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Supervised Learning
Generalization Error

Generalization error = Population risk (Test Loss) - Empirical risk (Training Loss)
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Supervised Learning
Problem Formulation

▶ Training data set S = {Z1, · · · ,Zn}, Zi = {Xi ,Yi} ∈ Z generated from PS

▶ Parameters (weights) of learning model w ∈ W, e.g., Ŷ = f (X ;w)

▶ Nonnegative loss function ℓ : Z ×W → R+, e.g., ℓ(w , z) = (y − f (x ;w))2

Empirical risk (training loss):

LE (w , s) ≜
1

n

n∑
i=1

ℓ(w , zi ), ∀w ∈ W

Population risk (test loss):

LP(w ,PS) ≜ EPS [LE (w , S)], ∀w ∈ W
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Generalization Error in Supervised Learning
Problem Formulation

Learning algorithm can be modeled as randomized mapping: PW |S .

▶ Randomness in initialization

▶ Stochastic gradient descent (SGD)

▶ Empirical Risk Minimization (ERM) is a special case

S
PW |S

W

Generalization error:

gen(PW |S ,PS) ≜ LP(W ,PS)− LE (W ,S),

with W generated from PW |S
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Generalization Error in Supervised Learning
Different Types of Bounds

▶ Single-draw Generalization Error Upper Bound: Under joint distribution of PW ,S , following

upper bound holds with probability at least (1− δ),

gen(PW |S ,PS) ≤ g(δ, n),

for a given real function g and δ ∈ (0, 1),

▶ PAC-Bayesian Generalization Error Upper Bound: Under distribution PS , following upper

bound holds with probability at least (1− δ),

EPW |S [gen(PW |S ,PS)] ≤ f (δ, n),

for a given real function f and δ ∈ (0, 1),

▶ Expected Generalization error Upper Bound: The expectation of generalization error with

respect to joint distribution PW ,S

gen(PW |S ,PS) ≜ EPW ,S [LP(W ,PS)− LE (W , S)] ≤ h(n),

for a given real function h.
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Classical Statistical Learning Theory
Uniform Convergence

If the induced function class Fℓ,W := {ℓ(w , ·) : w ∈ W } is not ’too rich,’ then

E
ï
sup
w∈W

|LP(w ,PS)− LE (w , S)|
ò
≤ Comp(Fℓ,W )√

n
,

where Comp(Fℓ,W ) measures complexity of Fℓ,W and does not depend on µ (distribution-free)

Some examples:

▶ Cardinality of Fℓ,W

▶ VC-dimension [Vapnik, 1999]

▶ Natarajan-dimension [Holden and Niranjan, 1995]

▶ Empirical Rademacher complexity [Bartlett and Mendelson, 2002]
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Uniform Convergence and Generalization
More Discussion

We can always bound the generalization error as

gen(PW |S ,PS) ≤ E
ï
sup
w∈W

|LP(w ,PS)− LE (w , S)|
ò

... but this bound:

▶ relies on restricting the complexity of the hypothesis space

▶ ignores the learning algorithm, PW |S

▶ may be too conservative if algorithm does not explore the entire W due to computational budget.

Learning does not require uniform convergence

One can construct examples of (ℓ,W ), where uniform convergence does not hold (the upper bound does

not converge to 0 as n → ∞), yet learning still takes place [Shalev-Shwartz and Ben-David, 2014].
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Algorithm-dependent Bounds
Uniform Stability

Stability quantifies the sensitivity of algorithm PW |S to local modifications

▶ replace Zi with Z ′
i in the training data S

(Z1, · · · ,Zi−1,Zi ,Zi+1, · · · ,Zn)
PW |S−→ W

(Z1, · · · ,Zi−1,Z
′
i ,Zi+1, · · · ,Zn)

PW |S−→ W (i)

▶ For any learning algorithm

gen(PW |S ,PS) =
1

n

n∑
i=1

E[ℓ(W ,Z ′
i )− ℓ(W (i),Z ′

i )]

Definition ( [Bousquet and Elisseeff, 2002] Uniform Stability)

PW |S is ε-uniformly stable if supz E[ℓ(W , z)− ℓ(W (i), z)] ≤ ε.

The stability of learning algorithm PW |S leads to generalization.
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Algorithm-dependent Bounds
Information-theoretic Bounds

▶ Population risk is the expectation of ℓ(w , s) under product of the marginal distributions PWPS

▶ Empirical risk is the expectation of ℓ(w , s) under joint distribution PW |SPS

Lemma ( [Xu and Raginsky, 2017])

Suppose ℓ(w ,Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W, then

|gen(µ,PW |S)| ≤
…

2σ2

n
I(S ;W ),

where σ-sub-Gaussian means

log
Ä
E
î
eλ(X−E(X ))

óä
≤ σ2

2
λ2

▶ Depends on every ingredient in the supervised learning problem

▶ Reducing dependence between W and S leads to better generalization bound
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Information-theoretic Bounds

The proof is based Donsker-Varadhan variational representation of KL divergence:

KL(P∥Q) = sup
f∈F

EP [f (X )]− logEQ [exp f (X )],

where F denotes the set of functions f : X → R.

Proof.

▶ LE (w , S) is σ√
n
-sub Gaussian for any fixed w .

▶ Set f (w , s) = λLE (w , s)− λES [LE (w , S)] in Donsker-Varadhan

Thus,

I(S ;W ) = KL(PW ,S∥PWPS)

≥ EPW ,S [λf (W , S)]− log(EPW̄ PS̄
eλf (w̄,s̄))

≥ λEPW ,S [LE (W , S)]− λE[LE (W̄ , S̄)]− λ2σ2

2n

This inequality holds for all λ ∈ R, optimizing over the λ gives the final bound.
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Summary of Existing Generalization Bounds

Traditional ways of bounding generalization errors are not satisfying:

▶ Do not fully characterize all aspects of learning algorithm

▶ only measuring complexity of functional space W, e.g., VC dimension

▶ only exploring properties of learning algorithm, e.g., uniform stability

▶ Information-theoretical bounds

▶ depending on input distribution PS

▶ depending on learning algorithm PW |S

can still be loose.

Our method differs from previous generalization bounds

▶ instead of a loose bound for general learning algorithms

▶ exact characterization of a specific learning algorithm that has better structure
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