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Supervised Learning

Generalization Error

Test data
Loss

Generalization error
Training Loss

Generalization error = Population risk (Test Loss) - Empirical risk (Training Loss)
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Supervised Learning

Problem Formulation

» Training dataset S ={Z,---,Z,}, Zi = {X;, Yi} € Z generated from Ps
» Parameters (weights) of learning model w € W, e.g., ¥ = f(X; w)
» Nonnegative loss function £: Z x W — R™, e.g., £(w, z) = (y — f(x; w))?
Empirical risk (training loss):
Le(w S)éEZE(W zj) Yw e W
E P n s 4i )y

Population risk (test loss):

LP(W, Ps) £ EPS[LE(W,S)]» Yw e W
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Generalization Error in Supervised Learning

Problem Formulation

Learning algorithm can be modeled as randomized mapping: Py s.
» Randomness in initialization
» Stochastic gradient descent (SGD)

» Empirical Risk Minimization (ERM) is a special case

S w
Pws

Generalization error:
gen(Pwis, Ps) = Lp(W, Ps) — Le(W, S),

with W generated from Py s
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Generalization Error in Supervised Learning
Different Types of Bounds

» Single-draw Generalization Error Upper Bound: Under joint distribution of Py s, following
upper bound holds with probability at least (1 — §),

gen(PW\Sa PS) S g(67 n)7

for a given real function g and § € (0, 1),

» PAC-Bayesian Generalization Error Upper Bound: Under distribution Ps, following upper
bound holds with probability at least (1 — §),

]EPW\S[gen(PW\Sv PS)] < f(67 n)7

for a given real function f and § € (0,1),

» Expected Generalization error Upper Bound: The expectation of generalization error with
respect to joint distribution Py s

geni(Pwis, Ps) = Epy s[Lp(W, Ps) — Le(W, S)] < h(n),

for a given real function h.
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Classical Statistical Learning Theory

Uniform Convergence

If the induced function class F; w := {¢(w,-) : w € W} is not "too rich,” then

E | sup |Lp(w, Ps) — Le(w, 5)|| < SomP(Few)
wew \/ﬁ

where Comp(Fe,w) measures complexity of F,w and does not depend on p (distribution-free)
Some examples:

» Cardinality of Fpw

» VC-dimension [Vapnik, 1999]

» Natarajan-dimension [Holden and Niranjan, 1995]

» Empirical Rademacher complexity [Bartlett and Mendelson, 2002]
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Uniform Convergence and Generalization

More Discussion

We can always bound the generalization error as

£ (Puis, Ps) < E | sup [Lp(w, Ps) — Le(w, S)]
wew

... but this bound:
» relies on restricting the complexity of the hypothesis space
» ignores the learning algorithm, Pys

» may be too conservative if algorithm does not explore the entire VW due to computational budget.

Learning does not require uniform convergence

One can construct examples of (¢, W), where uniform convergence does not hold (the upper bound does
not converge to 0 as n — c0), yet learning still takes place [Shalev-Shwartz and Ben-David, 2014].
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Algorithm-dependent Bounds
Uniform Stability

Stability quantifies the sensitivity of algorithm Py s to local modifications

» replace Z; with Z/ in the training data S

PW\S

(Zi,--,Zi1, 21, 2, -+ -, Zn) —

Pwis /)

(Zv,  Zic1, Z]  Zir,y -+ Zn) —

» For any learning algorithm

gen(Pwis, Ps) = ZIE[Z(W z) —ow zN)]

i=1

Definition ( [Bousquet and Elisseeff, 2002] Uniform Stability)

Pw;s is e-uniformly stable if sup, E[¢(W, z) — £( W, z)] <e.

The stability of learning algorithm Py s leads to generalization.
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Algorithm-dependent Bounds

Information-theoretic Bounds

» Population risk is the expectation of ¢(w,s) under product of the marginal distributions Py Ps

» Empirical risk is the expectation of £(w, s) under joint distribution Py |sPs

Lemma ( [Xu and Raginsky, 2017])

Suppose U(w, Z) is o-sub-Gaussian under Z ~ p for all w € W, then

2 2
lgen(u, Puys)| </ %I(s; w),

log (]E [eMX_E(X))]) < 0—2)\2
-2

where o-sub-Gaussian means

» Depends on every ingredient in the supervised learning problem

» Reducing dependence between W and S leads to better generalization bound
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Information-theoretic Bounds

The proof is based Donsker-Varadhan variational representation of KL divergence:
KL(P(|Q) = sup Ep[f(X)] ~ log Eqlexp (X))
€

where F denotes the set of functions f : X — R.

Proof.
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Summary of Existing Generalization Bounds

Traditional ways of bounding generalization errors are not satisfying:
» Do not fully characterize all aspects of learning algorithm
» only measuring complexity of functional space W, e.g., VC dimension

» only exploring properties of learning algorithm, e.g., uniform stability

» Information-theoretical bounds
» depending on input distribution Pg

» depending on learning algorithm Py s

can still be loose.

Our method differs from previous generalization bounds

» instead of a loose bound for general learning algorithms
» exact characterization of a specific learning algorithm that has better structure
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