	70	12.5	220	7.14	4.762	1.292
18	72	11.6	317	7.94	4.85	2.3
20	60	10.7	611	10.27	7.16	2.08
21	50	9.1	496	17.29	14.58	1.52
22	56	11.2	331	15	13	0.9
23	40	12.7	2013	6.45	4.6	1.03
24	58	10.5	550	6.8	4.07	1.99
25	65	10.7	260	8.7	6.6	0.87
28	64	13.4	202	10.71	9.52	0.96
29	76	11.5	148	7.2	4.83	1.5
31	65	16.4	224	8.93	7.6	0.89

n =298 patients

Types of data

Preprocessing

- Load data and possibly merge different sources / types
- Document the data : dictionary + types (categorical / numeric)
- Clean the data (outliers? aberrant values? units errors? exclusion criteria?)
- Define features of interest (e.g., BMI) and feature sets (e.g., monotherapy patients)
- Dummify categorical variables, transform numerics (e.g., log)
- Missing values (not covered in this course but ++)
- Scaling

 \Rightarrow First, look at the data and perform <u>exploratory data analysis</u>

Garbage in = garbage out

Formalism

Machine (Statistical) (supervised) Learning

 $y = f(x) + \varepsilon$ ε = irreducible error

- $x = x_1, x_2, ..., x_p$ set of variables / features / predictors (e.g., biomarkers)
- Goal = predict y from x = learn \hat{f} that is "close" to $f \rightarrow$ prediction $\hat{y} = \hat{f}(x)$
- $y \in \{Y_1, Y_2\}$ qualitative/categorical \Rightarrow classification

• $y \in \mathbb{R}$ quantitative/continuous \Rightarrow regression

Training / test split

- How to evaluate the predictive performance of \hat{f} ?
- It is trivial to find a model that perfectly predicts the data it has seen (the training data)
- We want to test the performances of \hat{f} on *unseen* data
- Best solution: have an external validation set (e.g., from a different study / hospital)
- If not: randomly split the data between a training (usually 2/3 or 3/4) and a test set
- Warning! from the moment you see the test data and the model performances, if you further change anything, you cheat! (there is leakage)

Training / test split

	ID	Age	Hemoglobin	Platelets	Leukocytes	Neutrophils	Lymphocytes	PROG
▲	2	61	12.8	527	11.52	9.15	1.43	1
	4	55	12	130	4.46	2.93	1.07	1
	5	55	12	347	11.77	9.06	1.53	1
	6	58	11.4	424	26.7	24.83	1.02	1
	7	72	Trair	nina set	= 2/3 = 200	pts	1.77	0
	8	62	0.7		7.40	0.00	1.16	0
	10	65	8.3	231	3.89	2.41	1.16	1
	11	52	10.3	357	11.27	7.69	2.6	0
	13	60	16	183	7.97	3.78	3.12	1
	15	58	10.2	447	10.4	7.41	2.05	1
	17	70	12.5	220	714	1.762	1.202	1
	18	72	11.6	317	7.94	4.85	2.3	0
	20	60	10.7	611	10.27	7.16	2.08	1
	21	50	9.1	496	17.29	14.58	1.52	0
	22	56	Test s	et = 1/3	= 98 patient	13 IS	0.9	1
	23	40				4.6	1.03	1
	24	58	10.5	550	6.8	4.07	1.99	0
	25	65	10.7	260	8.7	6.6	0.87	0
	28	64	13.4	202	10.71	9.52	0.96	1
¥	29	76	11.5	148	7.2	4.83	1.5	0
	31	65	16.4	224	8.93	7.6	0.89	1

n =298 patients

Evaluating performances: regression

• Let $x^t = x^{t_1}, ..., x^{t_T}$ the test set variables and $y^t = y^{t_1}, ..., y^{t_T}$ the associated test outcomes

Mean squared error =
$$MSE^{train} = Ave\left(y - \hat{f}(x)\right)^2$$
, $MSE^{test} = Ave\left(y^t - \hat{f}(x^t)\right)^2$

Should we minimize the *MSE*^{train} ?

Bias and variance

• Bias = how accurate is the prediction, *in average*

 $E\big[f(x) - \hat{f}(x)\big]$

• Variance = how variable is the prediction, *in average*

 $E\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right)^2\right]$

where the average is to be understood as if we repeatedly estimated f using a large number of training sets

Bias versus variance trade-off

Theorem:

Error

$$E\left[\left(y^{t} - \hat{f}(x^{t})\right)^{2}\right] = Var\left(\hat{f}(x^{t})\right) + Bias\left(\hat{f}(x^{t})\right)^{2} + Var(\varepsilon)$$

Correct fitting

Resampling methods

Resampling method = drawing samples from a training set and refitting a model of interest

- No external test set available
- Gives information about the variability and sensitivity of the model (model assessment)
- Select a model among candidates (model selection)
- Tune the hyperparameters (e.g., tree depth or minimal number of samples in each leaf)
- Two main resampling methods: cross-validation and bootstrap

Cross validation

n

Leave-one-out cross-validation (LOOCV)

123

Bootstrap

Randomly select *n* times a subject, with **Initial dataset** • replacement A bootstrapped dataset has the **same size** • but contains only 63.2% of the initial cases **Bootstrapped datasets**

Even less data (because of splitting)

Linear regression

Example: concentration of a drug (sunitinib in rats) over time

y = log(concentration), x = time

y = f(x)?

Example: concentration of a drug (sunitinib in rats) over time

Linear regression

 $y = \theta_0 + \theta_1 x + \varepsilon$

4 data points

5 data points

Linear regression: under the hood

 $y = \beta_0 + \beta_1 x + \varepsilon$

How to find $\widehat{\beta_0} \approx \beta_0$ and $\widehat{\beta_1} \approx \beta_1$?

• $\widehat{\beta} = (\widehat{\beta_0}, \widehat{\beta_1})$ is the value that minimizes the sum of squared residuals

$$SS = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 t_i))^2$$

ML training ⇔ **Optimization** of an objective function (also called "loss")

Multiple linear regression

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

Predict tumor size (SLD) from 59 variables

	age	sexf	wgt	bmi	race	etni	smoking	smokhis	dis line	stage	met	nbmeta1	liver2	lesloc	pdl1e³	pdl1e…⁴	ecog⁵	timed6	hgb	hct	rbc	plat	ca	gluc	wbc lymle
	<dbl></dbl>	<dbl> <chr></chr></dbl>	<dbl></dbl>	<db1> •</db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl> <dbl></dbl></dbl>															
1	76	0	88	29.1	1	2	0	2	2 >=2	3	1	2	0	2	2	3	1	292	158 (0.454	5.4	298	2.45	5.50	4.1 0.16
2	67	1	70.4	26.2	1	2	0	2	21	3	1	3	1	3	2	3	0	813	121 (0.37	4.76	355	2.45	4.55	8 0.15
3	70	0	70	24.8	1	2	1	1	2 >=2	4	1	2	0	2	2	3	1	383	141 (0.413	4.51	356	2.45	4.72	10.3 0.194
4	64	0	90.3	30.8	1	2	1	1	21	1	1	2	0	2	2	3	1	289	108 (0.34	4.1	304	2.42	6.83	6.7 0.071
5	74	1	60	23.1	1	2	0	2	2 >=2	3	1	3	1	3	1	2	1	834	139 (0.431	4.39	174	2.33	5.11	6 0.23
6	76	0	68	27.5	1	2	0	2	2 >=2	4	1	1	0	1	2	3	1	106	138 (0.404	4.23	186	2.48	5.33	9 0.333
7	53	0	86.8	27.7	1	2	0	2	2 >=2	3	1	3	1	4	2	1	1	369	136 (0.407	4.4	194	2.45	5.55	8.9 0.09
8	68	0	86.9	27.5	1	2	0	2	2 >=2	3	1	1	0	1	2	3	1	143	121 (0.354	3.94	278	2.2	7.55	16.4 0.11
9	58	0	59.5	22.5	2	2	0	2	2 >=2	4	1	3	0	3	2	3	1	219	107 (0.319	3.62	764	2.33	8.22	10.3 0.055
10	62	1	55.8	23.5	2	2	0	3	2 >=2	. 4	1	. 1	0	1	1	. 2	1	416	120	0.367	3.97	373	2.31	6.1	7.5 0.164

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_{59} x_{59} + \varepsilon$$
 RSE = 36.0
R² = 0.44

Categorical variables? \rightarrow dummified (= one-hot-encoding)

- SEX = M, $F \rightarrow$ SEX = {0, 1}
- NB_META = $\{0, 1, 2, \ge 3\} \rightarrow NB_META_1, NB_META_2 and NB_META_23$

Variables need to be scaled

Linear classification: logistic regression

Example: breast cancer diagnosis

subjects

=269

_						• • • • • • • • • • • • • • • • • • •	
	compactness	smoothness	area	perimeter	texture	radius	ID
	0.2776	0.1184	1001	122.8	10.38	17.99	842302
ŀ	0.0786	0.0847	1326	132.9	17.77	20.57	842517
ľ	0.1599	0.1096	1203	130	21.25	19.69	84300903
	0.2839	0.1425	386.1	77.58	20.38	11.42	84348301
	0.1328	0.1003	4007	4054	14.01	20.29	84358402
	0.17	0.1278	t = 3/4	Training se	1!	12.45	843786
l	0.109	0.0946	1040	119.6	19.98	18.25	844359
	0.1645	0.1189	577.9	90.2	20.83	13.71	84458202
	0.1932	0.1273	519.8	87.5	21.82	13	844981
	0.2396	0.1186	475.9	83.97	24.04	12.46	84501001
1	0.0667	0.0821	797.8	102.7	23.24	16.02	845636
	0.1292	0.0971	781		17.89	15.78	84610002
	0.2458	0.0974	= 1/4 ₂₃	Test set =	24.8	19.17	846226
	0.1002	0.084	782.7	103.7	23.95	15.85	846381
	0.2293	0.1131	578.3	93.6	22.61	13.73	84667401

$$p = 32$$
 features = ($x_1, ..., x_{32}$)

у

if OR = 1.5 there is a 50% increase of chance of having Y = 1 for an increase of x of one unit

Logistic regression = linear classification

Classification: additional prediction metrics

Performance evaluation: Confusion matrix

Data
$$\begin{pmatrix} x^1 \\ \vdots \\ x^N \end{pmatrix}$$
 \longrightarrow Predictions $\begin{pmatrix} \hat{y}^1 \\ \vdots \\ \hat{y}^N \end{pmatrix} = \begin{pmatrix} \hat{M}(x^1) \\ \vdots \\ \hat{M}(x^N) \end{pmatrix}$ vs reality $\begin{pmatrix} y^1 \\ \vdots \\ y^N \end{pmatrix}$

Actual

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+TN}$$

Sensitivity =
$$SE = \mathbb{P}(+|1) = TPR = \frac{TP}{TP+FN}$$

 $\beta = \mathbb{P}(-|1) = FNR = 1 - SE = \text{proba of type II error}$

(classify as benign what is cancer)

Specificity = $SP = \mathbb{P}(-|0) = TNR = \frac{TN}{FP+TN}$

 $\alpha = \mathbb{P}(+|0) = FPR = 1 - SP = \text{proba of type I error}$

(classify as tumor what is benign)

Performances

Accuracy = 0.867

Accuracy = 0.867

Accuracy = 0.916
ROC curve analysis

• In practical cases a classification model often assigns a score (e.g. proba)

• For each value of a threshold, one *SE* and one *SP* value

 Global quantification of performances = area under the curve (AUC)

 In practice, one threshold needs to be defined from the train set

AUCs of logistic regression (test set)

Radius

Radius + texture

Interpretation of AUC

AUC = probability that a random pair of predictions (\hat{y}^1, \hat{y}^2) is concordant with the observations i.e that the score of \hat{y}^1 is larger than the score of \hat{y}^2 if $y^1 > y^2$.

- $S_1 =$ score in class we want to classify as positive (say, malignant), density f_1
- S_0 = score in other class (say, healthy/benign), density f_0
- T =threshold

$$AUC = \int_{T_{max}}^{T_{min}} SE(T) d(FPR(T))$$

$$SE(T) = \mathbb{P}(S \ge T|1) = \int_{T}^{T_{max}} f_1(x) dx$$
$$FPR(T) = \mathbb{P}(S \ge T|0) = \int_{T}^{T_{max}} f_0(x) dx$$

$$AUC = \int_{T_{min}}^{T_{max}} \int_{T}^{T_{max}} f_1(x) f_0(T) dT$$
$$= \mathbb{P}(S_1 \ge S_0)$$

Positive and negative predictive value

- Accuracy, sensitivity and specificity are not sufficient to assess a model
- We are often more interested in P(1|+) (= positive predictive value, PPV) and P(0|−) (= negative predictive value, NPV)

• From Bayes

$$p \text{ prevalence}$$

$$PPV = \frac{SE \cdot p}{(1 - SP) \cdot (1 - p) + SE \cdot p}$$

• Other metrics: F1 = harmonic mean of *PPV* (precision) and sensitivity (recall) = $2(PPV^{-1} + SE^{-1})^{-1}$

Example: Lung cancer and smoking status

- Percentage of smokers among lung cancer patients = 90%, i.e. *SE* of a model based on smoking status is 0.9
- Approx. 30% of population is composed of smokers \Rightarrow *SP*(= *TNR*, i.e. proportion of people who don't smoke and don't have cancer) is 70%.
- Assuming a lifetime risk of having lung cancer of 7.19% (= prevalence)

 $PPV = \mathbb{P}(\text{lung cancer during lifetime |smoker}) = 18.9\%$

Nonlinear methods: decision trees

- Stratifying or segmenting the predictor/variable space into simple regions
- Classification tree: vote in each branch
- Regression tree: average in each branch

- <u>Hyperparameters</u>?
 - Tree depth
 - Minimal node size
 - Cost-complexity

Node splitting

Regression

 $R_1(j,s) = \{X | X_j < s\}$ and $R_2(j,s) = \{X | X_j \ge s\}$

left child node based on variable *j* and cutoff *s*

• For each node, recursively find value of *j* and *s* that minimize

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Classification

Minimize the Gini index = total variance across the K classes
 = purity index

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

where \hat{p}_{mk} = proportion of the *k*-th class in node *m*.

For each potential split (i.e., variable x_p and cutoff s)

- Calculate *G* in the two child nodes
- Calculate the difference between parent and childs
- Choose the split with maximum difference

Pruning

Cost-complexity $\alpha = 0$

Cost-complexity α = 0.02

Main issue = overfitting

Ensemble method: random forest

Random forest: <u>hyperparameters</u>

- Number of trees : *trees* [R ranger, default 500], *n_estimators* [python sklearn, default 100]
- Number of variables randomly selected to split each node: *mtry* [R], *max_features* [sklearn], default = \sqrt{p}
- Minimal node size *min_n* [R, default 10], *min_samples_leaf* [sklearn, default 1]
- Additional parameters in sklearn: *criterion* (default: Gini), *max_depth, min_impurity_decrease,...*

Example on predict NSCLC response to ICI

Model	Accuracy	ROC AUC	PPV	NPV	Sensitivity	Specificity
Random Forest	0.68 ± 0.04	0.74 ± 0.03	0.70 ± 0.08	0.68 ± 0.06	0.58 ± 0.08	0.78 ± 0.06
Logistic Regression	0.67 ± 0.04	0.73 ± 0.03	0.69 ± 0.08	0.67 ± 0.06	0.57 ± 0.09	0.77 ± 0.07
Naive Bayes	0.67 ± 0.04	0.73 ± 0.03	0.72 ± 0.07	0.65 ± 0.06	0.49 ± 0.07	0.83 ± 0.05
Single Layer Neural Network	0.66 ± 0.03	0.72 ± 0.03	0.69 ± 0.09	0.66 ± 0.06	0.54 ± 0.09	0.78 ± 0.07
k-Nearest Neighbour	0.66 ± 0.04	0.69 ± 0.04	0.65 ± 0.07	0.66 ± 0.06	0.58 ± 0.07	0.73 ± 0.07
Linear SVM	0.58 ± 0.09	0.73 ± 0.03	0.72 ± 0.09	0.58 ± 0.10	0.19 ± 0.25	0.94 ± 0.09
Polynomial SVM	0.55 ± 0.08	0.73 ± 0.03	0.61 ± 0.13	0.58 ± 0.13	0.19 ± 0.29	0.89 ± 0.23
Radial basis SVM	0.55 ± 0.08	0.73 ± 0.03	0.67 ± 0.17	0.56 ± 0.06	0.20 ± 0.28	0.88 ± 0.25

Metric - Accuracy - Precision - Sensitivity - Specificity

Benzekry et al., Cancers, 2021

Artificial neural networks

Artificial neural networks

Perceptron

Feed-forward neural network

 $W \in \mathbb{R}^{5,4}$

 $A = W \cdot X$

 $Y = f(W \cdot X)$

Input LayerHiden Layer 1Hiden Layer 2Output LayerX1H11H14H14H14X2H14H14H14H14X3H14H14H14

 $Y = f_2(W_2 \cdot f_1(W_1 \cdot X))$

Backpropagation uses the chain rule and matrix products

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by backpropagating errors. Nature **323**, 533–536 (1986).

Success example of DL: computer vision

• 1.2 million images (ImageNet, Stanford) used to train a deep convolutional neural network

Krizhevsky, Sutskever, Hinton, ImageNet classification with deep convolutional neural networks, NIPS, 2012 (cited 135 158)

Classification of skin lesions

Esteva et al. (Stanford), Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017

Convolutional neural network

Convolutional neural network

Other NNs used

- Avg/MaxPool = reduce the image dimension by subdividing and taking the average/max in each region
- Concat = concatenates the outputs
- Dropout = randomly drops a subset of neurons during a training iteration (disabled during testing)
- Fully connected
- Softmax = generalization of logistic to K classes

Support vector machines

Support vector machines

• Developed in the computer science community in the 1990s

• Considered one of the best "out of the box" classifiers

Hyperplane

Maximal margin classifier

Which of the infinite possible separating hyperplanes to use?

→ Maximal margin hyperplane = separating hyperplane that

is the farthest from train observations

- \rightarrow Maximal margin classifier
- It depends strongly on the support vectors but not on the other observations
- \rightarrow robust to the behavior of observations far from hyperplane (outliers)

O = support vectors

How to find the maximal margin classifier?

Optimization problem!

 $\begin{array}{c} \underset{\beta_{0},\beta_{1},\ldots,\beta_{p},M}{\operatorname{maximize}} M & \longleftarrow & \operatorname{find} \ \beta_{0},\beta_{1},\ldots,\beta_{p} & \operatorname{that maximize the margin} M \\ \text{subject to} \ \sum_{j=1}^{p} \beta_{j}^{2} = 1, & \longleftarrow & \operatorname{ensures that} \\ \operatorname{distance is given by} & y_{i}(\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \cdots + \beta_{p}x_{ip}) \\ y_{i}(\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \cdots + \beta_{p}x_{ip}) \geq M \quad \forall \ i = 1,\ldots,n & \longleftarrow & \operatorname{correct side of hyperplane} \\ \operatorname{distance} \geq M \end{array}$

Non-separable case

No solution exist to the optimization problem!

 \rightarrow extend the concept to a hyperplane that *almost* separates the classes, using a *soft-margin*

Even when separable

 \rightarrow the maximal margin classifier has high variance! (linked to overfit)

 \rightarrow solution = allow for some observations to be misclassified

Support vector classifier

Separate most of the training observations, but allow some misclassification

Optimization problem

 $\underset{\beta_0,\beta_1,\ldots,\beta_p,\epsilon_1,\ldots,\epsilon_n,M}{\text{maximize}} M \longleftarrow$ find $\beta_0, \beta_1, \dots, \beta_p$ that maximize the margin Msubject to $\sum_{j=1}^{p} \beta_{j}^{2} = 1$, ensures that $y_i(eta_0+eta_1x_{i1}+eta_2x_{i2}+\dots+eta_px_{ip})$ distance is given by i=1 $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i), \quad \text{distance can be smaller than } M$ $\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C, \qquad \qquad = 0 \Rightarrow \text{correct side of margin} \\ > 0 \Rightarrow \text{ wrong side of margin}$ > 0 \rightarrow wrong side of margin > 1 \rightarrow wrong side of hyperplane tuning hyperparameter number and severity of violations of the margin we tolerate

Large dimension and variable selection

Linearity in large dimension

n = number of observations: $y = (y^1, ..., y^n)$ p = number of variables

- If f close to linear \rightarrow low bias
- If n >> p \rightarrow low variance
- If $n \sim p \rightarrow$ high variance
- If n << p → infinite variance (no unique least-squares estimate)
- → constraining (or shrinking) the coefficients (β_k) can substantially reduce variance at moderate bias cost
- \rightarrow variable selection
- \rightarrow improved accuracy
- → in addition, a lot of variables might be irrelevant, setting $\beta_k = 0$ for them improves interpretability and reduces complexity

$$y = f(x) + \varepsilon \approx \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

Elementary variable selection

- Rule of thumb: n = 10 * p
- Best subset selection: perform all models based on all possible subsets of variables, select best using cross-validation error
 - Costly (2^p possibilities, 2¹⁵ = 1.13 x 10¹⁵) !!
- Stepwise selection
 - Forward: start with no variable, add variables one-at-time by selecting the one leading to greatest improvement of fit until all, select best by CV
 - Backward: same but starting by all and removing each on-at-a-time

• However, such methods are usually not advised by the statistical community (usually, due to overfitting)

Three classes of variable selection methods

1. Filters: Select features based on statistical properties of data, independent of any specific machine learning algorithm.

- + Fast and computationally efficient.
- Does not capture feature interactions
- Examples: Variance, t-tests or chi-square.
- 2. Wrappers : Select features based on a ML model performance by iteratively adding or removing features.
 - + Can capture feature interactions.
 - + Often provides high accuracy for selected features.
 - Computationally expensive, especially with large feature sets.
 - Examples: Forward/backward selection, recursive feature elimination (RFE).
- 3. **Embedded** : Feature selection occurs within the training process of the model.
 - + Efficient and often provides high accuracy.
 - + Integrates selection into model training.
 - + Examples: Lasso (L1 regularization), decision tree feature importance, Elastic Net.

Ridge regression

note this does not contain β_0 = mean value with no variables

- different set of coefficient estimates $\hat{\beta}$ for each value of λ
- λ increases \rightarrow increased bias, decreased variance
- λ = tuning parameter, to be determined separately, by cross-validation
- Computational advantage over best subset selection (2^p)
Example

- ridge regression works best in situations where the least squares estimates have high variance
- disadvantage = includes all *p* variables

 $\lambda = 0$: least squares

Least absolute shrinkage and selection operator (LASSO)

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|$$

- Difference with ridge = ℓ_1 penalization versus ℓ_2
- Forces some coefficients to be zero
- \rightarrow variable selection
- \rightarrow better interpretability

LASSO and ridge

Selecting the tuning parameter λ

Values of the estimated coefficients

Prediction score as λ decreases

16 16 15 15 15 14 13 11 10 9 9 7 2 2 1 1 1

Unsupervised learning

Challenge of unsupervised learning

For supervised learning, we have ways to assess the performances

• In unsupervised learning, there is **no truth** to refer to

Dimensionality reduction: Principal Component Analysis

Transforms (correlated) variables into a set of uncorrelated (orthogonal) components

- + Reduces the number of features while retaining as much variance (information) as possible.
- The new variables are not interpretable anymore
- first eigenvector = direction of the data of maximal variance
- first eigenvalue = variance of the data in this direction

Dimensionality reduction: Principal Component Analysis

Clinical follow up
Tumor biomarker
Vasculo
Routine blood tests
Pathology
Circulating immune cells
Soluble immune

FactoMineR package

Dimensionality reduction: Principal Component Analysis

N = 149 p = 315

FactoMineR package

Clustering

• Finding subgroups (or clusters) in the data

• Ex: (unknown!) subgroups classifying different breast cancers

• Observations that are "similar" or "different"

• Problem = Define "similar" and "different"

K-means clustering

- Partitioning the data into K distinct, non-overlapping clusters
- K is chosen

- Let $C_1, ..., C_K$ be the K clusters
- 1. $C_1 \cup C_2 \cup \ldots \cup C_K = \{1, \ldots, n\}$ each observation belongs to at least one of the K clusters
- 2. $C_k \cap C_{k'} = \emptyset$ for all $k \neq k'$

the clusters are non- overlapping: no observation belongs to more than one cluster

• Idea: good clustering = within-cluster variation is as small as possible

Squared Euclidian distance

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

$$\operatorname{minimize}_{C_1,\ldots,C_K} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

K-means algorithm

Algorithm 12.2 K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster *centroid*. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Varying the initial random assignment

final value of the

objective function

235.8

Hierarchical clustering

- Disadvantage of K-means : need to specify K
- Hierarchical clustering gives an interpretrable
 tree-based output: a dendrogram
- Bottom-up = starting from the leaves
- VS
- Top-down = starting from all data

Example: dendrograms

Hierarchical clustering algorithm

Algorithm 12.3 Hierarchical Clustering

- 1. Begin with n observations and a measure (such as Euclidean distance) of all the $\binom{n}{2} = n(n-1)/2$ pairwise dissimilarities. Treat each observation as its own cluster.
- 2. For $i = n, n 1, \dots, 2$:
 - (a) Examine all pairwise inter-cluster dissimilarities among the *i* clusters and identify the pair of clusters that are least dissimilar (that is, most similar). Fuse these two clusters. The dissimilarity between these two clusters indicates the height in the dendrogram at which the fusion should be placed.
 - (b) Compute the new pairwise inter-cluster dissimilarities among the i-1 remaining clusters.

Possible linkages (=dissimilarities between groups)

Linkage	Description
	Maximal intercluster dissimilarity. Compute all pairwise dis-
Complete	similarities between the observations in cluster A and the
Complete	observations in cluster B, and record the <i>largest</i> of these
	dissimilarities.
	Minimal intercluster dissimilarity. Compute all pairwise dis-
Single	similarities between the observations in cluster A and the
	observations in cluster B, and record the <i>smallest</i> of these
	dissimilarities. Single linkage can result in extended, trailing
	clusters in which single observations are fused one-at-a-time.
	Mean intercluster dissimilarity. Compute all pairwise dis-
Average	similarities between the observations in cluster A and the
Trverage	observations in cluster B, and record the <i>average</i> of these
	dissimilarities.
	Dissimilarity between the centroid for cluster A (a mean
Centroid	vector of length p) and the centroid for cluster B. Centroid
	linkage can result in undesirable <i>inversions</i> .

References

Textbooks and theory

- An introduction to statistical learning. James, Witten, Hastie, Tibshirani Multiple illustrations were taken from this book. <u>https://www.statlearning.com/</u>
- Applied predictive modeling. Kuhn and Johnson http://appliedpredictivemodeling.com/
- Scikit-learn's user guide
 <u>https://scikit-learn.org/stable/user_guide.html</u>
- Programming
 - R (basic, no ML): *R for data science*. H. Wickham <u>https://r4ds.hadley.nz/</u>
 - R ML: *Tidy modeling with R.* M. Kuhn and J. Silge https://www.tmwr.org/
 - python: scikit-learn https://scikit-learn.org/stable/

- Youtube
 - Science étonnante
 - 3 Blue 1 brown

Additional

Detection of lymph node metastases from histological images

- One pathology slide = several gigapixels
- Best algorithms of the challenge = Deep Learning
- Same performances as pathologists without time constraint, but significatively better than 11 pathologists with constraint (WTC)

Bejnordi et al., Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer, JAMA, 2017

Microscope 2.0

Chen et al. (Google AI Healthcare), Microscope 2.0: An Augmented Reality Microscope with Real-time Artificial Intelligence Integration, arXiv, 2018

Quantitative analysis of histopathological slides in CRC

ADI deep sliding window > threshold neural network BACK 224x224 O 47 lavers DFB weighted sum MUC \mathbf{n} mean MUS 00000 output neuron deep NORM (0 O activation stroma origir RGB 1 STR score TUM

- 100,000 patches of histological slides
- Stroma

p = 0.19

p < 0.01

94% classification accuracy on test data set

« Deep stroma score » is a predictive factor of • survival independent of TNM stage (current state of the art) p = 0.33

Kather et al., Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study, PLoS Med, 2019

Prediction of response to immune-checkpoint inhibition

Sun et al., Lancet Oncol, 2018

Mechanistic modeling of metastatic relapse

Mechanistic modeling of time to relapse

• Number of metastases with size larger than the visible size V_{vis}

$$N_{vis}(t) = \int_{V_{vis}}^{+\infty} \rho(t, v) dv$$
$$= \int_{0}^{t - \tau_{vis}} d(V_p(t)) dt$$

 τ_{vis} = time to reach V_{vis}

•

Time to relapse (TTR) = time elapsed from diagnosis to the appearance of a first visible metastasis

$$TTR = \inf \{t > 0 : N_{vis}(t_{diag} + t) \ge 1\}$$

• Parameter β fixed such that $V_{\infty} = e^{\frac{\alpha}{\beta}} = 10^{12}$ cells

Mixed-effects statistical model

$$\ln\left(T^{i}\right) = \ln\left(TTR\left(V_{diag}^{i};\alpha^{i},\mu^{i}\right)\right) + \varepsilon^{i}, \quad \varepsilon^{i} \sim \mathcal{N}(0,\sigma^{2})$$

(Observation model)

$$S\left(t|\alpha^{i},\mu^{i}\right) = \mathbb{P}\left(T^{i} > t|\alpha^{i},\mu^{i}\right)$$

$$\ln\left(\alpha^{i}\right) = \ln\left(\alpha_{pop}\right) + \eta_{\alpha}^{i}, \quad \eta_{\alpha}^{i} \sim \mathcal{N}(0, \omega_{\alpha}^{2})$$
$$\ln\left(\mu^{i}\right) = \ln\left(\mu_{pop}\right) + \eta_{\mu}^{i}, \quad \eta_{\mu}^{i} \sim \mathcal{N}(0, \omega_{\mu}^{2})$$

Likelihood maximization performed using the SAEM algorithm implemented in the *saemix* R package

Survival function to account for censoring in the likelihood

Lavielle, CRC press, 2014

Comets, Lavenu, Lavielle, J Stat Softw, 2017

Descriptive power: fit to the data

Parameter	Estimate	r.s.e. (%)
$\log \alpha_{pop}$	-6.34	12.6
$\log \mu_{pop}$	-26.8	3.68
σ	0.542	28.4
ω_{lpha}	3.37	36.4
ω_{μ}	3.78	15.9

Predictive power: covariates

$$\ln\left(\mu^{i}\right) = \ln\left(\mu_{pop}\right) + \beta_{\mu}^{T} \mathbf{x}_{\mu}^{\mathbf{i}} + \eta_{\mu}^{i}, \quad \eta_{\mu}^{i} \sim \mathcal{N}(0, \omega_{\mu}^{2})$$
$$\ln\left(\alpha^{i}\right) = \ln\left(\alpha_{pop}\right) + \beta_{\alpha}^{T} \mathbf{x}_{\alpha}^{\mathbf{i}} + \eta_{\alpha}^{i}, \quad \eta_{\alpha}^{i} \sim \mathcal{N}(0, \omega_{\alpha}^{2})$$

Te	st set				Learn	ing s	et		
	1	2	3	4	5	6	7	8	 Ν
	1	2	3	4	5	6	7	8	 Ν
	1	2	3	4	5	6	7	8	 Ν
		0	0		-	0	-	0	N
	1	2	3	4	5	6	1	8	 N

Parameter	Estimate	r.s.e. (%)	p-value
$\log \alpha_{pop}$	-8.883	10.151	
$\beta_{{ m Ki}67.lpha}$	0.086	27.376	$2.59 \cdot 10^{-4}$
$\beta_{\mathrm{HER2},lpha}$	0.029	42.833	0.020
$\beta_{{ m CD44},lpha}$	0.011	60.816	0.1
$\beta_{\mathrm{TRIO}, \alpha}$	0.016	58.119	0.085
$\log \mu_{pop}$	-26.342	3.696	
$\beta_{\mathrm{EGFR},\mu}$	0.039	47.527	0.035
σ	0.606	23.104	
ω_{lpha}	2.062	22.715	
ω_{μ}	3.563	16.759	

c-index = 0.67 (10-folds cross-validation)

Patient ID	Tumor size (mm)	Ki67	HER2	CD44	TRIO	EGFR	Observed TTR (cens)	Predicted TTR	Prediction error (days)
255	25	1	60	90	60	0	1812(1)	1609	203
47	20	32	100	0	0	50	739(1)	447	292
143	18	60	0	50	0	0	2798(1)	434	2364
12	10	20	0	23	0	0	5970~(0)	$+\infty$	-

PhD of Chiara Nicolò

Comparison of predictive metrics

5 years metastatic-free survival

	AUROC	Accuracy	PPV	NPV
RSF	0.75	0.90	0.71	0.71
Mechanistic model	0.73	0.90	0.72	0.70
Cox	0.75	0.91	0.77	0.71

10 years metastatic-free survival

	AUROC	Accuracy	PPV	NPV
RSF	0.69	0.82	0.68	0.66
Mechanistic model	0.69	0.81	0.71	0.64
Cox	0.71	0.82	0.70	0.68

other tested ML models (support vector machine, k-nearest neighbors, gradient boosting) had similar or worse performances

Mechanistic

RSF

5

Primary tumor

Metastases

Conclusions and perspectives

- Similar predictive performances of Cox regression (c-index 0.67 0.72), random survival forest (c-index 0.67 0.71) and a novel mechanistic model (c-index 0.63 0.70) for pure prediction
- Other machine learning algorithms tested for classification of 5-years relapse (logistic regression, support vector machine, random forests, k-nearest neighbors and gradient boosting)) gave similar results
- Mechanistic modeling provides biological and clinical insights that ML does not:
 - Ki67 correlates with proliferation rate α (expected but reassurring)
 - HER2 correlates with α , EGFR with μ (metastatic potential)
 - prediction of the invisible metastatic state at diagnosis ⇒ potential for personalized adjuvant therapy
- This is a first attempt of a mechanistic, individual-level, predictive metastatic model. A lot remains to be done:
 - Refinement to well-established breast cancer molecular subtypes
 - Further investigations to refine the modeling (dormancy, etc...)
 - Predictive power to be confirmed in external data sets

Pharmacometrics and precision dosing

Inter-individual variability

time
Pharmacometrics = the science of quantitative pharmacology

Historical overview of PMX in oncology

COMPUTERS AND BIOMEDICAL RESEARCH 5, 441-459 (1972)

- 1980's: Principles of population PK modeling by Lewis Sheiner and Stuart Beal
- 1990's: pop PK models of cytotoxics

• 2000's: models of hematopoietic toxicity

Modelling of Individual Pharmacokinetics for Computer-Aided Drug Dosage*

LEWIS B. SHEINER, BARR ROSENBERG, † AND KENNETH L. MELMON

Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, University of California San Francisco Medical Center, San Francisco, California 94122

• 2010's: tumor growth inhibition models

Model-Based Prediction of Phase III Overall Survival in Colorectal Cancer on the Basis of Phase II Tumor Dynamics Laurent Claret, Pascal Girard, Paulo M. Hoff, Eric Van Cutsem, Klaas P. Zuideveld, Karin Jorga, Jan Fagerberg, and René Bruno

How can standard dosing be part of personalized medicine?

- Most anticancer agents are given as:
 - mg/m²
 - mg/kg
 - mg (flat-dose)
- Only carboplatin is given in a tailored fashion (i.e., AUC5 or AUC6 dosing).
- « One dose fits all » (standard dosing)

Mixed-effects modeling

Population data

Individual structural model

$$D \longrightarrow \begin{pmatrix} A_{a} \\ \hline \\ k_{a} \end{pmatrix} \xrightarrow{k_{a}} \begin{pmatrix} A \\ V \end{pmatrix} \xrightarrow{k}$$

$$\begin{cases} \frac{dA_{a}}{dt} = -k_{a}A_{a} \\ \frac{dA}{dt} = k_{a}A_{a} - kA \\ A_{a}(t=0) = D, \quad (t=0) = 0 \end{cases}$$

$$C(t) = \frac{A(t)}{V}.$$

Médecine de précision et bioguidage des ITK

Suivi Thérapeutique Pharmacologique des ITKs (imatinib, sunitinib, dasatinib, cabozantinib, sorafenib, ibrutinib...).

Sunitinib in metastatic kidney cancer

Patient	Starting	otal Su + met	Sampling	Simulated Trough	Proposed	%
#	Dose (mg)	(ng/ml)	Time	Level (ng/ml)	Dose (mg)	change
1	50	195	5H30	161	25	-50
2	50	55	23H00	56	62,5	25
3	50	37,4	24H15	40	87,5	75
4	50	40	23h45	42	75	50
5	50	166	22H20	158	25	-50
6	50	161	4H45	136	25	-50
7	50	70	24H00	73	50	no change
8	50	161	4h45	136	25	-50
9	50	17,1	24H00	18	100	100
10	50	170	12H30	149	25	-50
11	50	90	24H00	90	37,5	-25
12	50	44,3	24H00	47	75	50
13	50	88	2H15	76	50	no change
14	50	106	19H00	100	37,5	-25
15	50	54,2	6H00	42	87,5	75
16	50	141	1H30	81	37,5	-25
17	50	128	24H00	106	37,5	-25
18	50	118,9	1H00	81	50	no change
19	50	145	19H00	115	37,5	-25
20	50	87	9H30	72	50	no change
21	50	104	3H20	90	37,5	-25
22	50	125	24h00	112	37,5	-25
23	50	62	19H00	58	62,5	25
24	50	246	24H00	231	12,5	-75
25	50	150	24H00	143	25	-50
26	50	83	12h00	71	50	no change
27	50	216	24h00	204	12,5	-75
28	50	197	24h00	192	25	-50
29	50	116	8H30	97	37,5	-25
30	50	78	24H00	71	50	no change

12.5 <>100 mg (-75% ⇔ + 100%!)

Model-based dosing regimen for a phase I/II clinical trial

Goal: safe densification of docetaxel (DTX) + epirubicin (EPI) in metastatic breast cancer

Model equations

Tumor kinetics

$$\frac{\mathrm{d}n(t)}{\mathrm{d}t} = \rho \cdot n(t) \cdot \ln[\theta/n(t)] - \kappa \cdot f\left(c_L^{(D)}, c_L^{(E)}\right) \cdot n(t) \qquad n(0) = n_0$$

Optimization

$$\underline{d}^* = \arg\min\left[\frac{1}{T}\int_{0}^{T}n(t,\underline{d},\underline{t}^*)\cdot dt\right]$$

under toxicity constraints

Scheduling optimization

Parameter estimation

- <u>PK</u>: popPK previous studies
- <u>PD toxicity</u>: estimated from previous phase I study
- <u>PD efficacy</u>: *in vitro* cytotoxicity + fit to previously published clinical studies

Optimization

$$\underline{d}^* = \arg\min\left[\frac{1}{T}\int_{0}^{T}n(t,\underline{d},\underline{t}^*)\cdot dt\right]$$

S = standard, **Opt** = optimized

MODEL1 clinical results

Previously: life-threatening toxicities

• 100% grade \geq 3 neutropenia

• **1 death** Viens et al., J Clin Oncol, 2001

MODEL1: no lethal toxicities
0% grade ≥ 3 neutropenia

Median survival (months)

Individualization of parameter estimates

Other model-based trials

- Metronomic vinorelbine in NSCLC (NCT02555007)
- Combination of radiotherapy and immune-checkpoint inhibition (NCT03509584)

Barbolosi et al., Nat Rev Clin Oncol, 2016 Ciccolini et al. (Benzekry), J Clin Oncol: Precision Oncology, 2020

Conclusion

Conclusion

- Great success of machine learning methods when there are a lot of features and annotated data:
 - genetic sequencing data
 - imaging (pathology, imaging)
- So far, almost no study validated prospectively
- Very few studies using ML/DL in clinical oncology. Almost none in pharmacometrics.
- IBM Watson. Tried to « learn » how oncologists are treating their patients and to digest literature.
 So far, failed.
- AI will not replace radiologist/pathologist but will become a supplementary tool for daily medical practice

Humans and machine doctors

Topol, High-performance medicine: the convergence of human and artificial intelligence, Nat Med, 2019

Thank you for your attention!

Additional 2

Prediction results

source : scikit-learn

FIGURE 1.4. Left: Representation of the NCI60 gene expression data set in a two-dimensional space, Z_1 and Z_2 . Each point corresponds to one of the 64 cell lines. There appear to be four groups of cell lines, which we have represented using different colors. Right: Same as left panel except that we have represented each of the 14 different types of cancer using a different colored symbol. Cell lines corresponding to the same cancer type tend to be nearby in the two-dimensional space.