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Cancer: a major public health concern

• Second leading cause of death worldwide (1 in 6 deaths, 8.8 million deaths in 2015) 

• First cause of death in France (> 1 in 4 deaths) InVS and INCa, 2011 

• Cumulative risks of developing a cancer: 30.9% in males and 23.3% in females  

• Cumulative risks of death by cancer: 14.3% and 9% 

• Most prevalent cancer types: breast in women, prostate in men 

• Largest number of deaths: lung cancer 

• One third of deaths from cancer are due to 5 leading behavioral and dietary risks: tobacco 

use (22%), high body mass index, low fruit and vegetable intake, lack of physical activity and 

alcohol use
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• Predict metastasis 

• Personalize (adjuvant) therapy
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Imaging detection limit

Benzekry et al., Cancer Res, 2016

• Theoretical framework for 
description of the process 

• Test different hypotheses and reject 
non-valid ones

Benzekry et al., PLoS Comp Biol, 2014

Can mathematical models be of help in oncology? 



What is a cancer?

number and thus maintenance of normal tissue architecture and
function. Cancer cells, by deregulating these signals, become
masters of their own destinies. The enabling signals are
conveyed in large part by growth factors that bind cell-surface
receptors, typically containing intracellular tyrosine kinase
domains. The latter proceed to emit signals via branched intra-
cellular signaling pathways that regulate progression through
the cell cycle as well as cell growth (that is, increases in cell
size); often these signals influence yet other cell-biological prop-
erties, such as cell survival and energy metabolism.
Remarkably, the precise identities and sources of the prolifer-

ative signals operating within normal tissues were poorly under-
stood a decade ago and in general remain so. Moreover, we still
know relatively little about the mechanisms controlling the
release of these mitogenic signals. In part, the understanding
of these mechanisms is complicated by the fact that the growth
factor signals controlling cell number and position within tissues
are thought to be transmitted in a temporally and spatially regu-
lated fashion from one cell to its neighbors; such paracrine
signaling is difficult to access experimentally. In addition, the
bioavailability of growth factors is regulated by sequestration in
the pericellular space and extracellular matrix, and by the actions
of a complex network of proteases, sulfatases, and possibly
other enzymes that liberate and activate them, apparently in
a highly specific and localized fashion.
The mitogenic signaling in cancer cells is, in contrast, better

understood (Lemmon and Schlessinger, 2010; Witsch et al.,
2010; Hynes and MacDonald, 2009; Perona, 2006). Cancer cells
can acquire the capability to sustain proliferative signaling in
a number of alternative ways: They may produce growth factor
ligands themselves, to which they can respond via the expres-
sion of cognate receptors, resulting in autocrine proliferative
stimulation. Alternatively, cancer cells may send signals to stim-
ulate normal cells within the supporting tumor-associated
stroma, which reciprocate by supplying the cancer cells with
various growth factors (Cheng et al., 2008; Bhowmick et al.,
2004). Receptor signaling can also be deregulated by elevating
the levels of receptor proteins displayed at the cancer cell

Figure 1. The Hallmarks of Cancer
This illustration encompasses the six hallmark
capabilities originally proposed in our 2000 per-
spective. The past decade has witnessed
remarkable progress toward understanding the
mechanistic underpinnings of each hallmark.

surface, rendering such cells hyperre-
sponsive to otherwise-limiting amounts
of growth factor ligand; the same
outcome can result from structural alter-
ations in the receptor molecules that
facilitate ligand-independent firing.
Growth factor independence may also

derive from the constitutive activation of
components of signaling pathways oper-
ating downstream of these receptors,
obviating the need to stimulate these
pathways by ligand-mediated receptor

activation. Given that a number of distinct downstream signaling
pathways radiate from a ligand-stimulated receptor, the activa-
tion of one or another of these downstream pathways, for
example, the one responding to the Ras signal transducer,
may only recapitulate a subset of the regulatory instructions
transmitted by an activated receptor.
Somatic Mutations Activate Additional Downstream
Pathways
High-throughput DNA sequencing analyses of cancer cell
genomes have revealed somatic mutations in certain human
tumors that predict constitutive activation of signaling circuits
usually triggered by activated growth factor receptors. Thus,
we now know that !40% of human melanomas contain
activating mutations affecting the structure of the B-Raf protein,
resulting in constitutive signaling through the Raf to mitogen-
activated protein (MAP)-kinase pathway (Davies and Samuels
2010). Similarly, mutations in the catalytic subunit of phosphoi-
nositide 3-kinase (PI3-kinase) isoforms are being detected in
an array of tumor types, which serve to hyperactivate the PI3-
kinase signaling circuitry, including its key Akt/PKB signal
transducer (Jiang and Liu, 2009; Yuan and Cantley, 2008). The
advantages to tumor cells of activating upstream (receptor)
versus downstream (transducer) signaling remain obscure, as
does the functional impact of crosstalk between the multiple
pathways radiating from growth factor receptors.
Disruptions of Negative-Feedback Mechanisms that
Attenuate Proliferative Signaling
Recent results have highlighted the importance of negative-
feedback loops that normally operate to dampen various types
of signaling and thereby ensure homeostatic regulation of the
flux of signals coursing through the intracellular circuitry (Wertz
and Dixit, 2010; Cabrita and Christofori, 2008; Amit et al.,
2007; Mosesson et al., 2008). Defects in these feedback mech-
anisms are capable of enhancing proliferative signaling. The
prototype of this type of regulation involves the Ras oncoprotein:
the oncogenic effects of Ras do not result from a hyperactivation
of its signaling powers; instead, the oncogenic mutations
affecting ras genes compromise Ras GTPase activity, which

Cell 144, March 4, 2011 ª2011 Elsevier Inc. 647

• Tumor = malignant neoplasm. neo = new, plasma = formation 
• Usually assumed that it departs from a cell undergoing several genetic and epigenetic 

changes leading to abnormal proliferation

Hallmarks of cancer

Yet other distinct attributes of cancer cells have been
proposed to be functionally important for the development of
cancer andmight therefore be added to the list of core hallmarks
(Negrini et al., 2010; Luo et al., 2009; Colotta et al., 2009). Two
such attributes are particularly compelling. The first involves
major reprogramming of cellular energy metabolism in order to
support continuous cell growth and proliferation, replacing the
metabolic program that operates in most normal tissues and
fuels the physiological operations of the associated cells. The
second involves active evasion by cancer cells from attack and
elimination by immune cells; this capability highlights the dichot-
omous roles of an immune system that both antagonizes and
enhances tumor development and progression. Both of these
capabilities may well prove to facilitate the development and
progression of many forms of human cancer and therefore can
be considered to be emerging hallmarks of cancer. These
enabling characteristics and emerging hallmarks, depicted in
Figure 3, are discussed individually below.

An Enabling Characteristic: Genome Instability
and Mutation
Acquisition of themultiple hallmarks enumerated above depends
in large part on a succession of alterations in the genomes of
neoplastic cells. Simply depicted, certain mutant genotypes
confer selective advantage on subclones of cells, enabling their
outgrowth and eventual dominance in a local tissue environment.
Accordingly, multistep tumor progression can be portrayed as
a succession of clonal expansions, each of which is triggered
by the chance acquisition of an enabling mutant genotype.
Because heritable phenotypes, e.g., inactivation of tumor
suppressor genes, can also be acquired through epigenetic
mechanisms such asDNAmethylation and histonemodifications
(Berdasco and Esteller, 2010; Esteller, 2007; Jones and Baylin,
2007), some clonal expansions may well be triggered by nonmu-
tational changes affecting the regulation of gene expression.

The extraordinary ability of genome maintenance systems to
detect and resolve defects in the DNA ensures that rates of
spontaneous mutation are usually very low during each cell
generation. In the course of acquiring the roster of mutant genes
needed to orchestrate tumorigenesis, cancer cells often
increase the rates of mutation (Negrini et al., 2010; Salk et al.,
2010). This mutability is achieved through increased sensitivity
to mutagenic agents, through a breakdown in one or several
components of the genomic maintenance machinery, or both.
In addition, the accumulation of mutations can be accelerated
by compromising the surveillance systems that normally monitor
genomic integrity and force genetically damaged cells into either
senescence or apoptosis (Jackson and Bartek, 2009; Kastan,
2008; Sigal and Rotter, 2000). The role of TP53 is central here,
leading to its being called the ‘‘guardian of the genome’’ (Lane,
1992).
A diverse array of defects affecting various components of the

DNA-maintenance machinery—often referred to as the ‘‘care-
takers’’ of the genome (Kinzler and Vogelstein, 1997)—have
been documented. The catalog of defects in these caretaker
genes includes those whose products are involved in (1) detect-
ing DNA damage and activating the repair machinery, (2) directly
repairing damaged DNA, and (3) inactivating or intercepting
mutagenic molecules before they have damaged the DNA
(Negrini et al., 2010; Ciccia and Elledge, 2010; Jackson and
Bartek, 2009; Kastan, 2008; Harper and Elledge, 2007; Friedberg
et al., 2006). From a genetic perspective, these caretaker genes
behavemuch like tumor suppressor genes, in that their functions
can be lost during the course of tumor progression, with such
losses being achieved either through inactivating mutations or
via epigenetic repression. Mutant copies of many of these care-
taker genes have been introduced into the mouse germline and
result, predictably, in increased cancer incidence, supporting
their potential involvement in human cancer development
(Barnes and Lindahl, 2004).

Figure 3. Emerging Hallmarks and Enabling
Characteristics
An increasing body of research suggests that two
additional hallmarks of cancer are involved in the
pathogenesis of some and perhaps all cancers.
One involves the capability to modify, or repro-
gram, cellular metabolism in order to most effec-
tively support neoplastic proliferation. The second
allows cancer cells to evade immunological
destruction, in particular by T and B lymphocytes,
macrophages, and natural killer cells. Because
neither capability is yet generalized and fully vali-
dated, they are labeled as emerging hallmarks.
Additionally, two consequential characteristics of
neoplasia facilitate acquisition of both core and
emerging hallmarks. Genomic instability and thus
mutability endow cancer cells with genetic alter-
ations that drive tumor progression. Inflammation
by innate immune cells designed to fight infections
and heal wounds can instead result in their inad-
vertent support of multiple hallmark capabilities,
thereby manifesting the now widely appreciated
tumor-promoting consequences of inflammatory
responses.

658 Cell 144, March 4, 2011 ª2011 Elsevier Inc.
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Microenvironment

have been portrayed as reasonably homogeneous cell popula-
tions until relatively late in the course of tumor progression,
when hyperproliferation combined with increased genetic
instability spawn distinct clonal subpopulations. Reflecting
such clonal heterogeneity, many human tumors are histopatho-
logically diverse, containing regions demarcated by various
degrees of differentiation, proliferation, vascularity, inflamma-
tion, and/or invasiveness. In recent years, however, evidence
has accumulated pointing to the existence of a new dimension
of intratumor heterogeneity and a hitherto-unappreciated
subclass of neoplastic cells within tumors, termed cancer stem
cells (CSCs).

Although the evidence is still fragmentary, CSCs may prove to
be a common constituent of many if not most tumors, albeit
being present with widely varying abundance. CSCs are defined
operationally through their ability to efficiently seed new tumors
upon inoculation into recipient host mice (Cho and Clarke, 2008;
Lobo et al., 2007). This functional definition is often comple-
mented by including the expression in CSCs of markers that
are also expressed by the normal stem cells in the tissue-of-
origin (Al-Hajj et al., 2003).

CSCs were initially implicated in the pathogenesis of hemato-
poietic malignancies (Reya et al., 2001; Bonnet and Dick, 1997)
and then years later were identified in solid tumors, in particular
breast carcinomas and neuroectodermal tumors (Gilbertson and
Rich, 2007; Al-Hajj et al., 2003). Fractionation of cancer cells on
the basis of displayed cell-surface markers has yielded subpop-
ulations of neoplastic cells with a greatly enhanced ability, rela-
tive to the corresponding majority populations, to seed new
tumors upon implantation in immunodeficient mice. These

Figure 4. The Cells of the Tumor Microenviron-
ment
(Upper) An assemblage of distinct cell types constitutes
most solid tumors. Both the parenchyma and stroma of
tumors contain distinct cell types and subtypes that
collectively enable tumor growth and progression.
Notably, the immune inflammatory cells present in tumors
can include both tumor-promoting as well as tumor-killing
subclasses.
(Lower) The distinctive microenvironments of tumors. The
multiple stromal cell types create a succession of tumor
microenvironments that change as tumors invade normal
tissue and thereafter seed and colonize distant tissues.
The abundance, histologic organization, and phenotypic
characteristics of the stromal cell types, as well as of the
extracellular matrix (hatched background), evolve during
progression, thereby enabling primary, invasive, and then
metastatic growth. The surrounding normal cells of the
primary and metastatic sites, shown only schematically,
likely also affect the character of the various neoplastic
microenvironments. (Not shown are the premalignant
stages in tumorigenesis, which also have distinctive
microenvironments that are created by the abundance
and characteristics of the assembled cells.)

often-rare tumor-initiating cells proved to share
transcriptional profiles with certain normal
tissue stem cell populations, motivating their
designation as stem-like.
The origins of CSCs within a solid tumor have

not been clarified and indeedmaywell vary from
one tumor type to another. In some tumors, normal tissue stem
cells may serve as the cells-of-origin that undergo oncogenic
transformation to yield CSCs; in others, partially differentiated
transit-amplifying cells, also termed progenitor cells, may suffer
the initial oncogenic transformation thereafter assuming more
stem-like character. Once primary tumors have formed, the
CSCs, like their normal counterparts, may self-renew as well
as spawn more differentiated derivatives; in the case of
neoplastic CSCs, these descendant cells form the great bulk of
many tumors. It remains to be established whether multiple
distinct classes of increasingly neoplastic stem cells form during
inception and subsequent multistep progression of tumors, ulti-
mately yielding the CSCs that have been described in fully devel-
oped cancers.
Recent research has interrelated the acquisition of CSC traits

with the EMT transdifferentiation program discussed above
(Singh and Settleman, 2010; Mani et al., 2008; Morel et al.,
2008). Induction of this program in certain model systems can
induce many of the defining features of stem cells, including
self-renewal ability and the antigenic phenotypes associated
with both normal and cancer stem cells. This concordance
suggests that the EMT program not onlymay enable cancer cells
to physically disseminate from primary tumors but also can
confer on such cells the self-renewal capability that is crucial
to their subsequent clonal expansion at sites of dissemination
(Brabletz et al., 2005). If generalized, this connection raises an
important corollary hypothesis: the heterotypic signals that
trigger an EMT, such as those released by an activated, inflam-
matory stroma, may also be important in creating and maintain-
ing CSCs.

662 Cell 144, March 4, 2011 ª2011 Elsevier Inc.

Hanahan and Weinberg, Cell, 2011



A kidney tumor observed by Hematoxylin and Eosin staining

We will focus here on carcinomas: solid cancers from epithelial origin
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• Predict tumor growth

Jouganous, Colin, Saut et al., 2014

Mathematical oncology

Understand (biology) Predict and control (clinic)

Days
0 5 10 15 20

Vo
lu

m
e 

(m
m

3 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Days
0 5 10 15 20

Vo
lu

m
e 

(m
m

3 )

0

500

1000

1500

2000

2500

Exponential Power law

dV

dt
= aV

dV

dt
= aV

“

—̂
j = min

—

X Ä
y

j
i ≠ M(tj

i , —)
ä

p(y) = 1Ô
2fi

e
≠(y≠—).2 1Ô

2fi
e

≠(y≠—).2

—̂

Y
j

i = M(tj
i , —

j) + Á
j
i

M : R+ ◊ Rp æ Rm

(t, ◊) ‘æ M(t, ◊)

dN

dt
= ae

≠bt
N

dN

dt
= aN

dN

dt
= aN ≠ eC(t)N

N(t) = 2 t
T N0 = e

ln(2)t
T N0 …

®
dN
dt = ln(2)

T N(t) = aN(t)
N(t = 0) = N0

®
dV
dt = aV log

Ä
K
V

ä

V (t = 0) = V0

Y = YT + �Á, Á ≥ N (0, 1)

� =
®

‡Y
–

T , YT Ø Vm

‡V
–

m, YT < Vm

– = 0.84, Vm = 83 mm
3

1

dV

dt
= aV

dV

dt
= aV

“

—̂
j = min

—

X Ä
y

j
i ≠ M(tj

i , —)
ä

p(y) = 1Ô
2fi

e
≠(y≠—).2 1Ô

2fi
e

≠(y≠—).2

—̂

Y
j

i = M(tj
i , —

j) + Á
j
i

M : R+ ◊ Rp æ Rm

(t, ◊) ‘æ M(t, ◊)

dN

dt
= ae

≠bt
N

dN

dt
= aN

dN

dt
= aN ≠ eC(t)N

N(t) = 2 t
T N0 = e

ln(2)t
T N0 …

®
dN
dt = ln(2)

T N(t) = aN(t)
N(t = 0) = N0

®
dV
dt = aV log

Ä
K
V

ä

V (t = 0) = V0

Y = YT + �Á, Á ≥ N (0, 1)

� =
®

‡Y
–

T , YT Ø Vm

‡V
–

m, YT < Vm

– = 0.84, Vm = 83 mm
3

1

• Predict metastasis 

• Personalize (adjuvant) therapy
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Can mathematical models be of help in oncology? 
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• Theoretical framework for 
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• Test different hypotheses and reject 
non-valid ones

• Rational and individual design of drug regimen

safety–efficacy multiscale model describing the PK/
PD relationships between docetaxel and epirubicin, 
allowing the best in silico drug-dosing regimen (that 
is, docetaxel first and epirubicin 1 day later, a sequence 
opposite to that usually performed with these drugs) for 
each patient to be tested in a phase Ib trial101. To date, 
17 patients have been recruited and the proposed regimen 
was both well tolerated, and achieved a response rate of 
45%, a median progression-free survival of 10.4 months 
and a median survival of 54.6 months, which compares 
favourably to the results reported in initial publications of 
the docetaxel and epirubicin combination102–108.

Planning metronomic chemotherapy. The role of metro-
nomic chemotherapy in the treatment of cancer remains 
to be fully determined109. Metronomic chemotherapy is a 
paradigm that illustrates how changes in dose and sched-
ule can alter the mechanisms of action of drugs — for 
example, canonical cytotoxic agents can have antiangio-
genic or immune-stimulating effects, or both109. A better 
understanding of metronomics might be derived from 
mathematical modelling studies110, and computational 
approaches can facilitate comparison of the efficacy 
of conventional versus metronomic regimens. Because of 
the innumerable permutations for repeated, low-dose 
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Figure 4 | Example of PK/PD simulation to optimize a vinorelbine treatment regimen. The empirical metronomic 
regimen, incorporating a 50 mg fixed dose of vinorelbine on days 1, 3 and 5 (D1-D3-D5 50 mg) of a 7-day cycle (left panels), 
can provide substantial clinical benefit to many patients; however, mathematical modelling has helped to identify an 
alternative dynamic dosing schedule (right panels) of 30 mg, 60 mg and 30 mg on days 1, 2 and 4 (D1-D2-D4 30-60-30), 
respectively, which was predicted to achieved a higher antiproliferative efficacy (lower panels), while displaying the same 
safety profile based on absolute neutrophil count (middle panels)112. Shading represents confidence intervals. Permission 
obtained from Springer International Publishing © Barbolosi, D. GV�CN��%CPEGT�%JGOQVJGT��2JCTOCEQN� 74, 647–652 (2014).
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safety–efficacy multiscale model describing the PK/
PD relationships between docetaxel and epirubicin, 
allowing the best in silico drug-dosing regimen (that 
is, docetaxel first and epirubicin 1 day later, a sequence 
opposite to that usually performed with these drugs) for 
each patient to be tested in a phase Ib trial101. To date, 
17 patients have been recruited and the proposed regimen 
was both well tolerated, and achieved a response rate of 
45%, a median progression-free survival of 10.4 months 
and a median survival of 54.6 months, which compares 
favourably to the results reported in initial publications of 
the docetaxel and epirubicin combination102–108.

Planning metronomic chemotherapy. The role of metro-
nomic chemotherapy in the treatment of cancer remains 
to be fully determined109. Metronomic chemotherapy is a 
paradigm that illustrates how changes in dose and sched-
ule can alter the mechanisms of action of drugs — for 
example, canonical cytotoxic agents can have antiangio-
genic or immune-stimulating effects, or both109. A better 
understanding of metronomics might be derived from 
mathematical modelling studies110, and computational 
approaches can facilitate comparison of the efficacy 
of conventional versus metronomic regimens. Because of 
the innumerable permutations for repeated, low-dose 
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Figure 4 | Example of PK/PD simulation to optimize a vinorelbine treatment regimen. The empirical metronomic 
regimen, incorporating a 50 mg fixed dose of vinorelbine on days 1, 3 and 5 (D1-D3-D5 50 mg) of a 7-day cycle (left panels), 
can provide substantial clinical benefit to many patients; however, mathematical modelling has helped to identify an 
alternative dynamic dosing schedule (right panels) of 30 mg, 60 mg and 30 mg on days 1, 2 and 4 (D1-D2-D4 30-60-30), 
respectively, which was predicted to achieved a higher antiproliferative efficacy (lower panels), while displaying the same 
safety profile based on absolute neutrophil count (middle panels)112. Shading represents confidence intervals. Permission 
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PK

Toxicity

Efficacy

Empirical dosing 
D1-D3-D5 50 mg

Model-based dosing 
D1-D2-D4 60-30-60 mg

Modeling-driven phase I tria
l 

(metronomic vinorelbine in 

NSCLC)

Can mathematical models be of help in oncology? 



Mathematical models

Biological/Clinical 
problem

?

?

Existing knowledge 
(literature)

+

Observations 
(experiments, clinical)



1. Fitting a model



1.1 Fitting a linear model
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1. Load the data and launch Monolix

1) Create a folder for the hands-on session

2) Download the data at the following link:

http://benzekry.perso.math.cnrs.fr/DONNEES/tp_monolix/warfarin_data_pk.txt

3) Open Monolix by typing the following command in a terminal:

> monolix . sh

Use the following activation key: 2195-0854-7525-7240.

4) Create a new project

5) Load the data. The column “AMT” corresponds to the dose of drug that was adminis-

tered, the column “CONC” to the plasmatic concentrations that were measured. Look at the

“spaghetti plot” (DATAVIEWER).

6) Use a log scale to have a first guess at how many elimination phases there are in the

data?

2. No absorption

Assume the simplest PK model for elimination of the drug, that is linear first-order kinetics.

V k 
D 

A

This model can be written in terms of a differential equation as:
8
><

>:

dA
dt = �kA

A(t = 0) = D
C(t) =

A(t)

V
,

where C(t) is the concentration (in mg·L�1), V is the volume of distribution of the drug (in L),

used to convert the administered dose (in mg) into a concentration, and k is the elimination
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Linear system: Equation of a line

𝑦 = 𝜃0 + 𝜃1𝑡

 {
𝑦1 = 1 × 𝜃0 + 𝑡1 × 𝜃1

𝑦2 = 1 × 𝜃0 + 𝑡2 × 𝜃1
⇔  (𝑦1

𝑦2) = (1 𝑡1
1 𝑡2) ⋅ (𝜃0

𝜃1)

𝑦 = 𝑀 ⋅ 𝜃 ⇒ 𝜃 = 𝑀−1 ⋅ 𝑦

 {11.4 = 1 × 𝜃0 + 1 × 𝜃1

12.5 = 1 × 𝜃0 + 2 × 𝜃1
⇔  (11.4

12.5) = (1 1
1 2) ⋅ (𝜃0

𝜃1)
𝜃0 = 10.3,  𝜃1 = 1.1
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𝜃0

𝜃1

Doubling time =  hours
ln2
𝜃1

× 24 = 15.1

 ??      ,    𝑀−1 𝑀−1 ≔ “
1

𝑀
” 𝑀 ⋅ 𝑀−1 = “1” = 𝐼

is   sufficient?𝑀 ≠ (0 0
0 0)



Invertible matrix
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) 𝑦 = ?? + ??𝑡  {11 = 𝜃0 + 2 × 𝜃1

12 = 𝜃0 + 2 × 𝜃1
⇔  (11

12) = (1 2
1 2) ⋅ (𝜃0

𝜃1)

 is not invertible because its column (and row) 

vectors are colinear

𝑀 = (1 2
1 2)

1 2 3 4 5

1
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𝑀ℝ2
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1 2 3 4 5

ℝ2



Determinant

1 2 3 4 5

1
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4
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1

2
3

4
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1 2 3 4 5

𝑀ℝ2 ℝ2

𝑀

• The determinant of , denoted , is the area of the parallelogramm spanned by 

the column vectors of 

𝑀 𝑀
𝑀

• It can be generalized in any dimension and is a measure of the colinearity (and 
correlation) of the vectors

•  is invertible  the column (and row) vectors of  are independent𝑀 ≠ 0 ⇔ 𝑀 ⇔ 𝑀

• For  it is given by .𝑀 = (𝑎 𝑏
𝑐 𝑑) 𝑎𝑑 − 𝑏𝑐



Linear system: polynomial interpolation
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𝑦 = 𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2

 

𝑦1 = 𝜃0 + 𝜃1𝑡1 + 𝜃2𝑡2
1  

𝑦2 = 𝜃0 + 𝜃1𝑡2 + 𝜃2𝑡2
2

𝑦3 = 𝜃0 + 𝜃1𝑡3 + 𝜃2𝑡2
3

⇔  
𝑦1
𝑦2
𝑦3

=
1 𝑡1 𝑡2

1

1 𝑡2 𝑡2
2

1 𝑡3 𝑡2
3

⋅
𝜃0

𝜃1
𝜃2

⇔ 𝑦 = 𝑀 ⋅ 𝜃 ⇔ 𝜃 = 𝑀−1 ⋅ 𝑦
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𝑦 = 10 + 1.5𝑡 − 0.13𝑡2

3 
eq

ua
tio

ns

3 unknowns

• What if we have 3 points? 

• 3 points  3 degrees of freedom  3 parameters ⇔ ⇔



Linear system: polynomial interpolation
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𝑦 = 𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2 + 𝜃3𝑡3

𝑦1 = 𝜃0 + 𝜃1𝑡1 + 𝜃2𝑡2
1 + 𝜃3𝑡2

1

𝑦2 = 𝜃0 + 𝜃1𝑡2 + 𝜃2𝑡2
2 + 𝜃3𝑡2

2

𝑦3 = 𝜃0 + 𝜃1𝑡3 + 𝜃2𝑡2
3 + 𝜃3𝑡2

3

𝑦4 = 𝜃0 + 𝜃1𝑡3 + 𝜃2𝑡2
3 + 𝜃3𝑡2

4

⇔  

𝑦1
𝑦2
𝑦3
𝑦4

=

1 1 𝑡1 𝑡2
1

1 1 𝑡2 𝑡2
2

1
1

1
1

𝑡3
𝑡4

𝑡2
3

𝑡2
4

⋅

𝜃0

𝜃1
𝜃2
𝜃34 

eq
ua

tio
ns

4 unknowns

 overfit, poor predictive power⇒

• What if we have 3 points? 

• 3 points  3 degrees of freedom  3 parameters ⇔ ⇔



Back to simplicity: line
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𝑦1 = 𝜃0 + 𝜃1𝑡1 

𝑦2 = 𝜃0 + 𝜃1𝑡2
𝑦3 = 𝜃0 + 𝜃1𝑡3

⇔  
𝑦1
𝑦2
𝑦3

= 𝜃0 ⋅ (
1
1
1) + 𝜃1 ⋅

𝑡1
𝑡2
𝑡3

3 
eq

ua
tio

ns

2 unknowns

2 vectors cannot span a space of dimension 3

no solution (in general)

• How to fit 3 points with one line?



Linear regression

𝑦 = 𝜃0 + 𝜃1𝑡 + 𝜀

Question: what is the « best » linear approximation of  ?𝑦

⇔ 𝑦 = 𝑀 ⋅ 𝜃

⇒ 𝑀𝑇𝑦 = 𝑀𝑇 𝑀 ⋅ 𝜃

𝑦1
⋮
𝑦𝑛

=
1 𝑡1
⋮ ⋮
1 𝑡𝑛

⋅ (𝜃0

𝜃1)𝑛

2

×  𝑀𝑇 ( ∈ 𝑀2,𝑛)

𝑀2,1

𝑀2,𝑛 ⋅ 𝑀𝑛,2 ⋅ 𝑀2,1𝑀2,𝑛 ⋅ 𝑀𝑛,1

𝑀2,2 ⋅ 𝑀
2,1

 rectangular 

no solution

𝑀

�̂� = (𝑴𝑻𝑴)−𝟏𝑴𝑻𝒚
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one unique solution 

(if the square matrix  is invertible)𝑀𝑇𝑀



Linear least-squares

•  is the value of the parameter vector  that minimizes the sum of squared residuals�̂� 𝜃

• It corresponds to the projection of  on the column space of the matrix , i.e the 

space spanned by  and , of dimension 2 (2 linearly independent 

vectors)

𝑦 ∈ ℝ𝑛 𝑀

𝟏 = (
1
⋮
1 ) 𝑡 =

𝑡1
⋮
𝑡𝑛

• It regresses the information contained in the dependent variable on the independent 
variables  (constants) and 

𝑦 
𝟏 𝑡

𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑦𝑖 − (𝜃0 + 𝜃1𝑡𝑖))
2

  𝜃1 =
∑ (𝑦𝑖 − �̄�)(𝑡𝑖 − �̄�)

∑ (𝑡𝑖 − �̄�)2 ,      ^  𝜃0 = �̄� − 𝜃1 �̄�

• It is called the least-squares estimator  of the linear model



1.2 General theory



Formalism

• Observations: n couples of points , with  (or ). 

We will denote  and . 

• Structural model: a function 

 

• The (unknown) vector of parameters 
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Statistical model

• « True » parameter  

•  = error = measurement error + structural error 

• Random variables, often independent and identically distributed 

•  = sample with probability density function  

• An estimator of  is a random variable function of , denoted : 

θ*

ej

(y1, ⋯, yn) p(y |θ*)

θ* Y ̂θ

̂θ = h(Y1, ⋯, Yn)

yj = M(tj; θ*) + ej

Yj = M(tj; θ*) + εj

 = r.v. 

 = realizations

Yj, εj

yj, ej



Error models for tumor volume

Modèle d’erreur
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Linear least-squares: statistical properties

Y = Mθ* + ε

̂θLS = argmin
θ∈ℝp

Y − Mθ
2

⇔ ̂θLS = (MT M)−1 MTY

Proposition: 
Assume that , then 

 

ε ∼ 𝒩 (0,σ2I)
̂θLS ∼ 𝒩 ( ̂θ*, σ2 (MT M)−1)

From this, standard errors and confidence intervals can be computed on the parameter 
estimates

se ( ̂θLS,p) = σ (MT M)−1
p,p

ICα (θLS,p) = θ* ± tα/2
n−ps (MT M)−1

p,p
s2 =

1
n − p

y − M ̂θLS

2



Nonlinear regression: least-squares

Y = M (t; θ*) + ε

̂θLS = argmin
θ∈ℝp

Y − M (t; θ)
2

εj

Linearization: ,    M(t, θ) = M(t, θ*) + J ⋅ (θ − θ*) + o (θ − θ*) J = DθM(t, θ*)

Proposition: 
Assume . Then, for large , approximately ε ∼ 𝒩 (0, σ2I) n

̂θLS ∼ 𝒩 ( ̂θ*, σ2 (JT J)−1)

 standard errors, confidence intervals⇒



Sensitivity matrix

J = DθM(t, ̂θ) =

∂M
∂θ1 (t1, ̂θ) ⋯ ∂M

∂θp (t1, ̂θ)
⋮ ⋱ ⋮

∂M
∂θ1 (tn, ̂θ) ⋯ ∂M

∂θp (tn, ̂θ)

•  is a  symmetric matrix 

• It is invertible if and only if  

• Column  of  does not depend 
on  

• Line  of  does not depend on 

JT J p × p
rank(J ) = p

k J = 0 ⇔ M(t, ̂θ)
θk

i J = 0 ⇔ M(ti, ̂θ)
θ

var ( ̂θLS) = σ2 (JT J)−1



Nonlinear regression: Likelihood maximization

Y = M (t; θ*) + ε

The likelihood is defined by

L(θ) = p(y1, ⋯, yn |θ) =
n

∏
j=1

p(yj |θ)

It is the probability to observe  if the parameter is .y θ

The maximum likelihood estimator (MLE) is the value of  that maximizes the likelihood θ

̂θMV = argmax
θ

L(θ)



Asymptotic properties of the MLE

Proposition: 
Under regularity assumptions on , when  
1.  (consistency) 
2.  is asymptotically of minimal variance (it reaches the Cramér-

Rao bound): 

 

where  is the Fisher information matrix 

L n → + ∞
̂θMV ⟶ θ*
̂θMV

n ( ̂θMV − θ*) ⇀ 𝒩 (0, I−1
θ* )

Iθ*

(Iθ*)j,k
= 𝔼 { ∂ log(p(Y |θ*))

∂θj } { ∂ log(p(Y |θ*))
∂θk } = 𝔼 −

∂2 log (p (Y |θ*))
∂θj∂θk

.



Precision of the estimates
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In 2D
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Correlation between estimates

small r.s.e on alpha and beta, but large correlation

beta alpha

−
2𝐿

𝐿



MLE: normal errors

Yj = M (tj; θ*) + εj, εj ∼ 𝒩 (0, σ)

p(yj |θ, σ) =
1

σ 2π
e− (yj − M(tj, θ))2

2σ2 , L(θ, σ) =
1

(σ 2π)
n e−

y − M(t, θ) 2

2σ2

Maximize minimize L(θ, σ) ⇔ F(θ, σ) = − log (L(θ, σ))

F(θ, σ) = n log (σ 2π) +
y − M(t, θ)

2

2σ2

∂F
∂σ ( ̂θ, ̂σ) = 0 ⇒ ̂σ =

1
n

y − M(t, ̂θ)
2

⇒ ̂θ = argmin
θ

y − M(t, θ)
2

Maximum likelihood  Least-squares⇔



Days
0 5 10 15 20

Vo
lu

m
e 

(m
m

3 )

0

500

1000

1500

Logistic

Days
0 5 10 15 20

V
o
lu

m
e
 (

m
m

3
)

0

500

1000

1500

8
<

:

dP
dt = aP

Ä
1 ≠ P

K

ä

dN
dt = a

K P
2

dV

dt
= aV

dV

dt
= aV

“

—̂
j = min

—

X Ä
y

j
i ≠ M(tj

i , —)
ä2

p(y) = 1Ô
2fi

e
≠(y≠—).2 1Ô

2fi
e

≠(y≠—).2

—̂

Y
j

i = M(tj
i , —

j) + Á
j
i , Á

j
i ≥ N (0, ‡

j
i )

M : R+ ◊ Rp æ Rm

(t, —) ‘æ M(t, —)

M : R+ ◊ Rp æ Rm

(t, ◊) ‘æ M(t, ◊)

dN

dt
= ae

≠bt
N

dN

dt
= aN

dN

dt
= aN ≠ eC(t)N

N(t) = 2 t
T N0 = e

ln(2)t
T N0 …

®
dN
dt = ln(2)

T N(t) = aN(t)
N(t = 0) = N0

dV

dt
= aV

Å
1 ≠ V

K

ã

®
dV
dt = aV

Ä
1 ≠ V

K

ä

V (t = 0) = 1 mm3

1

Competition

Application: tumor growth

What are minimal biological processes able to recover the kinetics of (experimental) tumor 
growth?
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Fits very well 
Lacks physiological interpretation

Benzekry et al., PloS Comp Biol, 2014
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Since the viable tumor mass, mv, is the product of the total
number of viable cells and the average mass of a cell, mc, we have
mv~Nvmc leading to

BT~(
Bc

mc
)mvz(

Ec

mc
)
dmv

dt
ð5Þ

This first-order differential equation, representing conservation of
energy, explicitly links properties of tumor cells (Bc, Ec, and mc)
with properties of the whole tumor (BT and mv). Consequently, it
provides a simple, but powerful, way to integrate important
features and results from different areas of cancer research.
Solving this equation to determine tumor growth requires
knowledge of how tumor metabolic rate, BT , depends on its
viable mass, mv, to which we now turn.

Model for tumor vascular system and the prediction of
metabolic rate. Tumor metabolic rate, BT , is proportional to
the sum of the rates of cellular fermentation and aerobic
respiration. For avascular tumors, BT depends on the diffusion
rate of nutrients and oxygen from the surrounding environment
[18]. For vascular tumors, BT is proportional to the total blood
volume flow rate to the tumor, _QQT , consistent with observations
that glucose and oxygen consumption rates vary linearly with
blood flow rate [19]. The dependence of _QQT on mv and host mass,
M, is determined by the structure, dynamics and interaction of the
tumor and host vasculatures. Here, we develop a complete
analytical model of tumor vascular networks applicable
throughout different phases of development by deriving the
allometric scaling of tumor rates and times with host body size
and capillary density. Although the importance of the vascular
interface between the tumor and the host has been previously
recognized, our work is a novel attempt to mechanistically model
its role in tumor growth [10–12,20].

Mounting evidence suggests that some tumor vascular networks
exhibit fractal-like properties similar to those of the circulatory
system [21–23]. To analyze tumor vasculature, we borrow from an
idealized framework that has proven successful for quantitatively
understanding the circulatory system. This framework assumes
that in healthy tissue the vasculature is space-filling, minimizes
energy loss and has invariant terminal units (capillaries) [1]. We
compare these optimal networks with measures of tumor
vasculature, while retaining the assumption of invariant capillaries.

To facilitate comparisons between healthy and tumor vascula-
ture, we introduce scaling ratios for radii and lengths of vessels
across levels, k, of the network. We treat all branches at the same
level, k, as having similar properties and assume a constant
branching ratio, n–the effective number of daughter vessels for
each mother vessel [1]. Following West et al 1997 and Gevertz et
al 2006, we model blood vessels as cylinders, similar to the Krogh
model [1,11]. The capillaries define the lowest level k~N while
the largest vessels feeding the tumor define k~0 (Fig. 1). We
introduce scale factors for the ratio of daughter to mother vessel
radii:

rkz1

rk
~n{a ð6Þ

and similarly for daughter to mother vessel lengths:

lkz1

lk
~n{b ð7Þ

The exponents, a and b, can be used as quantitative diagnostics for
comparison with healthy tissue, where theory predicts and data

support a~1=2 for large vessels and a~1=3 for small vessels (from
energy minimization) and b~1=3 for all vessels (from space filling)
[1]. Deviations from these values indicate the degree to which
optimization and space-filling are violated during tumor growth.

For healthy tissue, a and b are approximately independent of k,
indicating that the network has a fractal-like structure, as observed.
To determine if tumor vascular networks have similar geometric
structure, we observe that for vessel radii, rk

r0
~n{ka, where r0 is

the largest vessel in the hierarchy, and taking the log of both sides
and rearranging yields log rk~({a log n)kzlog r0, and similarly
for vessel lengths log lk~({b log n)kzlog l0, so plotting log rk

and log lk versus k should yield straight lines whose slopes are
{a log n and {b log n, respectively, if a and b are constant.
Figs. 2a, 2b show data from various tumors, indicating that tumor
vasculature does indeed exhibit approximately fractal behavior, in
agreement with other studies [22,24].

The metabolic rate of the tumor, determined by oxygen and
nutrient availability, depends on its capillary density, which is
controlled by the scaling factors a and b. In File S1 we derive the
relationship between the metabolic rate, tumor size and vascular
architecture:

BT~B0(M)mb
v ð8Þ

where b~1 if 2azbƒ1, but ~1=(2azb) otherwise, and B0(M)
is a normalization factor that depends on the host mass, M. For
healthy tissue, where capillary density is controlled by large-vessel

scaling, this gives b~3=4, in agreement with data (B!M3=4) for
large mammals [25]. For tumors too small to support significant
pulsatile flow, or whose host supply vessels are likewise too small,
theory predicts a&1=3. So, if their vasculature is space-filling,
b~1 and their metabolic rate scales linearly: BT~B0(M)mv [1].

As tumor vasculature becomes increasingly inefficient and/or
attaches to host supply vessels sufficiently large to deliver pulsatile

Figure 1. Schematic of tumor growth model. (a) Vascularized
tumor supplied by blood siphoned from host vasculature. White area
represents viable tissue, while grey represents necrotic core. (b)
Schematic of vascular network composed of tubes. (c) Topological
model of tumor and host network beginning with feeding vessel (k = 0)
and terminating at the capillary level (k = N).
doi:10.1371/journal.pone.0022973.g001
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Fits very well 
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interpretation
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Goodness of fit metrics

Goodness of fit

Model SSE AIC RMSE R2 p > 0.05 #

Power law 0.164(0.0158 - 0.646)[1] -18.4(-43.2 - 1.63)[1] 0.415(0.145 - 0.899)[1] 0.97(0.801 - 0.998)[1] 100 2

Gompertz 0.176(0.019 - 0.613)[2] -16.9(-48.2 - 1.1)[2] 0.433(0.156 - 0.875)[2] 0.971(0.828 - 0.997)[2] 100 2

Logistic 0.404(0.0869 - 0.85)[3] -5.41(-18.4 - 3.88)[3] 0.665(0.331 - 1)[3] 0.908(0.712 - 0.989)[3] 100 2

Exponential 1.9(0.31 - 3.56)[4] 10.7(-5.38 - 23.1)[4] 1.4(0.595 - 1.95)[4] 0.69(0.454 - 0.944)[4] 15 1

Akaike Information Criterion
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Parameter values and identifiability

NSE = Normalized Standard Error practical identifiability

Parameters

Model Par. Unit Median value (CV) NSE (%) (CV)

Power law – mm3(1≠“)· day≠1 0.886 (30.8) 8.17 (52.5)
“ - 0.788 (7.56) 2.28 (58.6)

Gompertz –0 day≠1 1.68 (23.5) 6.11 (82.9)
— day≠1 0.0703 (28) 8.35 (92.9)

Logistic a day≠1 0.474 (13.3) 2.93 (23.3)
K mm3 1.92e+03 (36.7) 15.8 (28.7)

Exponential a day≠1 0.356 (12.9) 2.53 (19.4)

Identifiability of all the models (lung data)Table 3: Parameter values estimated from the fits. Lung data

Model Par. Unit Median value (CV) Mean
normalized std

error (CV)

Power law a
î
mm3(1≠“) · day≠1

ó
0.921 (38.9) 11.9 (48.7)

“ - 0.788 (9.41) 4 (53.4)

Gompertz a
⇥
day≠1⇤ 0.742 (25.3) 6.02 (51.3)

—
⇥
day≠1⇤ 0.0792 (42.4) 13.7 (65.4)

Exponential-linear a0
⇥
day≠1⇤ 0.49 (19.3) 3.08 (41.5)

a1
⇥
mm3 · day≠1⇤ 115.6 (22.6) 15.7 (40.7)

Dynamic CC
a

⇥
day≠1⇤ 0.399 (106) 447 (89.8)

b
⇥
mm≠2 · day≠1⇤ 2.66 (241) 395 (176)

K0
⇥
mm3⇤ 2.6 (322) 6.5e+04 (345)

Von Bertalan�y
a

î
mm3(1≠“) · day≠1

ó
7.72 (112) 1.43e+04 (155)

“ - 0.947 (13.5) 40.9 (73)
b

⇥
day≠1⇤ 6.75 (118) 2.98e+07 (222)

Generalized logistic
a

⇥
day≠1⇤ 2555 (148) 2.36e+05 (137)

K
⇥
mm3⇤ 4378 (307) 165 (220)

– - 0.0001413 (199) 2.36e+05 (137)

Exponential V0
V0

⇥
mm3⇤ 13.2 (47.9) 28.9 (55)

a
⇥
day≠1⇤ 0.257 (15.4) 7.49 (48.3)

Logistic a
⇥
day≠1⇤ 0.502 (17.5) 3.03 (48.9)

K
⇥
mm3⇤ 1297 (23.1) 17.2 (43.8)

Exponential 1 a
⇥
day≠1⇤ 0.399 (13.8) 2.87 (24.5)

Shown are the median values within the population and in parenthesis the coe�cient
of variation (CV, expressed in percent and defined as the standard deviation within
the population divided by mean and multiplied by 100) that quantifies inter-animal
variability. Last column represents the normalized standard errors (nse) of the maximum
likelihood estimator, defined in (11).

The improvement of this model as compared to the logistic model is notable. However, the cost

for this has been to add a parameter to the model. How do we know that we are not overfitting

now? In other words, isn’t it too easy to fit the growth curves with three parameters. This is

linked to the question of identifiability of the parameters. The theory of maximimum likelihood

estimation (MLE) offers great tools for such a purpose. Specifically, from its definition the MLE

estimator is a random variable. As such, it has a distribution coming from the fact that the data

itself is uncertain. For a single parameter, the standard deviation of this distribution is called the

standard error. An important property of the MLE estimator q̂ is that it is asymptotically normally

distributed and its asymptotic covariance matrix C can be estimated from the combination of : 1)

the (estimated) variance of the measurement error ŝ2
and 2) the jacobian matrix of the model

evaluated in q̂. Specifically, denoting J the (weighted) jacobian matrix of the model, one can show

that asymptotically

q̂ ⇠ N
✓

q⇤, ŝ2

⇣
J · JT

⌘�1
◆

where q⇤ is the true value assumed to have generated the data (which we are estimating with q̂).

I invite you to think two minutes about why the presence of ŝ as a proportional term and J as

an inversely proportional term make sense. From C the standard error (se) and relative standard

error (rse) on parameter p are defined by

se
�
q̂p� =

q
Cp,p rse

�
q̂p� =

se
�
q̂p�

q̂p
⇥ 100

Luckily, this covariance matrix is automatically calculated by curve_fit and given as a second

output. Define a new function fit_all_mice_analysis which does not plot the fits but instead
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