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Clinical problem

Early-stage breast cancer

• 94% of cases are local or regional at diagnosis but 30% will relapse

• Estimation of the metastatic risk is key to individualize adjuvant 
therapy

• Reduce the number of chemo cycles for patients with low risk

Brain metastases in non-small cell lung cancer (NSCLC)

• Decide whether to use whole brain radiation therapy or just
(stereotactic) surgery



Objectives

• Use a mechanistic model to predict metastasis

• Combine with machine learning algorithm to select features

• Benchmark predictive power to standard survival methods and machine learning algorithms
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Experimental Clinical
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• Number and sizes of brain metastasis in individual NSCLC 
patients (n=31)

• Databases of metastatic relapse in breast cancer patients with
no adjuvant therapy (n=642, p=21 and n=167, p=9)
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Growth rates of primary and secondary tumors gp and g
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ex: Gompertz
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• Classical approach considers each subject independently

Statistical procedure for model calibration: nonlinear mixed effects modeling

Subject 1 ≤ i ≤N, Time tj
Likelihood maximization

Lavielle,CRC press, 2014
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• Population approach
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Validation on animal data

Nonlinear mixed-effects statistical model for 

inter-animal variability

Benzekry et al. (Ebos), Cancer Res, 2016

⟹ same growth for PT and mets: αp = α, βp = β

Ebos lab
Roswell Park Cancer Institute
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Descriptive power: fit to the data

Nicolò et al., JCO: Clin Cancer Inform, 2020

improve these metrics, a balanced, downsampled version
of the data set was constructed. This significantly improved
positive predictive value and F1 as well as model calibration
(Appendix Figure A5E-F). We also compared our results
with classic Cox regression survival analysis, which was
found to exhibit similar predictive power (Table 2; Appendix
Figure A6; Appendix Table A2).

DISCUSSION

We propose a mechanistic model for predicting metastatic
relapse after surgical intervention in patients with early-
stage breast cancer which, for the first time, can simulate
the pre- and postdiagnosis history of the disease from data
available at diagnosis only. Notably, with a c-index of 0.65
(95% CI, 0.60 to 0.71), the mechanistic model achieved
performances similar to those of the RSF algorithm (95%
CI, 0.66 to 0.69) and Cox regression (95%CI, 0.62 to 0.67).
These were also comparable with the actual standard
prognosis model of breast cancer–specific survival Adju-
vant! (c-index, 0.71),7 used for risk classification in the

MINDACT (ClinicalTrials.gov identifier: NCT00433589)
trial.39 Others also reported a similar c-index of 0.67 for
prediction of relapse in untreated patients by using Cox
analysis.40 Advanced deep learning algorithms did not
outperform this predictive power (c-index, 0.68) for pre-
diction of survival, even though they integrated genomic
data.13 A recent study that considered recurrence (local,
regional, or distant) reported superior predictive power
(area under the curve, 0.81 for prediction of relapse
at 5 years v 0.73 in our analysis), which might be
explained by the much larger data set (15,314 patients)
and inclusion of epidemiologic data not available in our
analysis.

Grounded in the biology of the metastatic process, our
model provides insights not achievable by statistical
analysis alone. First, one of the most important and well-
known predictors of metastatic relapse—tumor size23—is
directly incorporated into the model as an input parameter
used for calculation of the tumor age. Second, our model
allows testing whether covariates are associated with
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the model remained within the Kaplan-Meier 95% CIs in all
cases, we observed that model predictions tended to be less
accurate as the tumor size increased, with overestimation of
the relapse risk for large PT sizes.

Mechanistic Covariate Analysis and Predictive Power of
the Mathematical Model

We next tested the covariates selected by the RSF analysis
in the mechanistic model. We built the covariate model by
using a backward elimination procedure, starting with the
full model with all the preselected covariates on both pa-
rameters α and µ. The final model included Ki67 and CD44
on α, and EGFR on the dissemination parameter µ as
significant covariates (Table 1). The cross-validated c-index
for this model was 0.65 (95% CI, 0.60 to 0.71). Calibration
plots for 2-, 5-, and 10-year outcomes demonstrated good
predictive accuracy of the model (Fig 3B). Nevertheless, as
in the RSFmodel, risk of relapse was overestimated in high-
risk groups. For the classification task of predicting 5- and
10-year relapse, comparable results were obtained be-
tween the mechanistic model, the RSF, classification
machine learning algorithms, and Cox regression (Table 2).

Predictive Simulations of the Mechanistic Model

The previous results allow calibration of the mechanistic
model parameters from variables available at diagnosis by
using only the covariate part in equation (2) and neglecting the
remaining unexplained variance. We used this to simulate the

natural cancer history for a number of representative pa-
tients in our data set. For each patient, the population-level
parameters αpop , µpop , βKi67,α, βCD44,α, and βEGFR,µ were
calibrated from an independent training set that did not
contain this patient (coming from the cross-validation
procedure). Simulations were then performed by using
a discrete version of the metastatic model22 and are re-
ported in Figure 4 and Appendix Figure A4. Covariate
values used for prediction and the resulting inferred
individual parameters α̂i and µ̂i are reported in Appendix
Table A1.

For patients 224 and 358 (Fig 4A-B), the model predicted
a time from the first cell to detection (presurgical history) of
17.3 years and 3.61 years, respectively. In addition, the
model allowed prediction of the metastatic size distribution
at diagnosis (Fig 4C-D). Patient 224 was predicted to have
21 invisible metastases at the time of diagnosis. The largest
metastasis contained 2.32 × 104 cells and the smallest
metastasis contained only one cell. The largest metastasis
was predicted to have initiated 12.9 years after the first cell
of the PT (ie, 4.4 years before surgery). The model predicts
relapse 6.18 years after diagnosis, whereas true relapse
occurred at 4.88 years. At diagnosis, patient 358 was
predicted to have a total of 35 invisible metastases. The
largest metastasis contained 1.16 × 104 cells and the
smallest contained 1.36 cells. According to this simulation,
the first metastasis in this patient was emitted 2.6 years after
the PT onset (ie, 1.01 years before surgery). The model
predicted relapse at 1.97 years after diagnosis, but true re-
lapse occurred at 3.06 years. The differences in PT and
metastatic dynamics for these two patients are a result of the
different values of the covariates (Appendix Table A1). Distinct
levels of Ki67 cause distinct growth kinetics. Moreover, unlike
the tumor of patient 224, the tumor of patient 358 expresses
EGFR, which is associated with a higher metastatic potential.
Thus, although the tumor from patient 358 is much younger,
the total number of (invisible) metastases at surgery is pre-
dicted to be larger (35 v 21metastases in patient 224). Model
predictions are also informative in the case of individuals who
were censored at the last follow-up. For instance, patient 70
(Appendix Figure A4) was censored at 17.7 years after di-
agnosis. This is consistent with our model, which predicts that
this patient was disease-free after PT resection and would
never have relapsed (TTR = +∞).

Comparison With Machine Learning Classification
Algorithms and Cox Regression

We tested the predictive power of machine learning clas-
sification algorithms. These cannot account for right-
censored data. Thus, for this part, we focused on pre-
diction of 5-year metastatic relapse (yes or no). Best per-
formances were achieved by the random forest and logistic
regression models (Table 2 and Appendix Figure A5A-D).
However, owing to the low event rate (9.25%), positive
predictive value and F1 scores were low (Table 2). To

TABLE 1. Parameter Estimates
Parameter Estimate Relative Standard Error (%) P

Model without covariates

log αpop −6.34 12.6

log µpop −26.8 3.68

σ 0.542 28.4

ωα 3.37 36.4

ωµ 3.78 15.9

Model with covariates

log αpop −9.01 10.8

βKi67,α 0.093 29.6 .001

βCD44,α 0.017 57.7 .083

log µpop −25.9 4.4

βEGFR,µ 0.053 38.1 .009

σ 0.606 24

ωα 2.75 22.1

ωµ 3.03 20.5

NOTE. Mechanistic mixed-effects models for the time to metastatic relapse were
fitted to the data using likelihood maximization. Parameters α (growth) and µ
(dissemination) were assumed to follow log-normal distributions with fixed effects
(typical values) αpop and µpop , standard deviation of the random effects ωα and ωµ

and standard deviation of the error model σ (see Methods). A first version was fitted
without covariates and a second version included dependence of the individual
parameters on individual covariates. P value refers to a Wald test for statistical
significance of the covariate on the parameter value.
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Feature selection: random survival 
forests

c-index = 0.69 (0.67 – 0.71)

M. Dmitrievsky, https://www.mql5.com/en/articles/3856

Ishwaran et al., Ann Appl Stat, 2008

⇒ nonlinear effect of covariates and non proportional hazard

DMFS = Distant Metastasis-Free Survival



Mechanistic selection: backward stepwise selection

Initial model All possible sub-models Sub model with best BIC*

𝛼 𝜇

𝛼 𝜇 𝛼 𝜇

𝛼 𝜇 𝛼 𝜇

𝛼 𝜇

𝛼 𝜇
𝛼 𝜇

Repeat until empty model or no BIC improvement

Selected Covariate model: 
𝛼

𝜇
Ki67 (proliferation marker), CD44 (stem cell marker)

EGFR (basal marker)

*Bayesian Information Criteria, classical criteria for model selection 

the model remained within the Kaplan-Meier 95% CIs in all
cases, we observed that model predictions tended to be less
accurate as the tumor size increased, with overestimation of
the relapse risk for large PT sizes.

Mechanistic Covariate Analysis and Predictive Power of
the Mathematical Model

We next tested the covariates selected by the RSF analysis
in the mechanistic model. We built the covariate model by
using a backward elimination procedure, starting with the
full model with all the preselected covariates on both pa-
rameters α and µ. The final model included Ki67 and CD44
on α, and EGFR on the dissemination parameter µ as
significant covariates (Table 1). The cross-validated c-index
for this model was 0.65 (95% CI, 0.60 to 0.71). Calibration
plots for 2-, 5-, and 10-year outcomes demonstrated good
predictive accuracy of the model (Fig 3B). Nevertheless, as
in the RSFmodel, risk of relapse was overestimated in high-
risk groups. For the classification task of predicting 5- and
10-year relapse, comparable results were obtained be-
tween the mechanistic model, the RSF, classification
machine learning algorithms, and Cox regression (Table 2).

Predictive Simulations of the Mechanistic Model

The previous results allow calibration of the mechanistic
model parameters from variables available at diagnosis by
using only the covariate part in equation (2) and neglecting the
remaining unexplained variance. We used this to simulate the

natural cancer history for a number of representative pa-
tients in our data set. For each patient, the population-level
parameters αpop , µpop , βKi67,α, βCD44,α, and βEGFR,µ were
calibrated from an independent training set that did not
contain this patient (coming from the cross-validation
procedure). Simulations were then performed by using
a discrete version of the metastatic model22 and are re-
ported in Figure 4 and Appendix Figure A4. Covariate
values used for prediction and the resulting inferred
individual parameters α̂i and µ̂i are reported in Appendix
Table A1.

For patients 224 and 358 (Fig 4A-B), the model predicted
a time from the first cell to detection (presurgical history) of
17.3 years and 3.61 years, respectively. In addition, the
model allowed prediction of the metastatic size distribution
at diagnosis (Fig 4C-D). Patient 224 was predicted to have
21 invisible metastases at the time of diagnosis. The largest
metastasis contained 2.32 × 104 cells and the smallest
metastasis contained only one cell. The largest metastasis
was predicted to have initiated 12.9 years after the first cell
of the PT (ie, 4.4 years before surgery). The model predicts
relapse 6.18 years after diagnosis, whereas true relapse
occurred at 4.88 years. At diagnosis, patient 358 was
predicted to have a total of 35 invisible metastases. The
largest metastasis contained 1.16 × 104 cells and the
smallest contained 1.36 cells. According to this simulation,
the first metastasis in this patient was emitted 2.6 years after
the PT onset (ie, 1.01 years before surgery). The model
predicted relapse at 1.97 years after diagnosis, but true re-
lapse occurred at 3.06 years. The differences in PT and
metastatic dynamics for these two patients are a result of the
different values of the covariates (Appendix Table A1). Distinct
levels of Ki67 cause distinct growth kinetics. Moreover, unlike
the tumor of patient 224, the tumor of patient 358 expresses
EGFR, which is associated with a higher metastatic potential.
Thus, although the tumor from patient 358 is much younger,
the total number of (invisible) metastases at surgery is pre-
dicted to be larger (35 v 21metastases in patient 224). Model
predictions are also informative in the case of individuals who
were censored at the last follow-up. For instance, patient 70
(Appendix Figure A4) was censored at 17.7 years after di-
agnosis. This is consistent with our model, which predicts that
this patient was disease-free after PT resection and would
never have relapsed (TTR = +∞).

Comparison With Machine Learning Classification
Algorithms and Cox Regression

We tested the predictive power of machine learning clas-
sification algorithms. These cannot account for right-
censored data. Thus, for this part, we focused on pre-
diction of 5-year metastatic relapse (yes or no). Best per-
formances were achieved by the random forest and logistic
regression models (Table 2 and Appendix Figure A5A-D).
However, owing to the low event rate (9.25%), positive
predictive value and F1 scores were low (Table 2). To

TABLE 1. Parameter Estimates
Parameter Estimate Relative Standard Error (%) P

Model without covariates

log αpop −6.34 12.6

log µpop −26.8 3.68

σ 0.542 28.4

ωα 3.37 36.4

ωµ 3.78 15.9

Model with covariates

log αpop −9.01 10.8

βKi67,α 0.093 29.6 .001

βCD44,α 0.017 57.7 .083

log µpop −25.9 4.4

βEGFR,µ 0.053 38.1 .009

σ 0.606 24

ωα 2.75 22.1

ωµ 3.03 20.5

NOTE. Mechanistic mixed-effects models for the time to metastatic relapse were
fitted to the data using likelihood maximization. Parameters α (growth) and µ
(dissemination) were assumed to follow log-normal distributions with fixed effects
(typical values) αpop and µpop , standard deviation of the random effects ωα and ωµ

and standard deviation of the error model σ (see Methods). A first version was fitted
without covariates and a second version included dependence of the individual
parameters on individual covariates. P value refers to a Wald test for statistical
significance of the covariate on the parameter value.
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the model remained within the Kaplan-Meier 95% CIs in all
cases, we observed that model predictions tended to be less
accurate as the tumor size increased, with overestimation of
the relapse risk for large PT sizes.

Mechanistic Covariate Analysis and Predictive Power of
the Mathematical Model

We next tested the covariates selected by the RSF analysis
in the mechanistic model. We built the covariate model by
using a backward elimination procedure, starting with the
full model with all the preselected covariates on both pa-
rameters α and µ. The final model included Ki67 and CD44
on α, and EGFR on the dissemination parameter µ as
significant covariates (Table 1). The cross-validated c-index
for this model was 0.65 (95% CI, 0.60 to 0.71). Calibration
plots for 2-, 5-, and 10-year outcomes demonstrated good
predictive accuracy of the model (Fig 3B). Nevertheless, as
in the RSFmodel, risk of relapse was overestimated in high-
risk groups. For the classification task of predicting 5- and
10-year relapse, comparable results were obtained be-
tween the mechanistic model, the RSF, classification
machine learning algorithms, and Cox regression (Table 2).

Predictive Simulations of the Mechanistic Model

The previous results allow calibration of the mechanistic
model parameters from variables available at diagnosis by
using only the covariate part in equation (2) and neglecting the
remaining unexplained variance. We used this to simulate the

natural cancer history for a number of representative pa-
tients in our data set. For each patient, the population-level
parameters αpop , µpop , βKi67,α, βCD44,α, and βEGFR,µ were
calibrated from an independent training set that did not
contain this patient (coming from the cross-validation
procedure). Simulations were then performed by using
a discrete version of the metastatic model22 and are re-
ported in Figure 4 and Appendix Figure A4. Covariate
values used for prediction and the resulting inferred
individual parameters α̂i and µ̂i are reported in Appendix
Table A1.

For patients 224 and 358 (Fig 4A-B), the model predicted
a time from the first cell to detection (presurgical history) of
17.3 years and 3.61 years, respectively. In addition, the
model allowed prediction of the metastatic size distribution
at diagnosis (Fig 4C-D). Patient 224 was predicted to have
21 invisible metastases at the time of diagnosis. The largest
metastasis contained 2.32 × 104 cells and the smallest
metastasis contained only one cell. The largest metastasis
was predicted to have initiated 12.9 years after the first cell
of the PT (ie, 4.4 years before surgery). The model predicts
relapse 6.18 years after diagnosis, whereas true relapse
occurred at 4.88 years. At diagnosis, patient 358 was
predicted to have a total of 35 invisible metastases. The
largest metastasis contained 1.16 × 104 cells and the
smallest contained 1.36 cells. According to this simulation,
the first metastasis in this patient was emitted 2.6 years after
the PT onset (ie, 1.01 years before surgery). The model
predicted relapse at 1.97 years after diagnosis, but true re-
lapse occurred at 3.06 years. The differences in PT and
metastatic dynamics for these two patients are a result of the
different values of the covariates (Appendix Table A1). Distinct
levels of Ki67 cause distinct growth kinetics. Moreover, unlike
the tumor of patient 224, the tumor of patient 358 expresses
EGFR, which is associated with a higher metastatic potential.
Thus, although the tumor from patient 358 is much younger,
the total number of (invisible) metastases at surgery is pre-
dicted to be larger (35 v 21metastases in patient 224). Model
predictions are also informative in the case of individuals who
were censored at the last follow-up. For instance, patient 70
(Appendix Figure A4) was censored at 17.7 years after di-
agnosis. This is consistent with our model, which predicts that
this patient was disease-free after PT resection and would
never have relapsed (TTR = +∞).

Comparison With Machine Learning Classification
Algorithms and Cox Regression

We tested the predictive power of machine learning clas-
sification algorithms. These cannot account for right-
censored data. Thus, for this part, we focused on pre-
diction of 5-year metastatic relapse (yes or no). Best per-
formances were achieved by the random forest and logistic
regression models (Table 2 and Appendix Figure A5A-D).
However, owing to the low event rate (9.25%), positive
predictive value and F1 scores were low (Table 2). To

TABLE 1. Parameter Estimates
Parameter Estimate Relative Standard Error (%) P

Model without covariates

log αpop −6.34 12.6

log µpop −26.8 3.68

σ 0.542 28.4

ωα 3.37 36.4

ωµ 3.78 15.9

Model with covariates

log αpop −9.01 10.8

βKi67,α 0.093 29.6 .001

βCD44,α 0.017 57.7 .083

log µpop −25.9 4.4

βEGFR,µ 0.053 38.1 .009

σ 0.606 24

ωα 2.75 22.1

ωµ 3.03 20.5

NOTE. Mechanistic mixed-effects models for the time to metastatic relapse were
fitted to the data using likelihood maximization. Parameters α (growth) and µ
(dissemination) were assumed to follow log-normal distributions with fixed effects
(typical values) αpop and µpop , standard deviation of the random effects ωα and ωµ

and standard deviation of the error model σ (see Methods). A first version was fitted
without covariates and a second version included dependence of the individual
parameters on individual covariates. P value refers to a Wald test for statistical
significance of the covariate on the parameter value.
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Predictive power
c-index = 0.67

(10-folds cross-validation)

Nicolò et al., JCO: Clin Cancer Inform, 2020

assumption would hold, the probability of no relapse at any
time would be monotonous as a function of any covariate
value.

Calibration and Validation of the Mechanistic Model

To offer better insight on the mechanisms of relapse, we
developed a mechanistic model of the TTR. We first eval-
uated the ability of this model to describe the TTR data
without using covariates, except for pathologic tumor size,
which is a variable encoded in the structural model. We
questioned whether we could describe inter-individual var-
iability of TTR by means of population statistical distributions

of the parameters µ (dissemination) and α (growth) of the
model. Estimates of the population parameters were obtained
by using the SAEMalgorithm and are reported in Table 1. Both
fixed and random effects were identified with satisfactory
precision (relative standard error, , 37%). Figure 3A com-
pares the model estimation of the TTR survival function to the
empirical Kaplan-Meier estimate. Despite a slight over-
estimation of the metastatic risk for shorter times, the model
was able to capture the shape of the Kaplan-Meier estimate. To
further verify the agreement between model and data, we also
compared model and Kaplan-Meier curves for different values
of the tumor size at diagnosis (Appendix Figure A3). Although
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assumption would hold, the probability of no relapse at any
time would be monotonous as a function of any covariate
value.

Calibration and Validation of the Mechanistic Model

To offer better insight on the mechanisms of relapse, we
developed a mechanistic model of the TTR. We first eval-
uated the ability of this model to describe the TTR data
without using covariates, except for pathologic tumor size,
which is a variable encoded in the structural model. We
questioned whether we could describe inter-individual var-
iability of TTR by means of population statistical distributions

of the parameters µ (dissemination) and α (growth) of the
model. Estimates of the population parameters were obtained
by using the SAEMalgorithm and are reported in Table 1. Both
fixed and random effects were identified with satisfactory
precision (relative standard error, , 37%). Figure 3A com-
pares the model estimation of the TTR survival function to the
empirical Kaplan-Meier estimate. Despite a slight over-
estimation of the metastatic risk for shorter times, the model
was able to capture the shape of the Kaplan-Meier estimate. To
further verify the agreement between model and data, we also
compared model and Kaplan-Meier curves for different values
of the tumor size at diagnosis (Appendix Figure A3). Although
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growth and/or dissemination. We found that Ki67 was
positively associated with the proliferation parameter α,
which aligns with the definition of Ki67 as a proliferation
marker,41 as well as other results confirming its predictive
power.42 Conversely, the basal marker EGFRwas found to be
a significantly positive covariate for the dissemination pa-
rameter µ. EGFR has previously been demonstrated as being
a prognostic factor of relapse,43 yet it is interesting to note
that correlation appears here on µ, which is consistent with
the known fact that basal-like breast cancers are meta-
statically more aggressive.44 Interestingly, the median value
of µ was consistent with the value estimated in a previous
work using data for metastatic relapse probabilities from
a cohort of patients with breast cancer (µpop ! 2.26 × 10−12

cell−1 $ day−1 here vs µpop ! 7 × 10−12 cell−1 $ day−1).22

Our analysis also confirmed the prognostic value of age at
diagnosis, with younger patients having a higher risk of
relapse.45 However, we found that after age 60 years, the risk
of relapse was increasing (Appendix Fig A2). This non-
linearity might explain why age did not appear as significant
in either our mechanistic or Cox analyses. Although not
significant at the 0.05 threshold, our results suggest the
prognostic value of CD44 (P = .083 for association with α).
CD44 is a cellular protein that is used as a marker of breast
cancer stem cells46 and is associated with metastasis.47,48

Because CD44 is involved in cell adhesion and invasion,49 it
is surprising that it emerges as being associated with α and
not µ. This might indicate limitations of our model to detect
complex biologic processes because inference is made only
indirectly and by using several simplifying assumptions,
such as a unimodal log-normal distribution of the parameters
in the population. This might also be a result of the fact that
we considered CD44 as a continuous variable, whereas

a standard marker is the percentage of CD44+/CD24−
cells.46 Similarly, only EGFR as a continuous variable was
investigated and not the more classic EGFR+CK5/6+

marker.43 Indeed, the aim of this study was to establish the
methodology of using our mechanistic model as a predictive
tool, and we favored keeping the continuous variables. We
plan to perform a more detailed examination of such clinical
variables in forthcoming work and to study the predictive
power of the model in well-established subgroups such as
node-negative patients or patients stratified according to the
current molecular classification.50

A major advantage and clinical relevance of the mecha-
nistic model over standard statistical or machine learning
models is that it can be used to perform patient-specific
simulations, which allows assessment of the extent of in-
visible metastases at the time of diagnosis and prediction of
future growth of metastases. In turn, this might help select
patients who will benefit the most from extended adjuvant
therapy (or conversely, patients who would need only
a limited number of cycles) by performing individualized
simulations of the future course of the disease under
competing therapeutic strategies. However, in order to
reach such a goal, the first requirement will be to develop
and validate models that integrate the effect of systemic
adjuvant therapies.51 We also believe that our methodology
could be applied to other cancer types in which there are
similar concerns about the use of adjuvant therapy to avoid
metastatic relapse (eg, lung or kidney cancer). In addition,
the novel approach we propose to mechanistically model
time-to-event data could be used to extract biologically
relevant information from such data, which, although they
are ubiquitous in clinical oncology, are almost exclusively
analyzed by using agnostic statistical tools.

TABLE 2. Prediction Metrics for Classification of 5- and 10-Year Metastatic Relapse

Algorithm AUROC Accuracy Sensitivity Specificity
Positive Predictive

Value
Negative Predictive

Value F1

5-year

Mechanistic model 0.73 0.68 0.75 0.67 0.19 0.96 0.30

Random survival forest 0.73 0.69 0.64 0.70 0.18 0.95 0.28

Random forest 0.75 0.66 0.71 0.66 0.18 0.96 0.28

Logistic regression 0.75 0.83 0.42 0.87 0.24 0.94 0.31

k-Nearest neighbor 0.62 0.91 0.02 1.00 0.41 0.91 0.05

Gradient boosting 0.71 0.90 0.11 0.98 0.36 0.92 0.17

Support vector machine 0.64 0.87 0.09 0.95 0.15 0.91 0.11

Cox 0.71 0.72 0.66 0.73 0.20 0.95 0.31

10-year

Mechanistic model 0.67 0.67 0.62 0.68 0.30 0.89 0.41

Random survival forest 0.69 0.62 0.71 0.60 0.28 0.90 0.41

Cox 0.65 0.65 0.61 0.65 0.28 0.88 0.39

NOTE. For comparison purposes between time-to-event and classification models, prediction metrics performed on the entire data set are reported. The
best score achieved for a given metric is shown in bold type.
Abbreviation: AUROC, area under the receiver operating characteristic curve.
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⇒ Similar predictive power as classical statistical Cox model or other machine learning
algorithms



Predictive simulations of the mechanistic model

Patient 224

Patient 358

log𝛼
^ " = log𝛼#$# + 𝛽%"&',) ⋅ 𝐾𝑖67" + 𝛽*+,,,) ⋅ 𝐶𝐷44"

log 𝜇
^" = log𝜇#$# + 𝛽-./0,1 ⋅ 𝐸𝐺𝐹𝑅"

Nicolò et al., JCO: Clin Cancer Inform, 2020
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Data (Kaplan-Meier)Model fit

Selected mechanistic model
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Predictive performances
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Conclusions and perspectives

• Similar predictive performances of Cox regression (c-index 0.67 - 0.72), random survival forest (c-index 0.67-

0.71) and a novel mechanistic model (c-index 0.63 - 0.70)  for pure prediction

• Predictive power is confirmed (improved) in an external data set

• Mechanistic modeling provides biological and clinical insights that ML does not:

• Ki67 correlates with proliferation rate 𝛼 (expected but reassuring), also CD44 or hormonal status

• EGFR and PAI1 correlate with 𝜇 (metastatic potential)

• prediction of the invisible metastatic state at diagnosis ⇒ potential for personalized adjuvant therapy

• Current/future avenues: 

• Further investigations to refine the modeling (dormancy, etc…)

• Include treatment

• Include (high-dimensional) transcriptomic data



Results: individual clinical data
Methodology

Bilous et al., Sci Rep, 2019

Results

• Dormancy, estimated to 133 days ± 4.2%

• Good fit of the entire longitudinal data (47 BM sizes over 6 time points) 
with only 3 parameters.

• Onset of BM 14-19 months before diagnosis
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Figure 0.0.11: Result of the basic simulation with all the parameters (↵0, �, µ, �) free. (Top left) the
cumulative distribution function at the time points of the clinical examinations; (top right) the predicted
total number of the visible metastases over time; (bottom) actual (grey) and predicted (black) metastases
number and their relative sizes at the last time point.
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!e need for written informed consent of data collection was waived for this patient, in accordance with the 
related policy of Institut Bergonié. !e study was performed in accordance with the Declaration of Helsinki, 
Good Clinical Practices, and local ethical and legal requirements.

Mathematical modeling of primary tumor growth and metastatic development. Primary tumor 
growth. !e pre-diagnosis natural history of the primary tumor size Sp(t) for times <t Td (diagnosis time) – 
expressed in number of cells in the model computations – was assumed to follow the Gompertz growth model46,47, 
i.e.
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where time t = 0 corresponds to the "rst cancer cell, parameter α0,p is the speci"c growth rate (i.e. 
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p ) at this 

time and βp is the exponential rate of decrease of the speci"c growth rate. Conversions from diameter measure-
ments to number of cells were performed assuming spherical shape and the classical assumption 
1 mm3 = 106 cells73. A#er treatment start (Td), the primary tumor size was assumed to follow a tumor growth 
inhibition model54 consisting of: 1) exponential growth (rate α1), 2) log-kill e$ect of the therapy (e%cacy param-
eter κ)74 and 3) exponential decrease of the treatment e$ect due to resistance, with half-life tres. !e equation is:
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Metastatic development. Basic and di!erent growth models. !e general modeling framework we employed was 
derived from the work of Iwata et al.31. It consists in modeling the population of metastases by means of a 
size-structured density ρ t s( , ), of use to distinguish between visible and invisible tumors. Metastatic development 
of the disease is reduced to two main phases: dissemination and colonization75. !e multiple steps of the meta-
static cascade56 are aggregated into a dissemination rate with expression:

µ= γd S S( ) , (2)p p

which corresponds to the number of successfully born BM per unit of time. In this expression, the geomet-
ric parameter γ corresponds to the intra tumor repartition of the cells susceptible to yield metastasis and µ is 
the per day per cell probability for such cells to overcome all the steps of the metastatic cascade (acquisition of 
metastatic-speci"c mutations, epithelial-to-mesenchymal transition, invasion of the surrounding tissue, intrava-
sation, survival in transit, extravasation and survival in the brain). For γ = 1 all cells in the PT have equal proba-
bility to give a BM whereas a value of γ = 0 indicates a constant pool of cells having metastatic ability (cancer stem 
cells). Intermediate values 0 < γ < 1 can be interpreted as the geometric disposition of the metastatic-able cells, 
including the surface of the tumor (γ = 2/3) or a fractional dimension linked to the fractal nature of the tumor 
vasculature76. Assuming further that the growth of the metastasis follows a gompertzian growth rate

α β= −g s s s( ) ( ln( ))0

with growth parameters α0 and β possibly equal (basic model (A)) or distinct (di$erent growth model (B)) com-
pared to the PT ones, the density ρ satis"es the following transport partial di$erential equation31:
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where S0 is the size of a BM at birth (here assumed to be one cell). From the solution to this equation, the main 
quantity of interest for comparison to the empirical data is the number of metastasis larger than a given size s 
(cumulative size distribution):

∫ ρ= ′ ′.
+∞

f t s t s ds( , ) ( , )
s

!e total number of metastases – denoted N(t) – is obtained by using s = V0 above and its expression can be 
directly computed without solving the entire problem (3) as it is given by:

∫= ′ ′.N t d S t dt( ) ( ( ))
(4)

t

p
0

Using the method of characteristics, one can derive the following relationship between N and f:

= −f t s N t t s( , ) ( ( )), (5)

where t(s) is the time for a tumor growing at rate g to reach the size s. In the case of Gompertz growth one has:
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• Main difficulties: 

no data on PT pre-treatment + fit PDE to discrete data

Ongoing (collab. P. Schlicke, TU München)

• Extend to larger cohort: complex treatment histories

• Include effect of treatment ⇒ g(t, v) ⇒ nontrivial difficulties for param 
estimation



Differential effects of anti-angiogenic therapies between 
primary tumor and metastases



Simulations of the effect of neoadjuvant sunitinib treatment on 
metastases suggest no effect on growth of metastases

• Parameter values from the previous study on control groups ⇒ simulations are pure mechanistic predictions

• In first approximation, the effect of the drug was modeled by setting the tumor growth rate to zero during the 
phase of treatment
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