Introduction to modeling, simulation and data science in oncology

S. Benzekry

Formation «Ecole doctorale Mathématiques et Informatique »

Modeling in ONCology

Cancer: a major public health concern

- Second leading cause of death worldwide (1 in 6 deaths, 8.8 million deaths in 2015)
- First cause of death in France (> 1 in 4 deaths) InVS and INCa, 2011
- Cumulative risks of developing a cancer: 30.9% in males and 23.3% in females
- Cumulative risks of death by cancer: 14.3% and 9%
- Most prevalent cancer types: breast in women, prostate in men
- Largest number of deaths: lung cancer
- One third of deaths from cancer are due to 5 leading behavioral and dietary risks: tobacco use (22\%), high body mass index, low fruit and vegetable intake, lack of physical activity and alcohol use

Can mathematical models be of help in oncology?

Understand (biology)

- Theoretical framework for description of the process
- Test different hypotheses and reject non-valid ones

Exponential

$$
\frac{d V}{d t}=a V
$$

Power law

$$
\frac{d V}{d t}=a V^{\gamma}
$$

What is a cancer?

- Tumor = malignant neoplasm. neo = new, plasma = formation
- Usually assumed that it departs from a cell undergoing several genetic and epigenetic changes leading to abnormal proliferation

Hallmarks of cancer

Microenvironment

Hanahan and Weinberg, Cell, 2011

A kidney tumor observed by Hematoxylin and Eosin staining

We will focus here on carcinomas: solid cancers from epithelial origin

Can mathematical models be of help in oncology?

Predict and control (clinic)

Understand (biology)

- Theoretical framework for description of the process
- Test different hypotheses and reject non-valid ones
- Predict tumor growth

Can mathematical models be of help in oncology?

Understand (biology)

- Theoretical framework for description of the process
- Test different hypotheses and reject non-valid ones

Exponential $\frac{d V}{d t}=a V$

Power law $\frac{d V}{d t}=a V^{\gamma}$

Predict and control (clinic)

- Predict metastasis
- Personalize (adjuvant) therapy

Can mathematical models be of help in oncology?

- Rational and individual design of drug regimen
- Theoretical framework for description of the process
- Test different hypotheses and reject non-valid ones

Exponential

Power law

Empirical dosing	Model-based dosing
D1-D3-D5 50 mg	D1-D2-D4 60-30-60 mg

Efficacy

1. Fitting a model

1.1 Fitting a linear model

Data

Mathematical model

$$
M(t, \theta)=e^{\theta t}
$$

$$
\left\{\begin{array}{l}
\frac{d A_{a}}{d t}=-k_{a} A_{a} \\
\frac{d A}{d t}=k_{a} A_{a}-k A \\
A_{a}(t=0)=D, \quad(t=0)=0 \\
\quad C(t)=\frac{A(t)}{V}
\end{array}\right.
$$

Linear system: Equation of a line

$$
\begin{gathered}
y=\theta_{0}+\theta_{1} t \\
\left\{\begin{array}{l}
y_{1}=1 \times \theta_{0}+t_{1} \times \theta_{1} \\
y_{2}=1 \times \theta_{0}+t_{2} \times \theta_{1}
\end{array} \Leftrightarrow\binom{y_{1}}{y_{2}}=\left(\begin{array}{ll}
1 & t_{1} \\
1 & t_{2}
\end{array}\right) \cdot\binom{\theta_{0}}{\theta_{1}}\right. \\
y=M \cdot \theta \Rightarrow \theta=M^{-1} \cdot y
\end{gathered}
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
11.4=1 \times \theta_{0}+1 \times \theta_{1} \\
12.5=1 \times \theta_{0}+2 \times \theta_{1}
\end{array} \Leftrightarrow\binom{11.4}{12.5}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \cdot\binom{\theta_{0}}{\theta_{1}}\right. \\
\theta_{0}=10.3, \theta_{1}=1.1
\end{gathered}
$$

is $M \neq\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ sufficient?

$$
\text { Doubling time }=\frac{\ln 2}{\theta_{1}} \times 24=15.1 \text { hours }
$$

Invertible matrix

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
11=\theta_{0}+2 \times \theta_{1} \\
12=\theta_{0}+2 \times \theta_{1}
\end{array} \Leftrightarrow\binom{11}{12}=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right) \cdot\binom{\theta_{0}}{\theta_{1}}\right. \\
& M=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right) \text { is not invertible because its column (and row) } \\
& \text { vectors are colinear }
\end{aligned}
$$

Determinant

- The determinant of M, denoted $|M|$, is the area of the parallelogramm spanned by the column vectors of M
- For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ it is given by $a d-b c$.
- It can be generalized in any dimension and is a measure of the colinearity (and correlation) of the vectors
- $|M| \neq 0 \Leftrightarrow M$ is invertible \Leftrightarrow the column (and row) vectors of M are independent

Linear system: polynomial interpolation

- What if we have 3 points?
- 3 points $\Leftrightarrow 3$ degrees of freedom $\Leftrightarrow 3$ parameters

$$
y=\theta_{0}+\theta_{1} t+\theta_{2} t^{2}
$$

$$
y=10+1.5 t-0.13 t^{2}
$$

3 unknowns

$$
\Leftrightarrow y=M \cdot \theta \Leftrightarrow \theta=M^{-1} \cdot y
$$

Linear system: polynomial interpolation

- What if we have 3 points?
- 3 points $\Leftrightarrow 3$ degrees of freedom $\Leftrightarrow 3$ parameters

$$
y=\theta_{0}+\theta_{1} t+\theta_{2} t^{2}+\theta_{3} t^{3}
$$

4 unknowns

\Rightarrow overfit, poor predictive power

Back to simplicity: line

- How to fit 3 points with one line?

2 unknowns

suo!̣enbə ع

$$
\left\{\begin{array}{l}
y_{1}=\theta_{0}+\theta_{1} t_{1} \\
y_{2}=\theta_{0}+\theta_{1} t_{2} \\
y_{3}=\theta_{0}+\theta_{1} t_{3}
\end{array} \Leftrightarrow\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\theta_{0} \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\theta_{1} \cdot\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)\right.
$$

2 vectors cannot span a space of dimension 3

Linear regression

$$
y=\theta_{0}+\theta_{1} t+\varepsilon
$$

Question: what is the «best» linear approximation of y ?

$$
\begin{gathered}
\approx\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & t_{1} \\
\vdots & \vdots \\
1 & t_{n}
\end{array}\right) \cdot\binom{\theta_{0}}{\theta_{1}} \longrightarrow \begin{array}{l}
M \text { rectangular } \\
\text { no solution }
\end{array} \\
\times M^{T}\left(\in M_{2, n}\right)\left(\begin{array}{ll}
\Leftrightarrow y=M \cdot \theta & \text { one unique solu } \\
\Rightarrow M^{T} y= & \underbrace{M^{T} M \cdot \theta}_{M_{2, n}} \cdot M_{n, 2} \cdot M_{2,1} \\
\text { (if the square m } \\
M_{2, n} \cdot M_{n, 1} \\
M_{2,1} & M_{2,2} \cdot M_{2,1}
\end{array}\right.
\end{gathered}
$$

$$
\longrightarrow \quad \text { one unique solution }
$$

(if the square matrix $M^{T} M$ is invertible)

$$
\hat{\boldsymbol{\theta}}=\left(\boldsymbol{M}^{T} \boldsymbol{M}\right)^{-1} \boldsymbol{M}^{\boldsymbol{T}} \boldsymbol{y}
$$

Linear least-squares

- $\hat{\theta}$ is the value of the parameter vector θ that minimizes the sum of squared residuals

$$
S S=\sum_{i=1}^{n}\left(y_{i}-\left(\theta_{0}+\theta_{1} t_{i}\right)\right)^{2} \quad \hat{\theta}_{1}=\frac{\sum\left(y_{i}-\bar{y}\right)\left(t_{i}-\bar{t}\right)}{\sum\left(t_{i}-\bar{t}\right)^{2}}, \quad \hat{\theta}_{0}=\bar{y}-\hat{\theta}_{1} \bar{t}
$$

- It is called the least-squares estimator of the linear model
- It corresponds to the projection of $y \in \mathbb{R}^{n}$ on the column space of the matrix M, i.e the space spanned by $\mathbf{1}=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$ and $t=\left(\begin{array}{c}t_{1} \\ \vdots \\ t_{n}\end{array}\right)$, of dimension 2 (2 linearly independent vectors)
- It regresses the information contained in the dependent variable y on the independent variables 1 (constants) and t

1.2 General theory

Formalism

- Observations: n couples of points $\left(t_{j}, y_{j}\right)$, with $y_{j} \in \mathbb{R}$ (or \mathbb{R}^{m}). We will denote $y=\left(y_{1}, \cdots, y_{n}\right) \in \mathbb{R}^{n}$ and $t=\left(t_{1}, \cdots, t_{n}\right)$.
- Structural model: a function

$$
M: \begin{array}{ccc}
\mathbb{R} \times \mathbb{R}^{p} & \rightarrow & \mathbb{R} \\
(t, \theta) & \mapsto & M(t, \theta)
\end{array}
$$

- The (unknown) vector of parameters $\theta \in \mathbb{R}^{p}$

Goal $=$ find θ

Statistical model

$$
y_{j}=M\left(t_{j} ; \theta^{*}\right)+e_{j}
$$

- « True » parameter θ^{*}
- $e_{j}=$ error $=$ measurement error + structural error
- Random variables, often independent and identically distributed

$$
Y_{j}, \varepsilon_{j}=\text { r.v. }
$$

$$
Y_{j}=M\left(t_{j} ; \theta^{*}\right)+\varepsilon_{j} \quad y_{j}, e_{j}=\text { realizations }
$$

- $\left(y_{1}, \cdots, y_{n}\right)=$ sample with probability density function $p\left(y \mid \theta^{*}\right)$
- An estimator of θ^{*} is a random variable function of Y, denoted $\hat{\theta}$:

$$
\hat{\theta}=h\left(Y_{1}, \cdots, Y_{n}\right)
$$

Error models for tumor volume

$$
\varepsilon_{j} \text { i.i.d } \mathscr{N}\left(0, \sigma_{j}\right)
$$

Constant

$$
\sigma_{j}=\sigma, \forall j
$$

$$
p=0.004
$$

Proportional

$$
\sigma_{j}=\sigma M\left(t_{j}, \hat{\theta}\right)
$$

$$
p=0.083
$$

Specific
$\sigma_{i}= \begin{cases}\sigma M\left(t_{j}, \hat{\theta}\right)^{\alpha}, & M\left(t_{j}, \hat{\theta}\right) \geq V_{m} \\ \sigma V_{m}^{\alpha}, & M\left(t_{j}, \hat{\theta}\right)<V_{m}\end{cases}$

$$
p=0.2
$$

Linear least-squares: statistical properties

$$
\begin{gathered}
Y=M \theta^{*}+\varepsilon \\
\hat{\theta}_{L S}=\underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}}\|Y-M \theta\|^{2} \Leftrightarrow \hat{\theta}_{L S}=\left(M^{T} M\right)^{-1} M^{T} Y
\end{gathered}
$$

Proposition:

Assume that $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)$, then

$$
\hat{\theta}_{L S} \sim \mathcal{N}\left(\hat{\theta}^{*}, \sigma^{2}\left(M^{T} M\right)^{-1}\right)
$$

From this, standard errors and confidence intervals can be computed on the parameter estimates

$$
\operatorname{se}\left(\hat{\theta}_{L S, p}\right)=\sigma \sqrt{\left(M^{T} M\right)_{p, p}^{-1}} \quad I C_{\alpha}\left(\theta_{L S, p}\right)=\theta^{*} \pm t_{n-p}^{\alpha / 2} s \sqrt{\left(M^{T} M\right)_{p, p}^{-1}} \quad s^{2}=\frac{1}{n-p}\left\|y-M \hat{\theta}_{L S}\right\|^{2}
$$

Nonlinear regression: least-squares

$$
\begin{gathered}
Y=M\left(t ; \theta^{*}\right)+\varepsilon \\
\hat{\theta}_{L S}=\underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}}\|Y-M(t ; \theta)\|^{2}
\end{gathered}
$$

Linearization: $M(t, \theta)=M\left(t, \theta^{*}\right)+J \cdot\left(\theta-\theta^{*}\right)+o\left(\theta-\theta^{*}\right), \quad J=D_{\theta} M\left(t, \theta^{*}\right)$

Proposition:

Assume $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)$. Then, for large n, approximately

$$
\hat{\theta}_{L S} \sim \mathcal{N}\left(\hat{\theta}^{*}, \sigma^{2}\left(J^{T} J\right)^{-1}\right)
$$

\Rightarrow standard errors, confidence intervals

Sensitivity matrix

$$
J=D_{\theta} M(t, \hat{\theta})=\left(\begin{array}{ccc}
\frac{\partial M}{\partial \theta_{1}}\left(t_{1}, \hat{\theta}\right) & \cdots & \frac{\partial M}{\partial \theta_{p}}\left(t_{1}, \hat{\theta}\right) \\
\vdots & \ddots & \vdots \\
\frac{\partial M}{\partial \theta_{1}}\left(t_{n}, \hat{\theta}\right) & \cdots & \frac{\partial M}{\partial \theta_{p}}\left(t_{n}, \hat{\theta}\right)
\end{array}\right) \quad \operatorname{var}\left(\hat{\theta}_{L S}\right)=\sigma^{2}\left(J^{T} J\right)^{-1}
$$

- $J^{T} J$ is a $p \times p$ symmetric matrix
- It is invertible if and only if $\operatorname{rank}(J)=p$
- Column k of $J=0 \Leftrightarrow M(t, \hat{\theta})$ does not depend on θ_{k}
- Line i of $J=0 \Leftrightarrow M\left(t_{i}, \hat{\theta}\right)$ does not depend on θ

Nonlinear regression: Likelihood maximization

$$
Y=M\left(t ; \theta^{*}\right)+\varepsilon
$$

The likelihood is defined by

$$
L(\theta)=p\left(y_{1}, \cdots, y_{n} \mid \theta\right)=\prod_{j=1}^{n} p\left(y_{j} \mid \theta\right)
$$

It is the probability to observe y if the parameter is θ.

The maximum likelihood estimator (MLE) is the value of θ that maximizes the likelihood

$$
\hat{\theta}_{M V}=\underset{\theta}{\operatorname{argmax}} L(\theta)
$$

Asymptotic properties of the MLE

Proposition:

Under regularity assumptions on L, when $n \rightarrow+\infty$

1. $\hat{\theta}_{M V} \longrightarrow \theta^{*}$ (consistency)
2. $\hat{\theta}_{M V}$ is asymptotically of minimal variance (it reaches the CramérRao bound):

$$
\sqrt{n}\left(\hat{\theta}_{M V}-\theta^{*}\right)-\mathscr{N}\left(0, I_{\theta^{*}}^{-1}\right)
$$

where $I_{\theta^{*}}$ is the Fisher information matrix
$\left(I_{\theta^{*}}\right)_{j, k}=\mathbb{E}\left[\left\{\frac{\partial \log \left(p\left(Y \mid \theta^{*}\right)\right)}{\partial \theta_{j}}\right\}\left\{\frac{\partial \log \left(p\left(Y \mid \theta^{*}\right)\right)}{\partial \theta_{k}}\right\}\right]=\mathbb{E}\left[-\left(\frac{\partial^{2} \log \left(p\left(Y \mid \theta^{*}\right)\right)}{\partial \theta_{j} \partial \theta_{k}}\right]\right]$.

Precision of the estimates

In 2D

Correlation between estimates

Correlation matrix of the estimates

1	R.S.E.(\%)				
alphe p9P		3n		1	
betu_pop	3.05			0.91574	1
b	23x			(1) (41504,	(1)
管	MIN	Max	MAXIMIN		
पigen xalues	0014	2	1.4**2		

small r.s.e on alpha and beta, but large correlation

MLE: normal errors

$$
\begin{gathered}
Y_{j}=M\left(t_{j} ; \theta^{*}\right)+\varepsilon_{j}, \quad \varepsilon_{j} \sim \mathcal{N}(0, \sigma) \\
p\left(y_{j} \mid \theta, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(y_{j}-M\left(f_{j}, \theta\right)\right)^{2}}{2 \sigma^{2}}}, \quad L(\theta, \sigma)=\frac{1}{(\sigma \sqrt{2 \pi})^{n}} e^{-\frac{\|y-M(t, \theta)\|^{2}}{2 \sigma^{2}}}
\end{gathered}
$$

Maximize $L(\theta, \sigma) \Leftrightarrow$ minimize $F(\theta, \sigma)=-\log (L(\theta, \sigma))$

$$
\begin{gathered}
F(\theta, \sigma)=n \log (\sigma \sqrt{2 \pi})+\frac{\|y-M(t, \theta)\|^{2}}{2 \sigma^{2}} \\
\frac{\partial F}{\partial \sigma}(\hat{\theta}, \hat{\sigma})=0 \Rightarrow \hat{\sigma}=\frac{1}{n}\|y-M(t, \hat{\theta})\|^{2} \\
\Rightarrow \hat{\theta}=\underset{\theta}{\operatorname{argmin}}\|y-M(t, \theta)\|^{2}
\end{gathered}
$$

Maximum likelihood \Leftrightarrow Least-squares

Application: tumor growth

What are minimal biological processes able to recover the kinetics of (experimental) tumor growth?

Exponential

Logistic

$$
\frac{d V}{d t}=a V
$$

$$
\begin{gathered}
\text { Competition } \\
\frac{d V}{d t}=a V\left(1-\frac{V}{K}\right)
\end{gathered}
$$

Gompertz

Power law

Goodness of fit metrics

Sum of Squared Errors

$$
S S E^{i}=\sum_{j=1}^{n^{i}}\left(\frac{V_{j}^{i}-V\left(t_{j}^{i}, \hat{\theta}^{i}\right)}{\hat{\sigma}_{j}^{i}}\right)^{2}
$$

Akaike Information Criterion

$$
A I C^{i}=-2 l\left(\hat{\theta}^{i}\right)+2 p
$$

number of parameters

Model	SSE	AIC	RMSE	R2	$\mathrm{p}>0.05$	\#
Power law	0.164(0.0158-0.646)[1]	-18.4(-43.2-1.63)[1]	0.415(0.145-0.899)[1]	0.97(0.801-0.998) [1]	100	2
Gompertz	0.176(0.019-0.613)[2]	$-16.9(-48.2-1.1)[2]$	$0.433(0.156-0.875)[2]$	0.971(0.828-0.997)[2]	100	2
Logistic	0.404(0.0869-0.85)[3]	-5.41(-18.4-3.88)[3]	$0.665(0.331-1)[3]$	0.908(0.712-0.989)[3]	100	2
Exponential	$1.9(0.31-3.56)[4]$	10.7(-5.38-23.1)[4]	$1.4(0.595-1.95)[4]$	0.69(0.454-0.944)[4]	15	1

Root Mean Squared Errors

$$
R M S E^{i}=\sqrt{\frac{1}{n-p} S S E^{i}}
$$

$$
R^{2, j}=1-\frac{\sum_{j}\left(V_{j}^{i}-V\left(t_{j}^{i} ; \hat{\theta}^{i}\right)\right)^{2}}{\sum_{j}\left(V_{j}^{i}-\overline{V^{i}}\right)^{2}}
$$

Parameter values and identifiability

NSE $=$ Normalized Standard Error \longleftrightarrow practical identifiability

$$
\hat{\theta} \sim \mathcal{N}\left(\theta^{*}, \hat{\sigma}^{2}\left(J \cdot J^{T}\right)^{-1}\right) \quad s e\left(\hat{\theta}^{k}\right)=\sqrt{\hat{\sigma}^{2}(J \cdot J T)_{k, k}}
$$

References

- Course « Statistics in Action with $\mathrm{R} »$ by Marc Lavielle http://sia.webpopix.org/index.html
- Seber, G. A., \& Wild, C. J. (2003). Nonlinear regression. Hoboken (NJ): Wiley-Interscience.

