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Comments on Notation:

» The Borel o-algebra on R™ is denoted by 2 (R™)
» The set of all probability measures on the measurable space (R", %2 (R™)) is denoted by A(RR™).

Let h: R" x R™ — R be a Borel measurable function.

v

» Given two measures P; and P, in A(R™), assume that for all i € {1,2},

/|h(x,y)| dPi(y) < +oo, for some fixed x.

» Let G4 : R" x A(R™) x A(R™) — R be a functional such that
Gi (x,Pr. P2) = [ hxy)dPi(y) = [ ()P,

The value Gy (x, P1, P2) characterizes the variation of the expectation of h(x, Y), when
Y ~ P, changes to Y ~ P;.
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Preliminaries

Variation of the Expectation due to Changes in the Measure

Special Case:

» Given Py|x € A(R™|R") and Px € A(R"), let Py € A (R") be such that for all
sets A € Z(R™),

Py (A) :/PY\X:X (A) dPx(x).

Gn (Py, Py x, PX):/ h(x, y)dPy Px(y, x) —/h(xy)/)dPY\xPX(Y»X)-

... from the joint probability measure to the product of the marginals.
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Preliminaries
The Gibbs Probability Measure

Consider a o-finite measure Q over (R™, 2 (RR™)) and some x € R":

» Denote by Ky g.x : R — R the function that satisfies

i (8) = 1og ([ exp (¢hx.)) 40 ().

If Q is a probability measure, Ky g« is the cumulant generating function of h(x, Y), with Y ~ Q.

Definition (Gibbs Conditional Probability Measure)

The probability measure Pg’l’f’)‘) € A(R™|R"), with A € R, is said to be an (h, @, \)-Gibbs conditional
probability measure if for all x € R”,

Kh,@,x (—/\) < 4o0;

and for all (x,y) € R" x R,

dp{)

ngx‘ () = exp (=AM (x,y) = Khax (=A)) -
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Preliminaries
Relative Entropy Regularization and the Gibbs Probability Measure

Comments on Notation:

Ne(R™ME2{Pe AR : P < Q}

Consider a o-finite measure Q over (R™, Z (R™)); a real A; and some x € R™

. 1
somin [ Hy)dP(y) + 3D(PIQ). and &)
1
somax [ hx)dP() + D(PIQ). 2

Lemma (Lemma 1 in [1])

Assume that the optimization problem in (1) (respectively, in (2)) admits solutions. Then, if A > 0

(respectively, if X < 0), the Gibbs probability measure P&hlf;’)\() is the unique solution.

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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Preliminaries
Relative Entropy Regularization and the Gibbs Probability Measure

Lemma (Lemma 2 in [1])

Given an (h, Q, \)-Gibbs probability measure, denoted by Pth )? i‘(), with x € R",

1 1
Ko (~X)= [ Ko y)PYEY (1) + D (PY2VlQ)
1
:/ h(x,y)dQ (y) — XD(QHP%’)&?) :
Moreover, if X > 0,

1
Ko (=N)=, min [ hx.y)P() + D(PIQ).

Alternatively, if A <0,

Ko (~N)=, max [ hxy)dP() + D(PIQ).

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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Variations of the Expectation due to Deviations from the Gibbs Probability Measure

Lemma (Lemma 3 in [1])

Consider an (h, Q, X)-Gibbs probability measure, denoted by Pg,hl’)?;i‘() € A(R™), with A # 0 and x € R.
For all P € Aq (R™),

G (x, P, PU20)=2 (D (PIPYRY) + D (PURVIQ) - D(PIIQ)).
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Variations of the Expectation due to Deviations from the Gibbs Probability Measure

Lemma (Lemma 3 in [1])

Consider an (h, Q, \)-Gibbs probability measure, denoted by Pg,hl’)?;i) € A(R™), with X # 0 and x € R.
For all P € Aq (R™),

Gr (x, P, P20)=3 (D(PIPGE2Y) + D (PE2V]IQ) - D(PIIQ))

Proof: The proof follows by noticing that for all P € Ag (R™),

(PIIPY'])? i)) /log <dP‘C}’2*”(”> dP(y) = /log ( o (y)(y)> dP(y)

Y| X=x Y|X X

/ log ( e (y)> dP(y) + D(P[Q) = A / h(x.y)dP(y) + Kp.gu (—A) + D(P] Q)

Y|X X

=2Gy (x, P, PY)) = D(PUIZ))1Q) + D(PIQ).

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.

[2] Yaiza Bermudez, Samir M. Perlaza, Gaetan Bisson, and Ifiaki Esnaola. “Proofs for Folklore Theorems on the Radon-Nikodym Derivative”. arXiv preprint arXiv:2501.18374. 8/28
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Key Observation:
G (x, Pr, P2) = G (x Pu, PYREY) = G (o, Py P

Theorem (Theorem 4 in [1])

For all probability measures Py and P> in Aq (R™), with Q a o-finite measure,

1
Gax, P, P2) =+ (D(PLIPYRY) — D (PllP2Y) +D(P3)1Q) - D(iIQ) ),

where the probability measure Pg,h")?jx), with X # 0, is an (h, Q, \)-Gibbs probability measure.
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Variations of the Expectation due to Changes in the Probability Measure

Characterization of G, (x, P1, P2)

Key Observation:
G (x, Pr, P2) = G (x Pu, PYREY) = G (o, Py P

Theorem (Theorem 4 in [1])

For all probability measures Py and P> in Aq (R™), with Q a o-finite measure,
1
Gax, P, P2) =+ (D(PLIPYRY) — D (PllP2Y) +D(P3)1Q) - D(iIQ) ),

where the probability measure Pg,h")?jx), with X # 0, is an (h, Q, \)-Gibbs probability measure.

» Qcanbe P, if P, < Pi;or P, if PL < P
» Q can be the Lebesgue measure, if P; and P, has a probability density function
» @ can be the counting measure, if P; and P, has a probability mass function

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887. 9/28



Variations of the Expectation due to Changes in the Probability Measure
Characterization of G, (x, P1, P2)

Corollary (Corollary 5 in [1])

Consider the variation Gy (x, P1, P2). If Py < P>, then,

1
Ga o, P P2) = 5 (D (PP — D (Pl ~ D(PiIP) ).

Alternatively, if P, < Pi, then,
1
Gh (x, P, P2) = X(D(P1||P(yh|fl=’:)) — D(P|| PSR + D(P2||P1)),

where the probability measures PY:7*) and P> are respectively (h, P1,))- and (h, P>, \)-Gibbs

probability measures, with \ # 0.

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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Variations of the Expectation due to Changes in the Probability Measure

Characterizations of Gh( Yl‘jx Pg‘)x PX)

Theorem (Theorem 6 in [1])

Consider the variation Gy, (Px}\)xa PY‘X, Px) and assume that for all x € R", Pyll)X ., < Qand PY|X -
Q, with Q a o-measure. Then,

G (P P Px) = 3 [ (D (PRl PUR2Y) — D (PR Y
+0(PEX_11Q) ~ D (P, 1Q) )dPx(x),

where Py\x , with A # 0, is an (h, Q, \)-Gibbs conditional probability measure.

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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Variations of the Expectation due to Changes in the Probability Measure

Characterizations of Gy, (Py, Py|x, Px)

Mutual information: / (Py‘x; Px)é/ D(Py|X:X||PY) dPx(x); and

Lautum information: L (Pyx; Px)é/ D (Py || Py|x=x) dPx(x).
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Variations of the Expectation due to Changes in the Probability Measure

Characterizations of G, (PY7 Py‘X. PX)
Mutual information: / (Py‘x; Px)é/ D(Py|X:XHPY) dPx(x); and

Lautum information: L (Pyx; Px)é/ D (Py || Py|x=x) dPx(x).

Theorem (Theorem 6 in [1])

Consider the expected variation G (Py7 Py x, Px) and assume that, for all x € R":
(a) Py < Q and Py|x—x < Q, with Q a given o-finite measure; and

(b) Py <> Py|x=x-

Then, it follows that

Gh (Py, Pyix, Px) = % (l (Pyix; Px) + L (Pyx; Px)

+f/ log< e ;)(y)) aPv(y)ap() - [ | log(d s ;)(y)) dex_x(y)dPx(x)),
Y|X—x

Y|X—x
where Pyh‘)? N with A # 0, is an (h, @, \)-Gibbs conditional probability measure.
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Variations of the Expectation due to Changes in the Probability Measure

Characterizations of Gy, (Py, Py |x, PX)

Corollary (Corollary 9 in [1])

Consider an (h, Q, \)-Gibbs conditional probability measure, denoted by P\(fhlf’)\) € A(R™R"), with X #
0; and a probability measure Px € A\ (R"). Let the measure PS,’"Q’A) € A (R™) be such that for all sets
Ae B(R™),

PYY) ()= [ PU2Y (A)dPx(x).
Then,

G (P12, S, P) =3 (1 (P2 5P) + (A2 ).

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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What is so special about the Gibbs probability measure?

Consider a o-finite measure Q over (R”, 2 (R™)); some A € R\ {0}; some x € R"; and a convex
function f : [0, +00) — R, with f(1) = 0.

min /h(x,y)dP(y) + lDf(PHQ)7 and

PeAg(RM) A
1
somax [ hx,)APG) + D (PIQ).

Nothing special: The solutions to the optimization problems above possess the same properties! [3]

[3] Francisco Daunas, Ifiaki Esnaola, Samir M. Perlaza, and Gholamali Aminian. “G ization Error of f-Di il Algorithms via Duality”. arXiv preprint
arXiv:2502.14544.
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Problem Formulation

Consider the following supervised learning setting:
» Set X of patterns, set )V of labels, and set M C RY of models with d € IN.

» Hypothesis class: A function h: M x X — ).

Definition (Risk Function)

Given a data point (x,y) € X x ), the model & € M induces the risk ¢ (h(0, x),y), where £ : Y x Y —
[0, +00) is a risk function.

Definition (Empirical Risk)

Given the dataset z = ((x1,y1),(x2,¥2),--.,(Xn, yn)) € (X X V)", the empirical risk induced by the
model 6 € M is

L(Z, 9) = %Zz(h(ov Xi)7yi) .

15/28



Generalization Error of Machine Learning Algorithms
Definition (Expected Empirical Risk)
Let the function R; : A (M, %2 (M)) — [0, +00) be such that
R, (P) = / L (2,0)dP(8).
Let the function Rg : A (X x V) — [0, 4+00) be such that

Ro (Q) = / £(h(8, %), ) dQ(x. ).

[4] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algori " . arXiv preprint arXiv:2411.12030.
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Generalization Error of Machine Learning Algorithms
Definition (Expected Empirical Risk)
Let the function R; : A (M, %2 (M)) — [0, +00) be such that
R, (P) = / L (2,0)dP(8).
Let the function Rg : A (X x V) — [0, 4+00) be such that

Re (Q) = / £(h(8,%), y) dQ(x. ).

Definition (Generalization Gap)
The generalization gap induced by the algorithm Pg|z, with training and test datasets z and u is

Ru (PG|Z=Z) - R; (PB|Z=Z)

Test Expected Risk  Training Expected Risk

[4] Samir M. Perlaza and Xinying Zou. “The G ization Error of ine Learning Algorithms”. arXiv preprint arXiv:2411.12030.
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Generalization Error of Machine Learning Algorithms
Definition (Expected Empirical Risk)
Let the function R; : A (M, %2 (M)) — [0, +00) be such that
R, (P) = / L (2,0)dP(8).
Let the function Rg : A (X x V) — [0, 4+00) be such that

Ro (Q) = / £(h(8, %), ) dQ(x. ).

Assumption:

Training datasets z = ((x1,y1),(x,%2),...,(Xo,¥n)) € (X x V)" and test datasets u =
((u1, 1), (p2,12) -5 (nyvn) ) € (X x V)" are i.i.d according to Pz € A ((X x V)").

[4] Samir M. Perlaza and Xinying Zou. “The ization Error of Machine Learning Algori " . arXiv preprint arXiv:2411.12030.
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Generalization Error of Machine Learning Algorithms
Definition (Expected Empirical Risk)
Let the function R; : A (M, %2 (M)) — [0, +00) be such that

R, (P) = / L (2,0)dP(8).

Let the function Rg : A (X x V) — [0, 4+00) be such that

Ro (Q) = / £(h(8, %), ) dQ(x. ).

Generalization Error

The generalization error of the algorithm Pg|z is

E (Pe|z, Pz) // (Pojz=z) — Rz (Pe|z=;)) dPz (u)dPz (2).

[4] Samir M. Perlaza and Xinying Zou. “The G 1 Error of Machine Learning Algorithms”. arXiv preprint arXiv:2411.12030.
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Generalization Error of Machine Learning Algorithms

Challenge: Apparently, generalization error
is not a variation of an expectation

17/28



Generalization Error as a Variation of an Expectation

Lemma (Lemma 3 in [4])
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Generalization Error as a Variation of an Expectation

Lemma (Lemma 3 in [4])

The generalization error G (Pe|z, Pz) satisfies

G (Poiz, Pz) = / ( / L(z,6)dPe (8) — / L(,8) dPoyz_, (e)) P (2),

where for all measurable subsets C of M, Pe (C) = [ Pgjz—; (C) dPz (2).

Problem 1: Empirical Risk Minimization with Relative Entropy Regularization [5]

/L(z,@)dP(0)+>\D(P||Q).

min
PeAq(M)

18/28



Generalization Error as a Variation of an Expectation

Lemma (Lemma 3 in [4])

The generalization error G (Pe|z, Pz) satisfies

T (Poyz, P2) :/(/L(z,e)dPe (0)—/L(z,0)dP9‘z:,(0)> P (2),

where for all measurable subsets C of M, Pe (C) = [ Pa|z—, (C) dPz (2).

Problem 1: Empirical Risk Minimization with Relative Entropy Regularization [5]

i /L(z,e)dp(o) +AD(P||Q).

Theorem (Theorem 3 in [5])

pLaN)

07—z and satisfies for all 8 € supp Q,

The solution to Problem 1 is unique, denoted by

dpylyY 1 1
|Z=z _ _ oty 1+
O (g)=erp (Ko (1) ~ +L(2.0)).

18/28



Generalization Error as a Variation of an Expectation

Lemma (Lemma 3 in [4])

The generalization error G (Pe)z, Pz) satisfies
G (PaziP2) = [ ([L(20)aPo (6) - [ L(z.0)aPaz-. (8)) aPz (2),
where for all measurable subsets C of M, Pe (C) = [ Pa|z—, (C) dPz (2).

Lemma (Lemma 4 in [4])

If for all z € (X x V)", the measures Po|z—; and Pe are absolutely continuous w.r.t. the o-finite
measure Q,

G (Poiz.Pz) = [ (D(PollPS2.) ~ D (Poiz=elP&5Y,) + D (Poiz—c]1Q) ~ D(Pol| @) )Pz (2).

18/28



Exact Characterizations of the Generalization Error

Theorem (Theorem 14 in [4])

Assume that for all z € (X x Y)":

(a) The probability measures Pg and Pg|z—, are both absolutely continuous w.r.t. Q € A (M);
(b) The measure Q is absolutely continuous with respect to Pg; and

(c) The measure Pg is absolutely continuous with respect to Pg|z—.
Then,

f(":’e\z,F’z) A( P@|z,Pz) + L (Peyz: Pz))
+)\//I G"z Z (0)dPe (8)dPz(z) — )\//I G"z - (0)dPo)z—- (8)dPz(2).

G)\Z z G)\Z z

19/28



Exact Characterizations of the Generalization Error

Theorem (Theorem 14 in [4])

Assume that for all z € (X x Y)":
(a) The probability measures Po and Pg|z—, are both absolutely continuous w.r.t. Q € A (M);
(b) The measure Q is absolutely continuous with respect to Pg; and

(c) The measure Pg is absolutely continuous with respect to Pg|z—.
Then,

E(":’e|z,Pz) A( P@|z,Pz) + L (Peyz: Pz))
+)\//I g G"Z Z (0)dPe (8)dPz(z) — )\//I e‘z - (0)dPo)z—- (8)dPz(2).

G\Z z G\Z z

What if

dPe|z_» .
A / / log dP‘E’gi) (8) dPe (8) dPz (z / / @(LZA) (6) APz, (8) dPz (2)=0.

0|z=2 o|z z

19/28
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Assume that for all z € (X x Y)":

(a) The probability measures Po and Pg|z—, are both absolutely continuous w.r.t. Q € A (M);
(b) The measure Q is absolutely continuous with respect to Pg; and

(c) The measure Pg is absolutely continuous with respect to Pg|z—.

Then,

E(":’e\z,F’z) A( P@|z,Pz) + L (Peyz: Pz))
+)\//Iog G"z Z (0)dPe (8)dPz(z) — )\//I G"z oy (8)dPo|z— (8)dPz(2).

G\Z z G)\Z z

Corollary (Theorem 1 in [7])

G(PSY, P2)=A (1 (PSY: Pz) + L (PSS Pz)).

[7] Gholamali Aminian; Yuheng Bu; Laura Toni; Miguel R. D. Rodrigues; Gregory W. Wornell. “Information-Theoretic Ck izations of G ization Error for the Gibbs
Algorithm”. |EEE Transactions on Information Theory, vol. 70, no. 1, pp. 632 - 655, Jan., 2024.
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Generalization Error as a Variation of an Expectation

Lemma (Lemma 6 in [4])

Assume that Pz € A((X x Y)") is a product measure formed by Pz € A(X x ). Then, the
generalization error G (Pg|z, Pz) satisfies

CPoiz, P2) = [ ([ £(h(6.5).9)dPz (x.y) — [ £(h(6.%).y) aPzi0-0 (x.5) ) aPa (6).

[4] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. arXiv preprint arXiv:2411.12030.
[6] Xinying Zou, Samir M. Perlaza, Ifiaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-G ing Probability M: in Statistical Learning”. |EEE
Journal on Selected Areas in Information Theory, vol. 5, pp. 175-189, Apr., 2024.
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Lemma (Lemma 6 in [4])

Assume that Pz € A((X x Y)") is a product measure formed by Pz € A(X x ). Then, the
generalization error G (Pg|z, Pz) satisfies

CPoiz, P2) = [ ([ £(h(6.5).9)dPz (x.y) — [ £(h(6.%).y) aPzi0-0 (x.5) ) aPa (6).

Problem 2: Loss Maximization with Relative Entropy Regularization [6]

e / ((h(8,x).y)dP(x,y) — BD(P||Ps).

[4] Samir M. Perlaza and Xinying Zou. “The ization Error of Machine Learning Algori " . arXiv preprint arXiv:2411.12030.
[6] Xinying Zou, Samir M. Perlaza, Ifiaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-G ing Probability M. in Statistical Learning”. |EEE
Journal on Selected Areas in Information Theory, vol. 5, pp. 175-189, Apr., 2024.
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Generalization Error as a Variation of an Expectation

Lemma (Lemma 6 in [4])

Assume that Pz € A((X x Y)") is a product measure formed by Pz € A(X x ). Then, the
generalization error G (Pg|z, Pz) satisfies

CPoiz, P2) = [ ([ £(h(6.5).9)dPz (x.y) — [ £(h(6.%).y) aPzi0-0 (x.5) ) aPa (6).

Problem 2: Loss Maximization with Relative Entropy Regularization [6]

/ ((h(8,x),y)dP(x,y) — BD(P||Ps).

max
PEAp (X XV)

Theorem (Theorem 1 in [6]: Worst-Case Data-Generating Probability Measure)

The solution to Problem 2 is unique, denoted by P(;gf;, and satisfies for all (x,y) € supp Ps,
(Ps,B)
P2|e:9

2920 (x, )= exp (54 (1(6.%) )~ Jes (5))
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Generalization Error as a Variation of an Expectation

Lemma (Lemma 6 in [4])

Assume that Pz € A((X x Y)") is a product measure formed by Pz € A(X x ). Then, the
generalization error G (Pg|z, Pz) satisfies

CPoiz, P2) = [ ([ £(h(6.5).9)dPz (x.y) — [ £(h(6.%).y) aPzi0-0 (x.5) ) aPa (6).

Lemma (Lemma 7 in [4])

If for all @ € M, the probability measures Pz and Pz|e—g are absolutely continuous w.r.t. the probability
measure Ps € A (X x )),

G(Pe)z, Pz) = 5/ (D (PZ|9:9||P(ZT’53’2) -D (Pz||P(ZTfa’2) — D(Pzje—ol|Ps) + D(Pz||P5)>dP@ ).

[4] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. arXiv preprint arXiv:2411.12030.
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Exact Characterizations of the Generalization Error

Theorem (Theorem 29 in [4])

Assume that for all 0 € M:

(a) The probability measure Pz is a product measure formed by some Pz € A (X x Y);
(b) The probability measures Pz and Pzjg—g are absolutely continuous w.r.t. Ps; and

(c) The probability measures Pz and Pzjg—g are mutually absolutely continuous.
Then,

G(Pojz,Pz) = —% (I(Pe|ziPz) 4+ L(Pe|z: Pz))

dPz|e=
+8 / / log <(ﬂ3§§f§)’(z)>d&|@_e (z)dPe (6) — / / < P f,',@ (2 )>sz (2)dPo (6).

2|0=6
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Exact Characterizations of the Generalization Error

Theorem (Theorem 29 in [4])

Assume that for all 8 € M:
(a) The probability measure Pz is a product measure formed by some Pz € A (X x Y);
(b) The probability measures Pz and Pzjg—g are absolutely continuous w.r.t. Ps; and

(c) The probability measures Pz and Pzjg—g are mutually absolutely continuous.
Then,

E(Pe|z,:‘°z) = —% (I(Pe|ziPz) 4+ L(Pe|z: Pz))

d d
48 [ [10 <d Pt )>de|@ o(z)4Po(6) 5 [ [ 1o <d 2400, )>sz(z)dPe(9)-

2|e 0

What if

dPe|z_; dPe|z_;
,\//log dP‘ng) (6) dPe (8) dP; (2) —)\//Iogdpe%(e) dPe|z—. () dPz (2)=0.

0|Z=z 6|Z=z
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Zero-Sum Game Formulation

Classical m; x my ZSGs in Normal Form

» Actions of Player k: Ak 2 {ak1,ak2,---,a3km}-

» When Player 1 plays a;,; and Player 2 plays a. j, the payoff is u;j

u11 uip - Ulmy

u2,1 o - U2,my
H_

Ump, 1 Ump2 oo Umy,mp

» A strategy for Player k is a probability measure Pa, € A (Ax).
» Expected Payoff determined by the function u: A (A1) X A (A2) — R:

my  mp

u(Pay, Pa)= > Py (a1,i) Pa, (22,) ui,

i=1 j=1

Player 1 maximizes, while Player 2 minimizes the payoff.
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Zero-Sum Games with Noisy Observations

Game Formulation — Player 1 maximizes — Player 2 minimizes

Consider the m; x mp ZSG with payoff matrix u:

Player 2
Pa,

Az

PAz [A2

As

Player 1 Ay
Pa

1142

» Three Random Variables:
Action of Player 1: A;
Action of Player 2: Aj

>

>
>
>

Noisy Observation of the Action of Player 2: Ay.
Joint Probability Distribution:

Pa

1424,

1S

— v (PAl\i‘z’ PA?)

Ar| Az PA~2 |A2 Pa,-
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Zero-Sum Games with Noisy Observations
Game Formulation — Player 1 maximizes — Player 2 minimizes

Consider the m; x mp ZSG with payoff matrix u:

Player 2 Az p. A Player 1 Ar
Pa Az] Az P, i
’ " u — V(PAl\i‘z’PAz)
PA1 Ay = a4, P/‘iz [A2 Pa,.

» Strategy of Player 1: P, ;, € A (Aﬂflz)
» Strategy of Player 2: Py, € A (A)
» Channel Output:Pj, ., € A (flz\Az)
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Zero-Sum Games with Noisy Observations
Game Formulation — Player 1 maximizes — Player 2 minimizes

Consider the m; x mp ZSG with payoff matrix u:

Player 2 Az p. Az Player 1 Ar
Pa, Az] Az P,

1142

1S

— v (PAl\i‘z’ PA?)

The expected payoff is determined by v : A (.A1|.A~2) x A (A2) = R,

V(PAIMZ,PAZ):/(/ (/ ua,deAll,iF,;(a)) dPﬂzlAzzb(B))dPAz(b)
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Zero-Sum Games with Noisy Observations

Game Formulation — Player 1 maximizes — Player 2 minimizes

Consider the m; x mp ZSG with payoff matrix u:

Player 2 Az A

p Player 1 Ay
P Az| Az
Az

Pa

1142

1S

— v (PAl\i‘z’ PA?)

The expected payoff is determined by v : A (A1|A~2) x A (A2) = R,

1 72 d'Dﬁ |[Ap=ar ;i , =~ ~
v (PAMQ, PA2>:/ (Z PAI\AQ:E(SLI')< > uijPay(a2,) dpwz# (b)>) AP, ay=a, (D),

i=1 j=1 A Ax=a3

for some k € {1,2,...,my}.
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Zero-Sum Games with Noisy Observations
Game Formulation — Player 1 maximizes — Player 2 minimizes

Consider the my x my ZSG with payoff matrix u:

Player 2 A | p Az Player 1 A
P Y Az|Az
Az

Vv

PA1IA2

1S

— v (PAl\Az’ PA?)

+

Definition (Best Response)

m my dP;
BRi(P, b) 2 ,. ( - P(a) o Palezan )
Ra(P, b) = arg e ,~§=1 Q(a,i) j§=1 ujjP(a2.;) P (b)

2|Ar=ap k
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Zero-Sum Games with Noisy Observations

Game Formulation — Player 1 maximizes — Player 2 minimizes

Consider the my x my ZSG with payoff matrix u:

Player 2 A | p Az Player 1 A1
P Y Az|Az
Az

PA1|A2

1S

— v (PAl\Az’ PA?)

+

Definition (Cost of Player 2)
Let the function ¥ : A (A2) — R be

v(P) = V(QAIMZvP)’

where for all b € A, it holds that Q, z,_; € BR1(P, b).
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Zero-Sum Games with Noisy Observations

Game Formulation — Player 1 maximizes — Player 2 minimizes

Consider the my x my ZSG with payoff matrix u:

Player 2 Az p. Az Player 1 A1
P Az|Az
Az

PA1|A2

1S

— v (PAl\Az’ PA?)

Definition (Equilibrium)

The strategies pt

ol A(A1]A) and P);z € A (Az) form an equilibrium if

P};z € arg Pergi&z) v(P),

and for all b € A,

i g
P! 4.5 € BRu(P},. b).
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Zero-Sum Games with Noisy Observations

Equilibrium — Player 1 maximizes — Player 2 minimizes

The game (with noisy observations) possesses a unique equilibrium.
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Zero-Sum Games with Noisy Observations

Equilibrium — Player 1 maximizes — Player 2 minimizes

The game (with noisy observations) possesses a unique equilibrium.

Lemma

Let the probability measures (P:gll A Pj‘z) form an equilibrium of the game (with noisy observations);
and let the pair of strategies (P , Px,) € A (A1) x A (Az) be an Nash Equilibrium of the game (without
observations). Then,

v (P, Ph) < v (Pj‘lmz, PI\Z) < min max u; .

[7] Ke Sun, Samir M. Perlaza, and Alain Jean-Marie. “2 x 2 Zero-Sum Games with Commitments and Noisy Observations”. In Proc. of the IEEE International Symposium on

Information Theory (ISIT), Taipei, Taiwan, Jun., 2023.
[8] Emmanouil-Marios Athanasakos and Samir M. Perlaza. “Leveraging Noisy Observations in Zero-Sum Games”. In Proc. of the IEEE Information Theory Workshop (ITW),

Shenzhen, China, Nov. 2024.
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Zero-Sum Games with Noisy Observations

Equilibrium — Player 1 maximizes — Player 2 minimizes

Challenge: What is the gain/loss due to the noisy observation of
the actions 7

25/28



Zero-Sum Games with Noisy Observations

Numerical Results

» Two Actions: |A;| = |4y =2

» Gaussian Channel: A; = A, + W, with W ~ N (0, 02), for some given o2 > 0.

6 T T T T T T T T T
——(Py,) =10
8(Pa,) o =10°
8(Pa,) o> =3x10
°r (Py,) o?=5x10° 1
""" a(Py,)

k(P a(Pi)) = (Ph,u(Pi, Pi))
af ]
af ]

’;
&
L
1
0.8
L
o
7
0.2
ol
___________________________ ] . e
0.2 e
042 044 046 048
0 0.1 0.2 03 0.4 0.6 0.7 08 0.9 1
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Zero-Sum Games with Noisy Observations

Impact of Observations

Let the probability measures (PI‘ i vP,Zz) form an equilibrium of the game (with noisy observations);
and let the pair of strategies (Pj, , P4,) € A (A1) x A (Az) be an Nash Equilibrium of the game (without
observations). Then,

v (Pa,Pa) <v (PT o ,P;f\z) < mjin max uj,j.

Ap|Ag?

(PT Pj‘z) —v (PZI, Pzz):/ ua,de:’\lAz(a, b) — / uapd P, P, (a, b),

where for all measurable subsets C = C; x Cz of A; X A3,

Prn(©=[ [ [ 4Pl s, (000Ps nu(BIIPL(5) 3
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Conclusions and Final Remarks



Thank you for your attention!

Questions/Comments/Typos: samir.perlaza@inria.fr
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