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Organization of the Tutorial

» 8:30-9:00 Part I: Generalization Error in Supervised Learning

» 9:05-10:00 Part II: The Gibbs Algorithm and its Generalization Error

» 10:00-10:20 Break

» 10:20-11:00 Part Ill: Empirical Risk Minimization and Generalization Error

» 11:00-11:50 Part IV: Generalization Error of General Machine Learning Algorithms
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Organization of the Tutorial
PART | and Part Il

» 8:30-9:00 Part I: Generalization Error in Supervised Learning

» Problem formulation

» Classic Generalization Analysis

» 9:05-10:00 Part II: The Gibbs Algorithm and its Generalization Error

» Exact Characterization of the Gibbs algorithm
» The Gibbs-based Information criteria (AIC and BIC)

» Understanding Transfer Learning via the Gibbs Algorithm

» 10:00-10:20 Break
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Organization of the Tutorial
PART 1l and Part IV

» 10:20-11:00 Part I1l: Empirical Risk Minimization and Generalization Error

» Empirical Risk Minimization with f-Divergence Regularization

» The Asymmetry of Relative Entropy

» Equivalences among Empirical Risk Minimizations with different f-Divergence Regularizations
» 11:00-11:50 Part IV: Generalization Error of Machine Learning Algorithms

» Empirical Risk Optimization with Relative Entropy Regularization

» The Method of Gaps

» Equivalent Expressions for the Generalization Error
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Supervised Learning

Generalization Error

Test data
Loss

Test Loss

Generalization error
Training Loss

Generalization error = Population risk (Test Loss) - Empirical risk (Training Loss)
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Supervised Learning

Problem Formulation

» Training dataset S ={Z,---,Z,}, Zi = {X;, Yi} € Z generated from Ps
» Parameters (weights) of learning model w € W, e.g., Y = f(X; w)
» Nonnegative loss function £: Z x W — R™, e.g., {(w,z) = (y — f(x; w))?
Empirical risk (training loss):
1
Le(w.s) &= U(w,z v
e(w,s) HZ (w, zi), weW

Population risk (test loss):

LP(W7 Ps) 4 EPS[LE(W,S)], Yw e W
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Generalization Error in Supervised Learning

Problem Formulation

Learning algorithm can be modeled as randomized mapping: Py s.
» Randomness in initialization
» Stochastic gradient descent (SGD)

» Empirical Risk Minimization (ERM) is a special case

S w
Pws

Generalization error:
gen(Pwis, Ps) = Lp(W, Ps) — Le(W, S),

with W generated from Py s
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Generalization Error in Supervised Learning
Different Types of Bounds

» Single-draw Generalization Error Upper Bound: Under joint distribution of Py s, following
upper bound holds with probability at least (1 — §),

gen(Pys, Ps) < g(é, n),
for a given real function g and § € (0,1),

» PAC-Bayesian Generalization Error Upper Bound: Under distribution Ps, following upper
bound holds with probability at least (1 — §),

]EPW\s[gen(PW\Sv PS)] < f(57 n),

for a given real function f and § € (0,1),

» Expected Generalization error Upper Bound: The expectation of generalization error with
respect to joint distribution Py s

gen(Pyws, Ps) £ Ep,, s[Lp(W, Ps) — Le(W, S)] < h(n),

for a given real function h.
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Classical Statistical Learning Theory

Uniform Convergence

If the induced function class F;w := {{(w,-) : w € W} is not 'too rich,” then

E [ sup |Lp(w, P5) - Le(w, 5)]] < CompFew)
wew ﬁ

where Comp(Fr,w) measures complexity of F,w and does not depend on p (distribution-free)
Some examples:

» Cardinality of Fow

» VC-dimension [Vapnik, 1999]

» Natarajan-dimension [Holden and Niranjan, 1995]

» Empirical Rademacher complexity [Bartlett and Mendelson, 2002]
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Uniform Convergence and Generalization

More Discussion

We can always bound the generalization error as

g(Tn(PW|5, Ps) <E su\’?\; |I_,D(W7 Ps) — LE(W7 5)|
we

... but this bound:
» relies on restricting the complexity of the hypothesis space
» ignores the learning algorithm, Pys

» may be too conservative if algorithm does not explore the entire VW due to computational budget.

Learning does not require uniform convergence

One can construct examples of (¢, W), where uniform convergence does not hold (the upper bound does
not converge to 0 as n — c0), yet learning still takes place [Shalev-Shwartz and Ben-David, 2014].
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Algorithm-dependent Bounds
Uniform Stability

Stability quantifies the sensitivity of algorithm Py s to local modifications

» replace Z; with Z/ in the training data S

PW\S

(Zi,--,Zi1, 21, 2,y -+ Zn) —

(Zl,--- ,Zf—1,Z,-/,Z,-+1, . Z) w|s w

» For any learning algorithm

gen(Pws, Ps) = ZEWW zh)—uqw?, z)]

Definition ( [Bousquet and Elisseeff, 2002] Uniform Stability)

Pw)s is e-uniformly stable if sup, E[¢/(W,z) — (W), z)] < .

The stability of learning algorithm Py s leads to generalization.
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Algorithm-dependent Bounds

Information-theoretic Bounds

» Population risk is the expectation of ¢(w,s) under product of the marginal distributions Py Ps

» Empirical risk is the expectation of £(w, s) under joint distribution Py |sPs

Lemma ( [Xu and Raginsky, 2017])

Suppose l(w, Z) is o-sub-Gaussian under Z ~ p for all w € W, then

2 2
lgen(u, Puys)| </ %I(s; w),

log (]E [e)\(X—E(X))]) < 0_2)\2
-2

where o-sub-Gaussian means

» Depends on every ingredient in the supervised learning problem

» Reducing dependence between W and S leads to better generalization bound
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Information-theoretic Bounds

The proof is based Donsker-Varadhan variational representation of KL divergence:

KL(P(Q) = sup Ep[f(X)] ~ log Eofexp ()],

where F denotes the set of functions f : X — R.

Proof.
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Summary of Existing Generalization Bounds

Traditional ways of bounding generalization errors are not satisfying:
» Do not fully characterize all aspects of learning algorithm
» only measuring complexity of functional space W, e.g., VC dimension

» only exploring properties of learning algorithm, e.g., uniform stability

» Information-theoretical bounds
» depending on input distribution Pg

» depending on learning algorithm Py s

can still be loose.

Our method differs from previous generalization bounds

» instead of a loose bound for general learning algorithms
» exact characterization of a specific learning algorithm that has better structure
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Preliminaries
Information Measures
» KL divergence: KL(P||Q) £ [, log ( ) dP

» Symmetrized KL divergence (Jeffrey's divergence)

Dskr(P[|Q) £ KL(P||Q) + KL(Q| P).

» Mutual information: I(X; Y) £ KL(Px,v||Px ® Py)
» Lautum information [Palomar and Verdd, 2008]: L(X;Y) 2 KL(Px ® Py| Px.v)

Symmetrized KL information [Aminian et al., 2015]:

v

IskL(X; Y) £ Dskn(Px,v||Px ® Py) =I(X; Y) + L(X; Y).
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Information-theoretic Generalization Bounds

Lemma ( [Xu and Raginsky, 2017])

Suppose U(w, Z) is o-sub-Gaussian under Z ~ p for all w € W, then
202
lgen(k, Pwis)| </ TI(S? w).

Depends on every ingredient in the supervised learning problem

v

Reducing dependence between W and S leads to better generalization bound

v

» This bound is only tight if I(S; W) = 0 and gen(u, Pws) =0

» Multiple techniques to improve this result, including ISMI [Bu et al., 2020], CMI [Steinke and
Zakynthinou, 2020], f-CMI [Harutyunyan et al., 2021], AL-CMI [Wang and Mao, 2023]
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Regularized ERM problem

» How can we use this result to develop a better learning algorithm?

» Regularizing mutual information I(S; W) during ERM

* . 1
Pivjs = arg min (Be, s[Le(W. 5)] + 11(5; W)

Pw|s
» inverse temperature v > 0 balances between fitting and generalization
» Replacing I(S; W) with KL(Pys||m(W)|Ps) for any prior w(W)

» It gives information risk minimization (IRM) problem

* . 1
Pw|s = arg min (EPw,s[/—E(W~ S)+ aKL(PW‘5|\7r(W)|P5))

Pwis
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Information Risk Minimization

Lemma ( [Zhang, 2006, Xu and Raginsky, 2017])

Solution to IRM problem is (v, w(w), Le(w, s))-Gibbs distribution

—vLg(w,s)
- o T(w)e e .
PW\S(W|S) — \/(57 7) s VE 07

where V(s,7) 2 [ n(w)e ""€*)dw is partition function.
For any learning algorithm Py s with fixed S = s,
0 < KL(Pws=s|IPy, )

W|S=s

_ PW|S:s : V(S,’Y) :|
=Erus_. ['°g (W) - e e

= KL(Pw|s=s[|m(W)) + log V(s,7) + vEpys_ [Le(w, 5)].
. 1 1
min Ep,, o [Le(W,s)] + ZKL(Pws=sll7) = —=log V(s,7). O
Pw|s s 0l
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Gibbs Algorithm

We focus on the generalization error of Gibbs algorithm (distribution)

(v, m(w), Le(w, s))-Gibbs distribution:

A ﬂ-(W)e*'YLE(Wj)

P;V‘S(W|s) V(S,"}/) ’

7=0

where
» inverse temperature 7y, reduces to standard ERM if v — oo
» m(w) arbitrary prior distribution of W

> V(s,7) 2 [m(w)e ") dw partition function
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Practical Implementation of Gibbs algorithm

» Stochastic Gradient Langevin Dynamics (SGLD)
» Metropolis adjusted Langevin algorithm (MALA)

The SGLD can be viewed as the noisy version of SGD,

[2
Wk+1:Wk_ntvLE(Wk7s)+ %Ck» k:0717 )
where (i standard Gaussian random vector; 7; > 0 step size.

» [Raginsky et al., 2017] shows that Py, |s induced by SGLD converges to
(v, 7(Wo), Le(wk, s))-Gibbs distribution for sufficiently large k

» MALA is SGLD with Metropolis rejection, faster convergence
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Expected Generalization Error

An exact characterization of generalization error for Gibbs algorithm

For (y, m(w), Le(w, s))-Gibbs algorithm,

7r(W)e—'yLs(vv,S)

, >0,
V(s,7)

PJV|5(W|5) =

the expected generalization error is

IskL(W; S)

ﬁ(P%\57PS): v

» Highlights the fundamental role of Isk.(W; S) in learning theory

» Holds even for non-i.i.d training samples

G. Aminian*, Y. Bu*, L. Toni, M. R. Rodrigues, G. W. Wornell. “An Exact Characterization of the Generalization Error for
the Gibbs Algorithm,” in Proc. Conference on Neural Information Processing Systems (NeurlPS), Dec. 2021.
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Generalization Error of Gibbs Algorithm

For Gibbs algorithm P}, ‘s(w|s) %i(ws)
__ Iskn(W; S
ger(Ply. Ps) = 23,

Sketch of Proof:

Symmetrized KL information can be written as
Iskr(W; S) = Ep,,, s[IOg(

"
wis

I+ ]EPWcz»Psllog( Pivs )

=Ep,, s[log(Py, |S)] EPW®P5[|°g(PW\S)]

Note that Pw,s and Pw ® Ps share the same marginal distribution,
IskL(W; S) = Epy, s[-7Le(W, S)] — Epy oprs[—7LE(W, S)]
:7ng(PJVIS,PS) O
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Empirical risk of Gibbs algorithm

log V/(s,7) is convex and differentiable infinitely many times with respect to «y. In particular,

Olog V(s,
B, Le(w.5)] = - Z2E/ =),
2
Var, [Le(w, 5)] = ZIEV D),

where E,[ - | 2 ]EP'JV‘SZS[ -], and Var,[Le(W, s)] £ E[Le(W, 5)*] — E,[Le(W, s)]*.

Expected empirical risk of the Gibbs algorithm is non-increasing w.r.t ~y
» Monoticity: Lg(W,s) is non-increasing with ~y

» Sub-Gaussianity: Lg(W,s) is sub-Gaussian under Gibbs algorithm if Var,[Lg(W, s)] is bounded

Perlaza, Samir M., Gaetan Bisson, Ifiaki Esnaola, Alain Jean-Marie, and Stefano Rini. “Empirical risk minimization with
relative entropy regularization,” IEEE Trans. Inf. Theory, 2024.
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Tighter Generalization Error Upper Bounds

Why do we care about upper bounds when we have exact characterization?

» Quantify how g(Tn(PQV‘S7 Ps) depends on number of i.i.d. samples n

» Useful when directly evaluating Iskr,(W; S) is hard

Suppose that
» S={Z}], are iid generated from the distribution Pz
» U(w, Z) is o-sub-Gaussian
» Ce < é((‘l//vvg)) for some Cg > 0,

202y
! < —r—.
gen(Pys, Ps) < (1+ Ce)n

G. Aminian*, Y. Bu*, L. Toni, M. R. Rodrigues, G. W. Wornell. “An Exact Characterization of the Generalization Error for
the Gibbs Algorithm,” in Proc. Conference on Neural Information Processing Systems (NeurlPS), Dec. 2021.
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Tighter Generalization Error Upper Bounds

Sketch of Proof:

[Choice of Cg]
» Ce =0 s always valid, which gives gen(P}, s, Ps) < 227

» Ce =1, L(S; W) > 1(S; W) holds for any Gaussian channel Py s

11/45



Example: Mean Estimation

» Learning mean pu € RY of Z using n i.i.d training samples S = {z}7,
» Not necessary Gaussian, but covariance matrix X7z = a%ld

» Mean-squared loss £(w, z) = ||z — w3

» Gaussian prior w(w) = N (o, 03 14)

» Then, (v, N (o, 531s), Le(w, s))-Gibbs algorithm is given by the following Gaussian posterior
Pys(w|z") ~ N<06M0 +(1-0a)z, ozagld>,

with

A 1 = A
= z =

S

n
E Zj.
i=1
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Example: Mean Estimation

Since P;/‘S is Gaussian,

doboy 2
I(S; W)= —"“1— —KL(Pw|N 1 01ld)),
( ) (no? + %) (PwlIN (pw, o1l4))
dogozy 2
L(S; W) = +KL(Pw||N(HW,0'1,d))»

(nog + 3
with pw = apo + (1 — a)p.

The generalization error can be computed exactly as:

I, I Ww:Ss 2dodo>
gen(PV’V‘S,PS) = SKL( ) = 5 0 Zl
fY n(go + Z

As a comparison, the ISMI-based bound gives a sub-optimal bound O (1/+/n), as n — co.

13/45



Check Point

Generalization error or empirical risk is one part of the story

Our goal is to design (or guide the design) algorithms that minimize population risk.

There are three elements in (v, 7(w), Le(w, s))-Gibbs algorithm

» inverse temperature v — Optimal hyper-parameter
» empirical risk Lg(w, s), or model family — Information criteria for model selection

» prior distribution 7w(w) — Transfer learning

14/45
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Expected Test Loss

For fixed training data s and testing data s’, consider expected test loss
Lp(y.s.5') & By [Le(W, )],
and expected generalization error

@(7’5»5,) £ ]E“/[LE(WSSI) - LE(WvS)]'

Theorem
For v > 0 such that log V/(s,~) < oo, the first order derivative of the expected test loss is given by
19} /
%LP("Y,S, s') = —Cov,[Le(W,s"), Le(W, s)],
with
Cov,[Le(W,s"), Le(W, )] £ E,[Le(W, s)Le(W,s")] — E,[Le(W, s)|E, [Le(W, s")].

Cov,[Le(W,s"), Le(W,s)] can be positive/negative, no monotonicity

Y. Bu, “Towards Optimal Inverse Temperature in the Gibbs Algorithm,” in IEEE ISIT 2024
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Expected Generalization Error

For v > 0 such that log V/(s,7) < oo, the first order derivative of the expected generalization error is
given by

%ge_n(’y, 5,5') = Var, (Le(W, 5)) — Cov. [Le(W, s'), Le(W, s)].

» Cannot show that the gen is non-decreasing, Cauchy-Schwarz Inequality only guarantees that

|Covy[Le(W, ), Le(W,s)]| < \/Var.,(LE(W, s))Var, (Le(W,s")).

» [Aminian et al., 2021] provides a bound of order O(Z) by simply combining the Iskr,
characterization with the MI bound, which may hint that gen is always increasing with ~.

» However, we will illustrate how gen rises from zero and then decreases as ~y increases.
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Example: Mean Estimation

(7, N (0, 03 14), Le(w, 5))-Gibbs algorithm is given by the following Gaussian posterior
PJV|5(W|ZH) ~ N(auo +(1- )z, aagld>

Population risk has the following exact characterization

Le(Pyys, Ps)
4dolo’ — |34 do?/n do? n—1
_ 0 ZQ’Y + llpo — pll2 . / + o2 + do2.
n(1+ 2037) (14 2037) 1+ 205y n
generalization error empirical risk

To find optimal v minimizes Lp

» Optimize over v using the above equation directly

» Evaluate the derivative of Lp(7,s,s’) by computing covariance

17/45



Example: Mean Estimation

~* depends on other parameters of the problem in a non-trivial manner

2 2
. +o0, if 22 €[0,%), (high-SNR)
Y = _ 2 2 o2 2
%, if 72 € [2,00). (low-SNR)

2
> GTZ only depends on S, can be interpreted as normalized noise
» 03 and ||p — pol?® captures the confidence and bias of prior knowledge

» high-SNR regime, high-quality training samples, discarding prior distribution and employing
standard ERM

» low-SNR regime, where we should incorporate knowledge from both training samples and prior,
optimal + depends on everything

» fpo=pand o =0, ~+* =0

18/45



Example: Linear Regression

» Training data S = {(x;, y:)}{_1, with X =R? and Y =R
» Data is generated using true weights W* € R? with additive noise,

V=X W*+e, e~N(O, 02

» Mean-squared loss £(w, z) = (y — x - w)?

Gaussian prior w(w) = N(0, 03 14)

v

(7, N(0,0214), Le(w, s))-Gibbs algorithm is Gaussian

v

Plys(wlS) ~ N (27X Ty, %2—1),

with = 2 XT and X € R™9, Y € R" are the matrix form of the training data.
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Simulation of Linear Regression

Low SNR regime, n = 10 and o2 = 3; high SNR regime, n = 100 and o2 = 1.

30 — 8
—— Population risk —— Population risk
® - - -Empirical risk ®» - - -Empirical risk
5 20 Gen gap S 2 Gen gap
L L . Anie
= =
0!
0 10 20 30 40 50
Y Y
5 0.2
— —Cov, (Le (W, 9), Le(W, ) — —Cov, (Le(W, ), Ls (W, s7)
° - - -~ Var, (Ls(W, 5)) © - —Var, (Le(W, 5))
2 =
2 2
Z =
O]
3 a

“0 10 20 30 40 50
¥

Low-SNR High-SNR
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Asymptotic Behavior of Generalization Error

» Can we show something for ERM by letting v — 00?

» Previous upper bound has order O(1)

» Asymptotic normality of Gibbs algorithm
» Single-well case: there exists a unique W*(S)

W*(S) = argmin Lg(w, S).
wew

> If H*(S) 2 V2, Lg(w, S)] is invertible [Hwang, 1980],

w=W=*(S)

Plys = N(W*(S), %H*(S)_l)

G. Aminian*, Y. Bu*, L. Toni, M. R. Rodrigues, G. W. Wornell. “An Exact Characterization of the Generalization Error for
the Gibbs Algorithm,” in Proc. Conference on Neural Information Processing Systems (NeurlPS), Dec. 2021.
21/45



Asymptotic Behavior of MLE

Maximum likelihood estimates (MLE) in the asymptotic regime n — co.
» ni.i.d. training samples generated from distribution Pz
» Fit training data with distribution family f(z;|@), 6 € R

Pz = f(:|0%) for 8* ¢ W

v

log-loss ¢(w,z) = — log f(z|w)

v

As v — o0, Gibbs algorithm converges to ERM algorithm (MLE),

Whi 2 arg max log f(Z;|0).
ML egewgg( 10)

Compute Iskr,(W; S) using Gaussian approximation

e d
gen(Pw)s, Ps) = o

22/45



Connection to Model Selection

» K candidate models My, Ma, ..., Mk

» Each model My is characterized by parametric probabilistic model Px(z|60x) and prior 7« (6x)

4

» log likelihood as the loss function {iog(w, z) = — log P(z|w)

How to select the optimal model?

» Information Criteria for Model Selection

» Akaike Information Criterion (AIC)

» Bayesian Information Criterion (BIC)

23/45



Akaike Information Criterion (AIC)

AIC selects the model that minimizes population risk:

arg min KL(PZ||Pk(z|é§\I/& ) =argminEp, | — log Pk(Z\OA](\ﬂ)}
K K

AIC approximates it using empirical risk and generalization error

AIC = arg min LE(GI\” S)+ gen(Bl(w)L7 Pz).

In classic regime where n — oo, and certain regularization conditions

AIC = arg min LE(HML S)+ %

24 /45



Bayesian Information Criterion (BIC)

BIC selects the model that maximizes marginal likelihood:
mk(z”) £ /Pk(2n|9k)7Tk(9k) d9k7

which is equivalent to maximizing posterior probability P(Mx|z").

BIC =argmin —%Iog my(2")
K

pklogn

= in Le(0Y) s
arg min e(On, S) + =5,

where Laplace approximation is applied as n — oo.

25 /45



Comparison between AIC and BIC

AIC = arg min L[g(éMLT 5) —+

T ST

logn
2n

» AIC minimizes population risk (optimal prediction performance)

BIC = arg min LE(OAML, S)+

» BIC maximizes the marginal likelihood (identifying the true model)

» BIC imposing a larger penalty for more complex models

under-fitting . over-fitting

. Test risk

~

~ Training risk
t t T~
sweet spot._

Capacity of\H_ T
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Double-descent in Over-parameterized Regime

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
A~ .
_05 : __ Critical — Test
g : (/ Regime Train
w 0.4 '
< \ -
© 0.3 N :
~ L Interpolation
0.2 \ : Threshold
w0 \
(u}] ‘\
~ 0.1 A
I\\
0.0 Seea
1 10 20 30 40 50 60

ResNet18 width parameter

» When p < n, the classical U-shaped curve is valid.

» When p > n, test loss can decrease again.
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Challenges in Over-parameterized regime
Asymptotic normality (AIC) and Laplace Approximation (BIC) do not hold in this new regime!
There are some efforts to extend these information criteria:
» Akaike's Information Corrected Criterion (AICC), fixed p, small n
» Widely applicable BIC (WBIC), singular Hessian matrix
More recent work trying to demystify double-descent
» Neural Tangent Kernel (NTK), lazy training
» Random feature model

» Mean-field approach

28/45



Marginal likelihood of Gibbs algorithm

Recall the information risk minimization for motivating the Gibbs algorithm.
. 1 1

min Ep, [Le(W,s)] + =KL(Pws=s|lt) = —= log V(s, 7).

Pwis Y v
If we adopt log-loss function ¢(w, z) = —log P(z|w), and set v = n

L log V(s,7v) = . Iog/w(w)ef"LE(W’s)dw
ol n
1 n
=— log [ m(w)P(z"|w)dw

1
__7| n
= — logm(z")

29/45



Gibbs based Information Criteria

Gibbs-based AlC: 1
AICT & LE(WGibbs, Zn) + ;ISKL(P;WS, Ps).

Gibbs-based BIC: 1
BIC+ é LE(WGibb37Zn) + ;KL(P;V‘S:Zn”ﬂ'),

_ n 1 *
BIC £ ]E‘/r [LE(W,Z )] - EKL(W”PW\S:Z")-

We can show that in the classic regime where p is fixed and n — oo, they all reduce back to their

classical forms.

H. Chen, Y. Bu, G. W. Wornell, “Gibbs-Based Information Criteria and the Over-Parameterized Regime,” in Proc. Interna-

tional Conference on Atrtificial Intelligence and Statistics (AISTATS), 2024.
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Random Feature Model

The output of Random Feature (RF) model with input data x € R is

g(x)éjilf<<x\’/§j>>mg—f(x\/—r§)w,

» Two-layer neural network with i.i.d Gaussian weights F € RY*? in the first layer, only the second
layer is trainable

» f() is the non-linear activation function

» The dimensionality of input data d is not entangled with number of parameters p
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Experiment

Evaluating the BIC™ and BIC™ using n = 200 samples in RF models

80 .
o
—+— Test MSE_Loss o —=—= Over BIC+
1 ) 70 o
6 === Train MSE_Loss S Over BIC-
5 60 4 L S PP BIC
p
w ; ..... AlC
4] A 3
w o '
n o i
= 3 3 g
— 304 H
21 1
204
14
104
o4 e
; . : T : T : . , 01— : T - . T
[ 100 200 300 400 500 600 700 80O 0 100 200 300 400 500 600 700 800

parameter dimension

» We observe Double-descent in population risk for RF model

» Our Gibbs-based BICs prefer over-parameterized models

parameter dimension
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Check point

» Provide information criteria for the Gibbs algorithm, with different information measures as the

penalty terms.
» Generalize our information-theoretic analysis to over-parameterized random feature.

» The mismatch between marginal likelihood (BIC) and generalization error (AIC) in the
over-parameterized setting, which highly depends on the prior distributions.
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Generalization of Transfer Learning

» Source data set D° = {Z7}";, generated from Pps
» Target data set D' = {Z/}]_,, generated from Pp:

» The empirical risk of source and target task

m

Le(w.d) & 25 0w z), Le(w.d) 2 30w 2),
j=1

Jj=1
» The population risk of the target task

Lp(W./ PDt) £ EPDt [LE(W, Dt)]
» Expected Transfer Generalization Error

gen(Pwips,pt, Pos, Pot) £ Ep,, o, o [Lp(W, Ppt) — Le(W, D")].
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Transfer Learning: a-Weighted ERM

» Output hypothesis w, is trained by minimizing a convex combination of the source and target
task empirical risks [Ben-David et al., 2010], for « € [0, 1]

Le(We,d®,d") = (1 — @)Le(Wa,d®) + aLle(wWa,d")

_b

Dt

» a-weighted Gibbs algorithm generalizes the a-weighted-ERM by considering the
(v, m(Wa ), Le(wa, d°, d*))-Gibbs algorithm

W(Wa)677LE(W(x ,d*,d")

Va(d57 dtv ’7)

Pl o oe (Wal . ) =
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Transfer Learning: Two-stage ERM

2
i\
=

H-

Transfer pre-trained

et
i

Training
Example

Freeze Freeze Fine-tune Fine-tune
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Two-stage-ERM Transfer Learning

» First Stage: Learn shared feature extractor wy € W,

[W,, WE] = arg min L2} (w, d°).

» Second Stage: Freeze W, and learn target-specific hypothesis w

W! = arg min L22([W¢7 wel,d")
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Expected Transfer Generalization Error

The expected transfer generalization error of the a-weighted Gibbs algorithm is given by

CPtips
geTQ(PDsy Ppt) = —ISKL(V‘:;’YD 1D )

The expected transfer generalization error of the two-stage Gibbs algorithm is given by

IskL(WS; DY W)

gen,(Pps, Ppt) =
s(Pps, Ppt) R

Y. Bu*, G. Aminian*, L. Toni, M. R. Rodrigues, G. W. Wornell. “Characterizing and Understanding the Generalization Error
of Transfer Learning with Gibbs Algorithm,” in Proc. International Conference on Atrtificial Intelligence and Statistics (AISTATS)
2022.
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Asymptotic Behavior of MLE

Maximum likelihood estimates
» ni.i.d. target samples, mi.i.d. source samples
» Fit training data with distribution family f(z|w), w = (wg, w.) € RY, w. € R%
> Pz =f(:|w") for w* e W
» log-loss {(w, z) = —log f(z|w)

Standard target ERM  a-weighted ERM  Two-stage ERM
gen o) 0G:5) (%)

n m+n n

39/45



Table of Contents (Part I1)

Conclusion



Conclusion

» Connect operational quantity in learning theory (generalization error, marginal likelihood) with
different information measures for Gibbs algorithm

» Demonstrate the versatility of our approach in multiple applications
» Optimal Inverse temperature
» Gibbs-based BIC for over-parameterized model selection

» Gibbs based-transfer learning

» Our Gibbs-based analysis provides an information-theoretic framework for understanding
generalization behavior in modern machine learning, still a lot to be explored!
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Q&A

Thank you for your attention!
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Information Source

PzeA(X xY)

z=((21,51), (22,92) 5, (T, Yn)) € (X x V)" P
(RS o 5 i i
Learning

Training Dataset

Algorithm

A conditional probability measure Pg|z € A (M| (X x Y)™) represents a supervised machine learning algorithm.
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z=((z1,91), (@2,82) - (Tn,4m)) € (X x V)" P
——[TTTTT}—>| °%=
Learning

Training Dataset
Information Source

PreA(X x D) o

v

u = ((u1,01), (2, v2) 5, (bny ) € (X X Y)"

——[TTTTT+H—>| (6, 1)

Test Dataset

\_-\,-J
—%zn: 0, 1) ,vt)

Problem Formulation: Empirical Risk Minimization (ERM)

Given the dataset z, the ERM problem is

Inin L(z,0).
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e e / L (z,6) dPo|z_» (0)
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Information Source
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Training Dataset
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0

v
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\_—\/—_J

=/L(u, 0) dPe|z—- (0)

Training (Expected) Risk and Test (Expected) Risk

Rz (P®|Z:z)

Test Expected Risk

Training Expected Risk
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Training datasets and test datasets are independent and identically distributed:
» z is drawn from Pz € A ((X x Y)™); and
» u is drawn from Pz.
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Rz (P@|z:z) = /L (z,G) dP@|Z=z (0)

r—‘ o ‘—\

2= ((@1,01), (@2,82) 5 (@ny ) € (X x )"

Information Source

PzeA(XxXY)

[ JIIII}-»

)
P®|Z=z

Training Dataset

u = ((u1,21), (p2,10) 5 (i, ) € (X x Y)°

11T+

Learning

Test Dataset

Generalization Error

\_\/—_J

R / L (u,6) dPeyz_, ()

The generalization error of the algorithm Pg,z is

5 (Po|z, Pz) //

(Po|z=z) — Rz (Pe|z=2)) dPz (u) dPz (2).
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ERM with Relative Entropy Regularization (ERM-RER)

Problem Formulation: ERM with Relative Entropy Regularization (ERM-RER)
The ERM-RER problem, with parameters Q@ € A (M, % (M)) and A € (0,+00), consists of the

following optimization problem:

i R, (P) + \D (P||Q).
O ) = (P)+AD (P|Q)

Motivation for this regularization?
» Some priors are not probability measures:
» Uniform distribution over infinite (countable) sets: Counting Measure
» Uniform distribution over R¢: Lebesgue Measure

» Some priors (probability distributions) can be calculated up to a normalization factor.

» Reference measures constrain the set of models M.

S.M. Perlaza, G. Bisson, |. Esnaola, A. Jean-Marie, and S. Rini, “Empirical Risk Minimization with Relative Entropy
Regularizations,” IEEE Trans. Inf. Theory, vol. 70, no. 7, pp. 5122-5161, Jul. 2024.
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ERM with Relative Entropy Regularization (ERM-RER)

Problem Formulation: ERM with Relative Entropy Regularization (ERM-RER)

The ERM-RER problem, with parameters Q@ € A (M, % (M)) and A € (0,+0c0), consists of the
following optimization problem:

i R. (P) + AD (P||Q).
TR (P)+AD (P||lQ)

Notation:

Kq,» (t) =log (/ exp (t L(z,G))dQ(G)) and Kg,» = {s € (0,400) : Kq,= (—%) < —l—oo} .

Theorem

If A € Kq,=, the solution to Problem 1 is unique, denoted by Pg’lg'z)‘:)z, and satisfies for all @ € supp Q,

(@A)
dP®|Z:z

S 1yt () - L1100)

S.M. Perlaza, G. Bisson, |. Esnaola, A. Jean-Marie, and S. Rini, “Empirical Risk Minimization with Relative Entropy
Regularizations,” IEEE Trans. Inf. Theory, vol. 70, no. 7, pp. 5122-5161, Jul. 2024.
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Relative Entropy Asymmetry

Definition (Generalized Relative Entropy)
Given two o-finite measures P and @ on the same measurable space, such that P < Q
2 (92 01106 (2 3))
o(PIQ) 2 [ §2)108(55©)) dQ(6).

» Relative entropy is asymmetric: D(P||Q) # D(Q||P)
» For most cases of interest P < Q == Q < P

» Solution probability measure is constrained to supp(P) C supp(Q)
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Type-1l ERM-RER Problem

Problem Formulation: Type-Il ERM-RER

The ERM-RER Type-ll problem, with parameters @ € A (M, % (M)) and A € (0,+00), consists of
the optimization over the domain /g(M, %) £ {P € A(M,.Z) : Q < P} given by

i R.(P) + AD(Q||P).
- (P)+AD(Q|IP)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-Il ERM-RER Problem

Problem Formulation: Type-Il ERM-RER

The ERM-RER Type-ll problem, with parameters @ € A (M, % (M)) and A € (0,+00), consists of
the optimization over the domain /o(M, %) £ {P € A(M,.Z) : Q < P} given by

i R.(P) + AD(Q||P).
- (P)+AD(Q|IP)

» Asymmetry of the regularization:
» Type-1 ERM-RER limits model selection to the supp(Q).
» Type-Il ERM-RER allows selection of models outside of supp(Q).

» Type-ll regularizaiton allows exploring models outside the support of the reference

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-l Regularization: D(PHQ)

19/49



Set of All Models

supp(Q)

Type-Il Regularization: [ (Q ||P)
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Type-1l ERM-RER Problem

Problem Formulation: Type-Il ERM-RER with parameters @ and A

i R.(P) + AD(Q||P),
e (P)+AD(Q|IP)

with Vo(M, Z) 2 {P € AM, F):Q < P}

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-Il ERM-RER Problem

Problem Formulation: Type-ll ERM-RER with parameters @) and A

e Rz (P) + AD(Q||P),
with Vo(M, Z) 2 [P € A(M, F):Q < P}

Theorem

If there exists a real B such that f € {t e R:V0 € suppQ,0 < t+L(z,60)} and

A
/ Fri(ze) @@ =1

then, the unique solution to the Type-1l ERM-RER problem, PN | satisfies for all @ € supp(Q@),

O|zZ==z’
5(Q,\)
dP@|Z=z )= — A
d@ Kg-(\)+L(2,0)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.

21/49



Set of All Models
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Set of All Models

Supp(ngQ:)z) = supp(Q)

Support collapse!

Type-Il Regularization: D(Q | | P)
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Type-Il ERM-RER Problem

Brief Sketch of the Proof:

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-Il ERM-RER Problem

Brief Sketch of the Proof:

» Solve ancillary problem

. R:(P)+ AD(Q||P), with Oo(M,.7) 2 oM. F)NAo(M..F)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-Il ERM-RER Problem

Brief Sketch of the Proof:

» Solve ancillary problem

i R.(P D P ith M, F) = M, F No(M, F
P 5 (P)+AD(Q|IP), with Oq(M,7) = oM, 7)NAg(M,7)

» Show that cost increases outside O (M, F):

i R.(V) + AD(Q||V i R.(P)+ AD(Q|P).
veoood B0 (V) +2AD(Q]| )>P€Or£}g&g) (P)+AD(Q||P)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-Il ERM-RER Problem

Brief Sketch of the Proof:

» Solve ancillary problem

i R.(P D P ith M, F) = M, F No(M, F
P 5 (P)+AD(Q|IP), with Oq(M,7) = oM, 7)NAg(M,7)

» Show that cost increases outside O (M, F):

R-(V) + AD(Q||V) > R.(P) + AD(Q|P).

min min
Vevqo(M,F)\Oq(M,F) PeEQqQ(M,F)
Observations:
» Type-ll regularization does not overcome induction bias introduced by the reference measure.

» Spoiler: f-divergence regularization does not overcome inductive bias either.

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
24 /49



Type-1l ERM-RER Properties

Normalization Function

» The choice of A is constrained to solutions that yield a probability distribution

» Let the set Ag . C (0,00) and Cq,= C R be such that if A € Ag,=, then there exists a € Cg,»
that satisfies 8 € {t e R: VO € suppQ,0 < t+L(z,0)} and

A
/ Fil(ze) 9@ =1
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Type-1l ERM-RER Properties

Normalization Function

» The choice of \ is constrained to solutions that yield a probability distribution

» Let the set Ag,> C (0,00) and Cg,~ C R be such that if A € Ag, ., then there exists a 8 € Cq,»
that satisfies 8 € {t e R: VO € suppQ,0 < t+L(z,0)} and

/5+L 74Q(0) = 1.

Definition (Normalization Function)
The normalization function of the Type-ll ERM-RER problem is the bijection between represented by

the function Kg - : Ag,= — Cq,=, which satisfies Kq ()\) = 8.
Note that the Radon-Nikodym derivative of the solution is

QA
PR
dQ Kg.(\)+L(2,0)
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Type-1l ERM-RER Properties

Optimal models without regularization

» Given a real ¢ € [0,00), consider the set

L.(6)2{0 € M:L(28) <3}

» Best achievable performance without regularization:

5., 2 inf{6 € [0,00) : Q(L=(5)) > O}

» Solution models for the Empirical Risk Minimization (within supp Q) problem:

LH.2{0eM:L(2,0)=055.}
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Type-1l ERM-RER Properties

The Radon-Nikodym Derivative of the Solution is Positive and Finite
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The Radon-Nikodym derivative is always finite and strictly positive.

Lemma
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Type-1l ERM-RER Properties

The Radon-Nikodym Derivative of the Solution is Positive and Finite

The Radon-Nikodym derivative is always finite and strictly positive.

Lemma
For all @ € supp Q it holds that

dPéQ)\l >\

|Z==

e I=gme A o
g = .+ Ko=) -7

The equality holds if and only if @ € L, . Nsupp Q.

Empirical risk dominates inductive bias for any regularization regime.

Lemma
For all (81,02) € (supp Q)?, such that L(z,8:) < L(z,85), it holds that

PSR, PG,
__®Plz=z < __Olz==
dQ (02) = dQ (01) ’

with equality if and only if L(z,601) = L(z, 02).
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Type-1l ERM-RER Properties

Asymptotes of the Radon-Nikodym Derivative
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Type-1l ERM-RER Properties

Asymptotes of the Radon-Nikodym Derivative

Continuity of inductive bias introduced by large regularization factors.

g
m —3g @ =t
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Type-1l ERM-RER Properties

Asymptotes of the Radon-Nikodym Derivative

Continuity of inductive bias introduced by large regularization factors.

B(Q,\)
T d&’ﬂ ) =1.
A—00 dQ

Continuity of inductive bias introduced by small regularization factors.

If Q(L5,2) > 0 then for all @ € supp Q, it holds that

H(Q,\)
lim Polz=z g _ 1 Trp pe -
Ao+ dQ Q(Ly,) 19cco.2}
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Type-1l ERM-RER Properties

Expected Empirical Risk

Link between expected empirical risk and normalization function:

Lemma

Ro(PSi52.) = A= Kq (V).
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Type-1l ERM-RER Properties

Expected Empirical Risk
Link between expected empirical risk and normalization function:

Lemma

R:(PS2.) =X — Kq (V).

Lower bound on the sensitivity of R.:

R=(Q) — R=(PS3Y) > A(exp(D (QIIPSY, ) — 1.
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Type-1l ERM-RER Properties

Expected Empirical Risk
Link between expected empirical risk and normalization function:

Lemma

_ 0 _
R:(PS2.) =X — Kq (V).
Lower bound on the sensitivity of R.:

Lemma

Re(Q) — R=(P§T72,) 2 Aexp(D (QIPST, ) - 1).
Bounds on the expected empirical risk:

Lemma

04,2 <Re(Palzl.) <A+ 00,

Equality holds if and only if the empirical risk function is nonseparable.
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Equilavence of Type-l and Type-Il Regularization

Theorem

Type-ll = Type-l Equivalence:

pomin [ Lz0)dPO) +30@QIP) = min [ Vo.r(©)aP6) +D(PIQ).

where the function Vg . xM — R, referred to as the log-empirical risk, is defined as
Vq.z(0) =log(Kq.=(A) + L(2,0)).
Type-1 = Type-Il Equivalence:

pmin [ Lz00dPO) £30(PIQ) = | min [ Wo.(©)dP®) +DQIP),

where the function Wq > » : M — R is defined as

A

= — Ko.-()).
exp(— G — Ko.-(-1)

W,z (0) =

30/49



Numerical Comparison of Type-l and Type-ll Regularization

Evaluation of the Generalization Capabilities

We train a binary classifier to distinguish ‘six’ and ‘seven’ in the MNIST dataset with the
ERM-RER Type-I and Type-II

i) )
- I?zl(i’g-/\z,:zl) | P RZ‘([,&)}.A) )
10"

10"

10 10° 10 107! 10° 10 104 10° 102 107 10°
Parameter (A) Parameter (A)
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Numerical Comparison of Type-l and Type-ll Regularization

Evaluation of the Generalization Capabilities

We train a binary classifier to distinguish ‘six’ and ‘seven’ in the MNIST dataset with the
ERM-RER Type-I and Type-II

v (785

- - R (PSy.)

P ()
k- = me (P ) - e ()

107! 10° 10’ 10? [ I
Parameter (A
) 10* 103 102 107
Parameter ()

10° 10’ 102
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Equivalence of the f-Regularization via Transformation of the Empirical Risk
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f-divergences

Definition

Definition ( f-divergence )

Let f : (0,00) — R be a convex function with f(1) = 0. Let P and @ be two probability measures
on the measurable space (M, .%). If the probability measure P is absolutely continuous with respect to

the probability measure @ then the f-divergence is defined as

0,(PIQ) = [ £(55©) 1)

where f(0) = lim,_,o+ f(z).
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f-divergences
Background

Information-type measures of dissimilarity between two probability distributions [Csiszar, 1967].

Motivation and significance:
» Operational insight in:
» Channel coding
» Compression, estimation
» High-dimensional statistics
» Hypothesis testing
» Amenable to variational representations

» Link to Fisher information

Common f-divergences:

>
>
>
>
>

Relative Entropy: f(z) = xzlogz

Squared Hellinger distance: f(z) = (1 — v/z)?

Total Variation: f(z) = 3|z — 1|
x>-divergence: f(z) = (z —1)2
Jensen-Shannon divergence:
f(@) = zlog (2%

) +1og ()
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f-divergences

Properties

Basic Properties
» Dy(P||P)=0.
» Df(P||Q) > 0. If f is strictly convex then Df(P||Q) =0 < P =Q.
» Dy(Pxy[@xy) = Ds(Px|Qx).
» (P,Q) — Ds(P||Q) is jointly convex.
» P — Ds(P|Q) is convex
» Q— Dy(P||Q) is convex
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ERM wih f-divergence Regularization

Problem Formulation: ERM with f-divergence Regularization (ERM-fDR)

Given the dataset z € (X x )", the ERM-fDR problem, with parameters @ , A, and f, consists of the
following optimization problem:

o R=(P) + AD¢(P||Q),

with optimization domain

Do (M, F)2 [P eAM,F): P<Q).

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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ERM wih f-divergence Regularization

Assumptions

» The function f is strictly convex and differentiable

» There exists a 3 such that

t+L(z,0))}

ﬁe{te]R:VOesupr,O<f_1(— Y

/f ﬂ-l—L(z 0))dQ(0):

» The function L. is separable with respect to the probability measure @

and
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ERM wih f-divergence Regularization

Assumptions
» The function f is strictly convex and differentiable

» There exists a 8 such that

RS {tE]R:V0€supr7O< Ft (_M)}

and
/f ﬂ-i—L(z 0))dQ(0):

» The function L. is separable with respect to the probability measure @

Definition (Separable Empirical Risk Function)

The empirical risk function L is said to be separable with respect to a o-finite measure P € A(M), if
there exist a positive real ¢ > 0 and two subsets A and C of M that are nonneglible with respect to P,

such for all (61,02) € A x C, it holds that
L(2,01) < c< L(z,02) < .

38/49



ERM wih f-divergence Regularization
Solution to the ERM-fDR

Under assumptions stated in the previous slide, the solution to the ERM-fDR problem is unique, and
for all @ € supp Q, is given by

dPST,Y. 1 ( B+L(20)
—ag 9=/ (‘f)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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ERM wih f-divergence Regularization
Solution to the ERM-fDR

Under assumptions stated in the previous slide, the solution to the ERM-fDR problem is unique, and
for all @ € supp Q, is given by

dPST,Y. 1 ( B+L(20)
—ag 9=/ (‘f)

Remarks:

» Probability measures Q and Pg”‘?’zﬁz are mutually absolutely continuous.

» No support exploration: f-divergence regularization forces the solution to coincide with the
support of the reference measure @, independently of the training data.

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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ERM wih f-divergence Regularization
Common Cases: Kullback-Leibler Divergence (Type-I)
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ERM wih f-divergence Regularization
Common Cases: Kullback-Leibler Divergence (Type-I)

Setting

f(z) = zlogw,
f(z) =logz +1,

results in

D/(PIQ) = [ £(§5©) da®) = [10(55©) aree).

d@ d@

The ERM-fDR solution yields

dPg7., o) (Ji +L(26)+ /\>
a0 e A :
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ERM wih f-divergence Regularization
Common Cases: Kullback-Leibler Divergence (Type-Il)
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ERM wih f-divergence Regularization
Common Cases: Kullback-Leibler Divergence (Type-Il)

Setting
f(z) = —loga
: 1
f(.l?) - 757
results in

0,(PIQ) = [ 1(55®)) aae) =~ [10g (5 @) aie) = [108 (2 (0) aeee).

The ERM-fDR solution yields

(Q,\)
dPgiz-, A

d@
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ERM wih f-divergence Regularization

Common Cases: Jensen-Shannon Divergence
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ERM wih f-divergence Regularization

Common Cases: Jensen-Shannon Divergence

Definition (Jensen-Shannon Divergence)

Let P and @ be two probability measures on the measurable space (M, .%). If the probability measure P
is absolutely continuous with respect to the probability measure @) then the Jensen-Shannon divergence
is 1 1
15 =0(PILP+ @) +0(QliP+a).
» Remark: /JS (P, Q) is a metric in the space of probability measure.

» The link to f-divergence characterization is

f(z) = zlog (%) + log (xi—i—l) )

: 2z
f(z) =log (:v + 1)
» The ERM-fDR solution yields

(Q,N\)
dPgiz—. 0)— 1
dQ 2exp(7ﬂ"<z 9)) 1
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ERM wih f-divergence Regularization

Common Cases: x2-divergence
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ERM wih f-divergence Regularization

Common Cases: x2-divergence

Definition (x?-divergence)

Let P and ) be two probability measures on the measurable space (M, .%). If the probability measure
P is absolutely continuous with respect to the probability measure @ then the x*-divergence is

2 v10) = [ (350 -1) a0

» The link to f-divergence characterization is

fla) = (z—1)%
fla) =2(x - 1).
» The ERM-fDR solution yields

dpé(fZ)\>z ﬂ + L(Z7 0)
—ag O
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Numerical Comparison of Several Regularizations

Evaluation of the Generalization Capabilities

We train a binary classifier to distinguish ‘six’ and ‘seven’ in the MNIST dataset with the

ERM-RER several regularizers.

(Q.)
10° Rz‘(PSZfz.)
= Type-I ERM-RER
= = Type-Il ERM-RER
= Shannon-Jensen
Jort kL Hellinger
10?
10°

10% 10° 10 107! 10°
Parameter (A)

A
10° ’—‘(p[é))\z)fz‘)
| | =——Type-I ERM-RER
[ |= = Type-Il ERM-RER
| Shannon-Jensen z
Hellinger

104 10° 102 107 10° 10
Parameter (A)
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Numerical Comparison of Several Regularizations

Evaluation of the Generalization Capabilities

We train a binary classifier to distinguish ‘six’ and ‘seven’ in the MNIST dataset with the
ERM-RER several regularizers.

T T T T

A A
Rz (Pg\Z):21) ~ R (P(QQIZ)ZZI)
———Type-I ERM-RER
= = Type-II ERM-RER
—-—=- Shannon-Jensen

Hellinger

10 103 102 107 10° 10' 102
Parameter (\)
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Revisiting the Regularization Equivalence

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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Revisiting the Regularization Equivalence

» Recall that Type-l and Type-II regularizations are equivalent via a transformation of the
expected empirical risk: does this extend to f-divergence regularization?

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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Revisiting the Regularization Equivalence

» Recall that Type-l and Type-II regularizations are equivalent via a transformation of the
expected empirical risk: does this extend to f-divergence regularization?

Theorem

Let f and g be two strictly convex and differentiable functions satisfying the conditions to generate an
f-divergence and g-divergence, respectively. If the following problem possess solutions, then

/ L(z,0)dP(6) +\D;(P|Q) = / o(L(2,0))dP(8) + AD,(P[Q).

min min
PeAg(M) Pelg(M)

where the function v : [0,00) — R is such that

o) =g (1 (- 22200 v o,

with Nq,- and Ng, . being the respective normalization functions.

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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Conclusions for Part Il

» All f-Divergence regularizations to the ERM problem exhibit solutions that are mutually
absolutely continuous with the reference measure.

» What implications on the set of models that would exhibit positive probability?

» How to choose Q ?

» Several solutions to the ERM-fDR problem simultaneously exhibit smaller training and test
errors than those induced by the Gibbs Algorithm.

» Equivalence results for f-divergence regularization unveil link between the choice of f-divergence
and loss function.
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» Model set adaptation to practical implementations
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Conclusions for Part Il

» All f-Divergence regularizations to the ERM problem exhibit solutions that are mutually
absolutely continuous with the reference measure.

» What implications on the set of models that would exhibit positive probability?

» How to choose Q ?

» Several solutions to the ERM-fDR problem simultaneously exhibit smaller training and test
errors than those induced by the Gibbs Algorithm.

» Equivalence results for f-divergence regularization unveil link between the choice of f-divergence
and loss function.

» Adapting the f-divergence to different learning frameworks suggests tailored regularizer designs
» Loss function definition

» Model set adaptation to practical implementations

» Open problem: How to choose all these parameters A, Q, f, ¢, ...

48 /49
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R (Pojz_s) = / L (2,6) dPo)z— (6)

e

(- )
2= ((21,91), (@2,02) -, (Tn, ) € (X x V)" ’P_‘
[ TTTTT—| ®7==
Learning
Training Dataset
Information Source 0
Pze (X X y) 1)
w=((u1,21), (u2,v2) sy (pny V) € (X x Y)"
T 4 (6.0) [—>
Test Dataset

|- /.

~

Ry (Pojz=z) =/L(u, 0)dPe|z-- (6)

Generalization Error (Definition 4 in [Perlaza-2024b] )

The generalization error of the algorithm Pg|z is

G (Pojz, Pz) //(R,, Poz=2) — Rz (Pojz—.)) dPz (1) dPz (2).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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Empirical Risk Minimization with Relative Entropy Regularization
The Gibbs Algorithm

» Given a fixed dataset z € (X x )"; and

» given a reference measure Q € A (M) and a real A >0

Problem 1: ERM with Relative Entropy Regularization

/L(z,O)dP(0)+)\D(P||Q),

min
PEAQ(M)

with Ag(M) £ {P € A(M): P < Q}.
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Empirical Risk Minimization with Relative Entropy Regularization
The Gibbs Algorithm

» Given a fixed dataset z € (X x )"; and

» given a reference measure Q € A (M) and a real A >0

Problem 1: ERM with Relative Entropy Regularization

/L(z,O)dP(0)+)\D(P||Q),

min
PEAQ(M)

with Ag(M) £ {P € A(M): P < Q}.

Problem 1a: ERM within a Neighborhood

min. / L (z,6)dP(6)

PEAQ(M
st. D(P|Q)<n.

[Perlaza-2024a] Samir M. Perlaza, Gaetan Bisson, lfiaki Esnaola, Alain Jean-Marie, and Stefano Rini. “Empirical Risk Minimization with Relative Entropy Regularization”. |EEE
Transactions on Information Theory, vol. 70, no. 7, pp. 5122 — 5161, July, 2024.
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Empirical Risk Maximization with Relative Entropy Regularization
Worst-Case Data-Generating Probability Measure

» Given a fixed model & € M; and

» Given a reference measure Ps € A (X x Y) and a real 8 >0

Problem 2: Loss Maximization with Relative Entropy Regularization

[ €(h(6.%).y)aP(x.) - 5D(PIPs),

max
PEAR(XXY)

with Apg (X x V)2 {P e A(X xV): P < Ps}.
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Empirical Risk Maximization with Relative Entropy Regularization
Worst-Case Data-Generating Probability Measure

» Given a fixed model & € M; and

» Given a reference measure Ps € A (X x Y) and a real 8 >0

Problem 2: Loss Maximization with Relative Entropy Regularization

[ €(h(6.%).y)aP(x.) - 5D(PIPs),

max
PEAR(XXY)

with Apg (X x V)2 {P e A(X xV): P < Ps}.

Problem 2: Loss Maximization within a Neighbourhood

e / £(h(8,%),y)dP(x,y)

st.  D(P||Ps) <.

[Zou-2024] Xinying Zou, Samir M. Perlaza, Ifiaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-G ing P ili in Statistical Learning”.
IEEE Journal on Selected Areas in Information Theory, vol. 5, pp. 175-189, Apr., 2024.
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Problem 1:
Empirical Risk Minimization with Relative Entropy Regularization
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Empirical Risk Minimization with Relative Entropy Regularization

Problem 1: ERM with Relative Entropy Regularization

somin [ L(z.6)aP(6) + AD(P]Q).
with Ag (M) £ {Pe A(M): P < Q}.

Notation:

Ko, (t) = log (/ exp (t L(z,9))dQ(9)) and Kg ., 2 {s € (0,400) : Ko, (—%) < +oo}

Theorem (Theorem 3 in [Perlaza-2024a])

If A € Kq,z, the solution to Problem 1 is unique, denoted by P((;l’;‘:)z, and satisfies for all @ € supp Q,

dP((aQ’i) 1 1
~ O|Z=z 5y _ _Eh_
2 (g)erp (Ko (1) - $L(0)).

[Perlaza-2024a] Samir M. Perlaza, Gaetan Bisson, lfiaki Esnaola, Alain Jean-Marie, and Stefano Rini. “Empirical Risk Minimization with Relative Entropy Regularization”. |IEEE
Transactions on Information Theory, vol. 70, no. 7, pp. 5122 — 5161, July, 2024.
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Empirical Risk Minimization with Relative Entropy Regularization

Problem 1: ERM with Relative Entropy Regularization

somin [ L(z.6)aP(6) + AD(P]Q).
with Ag (M) £ {Pe A(M): P < Q}.
Notation:

Ko.s (t) = log (/ exp (¢ L(z,e))dQ(e)) and Ko, 2 {s € (0,4+0) : Ka.s (-%) < +oo}

Theorem (Equation (28) in [Perlaza-2024a])

If A € Kq,z, the solution to Problem 1 is a unique, denoted by PN and satisfies for all 8 € sup Q,

0|Z=z’
Polzle (g &P (-3L(2.0)
dQ Jexp(—% L(2,0))dQ(6)

[Perlaza—2024a] Samir M. Perlaza, Gaetan Bisson, Ifiaki Esnaola, Alain Jean-Marie, and Stefano Rini. “Empirical Risk Minimization with Relative Entropy Regularization”. |EEE
Transactions on Information Theory, vol. 70, no. 7, pp. 5122 — 5161, July, 2024.

6/ 44



Empirical Risk Minimization with Relative Entropy Regularization

Problem 1: ERM with Relative Entropy Regularization

iy / L(2,8)dP(8) +AD(P|Q).

PEA (M)
Rz(P)

Solution:

dPé,Q’A,) 1 1
|Z=z _ . o)t
O (g)=erp (Ko (-3 ) ~ +L(.0)).

Sensitivity to deviations from the Optimal Measure:

Lemma (Lemma 33 in [Perlaza-2024b])

Rz (P) = Rz (PS2,)=x (D(PSY,1Q) + D (PIPSTY,) — D(PIQ))

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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Empirical Risk Minimization with Relative Entropy Regularization

D (ol 1Q)

Figure: Geometric interpretation of the gap R, (P) — R: (P(e(\?zA:)z)

8/44



Empirical Risk Minimization with Relative Entropy Regularization

( P(o. » PP

Figure: Geometrlc ilfterpretation of the gap R, (P) — R (Pgl?’z)‘:)z)
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Empirical Risk Minimization with Relative Entropy Regularization

Problem 1: ERM with Relative Entropy Regularization
/L(z, 0)dP(0) +)\D(P||Q) .
N— —

Rz(P)

min
PeA (M)

Solution:
4PN

2 s () - Bu0)

Theorem (Theorem 37 in [Perlaza-2024b])
For all P, € AQ (M) and P, € AQ (M),

Re (P1) — Re (P2)=A(D (P1lIPZ5Y,) — D (PallPS3Y,) + D(P2]1@) ~ D(PIQ) ).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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Problem 2:
Loss Maximization with Relative Entropy Regularization
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Loss Maximization with Relative Entropy Regularization

Problem 2: Loss Maximization with Relative Entropy Regularization

e [ £(h(6..9)0P(x.y) - BD(PIPS).

with Ap, (X X V)2 {P e A(X xY): P < Ps}.

Notation:

Jps,0(t) = log (/exp(t((@,x,y))dPs(x,y)) and Jpg.0 = {t € (0,+00) : Jps0 (%) < —l—oo}

Theorem (Theorem 1 in [Zou-2024])

If B € Jps,0, the solution to Problem 2 is unique, denoted by P(ZTE)’ o+ and satisfies for all (x,y) €
supp Ps,
p(Ps.B)
e = (5))
———(x,y)=exp | 5£(h (0, x —J — ).
dPS (7.y) p ﬁ ( (7 )7y) Ps,0 /8
[Zou-2024] Xinying Zou, Samir M. Perlaza, Ifiaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-G: ing Probability M. in Statistical Learning”.

IEEE Journal on Selected Areas in Information Theory, vol. 5, pp. 175-189, Apr., 2024.
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Loss Maximization with Relative Entropy Regularization

Problem 2: Loss Maximization with Relative Entropy Regularization

max / ((h(8,%),y)dP(x,y) —AD(P|Ps).

PEAP (X XV)

Re(P)
Solution:
dP(PS‘B)

—ip en=en (5 ~3r:0(5))
290 (x,y)= exp (50 (h(6.%),) ~ Jeso (5 ))
Assumption: Pz (A; x Ay x ... x A,) =T[_, Pz (A:)

Lemma (Theorem 6 in [Zou-2024])

Ro (P) —Ro (PY523) = 8 (D(PIIPs) - D(PIPYS?)) — D (PSS I1Ps))

[Zou-2024] Xinying Zou, Samir M. Perlaza, lfiaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-G: ing F ility M in Statistical Learning”.
IEEE Journal on Selected Areas in Information Theory, vol. 5, pp. 175-189, Apr., 2024.
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Loss Maximization with Relative Entropy Regularization

D (PalPs)

Figure: Geometric interpretation of the gap Rg (P) — Rg (P( 3))

Z|0=6
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Loss Maximization with Relative Entropy Regularization

D(PY57)1IPs)

Figure: Geomjetric interpretation of the gap Rg (P) — Rg (P(ZT(%:BQ)

(Ps, P)
Pi w,.‘,'
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Loss Maximization with Relative Entropy Regularization

Problem 2: Loss Maximization with Relative Entropy Regularization

pea ) [ Lh8),1)aP0y) ~BD(PIPS).

Re(P)

Solution:

(Ps,B)
dPZ\e:e

1 1
T%(X’y): €xp (Bf(h(eyx) ,¥) — Jps.o <E>>
Assumption: Pz (A1 x Az x ... x A,) =TI, Pz (A:)

Theorem (Theorem 8 in [Zou-2024])
For all P1 € Aps (X X V) and for all P, € Apg (X X)),

Ro (P1) — Ro (P2) = B(D (PallPY’3% ) — D(PilIPs2, ) — D(P2[1Ps) + D(Pi[[Ps) )

[Zou-2024] Xinying Zou, Samir M. Perlaza, Ifiaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-G: ing P il in Statistical Learning”.
IEEE Journal on Selected Areas in Information Theory, vol. 5, pp. 175-189, Apr., 2024.
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So far...

Theorem (Theorem 37 in [Perlaza-2024b])

For all Py € Ag (M) and P € Ag (M),

R: (P1) — Re (P)=A(D (P1IPSY,) — D (PalIPY,) +D(P2]1Q) - D(PiQ) ).
Theorem (Theorem 8 in [Zou-2024])
For all Py € Aps (X x V) and for all P, € Aps (X x ),

Ro (P1) = Ra (P2) = B(D (P2IPY")) = D (PulIPYE") ) = D(P2lIPs) + D(PilIPs) ).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.

[Zou-2024] Xinying Zou, Samir M. Perlaza, |fiaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-Generating Probability Measure in Statistical Learning".
IEEE Journal on Selected Areas in Information Theory, vol. 5, pp. 175-189, Apr., 2024.
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The Method of Gaps

Definition (Expected Empirical Risk)

R, (P) = / L(2,0)dP(6)
R (@)= [ £(h(6.).5)dQ(x.).
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The Method of Gaps

Definition (Expected Empirical Risk)

R, (P) = / L(2,0)dP(6)
R (@)= [ £(h(6.).5)dQ(x.).

Two essential observations:

» The generalization error is an expectation of the variations of R, or Rg; and

16 /44



The Method of Gaps

Definition (Expected Empirical Risk)

R, (P) = / L(2,0)dP(6)
R (@)= [ £(h(6.).5)dQ(x.).

Two essential observations:
» The generalization error is an expectation of the variations of R, or Rg; and
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Definition (Expected Empirical Risk)

R, (P) = / L(2,0)dP(6)
R (@)= [ £(h(6.).5)dQ(x.).

Two essential observations:

» The generalization error is an expectation of the variations of R, or Rg; and

» These variations, a.k.a. gaps, exhibit closed-form expressions in terms of information measures.
Two-step Method:

» To express the generalization error as an expectation of a gap; and

» To leverage the properties of gaps to obtain closed-form expressions.

16 /44



The Method of Gaps

Expected-Empirical-Risk Gaps

R, (P) = / L(z,0)dP(6)
Ro (Q) = / £(h(8, %), ) dQ(x. ).

Definition (Expected-Empirical-Risk Gaps)

Let functionals G : (X X V)" X A (M) x A(M) >R and G: M X A(X X Y) x A(X xY) — R be
G(z, Pi,P:) = R, (P1) — R, (P.), Algorithm-driven Gap

and

G (0, P1, P,) = Rg (P1) — Re (P>) . Data-driven Gap
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The Method of Gaps

Two variants:
» The Method of Algorithm-driven Gaps
» Central building-block: The Gibbs Algorithm
» No assumptions on Pz (probability distribution of the datasets)

» The Method of Data-driven Gaps
» Central building-block: The Worst-Case Data-Generating (WCDG) probability measure

» [.I.D assumption on Pz:

PZ(AIX'AZX"'X'A”):HPZ(-At)

t=1
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The Method of Algorithm-driven Gaps

Generalization Error

The generalization error of the algorithm Pg|z is

E (Pe|z, Pz) // (Peo|z=z) — Rz (Pe|z=z)) APz (u)dPz (z).
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The Method of Algorithm-driven Gaps

Generalization Error

The generalization error of the algorithm Pg|z is
G (Po)z, Pz) // (Pojz—2) — Rz (Pojz—.)) dPz (1) dPz (2) .

Step 1:
Lemma (Lemma 3 in [Perlaza-2024b])

The generalization error G (Pe|z, Pz) satisfies

G (Pe|z, Pz) = /G (z, Pe, Pojz—;) dPz (z),
where for all measurable subsets C of M,

Po (€)= [ Poiz-2 (C) 4Pz 2).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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The Method of Algorithm-driven Gaps

Generalization Error
The generalization error of the algorithm Pg|z is

G (Pojz, Pz) // (Pojz-2) — Rz (Pojz=.)) dPz (u) dPz (2).
Step 2:

Lemma (Lemma 4 in [Perlaza-2024b])

The generalization error G(Pgz, Pz) satisfies

G (Pe|z, Pz) = )\/ (D(P@)HPgl?z)\)z) — D(P@|z:z||P(®C|?z>\)z) e D(P@|zzz||Q) = D(Pe”Q))sz (2).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The ion Error of Machi

Learning Algorithms”. November, 2024.
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The Method of Data-driven Gaps

Generalization Error

The generalization error of the algorithm Peiz is

G (Pojz, Pz)é//(R,, (Pojzz) — Rz (Pojz—.)) dPz (1) dPz (2) .

Step 1:
» Assumption: Pz (A1 x Az x ... x Ap) =[]r_, Pz (Ae).
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The Method of Data-driven Gaps

Generalization Error

The generalization error of the algorithm Peiz is
G (Po)z, Pz)é// (Ru (Pe|z=z) — Rz (Pejz=z)) dPz (u) dPz (z).

Step 1:
» Assumption: Pz (A1 x Az x ... x Ap) =[]r_, Pz (Ae).

Lemma (Lemma 6 in [Perlaza-2024b])

The generalization error G(Pg,z, Pz) satisfies

E(Pc->|z,":'z)=/c'3(‘9, Pz,Pzie—6) dPe ().

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machi

Learning Algorithms”. November, 2024.
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Generalization Error

The generalization error of the algorithm Pg|z is
G (Po)z, Pz) // (Pojz—z) — R: (Pojz—.)) dPz (1) dPz (2).

Step 2:
» Assumption: Pz (A1 x Ax x ... x Ap) =[]i_; Pz (Ae).
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The Method of Data-driven Gaps

Generalization Error

The generalization error of the algorithm Pg|z is

E (Pe|z, Pz) // (Pe|z=z) — Rz (Pe|z=z)) APz (u) dPz (z).

Step 2:
» Assumption: Pz (A1 x Ax x ... x Ap) =[]i_; Pz (Ae).

Lemma (Lemma 7 in [Perlaza-2024b])

The generalization error G(Pgz, Pz) satisfies

E(P@|Z,Pz):ﬂ/ (D (Pz|e=9||P;gB()9) (P ||P;’(Saﬁ;) D (Pze=s||Ps) +D(Pz||Ps)>dPe ).

ine Learning Algorithms”. November, 2024.

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of
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So far...

The generalization error of the algorithm Pg|z is

G (Poyz, Pz) // (Pojz—2) — Rz (Pojz=z)) APz (u) dPz (2).
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So far...

The generalization error of the algorithm Pg|z is

G (Poyz, Pz) // (Pojz-2) — Rz (Pojz—.)) dPz (u)dPz (2).

Lemma (Lemma 4 in [Perlaza-2024b])

The generalization error G(Pg|z, Pz) satisfies

f (P@|z, Pz) = )\/ (D(PGHP((-)?Z)\)Z) = D(P@|z:z||Pe‘|?z>\)z) +D (P@|z:z||Q) = D(P@|IQ)>sz (2).

Lemma (Lemma 7 in [Perlaza-2024b])

The generalization error G(Pe,z, Pz) satisfies

G(Pojz, P7) = f / (D(Pz.ezenpgfgﬁz,) D(PIPSE?)) - D(PZ|e=e||Ps)+D(Pz||Ps))dPe(e).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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» Algebraic manipulations of the closed-form expressions shown before

» More manipulations lead to less generality
» Additional conditions to allow manipulations are imposed on:
» The algorithm; and

» The data-generating distribution.

» Some Expressions establish bridges with other areas: Hypothesis Testing, Geometry, etc.
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Expressions Obtained Via the Method of Gaps

Connections to Hypothesis Testing

Theorem (Theorem 8 in [Perlaza-2024b])

The generalization error G(Pez, Pz) satisfies

E(Pe\z,"’z)

=y ( @'z ’(e)) aPoiz-: (0)P2(2)— [ [ ( @‘z : (e)> dPo (6) dPz (2).
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Expressions Obtained Via the Method of Gaps

Connections to Hypothesis Testing

Theorem (Theorem 8 in [Perlaza-2024b])

The generalization error G(Pez, Pz) satisfies

E(Pe\z,"’z)
Q A)

= / / ( G"Z ’(e)> dPojz_. (6) Pz (z / / ( G"z Z(e)> dPe (8) Pz (2).

» Ground truth probability distribution: (©, Z) ~ Pg|z - Pz
> Null Hypothesis: (@, Z) ~ PS;" - Pz
» Alternative Hypothesis: (©,Z) ~ -Pz
» log-likelihood ratio:
dP§Y - Pz “ Z)idPe("?zA .
d@ - Pz ’ d@
[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of ine Learning Algorithms”. November, 2024.
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Expressions Obtained Via the Method of Gaps

Connections to Hypothesis Testing

Theorem (Theorem 8 in [Perlaza-2024b])

The generalization error G(Pgz, Pz) satisfies

E(P9‘27 PZ)
QA)

[/ ( ol 1(0)> aPoiz-+ (0)Pz(2) -2 [ [ ( 9‘2 Z(e>> dPo (6) dPz (2).

Statistical Hypothesis Test

» Ground truth probability distribution: (@, Z) ~ Pg|z - Pz
> Null Hypothesis: (@, Z) ~ PS;" - Pz

» Alternative Hypothesis: (©,Z) ~ dQ - Pz

» Mismatched Hypothesis Test [Boroumand-2022]

Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of ine Learning Algorithms”. November, 2024.
ying g Alge

[Boroumand-2022] P. Boroumand and A. G. i Fabregas, “Mismatched binary hypothesis testing: Error exponent sensitivity,” IEEE Transactions on Information Theory, vol. 68,
no. 10, pp. 6738 — 6761, 2022.
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Expressions Obtained Via the Method of Gaps

Connections to Hypothesis Testing

Theorem (Theorem 8 in [Perlaza-2024b])

The generalization error G(Pg|z, Pz) satisfies

G (Pe)z, Pz)

= / / ( G"z ’(o)> dPojz_z () Pz (z) — A / / ( G"Z ’(0)> dPe (8) Pz (2).

Ground truth probability distribution: (@, Z) ~ Pg|z - Pz
Null Hypothesis: (@, Z) ~ PG’} - Pz

Alternative Hypothesis: (©,2) ~dQ - Pz

Mismatched Hypothesis Test [Boroumand-2022]

Generalization Error

variation of the expected log-likelihood when the ground-truth changes from Pg - Pz to Pg|z - Pz.

Yy VvV VY

27 / 44



Expressions Obtained Via the Method of Gaps

Connections to Hypothesis Testing

Theorem (Theorem 8 in [Perlaza-2024b])

The generalization error G(Pez, Pz) satisfies

E(P@\z, Pz)

_)\//< @'Z z (9)) dPe)z—z () Pz (2 // (Iog oz (9)) dPe (6) dPz (z).

Theorem (Theorem 22 in [Perlaza-2024b])

The generalization error G(Pgz, Pz) satisfies

G(Pe|z, Pz)
5 ( [ [ 1o ol 7 (2) |4Pri-ol)Po () - [ [roe < s )> dP2(z)dPe (0) ) -
Z\O 6
[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of ine Learning Algorithms”. November, 2024.
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Expressions Obtained Via the Method of Gaps

Connections to Information Measures

Corollary (Corollary 9 in [Perlaza-2024b] — Choice of Q@ = Pg )

The generalization error E(P@)‘ z, Pz) satisfies
T (Poiz, Pz) = M (Peyz: Pz) + A/ (D(Pe||PgT‘;’jz)) — D(PojzcIIPL2?) )sz (2).

Corollary (Corollary 24 in [Perlaza-2024b] — Choice of Ps = P7)

The generalization error E(P@‘ z, Pz) satisfies
E(Penz, Pz)
=—B1 (P7j0: Po) + B / D(Pzi0-0llP$%")) dPo (8) — B / D(PzIIPY%")) dPe (6).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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Connections to Information Measures
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Expressions Obtained Via the Method of Gaps

Connections to Information Measures

Corollary (Corollary 10 in [Perlaza-2024b] — Choice of Q = Pg|z)

The generalization error G(Pg|z, Pz) satisfies

G (Pe)z, Pz)
= AL (PoiziPz) + 1 [ D(PallPe7 ) Pz (2) - A [ 0(Porz-all P25 ) dPe (a).

Corollary (Corollary 25 in [Perlaza-2024b] — Choice of Ps = Pzg)

The generalization error G(Pg,z, Pz) satisfies

G(Po|z,Pz) = BL(Pze:Po) +5 / D(PZ|e:e||P§f;f;""*))dPe(B)—/3 / D(lelPéf;f;""’))dPe(e).

Learning Algorithms”. November, 2024.

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machi
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Expressions Obtained Via the Method of Gaps

Connections to Information Measures

Theorem (Theorem 14 in [Perlaza-2024b])

The generalization error E( Peo|z, Pz) satisfies
E(Pe)|z, Pz)=X (I (Pe|z; Pz) + L (Pejz; Pz))
+/\// f’{‘f; (8)dPe (0)dPz(z) — /\// @T'Z;(O)dpe,zzz(e))dpz(z).

O\Z z G)|Z z
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Expressions Obtained Via the Method of Gaps

Connections to Information Measures

Theorem (Theorem 14 in [Perlaza-2024b])

The generalization error E(P@‘ z, Pz) satisfies
G(P@|z,Pz) )\ P@|z,Pz) —|—L(P@|z,Pz))
4 d 4
A / / f’c‘)ﬂ (0)dPo (0)dPz(2)— A / / SO (6)dPorz-.(0)dP2(2)

e\z e|z z

/ / Iogd OC'PZA)’ (8) dPe () AP (z / / |ogd OCLZA)’ (0) dPo|z—. (8) dPz (2)=0.

@|Z z @|Z z

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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Expressions Obtained Via the Method of Gaps

Connections to Information Measures

Theorem (Theorem 14 in [Perlaza-2024b])

The generalization error E(Pe‘ z, Pz) satisfies
G(Pejz, Pz)= A (I (Pejz; Pz) + L (Pejz; Pz))
2 dP 2
+A / / ?(LZA (8)dPe (0)dPz(z)— A / / 9('31) (0)dPo|z—.(8)dPz(z).

B\Z z 6|Z z

Generalization Error of the Gibbs Algorithm:

Corollary (Theorem 1 in [Aminian-2021])

G(PSY, P2)=A (1 (PSY: Pz) + L (PSS Pz)).

[Aminian-2021] G Aminian, Y Bu, L Toni, M Rodrigues, G Wornell. “An exact characterization of the generalization error for the Gibbs algorithm” Advances in Neural Information
Processing Systems, vol. 34, pp. 8106-8118, 2021
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Expressions Obtained Via the Method of Gaps

Connections to Information Measures

Theorem (Theorem 29 in [Perlaza-2024b])

The generalization error G(Pgz, Pz) satisfies

G(Peyz,Pz) =B (I (Pz0:Po) +L(Pz0:Po))

8 / / log <:Ii A= (z)> P20 (2) AP (8) — / / log <jl’z A= (z)) dP7 (z)dPo (6).

2|e=6 Z|e=6
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Expressions Obtained Via the Method of Gaps

Connections to Information Measures

Theorem (Theorem 29 in [Perlaza-2024b])

The generalization error G(Pgz, Pz) satisfies

G(Peyz,Pz) = —B(I (Pzj0;Pe) +L(Pz0:Po))

+'B// <d fll’(saﬁ()’( )>dPZ|e=9 (z)dPe (9)—,3//|0g< (Z,',?Bo( ))sz (z)dPe ().

2|e 7] 2|o 7]

5[ [0 < Z,Lf;;<)>dpzee<z)dpe<e 5[ [ (d f;i’ﬁ?()>dpz<z)dpe<e)=o

Z|e )

Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of ine Learning Algorithms”. November, 2024.
g Alg
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Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

Theorem (Theorem 18 in [Perlaza-2024b])

The generalization error G(Pez, Pz) satisfies

E(P@|Z,Pz):)\//<D(P@|z:z||P((aC|)’ZA:)u) = D(P@|z:z||P(‘;|”ZQZ))sz (u)dPz(z).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

¢ [ P (Poiz-rlPe) aPz @)

[ olreleg, ) ape o

//D(sz:uupéﬁ”zﬁz) dPz (u) dPz (z) :/D(P@||ng*;:)z)dpz (z)+/D(P9‘Z:zHP@)sz (2).

35/44



Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

ZHP@) sz (Z)

/ D (Pojz

(o)

fe. [ olreleg, ) aps o Per1

//D(P(a,z:u”Péﬁ’z*z)sz(u)sz( ) = /D(P@||Pg‘fz*z)dpz (z)+/ (Pojz=|Pe) dPz (2).
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Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

ZHP@) sz (Z)

\//D(P@|z

¢/ D(PollPS%Y,) dPz (2)
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Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry P

z”P@) sz (Z)

[ o(releg,) ape 2 AT

b D (Peyz
Rk

N
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Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

37 /44



Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

Theorem (Theorem 31 in [Perlaza-2024b])

The generalization error G(Pez, Pz) satisfies

G (Porz:P2)=6 [ [ (D(Prio-ullP$3?) — D (Prio-ullPY5™)) )aPo(v)ape(n).

[Perlaza-2024b] Samir M. Perlaza and Xinying Zou. “The G ization Error of Machine Learning Algorithms”. November, 2024.
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Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

//0@

ollPz) dPe(8)

\//D(Pze

\//D<Pz||Pg|’(f)’Bi) dPs (8)

//D(PZ|9:6||P(2’|’;)Q))dP@(u)dP@(o) :/D(PZ‘GZBHPZ) dPe (0)+/D<Pz||P(2’|’;fg) dPe (8),
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Expressions Obtained Via the Method of Gaps

Pete

Connections to Euclidian Geometry

ollPz) dPe(6)

\ /D(Pz‘@

¢ [ o(PePgs)) dpo 0) Pi[e

//D(Pz‘engP(;g’fi))dP@(V)dP@(B) :/D(PZ‘GZGHPZ) dPe (0)+/D(Pz||P(;gf;) dPe (0),

ey
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Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

0llPz) dPa(8)

\/ / D(Pz0

\/ / D(P21P%) dPo (0)
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Expressions Obtained Via the Method of Gaps

Connections to Euclidian Geometry

ollPz) dPe ()

D(Pze

#/

TZ \// (P2IPY5™)) dPo (6) File_
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Examples

WHAT IS THE LONG-RUN DISTRIBUTION OF STOCHASTIC
GRADIENT DESCENT? A LARGE DEVIATIONS ANALYSIS

WAISS AZIZIAN®* FRANCK IUTZELER!,
JEROME MALICK*, AND PANAYOTIS MERTIKOPOULOS®

ABsTrRACT. In this paper, we examine the long-run distribution of stochastic gradient
descent (SGD) in general, non-convex problems. Specifically, we seek to understand
which regions of the problem’s state space are more likely to be visited by SGD, and by
how much. Using an approach based on the theory of large deviations and randomly
perturbed dynamical systems, we show that the long-run distribution of SGD resembles
the Boltzmann—Gibbs distribution of equilibrium thermodynamics with temperature
equal to the method’s step-size and energy levels determined by the problem’s objective
and the statistics of the noise. In particular, we show that, in the long run, (a) the
problem’s critical region is visited exponentially more often than any non-critical region; ,,,,,




Examples

Corollary (What is the long-run Generalization Error of Stochastic Gradient Descent ?)
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Thank you for your attention!

Questions/Comments/Typos: samir.perlaza@inria.fr

» This work appears in:
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» Samir M. Perlaza, Gaetan Bisson, Ifiaki Esnaola, Alain Jean-Marie, and Stefano Rini. “Empirical Risk Minimization with Relative

Entropy Regularization”. |IEEE Transactions on Information Theory, vol. 70, no. 7, pp. 5122 — 5161, July, 2024.

» Xinying Zou, Samir M. Perlaza, Iiaki Esnaola, Eitan Altman, and H. Vincent Poor. “The Worst-Case Data-Generating Probability
Measure in Statistical Learning”. |IEEE Journal on Selected Areas in Information Theory, vol. 5, pp. 175-189, Apr., 2024.

44/44



