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A conditional probability measure Pg|z € A (M| (X x Y)™) represents a supervised machine learning algorithm.
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Problem Formulation: Empirical Risk Minimization (ERM)

Given the dataset z, the ERM problem is

Inin L(z,0).
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Training datasets and test datasets are independent and identically distributed:
» z is drawn from Pz € A ((X x Y)™); and
» u is drawn from Pz.
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The generalization error of the algorithm Pg,z is
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ERM with Relative Entropy Regularization (ERM-RER)

Problem Formulation: ERM with Relative Entropy Regularization (ERM-RER)

The ERM-RER problem, with parameters @ € A (M, % (M)) and X € (0,+0c0), consists of the
following optimization problem:

i Rz (P) + AD (P|Q).
) (P)+AD (P[|Q)

Motivation for this regularization?
» Some priors are not probability measures:
» Uniform distribution over infinite (countable) sets: Counting Measure
» Uniform distribution over R¢: Lebesgue Measure

» Some priors (probability distributions) can be calculated up to a normalization factor.

» Reference measures constrain the set of models M.

S.M. Perlaza, G. Bisson, |. Esnaola, A. Jean-Marie, and S. Rini, “Empirical Risk Minimization with Relative Entropy
Regularizations,” IEEE Trans. Inf. Theory, vol. 70, no. 7, pp. 5122-5161, Jul. 2024.
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ERM with Relative Entropy Regularization (ERM-RER)

Problem Formulation: ERM with Relative Entropy Regularization (ERM-RER)

The ERM-RER problem, with parameters @ € A (M, % (M)) and A € (0,+0c0), consists of the
following optimization problem:

i R. (P) + AD (P||Q).
T (P)+AD (P|lQ)

Notation:

Kq,» (t) =log (/ exp (t L(z,O))dQ(G)) and Kg,» = {s € (0,400) : Kq,= (—%) < —l—oo} .

Theorem

If X € Kq,z, the solution to Problem 1 is unique, denoted by PCS)Ql’ZA:)z, and satisfies for all 8 € supp Q,

(@A)
dP®|Z:z

—30 (60)=exp (—KQ,; <—§) — %L(Z,G)) .

S.M. Perlaza, G. Bisson, |. Esnaola, A. Jean-Marie, and S. Rini, “Empirical Risk Minimization with Relative Entropy
Regularizations,” IEEE Trans. Inf. Theory, vol. 70, no. 7, pp. 5122-5161, Jul. 2024.
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Relative Entropy Asymmetry

Definition (Generalized Relative Entropy)
Given two o-finite measures P and ) on the same measurable space, such that P < @
2 (92 01106 (2 3))
o(PIQ) 2 [ §26)105(55©)) dQ(6).

» Relative entropy is asymmetric: D(P||Q) # D(Q||P)
» For most cases of interest P < Q = Q < P

» Solution probability measure is constrained to supp(P) C supp(Q)
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Type-1l ERM-RER Problem

Problem Formulation: Type-Il ERM-RER

The ERM-RER Type-ll problem, with parameters Q € A (M, % (M)) and X € (0,+c0), consists of
the optimization over the domain v/o(M, %) £ {P € A(M, F) : Q < P} given by

i R.(P) + AD(Q||P).
. (P)+AD(Q|IP)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-1l ERM-RER Problem

Problem Formulation: Type-Il ERM-RER

The ERM-RER Type-ll problem, with parameters @ € A (M, % (M)) and A € (0,+00), consists of
the optimization over the domain v/o(M, %) £ {P € A(M, F) : Q < P} given by

i R.(P) + AD(Q||P).
. (P)+AD(Q|IP)

» Asymmetry of the regularization:
» Type-1 ERM-RER limits model selection to the supp(Q).
» Type-Il ERM-RER allows selection of models outside of supp(Q).

» Type-ll regularizaiton allows exploring models outside the support of the reference

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Set of All Models
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Type-1l ERM-RER Problem

Problem Formulation: Type-lIl ERM-RER with parameters @ and A

i R.(P) + AD(Q||P),
I (P)+AD(Q|IP)

with Vo(M, Z) 2 {P € AM, F):Q < P}

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-1l ERM-RER Problem

Problem Formulation: Type-lIl ERM-RER with parameters @ and A

mi

R.(P) + AD(Q||P),
pegin o (P) +D(Q|P)

with Vo(M, F) = {P € A(M,ZF):Q < P}

Theorem

If there exists a real 8 such that § € {t € R:V0 € suppQ,0 < t+L(z,0)} and

A
/ Fil(z0) @@ =1

then, the unique solution to the Type-1l ERM-RER problem, PN satisfies for all € supp(Q),

O|Z==z’
p(Q,))
dP®|Z=z )= — A
d@ Kg-(\)+L(2,0)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Set of All Models

Supp(ng;:)z) = supp(Q)

Support collapse!

Type-Il Regularization: D(Q | | P)
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Type-1l ERM-RER Problem

Brief Sketch of the Proof:

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-1l ERM-RER Problem

Brief Sketch of the Proof:

» Solve ancillary problem

Peon %) Rz(P) +AD(Q[P), with Oo(M..7) = o(M,7)NAg(M,7)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-1l ERM-RER Problem

Brief Sketch of the Proof:

» Solve ancillary problem

o 3 A T\ & ! o o
PGOI(I;%I}A”% Rz(P)+ AD(Q||P), with Oqg(M,.7)=0(M,7)NAg(M,.7)

» Show that cost increases outside Qg (M, F):

i R.(V) +AD(Q|V) > i R.(P) + AD(Q||P).
veoo B0 (V) QIv) peci 2 (P) (QllP)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-1l ERM-RER Problem

Brief Sketch of the Proof:

» Solve ancillary problem

. : / a\ A a T
pedin, L Re(PYEAD(@QIP), with Oo(M.7) £ ya(M. 7)1 Ag(M. )

» Show that cost increases outside Qg (M, F):

R-(V) + AD(Q||V) > R.(P) + AD(Q|P).

min min
Vevg M, F)\Og(M,F) PeQq(M,F)
Observations:
» Type-ll regularization does not overcome induction bias introduced by the reference measure.

» Spoiler: f-divergence regularization does not overcome inductive bias either.

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Analysis of the Relative Entropy Asymmetry in Regularized Empirical
Risk Minimization,” in Proc. IEEE International Symposium on Information Theory, Taipei, Taiwan, Jun. 2023.
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Type-1l ERM-RER Properties

Normalization Function

» The choice of A is constrained to solutions that yield a probability distribution

» Let the set Ag . C (0,00) and Cq,= C R be such that if A € Ag -, then there exists a 8 € Cg,»
that satisfies 8 € {t e R : VO € suppQ,0 <t +L(2,0)} and

A
/ Fil(z0) 9@ =1
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Type-1l ERM-RER Properties

Normalization Function

» The choice of )\ is constrained to solutions that yield a probability distribution

» Let the set Ag . C (0,00) and Cq,>= C R be such that if A € Ag,=, then there exists a 8 € Cg,»
that satisfies 5 € {t e R : V0 € supp@,0 < t+L(z,0)} and

/B+L 74Q(0) = 1.

Definition (Normalization Function)
The normalization function of the Type-ll ERM-RER problem is the bijection between represented by

the function Ko » : Ag,» — Co,», which satisfies Ko »()\) = 5.

Note that the Radon-Nikodym derivative of the solution is

Q.
Polale o) _ A
dQ Ko +L(2.0)
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Type-1l ERM-RER Properties

Optimal models without regularization

» Given a real ¢ € [0,00), consider the set

L.(6)2 {0 M:L(20) <3}

» Best achievable performance without regularization:

55, 2 inf{s € [0,00) : Q(L=(5)) > O}

» Solution models for the Empirical Risk Minimization (within supp @) problem:

LH.2{0eM:L(2,0)=055.}
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Type-1l ERM-RER Properties

The Radon-Nikodym Derivative of the Solution is Positive and Finite
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Type-1l ERM-RER Properties

The Radon-Nikodym Derivative of the Solution is Positive and Finite

The Radon-Nikodym derivative is always finite and strictly positive.

Lemma
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Type-1l ERM-RER Properties

The Radon-Nikodym Derivative of the Solution is Positive and Finite

The Radon-Nikodym derivative is always finite and strictly positive.

Lemma
For all 6 € supp Q it holds that

dpé)Q)\_) )\

|Z==2

De = gme A o
g o= .+ o) -7

The equality holds if and only if @ € L, . Nsupp Q.

Empirical risk dominates inductive bias for any regularization regime.

Lemma
For all (81,82) € (supp Q)°, such that L(z,0:1) < L(z,82), it holds that

ARG, AR,
__ Olz=z < __9lZ==z
dQ (02) — dQ (01) )

with equality if and only if L(z,601) = L(z, 02).

27 /49



Type-1l ERM-RER Properties

Asymptotes of the Radon-Nikodym Derivative
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Type-1l ERM-RER Properties

Asymptotes of the Radon-Nikodym Derivative

Continuity of inductive bias introduced by large regularization factors.

g
dm —3g @ =t
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Type-1l ERM-RER Properties

Asymptotes of the Radon-Nikodym Derivative

Continuity of inductive bias introduced by large regularization factors.

g
dm —3g @ =t

Continuity of inductive bias introduced by small regularization factors.

If Q(L5,.) > 0 then for all @ € supp Q, it holds that

5(Q.N)
lim Pozs g _ __1 1
roo+ dQ Q(Ly ) 1osco.}

28/49



Type-1l ERM-RER Properties

Expected Empirical Risk
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Type-1l ERM-RER Properties

Expected Empirical Risk

Link between expected empirical risk and normalization function:

Lemma

RA(PSH),) = A= Kq=(N).
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Type-1l ERM-RER Properties

Expected Empirical Risk
Link between expected empirical risk and normalization function:

Lemma

Ro(PS52,) = A= Kq (V).

Lower bound on the sensitivity of R.:

R=(Q) — R=(P§%Y.) > A(exp(D (QIIPSY,)) - 1.
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Type-1l ERM-RER Properties

Expected Empirical Risk
Link between expected empirical risk and normalization function:

Lemma

_ 0 _
Ro(PSY)) =X — Kq 2 (\).
Lower bound on the sensitivity of R.:

Lemma

R=(Q) — Ra(PST52,) = Mexp(D (QIPEL, ) - 1).
Bounds on the expected empirical risk:

Lemma

04, <Ra(Palzl.) <A+ 00

Equality holds if and only if the empirical risk function is nonseparable.

29/49



Equilavence of Type-I and Type-Il Regularization

Type-ll = Type-l Equivalence:

pomin / L(z,0)4P(0) +20(QIP) =, min / Vo.-(0)dP(8) +D(P|Q),

where the function Vg . xM — R, referred to as the log-empirical risk, is defined as
Va2 (0) =log(Kq,=(A) + L(2,0)).

Type-l = Type-Il Equivalence:
i L(z,0)dP(6 AD (P = i Wg 2.2 (0)dP(6 D(Q||P),
pomin [ Le8)aP©) +30(PIQ) = | min [ Wa.r(6)aP®) +D@QIP)
where the function Wq » » : M — R is defined as
A

exp(— G — Kox(-3))

Wq 2 (0) = - Kq,=(N).
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Numerical Comparison of Type-l and Type-1l Regularization

Evaluation of the Generalization Capabilities

We train a binary classifier to distinguish ‘six’ and ‘seven’ in the MNIST dataset with the

ERM-RER Type-I and Type-II

(Q.\)
B (PSy.)
Q)
- - B2 (P8,
107" . 2
102
10°
10 10" 1072 107! 10° 10 10?

Parameter ()

104 107 102 107 10° 10 10%
Parameter (A)
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Numerical Comparison of Type-l and Type-1l Regularization

Evaluation of the Generalization Capabilities

We train a binary classifier to distinguish ‘six’ and ‘seven’ in the MNIST dataset with the
ERM-RER Type-l and Type-II

) (1G5 )1 G
e 2Leza 10T " Rz-’(Pg\'B:z.) ] (Pg\.gzz.)

104 103 102 10" 10° 10! 10 L
Parameter (\)

10 10° 102 107 10° 10' 102
Parameter (\)
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f-divergences

Definition

|

Definition ( f-divergence

Let f : (0,00) — R be a convex function with f(1) = 0. Let P and @ be two probability measures
on the measurable space (M, .%). If the probability measure P is absolutely continuous with respect to
the probability measure @ then the f-divergence is defined as

0,(PIQ) = [ 1($5®)a0e)

where f(0) = lim,_,q+ f(z).

34 /49



f-divergences
Background

Information-type measures of dissimilarity between two probability distributions [Csiszar, 1967].

Motivation and significance:
» Operational insight in:
» Channel coding
» Compression, estimation
» High-dimensional statistics
» Hypothesis testing
» Amenable to variational representations

» Link to Fisher information

Common f-divergences:

>
>
>
>
>

Relative Entropy: f(z) = xlogz

Total Variation: f(z) = 3|z — 1
x>-divergence: f(z) = (z —1)?

Squared Hellinger distance: f(z) = (1 — v/z)?
Jensen-Shannon divergence:

f(x) =zlog (zz—fl) + log (%)

35/49



f-divergences

Properties

Basic Properties
» Dy(P||P) =0.
» Df(P||Q) > 0. If f is strictly convex then D¢(P||Q) =0 <= P =Q.
» Dy(Pxy|@x,y) = Dy (Px[|@x).
» (P,Q) — Df(P||Q) is jointly convex.
» P — Ds(P|Q) is convex
» Q+— Dy(P||Q) is convex

36 /49



ERM wih f-divergence Regularization

Problem Formulation: ERM with f-divergence Regularization (ERM-fDR)
Given the dataset z € (X x )", the ERM-fDR problem, with parameters @ , X, and f, consists of the

following optimization problem:

T R=(P) + AD¢(P||Q),

with optimization domain

Do (M, F)2 [P eAM,F): P<Q).

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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ERM wih f-divergence Regularization

Assumptions

» The function f is strictly convex and differentiable

» There exists a (3 such that

B e {t ER:VO €suppQ,0 < f! (_%)}

/f B-l—L(z 0))dQ(0):

» The function L is separable with respect to the probability measure @

and

38/49



ERM wih f-divergence Regularization

Assumptions

» The function f is strictly convex and differentiable

» There exists a 8 such that

B e {teR:VGesupr70< Ft (_M)}

and

/f ﬁ-l—L(z 0))dQ(0):

» The function L. is separable with respect to the probability measure @

Definition (Separable Empirical Risk Function)

The empirical risk function L is said to be separable with respect to a o-finite measure P € A(M), if
there exist a positive real ¢ > 0 and two subsets A and C of M that are nonneglible with respect to P,

such for all (61,02) € A x C, it holds that

L(z,01) < c < L(z,62) < co.

38/49



ERM wih f-divergence Regularization
Solution to the ERM- fDR

Under assumptions stated in the previous slide, the solution to the ERM-fDR problem is unique, and
for all @ € supp Q, is given by

dP§T,Y., 1 ( B+L(20)
—ag 9=/ (‘f)

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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ERM wih f-divergence Regularization
Solution to the ERM- fDR

Under assumptions stated in the previous slide, the solution to the ERM-fDR problem is unique, and
for all @ € supp Q, is given by

WPolale g _ i (L)

d@ A
Remarks:
» Probability measures @ and Pgl?‘;:)z are mutually absolutely continuous.

» No support exploration: f-divergence regularization forces the solution to coincide with the
support of the reference measure @, independently of the training data.

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.
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ERM wih f-divergence Regularization

Common Cases: Kullback-Leibler Divergence (Type-I)
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ERM wih f-divergence Regularization

Common Cases: Kullback-Leibler Divergence (Type-I)

Setting

f(z) = zlogw,
f(z) =logz +1,

results in

0:(P1Q) = [ 1(§5©) ae®) = [10(550)) are)

dQ d@

The ERM-fDR solution yields

dP§lyY. (B)=oxp (_,3 +L(2,6)+ /\>
a0 o A :

40 /49



ERM wih f-divergence Regularization

Common Cases: Kullback-Leibler Divergence (Type-Il)
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ERM wih f-divergence Regularization

Common Cases: Kullback-Leibler Divergence (Type-Il)

Setting
f(z) = —loga
: 1
f(l,’) - 757
results in

0,(PIQ) = [ 1(55®)) aae) =~ [10g (5 @) aie) = [ 108 (2 @) acie).

The ERM-fDR solution yields

)(QA
dQ 3+ L(2,0)

41/49



ERM wih f-divergence Regularization

Common Cases: Jensen-Shannon Divergence
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ERM wih f-divergence Regularization

Common Cases: Jensen-Shannon Divergence

Definition (Jensen-Shannon Divergence)

Let P and @ be two probability measures on the measurable space (M, .%). If the probability measure P
is absolutely continuous with respect to the probability measure @ then the Jensen-Shannon divergence
is

15(P.Q) =0 (PIsr+@) +o(eltr+@).

» Remark: /JS (P, Q) is a metric in the space of probability measure.

» The link to f-divergence characterization is
2z 2
==zl P 1 —_—
flo) == Og(x—i—l) + Og(m—i—l)’

J(w) = log (w2—f1) '

» The ERM-fDR solution yields

(Q,N)
dP(—)\z:z )= 1
d@ 2exp(7’3+|‘§z"6)) -1
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ERM wih f-divergence Regularization

Common Cases: x2-divergence

Definition (?-divergence)

Let P and @ be two probability measures on the measurable space (M, .%). If the probability measure
P is absolutely continuous with respect to the probability measure Q then the x2-divergence is

=1 [ (Lo -1) awo).

» The link to f-divergence characterization is

flz) = (e~ 1)%
f(@) =22 - 1).
» The ERM-fDR solution yields
Polsle g B+ L(z0)
d@ N A '
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Numerical Comparison of Several Regularizations

Evaluation of the Generalization Capabilities

We train a binary classifier to distinguish ‘six’ and ‘seven’ in the MNIST dataset with the

ERM-RER several regularizers.

10° Pz (P61 ,)
——— Type-1 ERM-RER
= = Type-Il ERM-RER
- Shannon-Jensen

[ Hellinger

10 10" 1072 10" 10° 10 10?
Parameter (\)

10°F R’—‘(pg)){;—z‘)
——— Type-I ERM-RER
= = Type-Il ERM-RER
Shannon-Jensen z
Hellinger

104 107 102 107 10° 10
Parameter (\)

10%
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Numerical Comparison of Several Regularizations

Evaluation of the Generalization Capabilities

We train a binary classifier to distinguish ‘six’ and ‘seven’ in the MNIST dataset with the
ERM-RER several regularizers.

T T T

A A
Rz, (P(GQ\Z):Zx) ~ R (Pglz):zt)
——Type-I ERM-RER
— = Type-II ERM-RER
—-—-=- Shannon-Jensen

Hellinger

10 10° 102 107! 10° 10° 102
Parameter (\)
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Revisiting the Regularization Equivalence

» Recall that Type-l and Type-Il regularizations are equivalent via a transformation of the
expected empirical risk: does this extend to f-divergence regularization?

Theorem
Let f and g be two strictly convex and differentiable functions satisfying the conditions to generate an
f-divergence and g-divergence, respectively. If the following problem possess solutions, then

Pe?g;%/\/l) /L(z,G)dP(G) AP (FlQ) =

/ o(L(2,0))dP(8) + AD,(P[Q).

min
PeAg(M)
where the function v : [0,00) — R is such that

o) =g (7 (2220 g,

with Nq,- and Ng, . being the respective normalization functions.

F. Daunas, |. Esnaola, S.M. Perlaza, and H.V. Poor, “Equivalence of the Empirical Risk Minimization to Regularization on
the Family of f-Divergences,,” in Proc. IEEE International Symposium on Information Theory, Athens, Greece, Jul. 2024.

46 / 49



Table of Contents

Conclusions

47 /49



Conclusions for Part Ill

» All f-Divergence regularizations to the ERM problem exhibit solutions that are mutually
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» What implications on the set of models that would exhibit positive probability?

» How to choose Q ?
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and loss function.
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Conclusions for Part Ill

» All f-Divergence regularizations to the ERM problem exhibit solutions that are mutually
absolutely continuous with the reference measure.

» What implications on the set of models that would exhibit positive probability?

» How to choose Q ?

» Several solutions to the ERM-fDR problem simultaneously exhibit smaller training and test
errors than those induced by the Gibbs Algorithm.

» Equivalence results for f-divergence regularization unveil link between the choice of f-divergence
and loss function.

» Adapting the f-divergence to different learning frameworks suggests tailored regularizer designs
» Loss function definition

» Model set adaptation to practical implementations

» Open problem: How to choose all these parameters A, Q, f, ¢, ...
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