
Variations of the Expectation due to Changes in the Measure

Applications to Generalization and Game Theory

Samir M. Perlaza

samir.perlaza@inria.fr

INRIA, Centre Inria d’Université Côte d’Azur
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Preliminaries
Variation of the Expectation due to Changes in the Measure

Comments on Notation:

▶ The Borel σ-algebra on Rm is denoted by B (Rm)

▶ The set of all probability measures on the measurable space (Rm,B (Rm)) is denoted by △(Rm).

▶ Let h : Rn ×Rm → R be a Borel measurable function.

▶ Given two measures P1 and P2 in △(Rm), assume that for all i ∈ {1, 2},∫
|h(x , y)|dPi (y) < +∞, for some fixed x .

▶ Let Gh : Rn ×△(Rm)×△(Rm) → R be a functional such that

Gh (x ,P1,P2) =

∫
h(x , y)dP1(y)−

∫
h(x , y)dP2(y).

The value Gh (x ,P1,P2) characterizes the variation of the expectation of h(x ,Y ), when

Y ∼ P2 changes to Y ∼ P1.
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Preliminaries
Variation of the Expectation due to Changes in the Measure

Definition

A family PY |X ≜ (PY |X=x)x∈Rn of elements of △(Rm) indexed by Rn is said to be a conditional

probability measure, if for all sets A ∈ B (Rm), the map

x 7→ PY |X=x(A) is Borel measurable.

Comments on Notation:

▶ The set of all such conditional probability measures is denoted by △ (Rm|Rn).

▶ Let Ḡh : △ (Rm|Rn)×△ (Rm|Rn)×△ (Rn) → R be a functional such that

Ḡh

Ä
P

(1)
Y |X ,P

(2)
Y |X ,PX

ä
=

∫ Å∫
h(x , y)dP

(1)
Y |X=x(y)−

∫
h(x , y)dP

(2)
Y |X=x(y)

ã
dPX (x)

=

∫
h(x , y)dP

(1)
Y |XPX (y , x)−

∫
h(x , y)dP

(2)
Y |XPX (y , x)

=

∫
Gh

Ä
x ,P

(1)
Y |X=x ,P

(2)
Y |X=x

ä
dPX (x).The value Ḡh

Ä
P

(1)
Y |X ,P

(2)
Y |X ,PX

ä
characterizes the variation of the expectation of h(X ,Y ), when

(X ,Y ) ∼ P
(2)
Y |XPX changes to Y ∼ P

(1)
Y |X ,PX .
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Ä
P

(1)
Y |X ,P

(2)
Y |X ,PX

ä
characterizes the variation of the expectation of h(X ,Y ), when

(X ,Y ) ∼ P
(2)
Y |XPX changes to Y ∼ P

(1)
Y |X ,PX .

3 / 28



Preliminaries
Variation of the Expectation due to Changes in the Measure

Definition

A family PY |X ≜ (PY |X=x)x∈Rn of elements of △(Rm) indexed by Rn is said to be a conditional

probability measure, if for all sets A ∈ B (Rm), the map

x 7→ PY |X=x(A) is Borel measurable.

Comments on Notation:

▶ The set of all such conditional probability measures is denoted by △ (Rm|Rn).
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Preliminaries
Variation of the Expectation due to Changes in the Measure

Special Case:

▶ Given PY |X ∈ △ (Rm|Rn) and PX ∈ △ (Rn), let PY ∈ △ (Rn) be such that for all

sets A ∈ B (Rm),

PY (A) =

∫
PY |X=x (A) dPX (x).

▶

Ḡh

(
PY ,PY |X ,PX

)
=

∫
h(x , y)dPYPX (y , x)−

∫
h(x , y)dPY |XPX (y , x).

... from the joint probability measure to the product of the marginals.
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Preliminaries
The Gibbs Probability Measure

Consider a σ-finite measure Q over (Rm,B (Rm)) and some x ∈ Rn:

▶ Denote by Kh,Q,x : R→ R the function that satisfies

Kh,Q,x (t) = log

Å∫
exp (t h(x , y))dQ (y)

ã
.

If Q is a probability measure, Kh,Q,x is the cumulant generating function of h(x ,Y ), with Y ∼ Q.

Definition (Gibbs Conditional Probability Measure)

The probability measure P
(h,Q,λ)
Y |X ∈ △ (Rm|Rn), with λ ∈ R, is said to be an (h,Q, λ)-Gibbs conditional

probability measure if for all x ∈ Rn,

Kh,Q,x (−λ) < +∞;

and for all (x , y) ∈ Rn ×Rm,

dP
(h,Q,λ)
Y |X=x

dQ
(y) = exp (−λh (x , y)− Kh,Q,x (−λ)) .
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Preliminaries
Relative Entropy Regularization and the Gibbs Probability Measure

Comments on Notation:

△Q (Rm) ≜ {P ∈ △ (Rm) : P ≪ Q}

Consider a σ-finite measure Q over (Rm,B (Rm)); a real λ; and some x ∈ Rn:

min
P∈△Q (Rm)

∫
h(x , y)dP(y) +

1

λ
D(P∥Q) , and (1)

max
P∈△Q (Rm)

∫
h(x , y)dP(y) +

1

λ
D(P∥Q) . (2)

Lemma (Lemma 1 in [1])

Assume that the optimization problem in (1) (respectively, in (2)) admits solutions. Then, if λ > 0

(respectively, if λ < 0), the Gibbs probability measure P
(h,Q,λ)
Y |X=x is the unique solution.

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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Preliminaries
Relative Entropy Regularization and the Gibbs Probability Measure

Lemma (Lemma 2 in [1])

Given an (h,Q, λ)-Gibbs probability measure, denoted by P
(h,Q,λ)
Y |X=x , with x ∈ Rn,

− 1

λ
Kh,Q,x (−λ)=

∫
h(x , y)dP

(h,Q,λ)
Y |X=x (y) +

1

λ
D
Ä
P

(h,Q,λ)
Y |X=x ∥Q

ä
=

∫
h(x , y)dQ (y)− 1

λ
D
Ä
Q∥P(h,Q,λ)

Y |X=x

ä
.

Moreover, if λ > 0,

− 1

λ
Kh,Q,x (−λ)= min

P∈△Q (Rm)

∫
h(x , y)dP(y) +

1

λ
D(P∥Q) .

Alternatively, if λ < 0,

− 1

λ
Kh,Q,x (−λ)= max

P∈△Q (Rm)

∫
h(x , y)dP(y) +

1

λ
D(P∥Q) .

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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Variations of the Expectation due to Deviations from the Gibbs Probability Measure

Lemma (Lemma 3 in [1])

Consider an (h,Q, λ)-Gibbs probability measure, denoted by P
(h,Q,λ)
Y |X=x ∈ △ (Rm), with λ ̸= 0 and x ∈ R.

For all P ∈ △Q (Rm),

Gh

Ä
x ,P,P

(h,Q,λ)
Y |X=x

ä
=
1

λ

Ä
D
Ä
P∥P(h,Q,λ)

Y |X=x

ä
+D
Ä
P

(h,Q,λ)
Y |X=x ∥Q

ä
− D(P∥Q)

ä
.

Proof: The proof follows by noticing that for all P ∈ △Q (Rm),

D
Ä
P∥P(h,Q,λ)

Y |X=x

ä
=

∫
log

Ñ
dP

dP
(h,Q,λ)
Y |X=x

(y)

é
dP(y) =

∫
log

Ñ
dQ

dP
(h,Q,λ)
Y |X=x

(y)
dP

dQ
(y)

é
dP(y)

=

∫
log

Ñ
dQ

dP
(h,Q,λ)
Y |X=x

(y)

é
dP(y) + D(P∥Q) = λ

∫
h(x , y)dP(y) + Kh,Q,x (−λ) + D(P∥Q)

=λGh

Ä
x ,P,P

(h,Q,λ)
Y |X=x

ä
− D
Ä
P

(h,Q,λ)
Y |X=x

∥Q
ä
+D(P∥Q) .

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.

[2] Yaiza Bermudez, Samir M. Perlaza, Gaetan Bisson, and Iñaki Esnaola. “Proofs for Folklore Theorems on the Radon-Nikodym Derivative”. arXiv preprint arXiv:2501.18374.
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Variations of the Expectation due to Changes in the Probability Measure
Characterization of Gh (x,P1,P2)

Key Observation:

Gh (x ,P1,P2) = Gh

Ä
x ,P1,P

(h,Q,λ)
Y |X=x

ä
− Gh

Ä
x ,P2,P

(h,Q,λ)
Y |X=x

ä
.

Theorem (Theorem 4 in [1])

For all probability measures P1 and P2 in △Q (Rm), with Q a σ-finite measure,

Gh (x ,P1,P2) =
1

λ

Å
D
Ä
P1∥P(h,Q,λ)

Y |X=x

ä
− D
Ä
P2∥P(h,Q,λ)

Y |X=x

ä
+D(P2∥Q)− D(P1∥Q)

ã
,

where the probability measure P
(h,Q,λ)
Y |X=x , with λ ̸= 0, is an (h,Q, λ)-Gibbs probability measure.

▶ Q can be P1, if P2 ≪ P1; or P2, if P1 ≪ P2

▶ Q can be the Lebesgue measure, if P1 and P2 has a probability density function

▶ Q can be the counting measure, if P1 and P2 has a probability mass function
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Variations of the Expectation due to Changes in the Probability Measure
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Variations of the Expectation due to Changes in the Probability Measure
Characterization of Gh (x,P1,P2)

Corollary (Corollary 5 in [1])

Consider the variation Gh (x ,P1,P2). If P1 ≪ P2, then,

Gh (x ,P1,P2) =
1

λ

Å
D
Ä
P1∥P(h,P2,λ)

Y |X=x

ä
− D
Ä
P2∥P(h,P2,λ)

Y |X=x

ä
− D(P1∥P2)

ã
.

Alternatively, if P2 ≪ P1, then,

Gh (x ,P1,P2) =
1

λ

Å
D
Ä
P1∥P(h,P1,λ)

Y |X=x

ä
− D
Ä
P2∥P(h,P1,λ)

Y |X=x

ä
+D(P2∥P1)

ã
,

where the probability measures P
(h,P1,λ)
Y |X=x and P

(h,P2,λ)
Y |X=x are respectively (h,P1, λ)- and (h,P2, λ)-Gibbs

probability measures, with λ ̸= 0.

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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Variations of the Expectation due to Changes in the Probability Measure
Characterizations of Ḡh

Ä
P

(1)

Y |X ,P
(2)

Y |X ,PX

ä
Theorem (Theorem 6 in [1])

Consider the variation Ḡh

Ä
P

(1)
Y |X ,P

(2)
Y |X ,PX

ä
and assume that for all x ∈ Rn, P

(1)
Y |X=x ≪ Q and P

(2)
Y |X=x ≪

Q, with Q a σ-measure. Then,

Ḡh

Ä
P

(1)
Y |X ,P

(2)
Y |X ,PX

ä
=

1

λ

∫ Å
D
Ä
P

(1)
Y |X=x∥P

(h,Q,λ)
Y |X=x

ä
− D
Ä
P

(2)
Y |X=x∥P

(h,Q,λ)
Y |X=x

ä
+D
Ä
P

(2)
Y |X=x∥Q

ä
− D
Ä
P

(1)
Y |X=x∥Q

äã
dPX (x),

where P
(h,Q,λ)
Y |X , with λ ̸= 0, is an (h,Q, λ)-Gibbs conditional probability measure.

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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Variations of the Expectation due to Changes in the Probability Measure
Characterizations of Ḡh

(
PY ,PY |X ,PX

)
Mutual information: I

(
PY |X ;PX

)
≜
∫

D
(
PY |X=x∥PY

)
dPX (x); and

Lautum information: L
(
PY |X ;PX

)
≜
∫

D
(
PY ∥PY |X=x

)
dPX (x).

Theorem (Theorem 6 in [1])

Consider the expected variation Ḡh

(
PY ,PY |X ,PX

)
and assume that, for all x ∈ Rn:

(a) PY ≪ Q and PY |X=x ≪ Q, with Q a given σ-finite measure; and

(b) PY ≪≫ PY |X=x .

Then, it follows that

Ḡh

(
PY ,PY |X ,PX

)
=

1

λ

(
I
(
PY |X ;PX

)
+ L

(
PY |X ;PX

)
+

∫ ∫
log

(
dPY |X=x

dP
(h,Q,λ)
Y |X=x

(y)

)
dPY (y)dPX (x)−

∫ ∫
log

(
dPY |X=x

dP
(h,Q,λ)
Y |X=x

(y)

)
dPY |X=x(y)dPX (x)

)
,

where P
(h,Q,λ)
Y |X , with λ ̸= 0, is an (h,Q, λ)-Gibbs conditional probability measure.
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Variations of the Expectation due to Changes in the Probability Measure
Characterizations of Ḡh

(
PY ,PY |X ,PX

)

Corollary (Corollary 9 in [1])

Consider an (h,Q, λ)-Gibbs conditional probability measure, denoted by P
(h,Q,λ)
Y |X ∈ △ (Rm|Rn), with λ ̸=

0; and a probability measure PX ∈ △ (Rn). Let the measure P
(h,Q,λ)
Y ∈ △ (Rm) be such that for all sets

A ∈ B (Rm),

P
(h,Q,λ)
Y (A)=

∫
P

(h,Q,λ)
Y |X=x (A) dPX (x).

Then,

Ḡh

Ä
P

(h,Q,λ)
Y ,P

(h,Q,λ)
Y |X ,PX

ä
=
1

λ

Ä
I
Ä
P

(h,Q,λ)
Y |X ;PX

ä
+ L
Ä
P

(h,Q,λ)
Y |X ;PX

ää
.

[1] Samir M. Perlaza and Gaetan Bisson. “Variations on the Expectation Due to Changes in the Probability Measure”. arXiv preprint arXiv:2502.02887.
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What is so special about the Gibbs probability measure?

Consider a σ-finite measure Q over (Rm,B (Rm)); some λ ∈ R \ {0}; some x ∈ Rn; and a convex

function f : [0,+∞) → R, with f (1) = 0.

min
P∈△Q (Rm)

∫
h(x , y)dP(y) +

1

λ
Df (P∥Q), and

max
P∈△Q (Rm)

∫
h(x , y)dP(y) +

1

λ
Df (P∥Q).

Nothing special: The solutions to the optimization problems above possess the same properties! [3]

[3] Francisco Daunas, Iñaki Esnaola, Samir M. Perlaza, and Gholamali Aminian. “Generalization Error of f -Divergence Stabilized Algorithms via Duality”. arXiv preprint

arXiv:2502.14544.
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Generalization Error of Machine Learning Algorithms
Problem Formulation

Consider the following supervised learning setting:

▶ Set X of patterns, set Y of labels, and set M ⊂ Rd of models with d ∈ N.

▶ Hypothesis class: A function h : M×X → Y.

Definition (Risk Function)

Given a data point (x , y) ∈ X ×Y, the model θ ∈ M induces the risk ℓ (h(θ, x), y), where ℓ : Y×Y →
[0,+∞) is a risk function.

Definition (Empirical Risk)

Given the dataset z =
(
(x1, y1) , (x2, y2) , . . . , (xn, yn)

)
∈ (X × Y)n, the empirical risk induced by the

model θ ∈ M is

L (z ,θ) =
1

n

n∑
i=1

ℓ (h(θ, xi ), yi ) .
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Generalization Error of Machine Learning Algorithms

Definition (Expected Empirical Risk)

Let the function Rz : △ (M,B (M)) → [0,+∞) be such that

Rz (P) =

∫
L (z ,θ) dP(θ).

Let the function Rθ : △ (X × Y) → [0,+∞) be such that

Rθ (Q) =

∫
ℓ (h(θ, x), y) dQ(x , y).

[4] Samir M. Perlaza and Xinying Zou. “The Generalization Error of Machine Learning Algorithms”. arXiv preprint arXiv:2411.12030.
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Let the function Rz : △ (M,B (M)) → [0,+∞) be such that

Rz (P) =

∫
L (z ,θ) dP(θ).

Let the function Rθ : △ (X × Y) → [0,+∞) be such that

Rθ (Q) =

∫
ℓ (h(θ, x), y) dQ(x , y).

Definition (Generalization Gap)

The generalization gap induced by the algorithm PΘ|Z , with training and test datasets z and u is

Ru
(
PΘ|Z=z

)︸ ︷︷ ︸
Test Expected Risk

− Rz
(
PΘ|Z=z

)︸ ︷︷ ︸
Training Expected Risk
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Generalization Error of Machine Learning Algorithms

Definition (Expected Empirical Risk)

Let the function Rz : △ (M,B (M)) → [0,+∞) be such that

Rz (P) =

∫
L (z ,θ) dP(θ).

Let the function Rθ : △ (X × Y) → [0,+∞) be such that

Rθ (Q) =

∫
ℓ (h(θ, x), y) dQ(x , y).

Assumption:

Training datasets z =
(
(x1, y1) , (x2, y2) , . . . , (xn, yn)

)
∈ (X × Y)n and test datasets u =(

(µ1, ν1) , (µ2, ν2) , . . . , (µn, νn)
)
∈ (X × Y)n are i.i.d according to PZ ∈ △ ((X × Y)n).
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Generalization Error of Machine Learning Algorithms

Definition (Expected Empirical Risk)

Let the function Rz : △ (M,B (M)) → [0,+∞) be such that

Rz (P) =

∫
L (z ,θ) dP(θ).

Let the function Rθ : △ (X × Y) → [0,+∞) be such that

Rθ (Q) =

∫
ℓ (h(θ, x), y) dQ(x , y).

Generalization Error

The generalization error of the algorithm PΘ|Z is

G
(
PΘ|Z ,PZ

)
≜
∫ ∫ (

Ru
(
PΘ|Z=z

)
− Rz

(
PΘ|Z=z

))
dPZ (u) dPZ (z) .

[4] Samir M. Perlaza and Xinying Zou. “The Generalization Error of Machine Learning Algorithms”. arXiv preprint arXiv:2411.12030.
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Generalization Error of Machine Learning Algorithms

Challenge: Apparently, generalization error

is not a variation of an expectation

17 / 28



Generalization Error as a Variation of an Expectation

Lemma (Lemma 3 in [4])

The generalization error G
(
PΘ|Z ,PZ

)
satisfies

G
(
PΘ|Z ,PZ

)
=

∫ Å∫
L (z ,θ) dPΘ (θ)−

∫
L (z ,θ) dPΘ|Z=z (θ)

ã
dPZ (z) ,

where for all measurable subsets C of M, PΘ (C) =
∫
PΘ|Z=z (C) dPZ (z).
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min
P∈△Q (M)

∫
L (z ,θ)dP(θ) + λD(P∥Q) .

Theorem (Theorem 3 in [5])

The solution to Problem 1 is unique, denoted by P
(Q,λ)
Θ|Z=z , and satisfies for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
L (z ,θ)

ã
.
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∫ Å∫
L (z ,θ) dPΘ (θ)−

∫
L (z ,θ) dPΘ|Z=z (θ)

ã
dPZ (z) ,

where for all measurable subsets C of M, PΘ (C) =
∫
PΘ|Z=z (C) dPZ (z).

Lemma (Lemma 4 in [4])

If for all z ∈ (X × Y)n, the measures PΘ|Z=z and PΘ are absolutely continuous w.r.t. the σ-finite

measure Q,

G
(
PΘ|Z ,PZ

)
= λ

∫ Å
D
Ä
PΘ∥P(Q,λ)

Θ|Z=z

ä
− D
Ä
PΘ|Z=z∥P(Q,λ)

Θ|Z=z

ä
+D

(
PΘ|Z=z∥Q

)
− D(PΘ∥Q)

ã
dPZ (z) .
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Exact Characterizations of the Generalization Error

Theorem (Theorem 14 in [4])

Assume that for all z ∈ (X × Y)n:

(a) The probability measures PΘ and PΘ|Z=z are both absolutely continuous w.r.t. Q ∈ △ (M);

(b) The measure Q is absolutely continuous with respect to PΘ; and

(c) The measure PΘ is absolutely continuous with respect to PΘ|Z=z .

Then,

G(PΘ|Z ,PZ )=λ
(
I
(
PΘ|Z ;PZ

)
+ L

(
PΘ|Z ;PZ

))
+λ

∫ ∫
log

dPΘ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ)dPΘ(θ)dPZ (z)−λ

∫ ∫
log

dPΘ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ)dPΘ|Z=z (θ)dPZ (z).
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What if...

λ

∫ ∫
log

dPΘ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ) dPΘ (θ)dPZ (z)− λ

∫ ∫
log

dPΘ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ) dPΘ|Z=z (θ) dPZ (z)=0.
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log
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(θ)dPΘ|Z=z (θ)dPZ (z).

Corollary (Theorem 1 in [7])

G(P
(Q,λ)
Θ|Z ,PZ )=λ

Ä
I
Ä
P

(Q,λ)
Θ|Z ;PZ

ä
+ L
Ä
P

(Q,λ)
Θ|Z ;PZ

ää
.

[7] Gholamali Aminian; Yuheng Bu; Laura Toni; Miguel R. D. Rodrigues; Gregory W. Wornell. “Information-Theoretic Characterizations of Generalization Error for the Gibbs

Algorithm”. IEEE Transactions on Information Theory, vol. 70, no. 1, pp. 632 - 655, Jan., 2024.
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Generalization Error as a Variation of an Expectation

Lemma (Lemma 6 in [4])

Assume that PZ ∈ △ ((X × Y)n) is a product measure formed by PZ ∈ △ (X × Y). Then, the

generalization error G
(
PΘ|Z ,PZ

)
satisfies

G(PΘ|Z ,PZ ) =

∫ Å∫
ℓ (h (θ, x) , y) dPZ (x , y)−

∫
ℓ (h (θ, x) , y)dPZ |Θ=θ (x , y)

ã
dPΘ (θ) .

[4] Samir M. Perlaza and Xinying Zou. “The Generalization Error of Machine Learning Algorithms”. arXiv preprint arXiv:2411.12030.

[6] Xinying Zou, Samir M. Perlaza, Iñaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-Generating Probability Measure in Statistical Learning”. IEEE
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ℓ (h (θ, x) , y)dPZ |Θ=θ (x , y)

ã
dPΘ (θ) .
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Theorem (Theorem 1 in [6]: Worst-Case Data-Generating Probability Measure)

The solution to Problem 2 is unique, denoted by P
(PS ,β)

Ẑ |Θ=θ
, and satisfies for all (x , y) ∈ suppPS ,

dP
(PS ,β)

Ẑ |Θ=θ

dPS
(x , y)= exp

Å
1

β
ℓ (h (θ, x) , y)− JPS ,θ

Å
1

β

ãã
.
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Lemma (Lemma 7 in [4])

If for all θ ∈ M, the probability measures PZ and PZ |Θ=θ are absolutely continuous w.r.t. the probability

measure PS ∈ △ (X × Y),

G(PΘ|Z ,PZ ) = β

∫ (
D
(
PZ |Θ=θ∥P(PS ,β)

Ẑ |Θ=θ

)
− D

(
PZ∥P(PS ,β)

Ẑ |Θ=θ

)
− D

(
PZ |Θ=θ∥PS

)
+D(PZ∥PS)

)
dPΘ (θ) .
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Exact Characterizations of the Generalization Error

Theorem (Theorem 29 in [4])

Assume that for all θ ∈ M:

(a) The probability measure PZ is a product measure formed by some PZ ∈ △ (X × Y);

(b) The probability measures PZ and PZ |Θ=θ are absolutely continuous w.r.t. PS ; and

(c) The probability measures PZ and PZ |Θ=θ are mutually absolutely continuous.

Then,

G(PΘ|Z ,PZ )=−β

n

(
I
(
PΘ|Z ;PZ

)
+L
(
PΘ|Z ;PZ

))
+β

∫ ∫
log

Ñ
dPZ |Θ=θ

dP
(PS ,β)

Ẑ |Θ=θ

(z)

é
dPZ |Θ=θ (z) dPΘ (θ)− β

∫ ∫
log

Ñ
dPZ |Θ=θ

dP
(PS ,β)

Ẑ |Θ=θ

(z)

é
dPZ (z) dPΘ (θ) .
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What if...

λ

∫ ∫
log

dPΘ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ) dPΘ (θ)dPZ (z)− λ

∫ ∫
log

dPΘ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ) dPΘ|Z=z (θ) dPZ (z)=0.
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Zero-Sum Game Formulation
Classical m1 × m2 ZSGs in Normal Form

▶ Actions of Player k: Ak ≜ {ak,1, ak,2, . . . , ak,mk }.

▶ When Player 1 plays a1,i and Player 2 plays a2,j , the payoff is ui,j

u=

à
u1,1 u1,2 · · · u1,m2

u2,1 u2,2 · · · u2,m2

...
...

. . .
...

um1,1 um1,2 · · · um1,m2

í
.

▶ A strategy for Player k is a probability measure PAk ∈ △ (Ak).

▶ Expected Payoff determined by the function u : △ (A1)×△ (A2) → R:

u (PA1 ,PA2)=

m1∑
i=1

m2∑
j=1

PA1 (a1,i )PA2 (a2,j) ui,j ,

Player 1 maximizes, while Player 2 minimizes the payoff.
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Zero-Sum Games with Noisy Observations
Game Formulation – Player 1 maximizes – Player 2 minimizes

Consider the m1 ×m2 ZSG with payoff matrix u:

Player 2

PA2

PÃ2|A2

Player 1

PA1|Ã2 u v
Ä
PA1|Ã2

,PA2

äA2 Ã2 A1

▶ Three Random Variables:
▶ Action of Player 1: A1

▶ Action of Player 2: A2

▶ Noisy Observation of the Action of Player 2: Ã2.
▶ Joint Probability Distribution:

PA1Ã2A2
= PA1|Ã2

PÃ2|A2
PA2

.
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Game Formulation – Player 1 maximizes – Player 2 minimizes

Consider the m1 ×m2 ZSG with payoff matrix u:

Player 2

PA2

PÃ2|A2

Player 1

PA1|Ã2 u v
Ä
PA1|Ã2

,PA2

äA2 Ã2 A1

PA1Ã2A2
= PA1|Ã2

PÃ2|A2
PA2 .

▶ Strategy of Player 1: PA1|Ã2
∈ △

Ä
A1|Ã2

ä
▶ Strategy of Player 2: PA2 ∈ △ (A2)

▶ Channel Output:PÃ2|A2
∈ △

Ä
Ã2|A2

ä
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Zero-Sum Games with Noisy Observations
Game Formulation – Player 1 maximizes – Player 2 minimizes

Consider the m1 ×m2 ZSG with payoff matrix u:

Player 2

PA2

PÃ2|A2

Player 1

PA1|Ã2 u v
Ä
PA1|Ã2

,PA2

äA2 Ã2 A1

The expected payoff is determined by v : △
Ä
A1|Ã2

ä
×△ (A2) → R,

v
Ä
PA1|Ã2

,PA2

ä
=

∫ Å ∫ Å∫
ua,bdPA1|Ã2=b̃(a)

ã
dPÃ2|A2=b(b̃)

ã
dPA2(b)
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The expected payoff is determined by v : △
Ä
A1|Ã2

ä
×△ (A2) → R,

v
Ä
PA1|Ã2

,PA2

ä
=

∫ (
m1∑
i=1

PA1|Ã2=b̃(a1,i )

Å m2∑
j=1

ui,jPA2(a2,j)
dPÃ2|A2=a2,j

dPÃ2|A2=a2,k

(b̃)

ã)
dPÃ2|A2=a2,k

(b̃),

for some k ∈ {1, 2, . . . ,m2}.
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Game Formulation – Player 1 maximizes – Player 2 minimizes

Consider the m1 ×m2 ZSG with payoff matrix u:

Player 2

PA2

PÃ2|A2

Player 1

PA1|Ã2 u v
Ä
PA1|Ã2

,PA2

äA2 Ã2 A1

Definition (Best Response)

BR1(P, b̃) ≜ arg max
Q∈△(A1)

m1∑
i=1

Q(a1,i )

Å m2∑
j=1

ui,jP(a2,j)
dPÃ2|A2=a2,j

dPÃ2|A2=a2,k

(b̃)

ã
.
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Player 2

PA2

PÃ2|A2

Player 1

PA1|Ã2 u v
Ä
PA1|Ã2

,PA2

äA2 Ã2 A1

Definition (Cost of Player 2)

Let the function v̂ : △ (A2) → R be

v̂(P) = v(QA1|Ã2
,P),

where for all b̃ ∈ Ã2, it holds that QA1|Ã2=b̃ ∈ BR1(P, b̃).
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Game Formulation – Player 1 maximizes – Player 2 minimizes

Consider the m1 ×m2 ZSG with payoff matrix u:

Player 2

PA2

PÃ2|A2

Player 1

PA1|Ã2 u v
Ä
PA1|Ã2

,PA2

äA2 Ã2 A1

Definition (Equilibrium)

The strategies P†
A1|Ã2

∈ ∆(A1|Ã2) and P†
A2

∈ △ (A2) form an equilibrium if

P†
A2

∈ arg min
P∈△(A2)

v̂(P),

and for all b̃ ∈ Ã2

P†
A1|Ã2=b̃

∈ BR1(P
†
A2
, b̃).
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Zero-Sum Games with Noisy Observations
Equilibrium – Player 1 maximizes – Player 2 minimizes

Theorem

The game (with noisy observations) possesses a unique equilibrium.

Lemma

Let the probability measures (P†
A1|Ã2

,P†
A2
) form an equilibrium of the game (with noisy observations);

and let the pair of strategies
(
P⋆
A1
,P⋆

A2

)
∈ △ (A1)×△ (A2) be an Nash Equilibrium of the game (without

observations). Then,

v
(
P⋆
A1
,P⋆

A2

)
≤ v

(
P†
A1|Ã2

,P†
A2

)
≤ min

j
max

i
ui,j .

[7] Ke Sun, Samir M. Perlaza, and Alain Jean-Marie. “2 x 2 Zero-Sum Games with Commitments and Noisy Observations”. In Proc. of the IEEE International Symposium on

Information Theory (ISIT), Taipei, Taiwan, Jun., 2023.

[8] Emmanouil-Marios Athanasakos and Samir M. Perlaza. “Leveraging Noisy Observations in Zero-Sum Games”. In Proc. of the IEEE Information Theory Workshop (ITW),

Shenzhen, China, Nov. 2024.
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Zero-Sum Games with Noisy Observations
Equilibrium – Player 1 maximizes – Player 2 minimizes

Challenge: What is the gain/loss due to the noisy observation of

the actions ?
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Zero-Sum Games with Noisy Observations
Numerical Results

▶ Two Actions: |A1| = |A2| = 2

▶ Gaussian Channel: Ã2 = A2 +W , with W ∼ N
(
0, σ2

)
, for some given σ2 > 0.

PA2
(a1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

v̂
(P

A
2
)

-1

0

1

2

3

4

5

6

v̂(PA2
) <2 = 10

v̂(PA2
) <2 = 102

v̂(PA2
) <2 = 3# 102

v̂(PA2
) <2 = 5# 103

û(PA2
)!

P ?
A2

; û(P ?
A2

)
"
=
!
P ?

A2
; u(P ?

A1
; P ?

A2
)
"
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Zero-Sum Games with Noisy Observations
Impact of Observations

Lemma

Let the probability measures (P†
A1|Ã2

,P†
A2
) form an equilibrium of the game (with noisy observations);

and let the pair of strategies
(
P⋆
A1
,P⋆

A2

)
∈ △ (A1)×△ (A2) be an Nash Equilibrium of the game (without

observations). Then,

v
(
P⋆
A1
,P⋆

A2

)
≤ v

(
P†
A1|Ã2

,P†
A2

)
≤ min

j
max

i
ui,j .

v
(
P†
A1|Ã2

,P†
A2

)
− v

(
P⋆
A1
,P⋆

A2

)
=

∫
ua,bdP

†
A1A2

(a, b)−
∫

ua,bdP
⋆
A1
P⋆
A2
(a, b),

where for all measurable subsets C = C1 × C2 of A1 ×A2,

P†
A1A2

(C)=
∫
C1

∫ ∫
C2

dP†
A1|Ã2=b̃

(a)dPÃ2|A2=b(b̃)dP
†
A2
(b). (3)
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Thank you for your attention!
Questions/Comments/Typos: samir.perlaza@inria.fr
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