

Institut national de la santé et de la recherche médicale

Quantitative modeling of metastasis: cancer at the organism scale

S. Benzekry Head of the Inria-Inserm team COMPO Marseille, France

SMB meeting, 2021 June 14th

COMPO: COMPutational pharmacology and clinical Oncology

Clinical problem

Early-stage breast cancer

- 94% of cases are local or regional at diagnosis but 30% will relapse
- Estimation of the metastatic risk is key to individualize adjuvant therapy
- Reduce the number of chemo cycles for patients with low risk

Brain metastases in non-small cell lung cancer (NSCLC)

 Decide whether to use whole brain radiation therapy or just (stereotactic) surgery

Objectives

• Use a mechanistic model to predict metastasis

• Combine with machine learning algorithm to select features

• Benchmark predictive power to standard survival methods and machine learning algorithms

Data

18

Experimental

n > 400 animals with different treatments and schedules

SMARTc wet lab collaboration with J. Ebos, Roswell Park Cancer Institute, Buffalo, NY

Clinical

• Databases of metastatic relapse in breast cancer patients with no adjuvant therapy (n=642, p=21 and n=167, p=9)

 Number and sizes of brain metastasis in individual NSCLC patients (n=31)

Mathematical models

Metastatic burden (total number of metastatic cells)

$$M(t) = \int_{V_0}^{+\infty} v\rho(t,v)dv = \int_0^t d\left(V_p(t-s)\right)V(s)ds$$

Number of metastases with size larger than the visible size V_{vis}

$$N_{vis}(t) = \int_{V_{vis}}^{+\infty} \rho(t, v) dv = \int_{0}^{t-\tau_{vis}} d(V_p(t)) dt$$

Growth rates of primary and secondary tumors g_p and g

$$rac{V_p}{lt} = \mathbf{g}_{\mathbf{p}}(\mathbf{t}, \mathbf{V}_{\mathbf{p}})$$
 ex:

ex: Gompertz

Dissemination rate $d(V_p) = \mu V_p^{\gamma}$

Size distribution of the metastases $\rho(t, v)$ [lwata et al., 2000]

$$\partial_t \rho(t, v) + \partial_v (g(v)\rho(t, v)) = 0$$

$$g(V_0)\rho(t, V_0) = d(V_p(t)) \left(+ \int_{V_0}^{+\infty} d(v)\rho(t, v)dv \right)$$

$$\rho(0, v) = \rho^0$$

Time to relapse (TTR) = time from diagnosis to first visible met

$$TTR = \inf \left\{ t > 0 : N_{vis}(t_{diag} + t) \ge 1 \right\}$$

Statistical procedure for model calibration: nonlinear mixed effects modeling

Classical approach considers each subject independently

Likelihood maximization

$$y_j^i = M(t_j^i, \theta^i) + \sigma \varepsilon_j^i, \quad \varepsilon_j^i \sim \mathcal{N}(0, 1)$$
$$\hat{\theta}^i = \min_{\theta^i} \sum \left(y_j^i - M(t_i, \theta^i) \right)^2$$

Subject $1 \le i \le N$, Time t_j

Mixed Effects Models for the Population Approach Models, Tasks, Methods and Tools

Lavielle, CRC press, 2014

$$y_j^i = M(t_j^i, \theta^i) + \sigma \varepsilon_j^i, \quad \varepsilon_j^i \sim \mathcal{N}(0, 1)$$
$$\bullet \quad \ln(\theta^i) = \ln(\theta_{pop}) + \eta^i, \quad \eta_i \sim \mathcal{N}(0, \omega^2)$$

• Parameters to be estimated = θ_{pop} (p), $\omega\left(\frac{p(p+1)}{2}\right)$ and σ

Validation on animal data

Nonlinear mixed-effects statistical model for inter-animal variability

$$\ln\left(\theta^{i}\right) = \ln\left(\theta_{pop}\right) + \eta^{i}, \quad \eta_{i} \sim \mathcal{N}(0, \omega^{2})$$

- Main difficulty: PDE model
- Solution: fast Fourier transform for computation of metastatic burden

 \Rightarrow same growth for PT and mets: $\alpha_p = \alpha$, $\beta_p = \beta$

Clinical data of individual breast metastatic relapse

K = 21 features

outcome

menopausal_status	ER	PR	Ki67	HER2	HER2_intensity	CK56	EGFR	VIM	ALDH1
Post-ménopause	20	0	0	0	0	0	0	0	0
Ménopause	40	95	8	0	0	0	0	0	0
Activité génitale	87	10	26	0	0	0	0	80	0
Post-ménopause	100	100	8	0	0	0	0	0	0
Post-ménopause	0	0	16	82	+++	0	0	0	0
Activité génitale	100	95	12	0	0	0	0	0	1
Activité génitale	56	100	17	0	0	0	0	0	0
Activité génitale	57	85	23	100	+++	0	0	0	0
Post-ménopause	80	5	20	0	0	0	0	0	0
Post-ménopause	0	0	15	100	+++	0	5	0	0
Post-ménopause	100	80	10	0	0	0	0	0	0
Post-ménopause	30	0	5	0	0	0	0	0	0
Post-ménopause	0	0	15	40	+++	0	0	0	0
Ménopause	0	80	8	0	0	0		0	0
Post-ménopause	0	0	27	0	0	0	30	0	1
Post-ménopause	0	0	56	0	0	80	60	100	0
Activité génitale	50	92	2	1	+	0	0	0	0
Post-ménopause	0	47	5	0	0	0	0	80	0
Post-ménopause	65	0	10	0	0	0	0	60	0
Post-ménopause	100	50	11	0	0	0	0	0	0
Ménopause	20	100	0	0	0	0	0	0	0
Activité génitale	90	6	5	0	0	0	0	0	0
Post-ménopause	100	3	5	0	0	0	0	0	0
Activité génitale	0	0	6	0	0	0	0	0	0
Ménopause	80	100	5	0	0	0	0	0	0
Post-ménopause	100	85	25	0	0	0		0	0
Post-ménopause	10	45	11	13	+++	0	0	0	0
Post-ménopause	66	1	2	40	++	0	0	0	0

metastatic_relapse	date_metastatic_relapse
Yes	04/02/1999
No	
No	
No	
Yes	04/09/1990
Yes	08/02/1993
Yes	15/12/1999
No	
No	
Yes	08/03/1995
No	
Yes	06/04/1990
Yes	02/11/1994
No	
Yes	27/10/1999
No	
No	
No	
No	

Institut Bergonié, Bordeaux, FR

Descriptive power: fit to the data

Parameter	Estimate	Relative Standard Error (%)
Model without covariates		
$\log \alpha_{pop}$	-6.34	12.6
$\log \mu_{pop}$	-26.8	3.68
σ	0.542	28.4
ω_{lpha}	3.37	36.4
ω_{μ}	3.78	15.9

Ishwaran et al., Ann Appl Stat, 2008

Mechanistic selection: backward stepwise selection

Selected Covariate model:

Ki67 (proliferation marker), CD44 (stem cell marker)

EGFR (basal marker)

Predictive power

c-index = 0.67 (10-folds cross-validation)

Algorithm	AUROC	Accuracy	Sensitivity	Specificity	Positive Predictive Value	Negative Predictive Value	F1
5-year							
Mechanistic model	0.73	0.68	0.75	0.67	0.19	0.96	0.30
Random survival forest	0.73	0.69	0.64	0.70	0.18	0.95	0.28
Random forest	0.75	0.66	0.71	0.66	0.18	0.96	0.28
Logistic regression	0.75	0.83	0.42	0.87	0.24	0.94	0.31
k-Nearest neighbor	0.62	0.91	0.02	1.00	0.41	0.91	0.05
Gradient boosting	0.71	0.90	0.11	0.98	0.36	0.92	0.17
Support vector machine	0.64	0.87	0.09	0.95	0.15	0.91	0.11
Сох	0.71	0.72	0.66	0.73	0.20	0.95	0.31
10-year							
Mechanistic model	0.67	0.67	0.62	0.68	0.30	0.89	0.41
Random survival forest	0.69	0.62	0.71	0.60	0.28	0.90	0.41
Сох	0.65	0.65	0.61	0.65	0.28	0.88	0.39

⇒ Similar predictive power as classical statistical Cox model or other machine learning algorithms

Predictive simulations of the mechanistic model

Second dataset: PAI-1

^{*}Duffy, M. J. et al., M. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res 16, 428 (2014).

^{*}Harbeck N. et al., Ten-year analysis of the prospective multicentre Chemo-N0 trial validates ASCO-recommended biomarkers uPA and PAI-1 for therapy decision making in n ode-negative breast cancer patients, Eur J Cancer (2013)

Selected mechanistic model

C. Bigarré

— Model fit Data (Kaplan-Meier) 1.00 Metastasis-free surviaval probability 52 05 05 05 0.00 30 20 10 0 Time (years)

 $\log T^{i} \sim \log \left(TTR(V^{i}, \alpha^{i}, \mu^{i}) + \mathcal{N}(0, \sigma^{2}) \right)$ $\log(\alpha^{i}) \sim \log(\alpha_{pop}) + \beta_{HR,\alpha} \cdot 1_{HR}^{i} + \mathcal{N}(0, \Omega_{\alpha}^{2})$ $\log(\mu^{i}) \sim \log(\mu_{pop}) + \beta_{PAI,\mu} \cdot PAI^{i} + \mathcal{N}(0, \Omega_{\mu}^{2})$

Parameter	Estimate	R.S.E	p-value
α	0.019	18%	
$\beta_{HR,\alpha}$	-0.713	50.1%	0.0459
μ	5.13e-15	381%	
$eta_{PAI,\mu}$	0.352	31.7%	0.0016
σ	0.377	16.9%	
Ω^2_{lpha}	0.308	109%	
Ω^2_μ	14.9	34.1%	

R.S.E = Relative Standard Error

Predictive performances

RSF

Mechanistic model

C. Bigarré

Conclusions and perspectives

- Similar predictive performances of Cox regression (c-index 0.67 0.72), random survival forest (c-index 0.67-0.71) and a novel mechanistic model (c-index 0.63 - 0.70) for pure prediction
- Predictive power is confirmed (improved) in an external data set
- Mechanistic modeling provides biological and clinical insights that ML does not:
 - Ki67 correlates with proliferation rate α (expected but reassuring), also CD44 or hormonal status
 - EGFR and PAI1 correlate with μ (metastatic potential)
 - prediction of the invisible metastatic state at diagnosis ⇒ potential for personalized adjuvant therapy
- Current/future avenues:
 - Further investigations to refine the modeling (dormancy, etc...)
 - Include treatment
 - Include (high-dimensional) transcriptomic data

Differential effects of anti-angiogenic therapies between primary tumor and metastases

Cancer Cell Report

Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis

John M.L. Ebos,^{1,2} Christina R. Lee,¹ William Cruz-Munoz,¹ Georg A. Bjarnason,³ James G. Christensen,⁴ and Robert S. Kerbel^{1,2,*}

Published online: October 31, 2014 Research Article

EMBO Molecular Medicine

Neoadjuvant antiangiogenic therapy reveals contrasts in primary and metastatic tumor efficacy

John M L Ebos^{1,*}, Michalis Mastri¹, Christina R Lee², Amanda Tracz¹, John M Hudson², Kristopher Attwood³, William R Cruz-Munoz², Christopher Jedeszko², Peter Burns^{2,4} & Robert S Kerbel^{2,4}

Simulations of the effect of neoadjuvant sunitinib treatment on metastases suggest no effect on growth of metastases

- Parameter values from the previous study on control groups \Rightarrow simulations are pure mechanistic predictions
- In first approximation, the effect of the drug was modeled by setting the tumor growth rate to zero during the phase of treatment

We have open positions!!

Full research tenure position

sebastien.benzekry@inria.fr

