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Preliminaries
Information Measures

▶ KL divergence: KL(P∥Q) ≜
∫
X log

Ä
dP
dQ

ä
dP

▶ Symmetrized KL divergence (Jeffrey’s divergence)

DSKL(P∥Q) ≜ KL(P∥Q) +KL(Q∥P).

▶ Mutual information: I(X ;Y ) ≜ KL(PX ,Y ∥PX ⊗ PY )

▶ Lautum information [Palomar and Verdú, 2008]: L(X ;Y ) ≜ KL(PX ⊗ PY ∥PX ,Y )

▶ Symmetrized KL information [Aminian et al., 2015]:

ISKL(X ;Y ) ≜ DSKL(PX ,Y ∥PX ⊗ PY ) = I(X ;Y ) + L(X ;Y ).
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Information-theoretic Generalization Bounds

Lemma ( [Xu and Raginsky, 2017])

Suppose ℓ(w ,Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W, then

|gen(µ,PW |S)| ≤
…

2σ2

n
I(S ;W ).

▶ Depends on every ingredient in the supervised learning problem

▶ Reducing dependence between W and S leads to better generalization bound

▶ This bound is only tight if I(S ;W ) = 0 and gen(µ,PW |S) = 0

▶ Multiple techniques to improve this result, including ISMI [Bu et al., 2020], CMI [Steinke and

Zakynthinou, 2020], f -CMI [Harutyunyan et al., 2021], ∆L-CMI [Wang and Mao, 2023]
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Regularized ERM problem

▶ How can we use this result to develop a better learning algorithm?

▶ Regularizing mutual information I(S ;W ) during ERM

P⋆
W |S = argmin

PW |S

Å
EPW ,S [LE (W , S)] +

1

γ
I(S ;W )

ã
▶ inverse temperature γ ≥ 0 balances between fitting and generalization

▶ Replacing I(S ;W ) with KL(PW |S∥π(W )|PS) for any prior π(W )

▶ It gives information risk minimization (IRM) problem

P⋆
W |S = argmin

PW |S

Å
EPW ,S [LE (W , S)] +

1

γ
KL(PW |S∥π(W )|PS)

ã
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Information Risk Minimization

Lemma ( [Zhang, 2006,Xu and Raginsky, 2017])

Solution to IRM problem is (γ, π(w), LE (w , s))-Gibbs distribution

Pγ
W |S(w |s) ≜ π(w)e−γLE (w,s)

V (s, γ)
, γ ≥ 0,

where V (s, γ) ≜
∫
π(w)e−γLE (w,s)dw is partition function.

Proof.

For any learning algorithm PW |S with fixed S = s,

0 ≤ KL(PW |S=s∥Pγ
W |S=s)

= EPW |S=s

ï
log

PW |S=s · V (s, γ)

π(W ) · e−γLE (w,s)

ò
= KL(PW |S=s∥π(W )) + logV (s, γ) + γEPW |S=s

[LE (w , s)].

min
PW |S

EPW |S=s

[
LE (W , s)

]
+

1

γ
KL(PW |S=s∥π) = − 1

γ
logV (s, γ).
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Gibbs Algorithm

We focus on the generalization error of Gibbs algorithm (distribution)

(γ, π(w), LE (w , s))-Gibbs distribution:

Pγ
W |S(w |s) ≜ π(w)e−γLE (W ,s)

V (s, γ)
, γ ≥ 0

where

▶ inverse temperature γ, reduces to standard ERM if γ → ∞

▶ π(w) arbitrary prior distribution of W

▶ V (s, γ) ≜
∫
π(w)e−γLE (w,s)dw partition function
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Practical Implementation of Gibbs algorithm

▶ Stochastic Gradient Langevin Dynamics (SGLD)

▶ Metropolis adjusted Langevin algorithm (MALA)

The SGLD can be viewed as the noisy version of SGD,

Wk+1 = Wk − ηt∇LE (Wk , s) +

 
2ηt
γ

ζk , k = 0, 1, · · · ,

where ζk standard Gaussian random vector; ηt > 0 step size.

▶ [Raginsky et al., 2017] shows that PWk |S induced by SGLD converges to

(γ, π(W0), LE (wk , s))-Gibbs distribution for sufficiently large k

▶ MALA is SGLD with Metropolis rejection, faster convergence
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Expected Generalization Error

An exact characterization of generalization error for Gibbs algorithm

Theorem

For (γ, π(w), LE (w , s))-Gibbs algorithm,

Pγ
W |S(w |s) = π(w)e−γLE (w,s)

V (s, γ)
, γ > 0,

the expected generalization error is

gen(Pγ
W |S ,PS) =

ISKL(W ;S)

γ
.

▶ Highlights the fundamental role of ISKL(W ; S) in learning theory

▶ Holds even for non-i.i.d training samples

G. Aminian*, Y. Bu*, L. Toni, M. R. Rodrigues, G. W. Wornell. “An Exact Characterization of the Generalization Error for
the Gibbs Algorithm,” in Proc. Conference on Neural Information Processing Systems (NeurIPS), Dec. 2021.
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Generalization Error of Gibbs Algorithm

Theorem

For Gibbs algorithm Pγ
W |S(w |s) = π(w)e−γLE (w,s)

V (s,γ)
,

gen(Pγ
W |S ,PS) =

ISKL(W ;S)

γ
.

Sketch of Proof:

Symmetrized KL information can be written as

ISKL(W ; S) = EPW ,S [log(
Pγ
W |S

PW
)] + EPW⊗PS [log(

PW

Pγ
W |S

)]

= EPW ,S [log(P
γ
W |S)]− EPW⊗PS [log(P

γ
W |S)]

Note that PW ,S and PW ⊗ PS share the same marginal distribution,

ISKL(W ; S) = EPW ,S [−γLE (W , S)]− EPW⊗PS [−γLE (W , S)]

= γgen(Pγ
W |S ,PS)
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Empirical risk of Gibbs algorithm

Theorem

logV (s, γ) is convex and differentiable infinitely many times with respect to γ. In particular,

Eγ [LE (W , s)] = −∂ logV (s, γ)

∂γ
,

Varγ [LE (W , s)] =
∂2 logV (s, γ)

∂γ2
,

where Eγ [ · ] ≜ EP
γ
W |S=s

[ · ], and Varγ [LE (W , s)] ≜ Eγ [LE (W , s)2]− Eγ [LE (W , s)]2.

Expected empirical risk of the Gibbs algorithm is non-increasing w.r.t γ

▶ Monoticity: LE (W , s) is non-increasing with γ

▶ Sub-Gaussianity: LE (W , s) is sub-Gaussian under Gibbs algorithm if Varγ [LE (W , s)] is bounded

Perlaza, Samir M., Gaetan Bisson, Iñaki Esnaola, Alain Jean-Marie, and Stefano Rini. “Empirical risk minimization with
relative entropy regularization,” IEEE Trans. Inf. Theory, 2024.
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Tighter Generalization Error Upper Bounds

Why do we care about upper bounds when we have exact characterization?

▶ Quantify how gen(Pγ
W |S ,PS) depends on number of i.i.d. samples n

▶ Useful when directly evaluating ISKL(W ;S) is hard

Theorem

Suppose that

▶ S = {Zi}ni=1 are i.i.d generated from the distribution PZ

▶ ℓ(w ,Z) is σ-sub-Gaussian

▶ CE ≤ L(W ;S)
I(W ;S)

for some CE ≥ 0,

gen(Pγ
W |S ,PS) ≤

2σ2γ

(1 + CE )n
.

G. Aminian*, Y. Bu*, L. Toni, M. R. Rodrigues, G. W. Wornell. “An Exact Characterization of the Generalization Error for
the Gibbs Algorithm,” in Proc. Conference on Neural Information Processing Systems (NeurIPS), Dec. 2021.
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Tighter Generalization Error Upper Bounds

Sketch of Proof:

Recall the mutual information-based bound,…
2σ2

n
I(S ;W ) ≥ gen(Pγ

W |S ,PS) =
I(W ;S) + L(W ; S)

γ

≥ (1 + CE )

γ
I(W ; S)

gen(Pγ
W |S ,PS) ≤

…
2σ2

n
I(S ;W ) ≤ 2σ2γ

(1 + CE )n

[Choice of CE ]

▶ CE = 0 is always valid, which gives gen(Pγ
W |S ,PS) ≤ 2σ2γ

n

▶ CE = 1, L(S ;W ) ≥ I(S ;W ) holds for any Gaussian channel PW |S
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Example: Mean Estimation

▶ Learning mean µ ∈ Rd of Z using n i.i.d training samples S = {zi}ni=1

▶ Not necessary Gaussian, but covariance matrix ΣZ = σ2
Z Id

▶ Mean-squared loss ℓ(w , z) = ∥z − w∥22

▶ Gaussian prior π(w) = N (µ0, σ
2
0Id)

▶ Then, (γ,N (µ0, σ
2
0Id), LE (w , s))-Gibbs algorithm is given by the following Gaussian posterior

Pγ
W |S(w |zn) ∼ N

(
αµ0 + (1− α)z̄ , ασ2

0Id
)
,

with

α ≜
1

2σ2
0γ + 1

, z̄ ≜
1

n

n∑
i=1

zi .
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Example: Mean Estimation

Since Pγ
W |S is Gaussian,

I(S ;W ) =
dσ2

0σ
2
Zγ

(nσ2
0 +

1
2γ
)
−KL

(
PW ∥N (µW , σ2

1 Id)
)
,

L(S ;W ) =
dσ2

0σ
2
Zγ

(nσ2
0 +

1
2γ
)
+KL

(
PW ∥N (µW , σ2

1 Id)),

with µW = αµ0 + (1− α)µ.

The generalization error can be computed exactly as:

gen(Pγ
W |S ,PS) =

ISKL(W ; S)

γ
=

2dσ2
0σ

2
Z

n(σ2
0 +

1
2γ
)
.

As a comparison, the ISMI-based bound gives a sub-optimal bound O
(
1/

√
n
)
, as n → ∞.
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Check Point

Generalization error or empirical risk is one part of the story

Our goal is to design (or guide the design) algorithms that minimize population risk.

There are three elements in (γ, π(w), LE (w , s))-Gibbs algorithm

▶ inverse temperature γ −→ Optimal hyper-parameter

▶ empirical risk LE (w , s), or model family −→ Information criteria for model selection

▶ prior distribution π(w) −→ Transfer learning
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Expected Test Loss

For fixed training data s and testing data s ′, consider expected test loss

LP(γ, s, s
′) ≜ Eγ [LE (W , s ′)],

and expected generalization error

gen(γ, s, s ′) ≜ Eγ [LE (W , s ′)− LE (W , s)].

Theorem

For γ ≥ 0 such that logV (s, γ) < ∞, the first order derivative of the expected test loss is given by

∂

∂γ
LP(γ, s, s

′) = −Covγ [LE (W , s ′), LE (W , s)],

with

Covγ [LE (W , s ′), LE (W , s)] ≜ Eγ [LE (W , s)LE (W , s ′)]− Eγ [LE (W , s)]Eγ [LE (W , s ′)].

Covγ [LE (W , s ′), LE (W , s)] can be positive/negative, no monotonicity

Y. Bu, “Towards Optimal Inverse Temperature in the Gibbs Algorithm,” in IEEE ISIT 2024
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Expected Generalization Error

Corollary

For γ ≥ 0 such that logV (s, γ) < ∞, the first order derivative of the expected generalization error is

given by

∂

∂γ
gen(γ, s, s ′) = Varγ(LE (W , s))− Covγ [LE (W , s ′), LE (W , s)].

▶ Cannot show that the gen is non-decreasing, Cauchy-Schwarz Inequality only guarantees that∣∣Covγ [LE (W , s ′), LE (W , s)]
∣∣ ≤»Varγ(LE (W , s))Varγ(LE (W , s ′)).

▶ [Aminian et al., 2021] provides a bound of order O
(
γ
n

)
by simply combining the ISKL

characterization with the MI bound, which may hint that gen is always increasing with γ.

▶ However, we will illustrate how gen rises from zero and then decreases as γ increases.
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Example: Mean Estimation

(γ,N (µ0, σ
2
0Id), LE (w , s))-Gibbs algorithm is given by the following Gaussian posterior

Pγ
W |S(w |zn) ∼ N

(
αµ0 + (1− α)z̄ , ασ2

0Id
)

Population risk has the following exact characterization

LP(P
γ
W |S ,PS)

=
4dσ2

0σ
2
Zγ

n(1 + 2σ2
0γ)︸ ︷︷ ︸

generalization error

+
∥µ0 − µ∥22 + dσ2

z/n

(1 + 2σ2
0γ)

2
+

dσ2
0

1 + 2σ2
0γ

+
n − 1

n
dσ2

Z .︸ ︷︷ ︸
empirical risk

To find optimal γ minimizes LP

▶ Optimize over γ using the above equation directly

▶ Evaluate the derivative of LP(γ, s, s
′) by computing covariance
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Example: Mean Estimation

γ∗ depends on other parameters of the problem in a non-trivial manner

γ∗ =

+∞, if
σ2
Z
n

∈ [0,
σ2
0
2
), (high-SNR)

∥µ−µ0∥2+dσ2
0/2

d(2σ2
Z
/n−σ2

0)σ
2
0
, if

σ2
Z
n

∈ [
σ2
0
2
,∞). (low-SNR)

▶
σ2
Z
n

only depends on S , can be interpreted as normalized noise

▶ σ2
0 and ∥µ− µ0∥2 captures the confidence and bias of prior knowledge

▶ high-SNR regime, high-quality training samples, discarding prior distribution and employing

standard ERM

▶ low-SNR regime, where we should incorporate knowledge from both training samples and prior,

optimal γ depends on everything

▶ If µ0 = µ and σ2
0 = 0, γ∗ = 0
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Example: Linear Regression

▶ Training data S = {(xi , yi )}ni=1, with X = Rd and Y = R

▶ Data is generated using true weights W ∗ ∈ Rd with additive noise,

Yi = Xi ·W ∗ + εi , ε ∼ N (0, σ2
ε).

▶ Mean-squared loss ℓ(w , z) = (y − x · w)2

▶ Gaussian prior π(w) = N (0, σ2
0Id)

▶ (γ,N (0, σ2
0Id), LE (w , s))-Gibbs algorithm is Gaussian

Pγ
W |S(w |S) ∼ N

(
Σ−1X⊤Y ,

n

2γ
Σ−1

)
,

with Σ ≜ X⊤X + n
2σ2

0γ
Id , and X ∈ Rn×d ,Y ∈ Rn are the matrix form of the training data.
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Simulation of Linear Regression

Low SNR regime, n = 10 and σ2
ε = 3; high SNR regime, n = 100 and σ2

ε = 1.

Low-SNR High-SNR
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Asymptotic Behavior of Generalization Error

▶ Can we show something for ERM by letting γ → ∞?

▶ Previous upper bound has order O( γ
n
)

▶ Asymptotic normality of Gibbs algorithm

▶ Single-well case: there exists a unique W ∗(S)

W ∗(S) = argmin
w∈W

LE (w , S).

▶ If H∗(S) ≜ ∇2
wLE (w , S)

∣∣
w=W∗(S) is invertible [Hwang, 1980],

Pγ
W |S → N (W ∗(S),

1

γ
H∗(S)−1)

G. Aminian*, Y. Bu*, L. Toni, M. R. Rodrigues, G. W. Wornell. “An Exact Characterization of the Generalization Error for
the Gibbs Algorithm,” in Proc. Conference on Neural Information Processing Systems (NeurIPS), Dec. 2021.
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Asymptotic Behavior of MLE

Maximum likelihood estimates (MLE) in the asymptotic regime n → ∞.

▶ n i.i.d. training samples generated from distribution PZ

▶ Fit training data with distribution family f (zi |θ), θ ∈ Rp

▶ PZ = f (·|θ∗) for θ∗ ∈ W

▶ log-loss ℓ(w , z) = − log f (z |w)

As γ → ∞, Gibbs algorithm converges to ERM algorithm (MLE),

ŴML ≜ argmax
θ∈W

n∑
i=1

log f (Zi |θ).

Compute ISKL(W ;S) using Gaussian approximation

gen(P∞
W |S ,PS) =

d

n
.

22 / 45



Connection to Model Selection

▶ K candidate models M1,M2, . . . ,MK

▶ Each model Mk is characterized by parametric probabilistic model Pk(z |θk) and prior πk(θk)

▶ log likelihood as the loss function ℓlog(w , z) ≜ − logP(z |w)

How to select the optimal model?

▶ Information Criteria for Model Selection

▶ Akaike Information Criterion (AIC)

▶ Bayesian Information Criterion (BIC)

23 / 45



Akaike Information Criterion (AIC)

AIC selects the model that minimizes population risk:

argmin
k

KL(PZ∥Pk(z |θ̂(k)
ML)) = argmin

k
EPZ

[
− logPk(Z |θ̂(k)

ML)
]
.

AIC approximates it using empirical risk and generalization error

AIC = argmin
k

LE (θ̂
(k)
ML, S) + gen(θ̂

(k)
ML,PZ ).

In classic regime where n → ∞, and certain regularization conditions

AIC = argmin
k

LE (θ̂
(k)
ML, S) +

p

n
.
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Bayesian Information Criterion (BIC)

BIC selects the model that maximizes marginal likelihood:

mk(zn) ≜
∫

Pk(zn|θk)πk(θk) dθk ,

which is equivalent to maximizing posterior probability P(Mk |zn).

BIC =argmin
k

−1

n
logmk(zn)

= argmin
k

LE (θ̂
(k)
ML, S) +

pk log n

2n
,

where Laplace approximation is applied as n → ∞.

25 / 45



Comparison between AIC and BIC

AIC = argmin LE (θ̂ML, S) +
p

n

BIC = argmin LE (θ̂ML, S) +
p log n

2n
.

▶ AIC minimizes population risk (optimal prediction performance)

▶ BIC maximizes the marginal likelihood (identifying the true model)

▶ BIC imposing a larger penalty for more complex models.
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Double-descent in Over-parameterized Regime

▶ When p ≤ n, the classical ∪-shaped curve is valid.

▶ When p ≥ n, test loss can decrease again.
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Challenges in Over-parameterized regime

Asymptotic normality (AIC) and Laplace Approximation (BIC) do not hold in this new regime!

There are some efforts to extend these information criteria:

▶ Akaike’s Information Corrected Criterion (AICC), fixed p, small n

▶ Widely applicable BIC (WBIC), singular Hessian matrix

More recent work trying to demystify double-descent

▶ Neural Tangent Kernel (NTK), lazy training

▶ Random feature model

▶ Mean-field approach
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Marginal likelihood of Gibbs algorithm

Recall the information risk minimization for motivating the Gibbs algorithm.

min
PW |S

EPW |S=s

[
LE (W , s)

]
+

1

γ
KL(PW |S=s∥π) = − 1

γ
logV (s, γ).

If we adopt log-loss function ℓ(w , z) = − logP(z |w), and set γ = n

− 1

γ
logV (s, γ) = −1

n
log

∫
π(w)e−nLE (w,s)dw

= −1

n
log

∫
π(w)P(zn|w)dw

= −1

n
logm(zn)
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Gibbs based Information Criteria

Gibbs-based AIC:

AIC+ ≜ LE (ŴGibbs, zn) +
1

n
ISKL(P

∗
Ŵ |S ,PS).

Gibbs-based BIC:

BIC+ ≜ LE (ŴGibbs, zn) +
1

n
KL(P∗

W |S=zn∥π),

BIC− ≜ Eπ

[
LE (W , zn)

]
− 1

n
KL(π∥P∗

W |S=zn ).

We can show that in the classic regime where p is fixed and n → ∞, they all reduce back to their

classical forms.

H. Chen, Y. Bu, G. W. Wornell, “Gibbs-Based Information Criteria and the Over-Parameterized Regime,” in Proc. Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2024.
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Random Feature Model

The output of Random Feature (RF) model with input data x ∈ Rd is

g(x) ≜
p∑

j=1

f
( ⟨x ,Fj⟩√

d

)
wj = f

(x⊤F√
d

)
w ,

▶ Two-layer neural network with i.i.d Gaussian weights F ∈ Rd×p in the first layer, only the second

layer is trainable

▶ f () is the non-linear activation function

▶ The dimensionality of input data d is not entangled with number of parameters p
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Experiment

Evaluating the BIC+ and BIC− using n = 200 samples in RF models

▶ We observe Double-descent in population risk for RF model

▶ Our Gibbs-based BICs prefer over-parameterized models

32 / 45



Check point

▶ Provide information criteria for the Gibbs algorithm, with different information measures as the

penalty terms.

▶ Generalize our information-theoretic analysis to over-parameterized random feature.

▶ The mismatch between marginal likelihood (BIC) and generalization error (AIC) in the

over-parameterized setting, which highly depends on the prior distributions.
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Generalization of Transfer Learning

▶ Source data set Ds = {Z s
i }mi=1, generated from PDs

▶ Target data set Dt = {Z t
j }nj=1, generated from PDt

▶ The empirical risk of source and target task

LE (w , d s) ≜
1

m

m∑
j=1

ℓ(w , z sj ), LE (w , d t) ≜
1

n

n∑
j=1

ℓ(w , z tj ).

▶ The population risk of the target task

LP(w ,PDt ) ≜ EPDt [LE (w ,Dt)].

▶ Expected Transfer Generalization Error

gen(PW |Ds ,Dt ,PDs ,PDt ) ≜ EPW ,Ds ,Dt [LP(W ,PDt )− LE (W ,Dt)].
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Transfer Learning: α-Weighted ERM

▶ Output hypothesis wα is trained by minimizing a convex combination of the source and target

task empirical risks [Ben-David et al., 2010], for α ∈ [0, 1]

LE (wα,d
s ,d t) = (1− α)LE (wα,d

s) + αLE (wα,d
t)

Ds

Dt Pγ
Wα|Ds ,Dt

Wα

▶ α-weighted Gibbs algorithm generalizes the α-weighted-ERM by considering the

(γ, π(wα), LE (wα, d
s , d t))-Gibbs algorithm

Pγ
Wα|Ds ,Dt (wα|d s , d t) =

π(wα)e
−γLE (wα,ds ,dt )

Vα(d s , d t , γ)
.
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Transfer Learning: Two-stage ERM
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Two-stage-ERM Transfer Learning

Ds

Wϕ

PWϕ,W s
c |Ds

Wϕ

W s
c

Dt

Pγ
W t

c |Dt ,Wϕ

W t
c

▶ First Stage: Learn shared feature extractor wϕ ∈ Wϕ

[Wϕ,W
s
c ] = argmin

w
LS1
E (w , d s).

▶ Second Stage: Freeze Wϕ, and learn target-specific hypothesis w t
c

W t
c = argmin

wc

LS2
E ([Wϕ,wc ], d

t)

37 / 45



Expected Transfer Generalization Error

Theorem

The expected transfer generalization error of the α-weighted Gibbs algorithm is given by

genα(PDs ,PDt ) =
ISKL(Wα;D

t |Ds)

αγ
.

Theorem

The expected transfer generalization error of the two-stage Gibbs algorithm is given by

genβ(PDs ,PDt ) =
ISKL(W

t
c ;D

t |Wϕ)

γ
.

Y. Bu*, G. Aminian*, L. Toni, M. R. Rodrigues, G. W. Wornell. “Characterizing and Understanding the Generalization Error
of Transfer Learning with Gibbs Algorithm,” in Proc. International Conference on Artificial Intelligence and Statistics (AISTATS)
2022.
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Asymptotic Behavior of MLE

Maximum likelihood estimates

▶ n i.i.d. target samples, m i.i.d. source samples

▶ Fit training data with distribution family f (z |w), w = (wϕ,wc) ∈ Rd , wc ∈ Rdc

▶ PZ t = f (·|w∗) for w∗ ∈ W

▶ log-loss ℓ(w , z) = − log f (z |w)

Standard target ERM α-weighted ERM Two-stage ERM

gen O( d
n
) O( d

m+n
) O( dc

n
)
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Conclusion

▶ Connect operational quantity in learning theory (generalization error, marginal likelihood) with

different information measures for Gibbs algorithm

▶ Demonstrate the versatility of our approach in multiple applications

▶ Optimal Inverse temperature

▶ Gibbs-based BIC for over-parameterized model selection

▶ Gibbs based-transfer learning

▶ Our Gibbs-based analysis provides an information-theoretic framework for understanding

generalization behavior in modern machine learning, still a lot to be explored!

40 / 45



Q & A

Thank you for your attention!
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