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The standard P2P channel model

• Assumptions :
1. The source is compressed, W ∼ U on W .
2. All messages are equiprobable, the source is discrete.

• Fundamental questions :
1. What is the maximal number of channel uses we may need to

transmit a message reliably ?
2. What is tha maximal data rate in a given channel ?
3. What is the fundamental latency-error tradeoff ?
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Multi-user scenarios

• Multi-user transmission explores the optimla usage of ressources.
• This is a hard problem in general.
• Fundamental limits are known only for some specific simplified

scenarios.
• Challenging to comply with the explosion of decentralized networks :

URLLC, caching, privacy,...
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Channels from IT perspective

Definition 1 (P2P channel).
A point to point (P2P) single-shot communication channel is
defined by the tuple (X ,Y ,PY |X ), where :
• The input domain can be discrete or absolutely continuous :

measurable space (X ,F).
• The output domain can be discrete or absolutely continuous :

measurable space (Y ,G).
• The conditional probability measure, PY |X relies the variables
X ∈ X and Y ∈ Y .
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Channel properties
The following properties are usually defined :
• WhenX and Y are countable sets, (X ,Y , pY |X ) is a discrete

channel.
• WhenX and Y are continuous sets, (X ,Y , pY |X ) is a

continuous channel.
• A multiple use channel is defined by n channel uses, with
X = X n,Y = Yn and PY |X : X → Y .

And for a multiple use channel :
• A channel is memoryless if PY |X =

∏n
k=1 PYk |Xk

.
• A channel is memoryless and stationary if PY |X = Pn

Y |X .

• A discrete memoryless channel (DMC) is defined by a matrix
PY |X on |X | × |Y | (bipartite graph).
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Asymptotic regime
Study of the asymptotic regime :
• What are the properties of the channel when n→∞.
• Define the rate as R = log2(MW )

n .
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Examples
The following channels are widely used :
• Binary symmetric channel : Y = X = {0, 1}.
• Additive White Gaussian noise channel : Y = X = R,

Y = X + Z .
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Information capacity

Definition 2.
For a random channel (X ,Y ,PY |X ), the information capacity is
defined by :

C = max
PX

I (X ,Y )

Remarks
• This is an information theory property. No operational

meaning for now.
• this is a single letter expression. i.e. apply to a single-shot

channel properties. We will see how it is also relevant for
stationary memoryless channels.
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Channel codes

Definition 3 (M-code).
An M-code for (X ,Y ,PY |X ), is an encoder-decoder pair (f , g) of
(possibly randomized) functions :
• encoder : f : W = {1, . . . ,M} → X ,
• decoder : g : Y →W .

The underlying model is

W
f→ X

PY |X→ Y
g→ Ŵ .

Remarks :
• if the fonction f is determinist, f (w) = cw are codewords and

C = {c1, c2, . . . , cM} is the codebook.
• the decision region associated to each codeword is
Dw = g−1(w).
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Reliability metrics
The following reliability metrics can be used :

• Average error probability : Pe
4
= P
î
Ŵ 6= W

ó
.

• Max. error probability :
Pe,max

4
= maxw∈W P

î
Ŵ 6= w |W = w

ó
.

• Bit error probability : Pb
4
= 1

k

∑k
i=1P [sj 6= ŝj ], with

W = Sk ∈ Fk
2 .
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Error constrained codes

Definition 4 ((M , ε)-code).
A cchannel code (f , g) is called an (M, ε)-code for a channel
(X ,Y ,PY |X ) if

f : W → X
g : Y →W ∪ {e}

such that Pe ≤ ε.
Similarly an (M, ε)max -code for the maximum error, can be defined.
The fundamental limit is the maximal achievable alphabet size :

M∗ε
4
= max {M; ∃(M, ε)-code} .

The maximal entropy of the source that can be transmitted under
message error probability, is H(W ) ≤ Q∗ = log(M∗).
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Relation with hypothesis testing
What is the connection with hypothesis testing ?
1. Fix PX (i.e. choose the encoding function f : W → X .
2. What is the optimal decoder w.r.t average error ?

MAP (maximum a posteriori) :
g∗(y) = arg maxw∈W P [W = w |Y = y ].
Associated error : Pe(y) = P [W 6= w |Y = y ].

3. What does happen if all messages are equiprobable ?
P [W = w |Y = y ] ∝ P [Y = y |W = w ] · P [W = w ] (from
Bayes).
ML (maximum likelihood) :
g∗(y) = arg maxw∈W P [Y = y |W = w ].

This also shows that the decoder should be deterministic
(randomness reduces performance w.r.t. the average error
probability).
What about the encoder ?
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Is deterministic encoding optimal ?

For a given channel (X ,Y ,PY |X ), the encoder that minimizes
Pe , is deterministic.

Proof : select a random encoder f built as a set of deterministic
encoders, with a randomness parameter U :

f (w) = {f̃ (w , u)}.

Then one have

Pe = P
î
Ŵ 6= W

ó
= EU

î
P
î
Ŵ 6= W

ó
|U
ó
.

meaning that Pe = EU [Pe(U)], then there exists a realization u
such that Pe(u) ≤ Pe .
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Ŵ 6= W

ó
|U
ó
.

meaning that Pe = EU [Pe(U)], then there exists a realization u
such that Pe(u) ≤ Pe .

17 / 80



Introduction Preliminaries (adds’) P2P discrete channels P2P continuous channels with constraint Multi-user channels Conclusions

Synthesis

1. The ML estimate is the optimal decoder for a given encoder.
2. Deterministic coding is optimal.
3. What do we need ?

• An efficient way to approximate the ML solution or its
performance.

• A method to select the optimal encoder.

Tips : if an achievability can be proved with random coding, then a
deterministic pair encoder/decoder exists that outperforms the
random encoder.
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Weak converse bound

Theorem 5 (Weak converse bound).
Any M−code for (X ,Y ,PY |X ) satisfies :

logM ≤
supPX

I (X ;Y ) + h(Pe)

1− Pe
.

The proof relies on :
• Markov chain : W → X → Y → Ŵ .
• Fano’s theorem
• remark : random coding cannot be used for a converse.
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Proof
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Notes on information density
From the definition of information density, we can write :

ıX ;Y (x ; y) = log

Å
dPY |X

dPY
(x , y)

ã
= log

Ç
PY |X (y |x)

PY (y)

å
.

note : we define ıX ;Y (x ; y) = +∞, if PY |X=x is not abs.
continuous w.r.t. PY .

Remark : compare this r.v. with a log likelihood ratio test (hyp
testing) :

LLR(y) = log

Ç
PY |X (y |x1)

PY |X (y |x2)

å
,

thus the information density is ≈ LLR for one hypothesis against all
other assumptions.
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ML and information density

1. Consider a deterministic codebook : f (w) = xw , where the xw
are the codewords.

2. ML estimate : x̂ = g∗(y) = arg maxx∈C
[
PY |X (y |x)

]
.

3. Remind : ıX ;Y (x ; y) = log
(
PY |X (y |x)

PY (y)

)
.

4. Then : the ML estimate takes x that maximizes the
information density.
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Properties of information density
These properties are useful for the theorem to be derived :

EXY [ıX ;Y (X ;Y )] = I (X ;Y ) (1)

EY [f (Y )] = EY

î
e−ıX ;Y (x ;Y )f (Y )

ó
; ∀x (2)

EX̄Y

[
f (X̄ ,Y )

]
= EXY

î
e−ıX ;Y (X ;Y )f (X ,Y )

ó
;∀x (3)

notes : need f (y) = 0 and f (x , y) = 0 for ıX ;Y (x ; y) = −∞.

proofs : develop the expectation for a discrete variable.

23 / 80



Introduction Preliminaries (adds’) P2P discrete channels P2P continuous channels with constraint Multi-user channels Conclusions

Properties of information density (cont’)
Then one can also write

1. For any x :
P [ıX ;Y (x ;Y ) > t] ≤ e−t (4)

2. For any X̄ ∼ PX , s.t.PYX = PYPX :

P
[
ıX ;Y (X̄ ;Y ) > t

]
≤ e−t . (5)

proofs : apply the former results with f (Y ) = 1{ıX ;Y (x ;Y )≥t}.
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3 - P2P discrete channels
General properties
Single shot achievability bounds
Stationary memoryless channels
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Key elements
Shannon’s method relies on the following key elements to approach
the ML estimate :

1. Use random coding to derive asymptotic bounds.

2. Lowerbound the ML decision by a simpler decoder, but
asymptotically efficient.
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Shannon’s achievability bound

Theorem 6 (Shannon’s achievability).
For a given channel (X ,Y ,PY |X ), for all PX , for all τ > 0 :
∃(M, ε)-code, s.t. ε ≤ P [ıX ;Y (X ;Y ) ≤ log(M) + τ ] + e−τ

Further, the minimal error is :

ε∗ ≤ inf
τ

inf
PX

(
P [ıX ;Y (X ;Y ) ≤ log(M) + τ ] + e−τ )

)

27 / 80
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Proof (threshold decoder)

• Fix an encoder function, then PX is fixed.
• The optimal decoder is the ML
g∗(y) = arg maxw∈W ıXY (cw ; y).
• The proposed sub-optimal decoder is defined by :

• Fix a threshold : log(M) + τ .
• the decoder is

g(y) =

ß
w ∃!cw s.t.ıX ;Y (cw ; y) ≥ log(M) + τ
e otherwise

Tips
ıXY (cw ; y) ≥ log(M) + τ ⇐⇒ PX |Y (cw |y) ≥ eτ

proof : develop ıX ;Y (cw ; y).
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Proof (threshold decoder)
The proof relies on standard tools in IT
• Symmetry
• Outage versus confusion probabilities,
• Union bound,
• Random codebook,
• Use Eq.(5).
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Dependence testing bound

Theorem 7 (DT bound).
For a given channel (X ,Y ,PY |X ), for all PX :

∃(M, ε)-code, s.t. ε ≤ EXY

î
exp
¶
−
(
ıX ;Y (X ;Y )− log M−1

2

)+©ó
.

Further, the minimal error is :

ε∗ ≤ inf
PX

Ç
EXY

ñ
exp

®
−
Å
ıX ;Y (X ;Y )− log

M − 1
2

ã+
´ôå
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Proof (improved threshold decoder)

• Fix an encoder function, then PX is fixed.
• The second proposed sub-optimal decoder is defined by :

• Fix a threshold : γ (show below that γ = log M−1
2 is optimal).

• the decoder is

g(y) =

ß
w min{w} s.t.ıX ;Y (cw ; y) ≥ γ
e otherwise

The unique difference with Shannon’s scheme is that when several
codes are above the threshold, one is chosen as the message.
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Proof (improved threshold decoder)
The proof again relies on standard tools in IT
• Outage versus confusion probabilities,
• Union bound,
• Random codebook,
• Use Eq.(3).
• Hyp. Testing analogy.
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Feinstein’s Lemma

Theorem 8 (Feinstein’s lemma).
For a given channel (X ,Y ,PY |X ), for all PX , γ > 0, ε ∈ (0, 1) :
∃(M, ε)max -code, s.t. M ≥ γ(ε− P [ıX ;Y (X ;Y ) < log γ]).

Tips :
• If one take log(γ) = log(M) + τ , the Shannon’s bound is

found but for error max.
• Feinstein’s bound uses a greedy construction.
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Feinstein’s Lemma proof
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Homework
Propose a comparison of the three achievabilities : Shannon’s
bound, DT bound and Feinstein’s lemma

• You can compare their relative position (strength of the
bound), formally.
• You can choose a channel (BSC, Gaussian channel, ...) and

illustrate these bounds. The channel may be built as a DMC
channel (multiple channel uses).
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3 - P2P discrete channels
General properties
Single shot achievability bounds
Stationary memoryless channels
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n-length Channels

Definition 9 (P2P channel).
A point to point (P2P) multiple use communication channel is
defined by the tuple (X ,Y ,PY |X ), where :
• The input domain can be discrete or absolutely continuous :

measurable space (X = X n,F).
• The output domain can be discrete or absolutely continuous :

measurable space (Y = Yn,G).
• The conditional probability measure, PY |X =

∏n
k=1 PYk |Xk

.
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Multi-letter information capacity

Definition 10 (Multi-letter information capacity).
The information capacity of a multi channel (n,X ,Y ,PY |X ) is :

Ci = lim
n→∞

inf
1
n

sup
PX

I (X ; Y ).

For a sationnary memoryless channel, the single-letterization is
possible (I (X ; Y ) =

∑n
k=1 I (Xk ;Yk) = nI (X ;Y )) :

Ci = sup
PX

I (X ;Y ).
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Model with n channel uses

Definition 11 ((n,M , ε)-code).
For any channel (X ,Y ,PY |X ), an (n,M, ε)-code is a (M, ε)-code
for the nth transformation PY |X =

∏n
k=1 PY |X .

A similar definition holds for the max error.

The maximal input alphabet (FBL regime) is given by

M∗(n, ε) = max {M; ∃(n,M, ε)-code} (6)
M∗max(n, ε) = max {M;∃(n,M, ε)max -code} (7)

The maximal rate of this code is

R∗ =
log(M∗)

n
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Operational metrics

Definition 12 (operational capacity).
The asymptotic capacity is defined by
1. ε−capacity : Cε = limn→∞ inf 1

n logM∗(n, ε).
2. Shannon noisy channel capacity : C = limε→O+ Cε.

• This metric is operational in the sens it relies on physical
properties.
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Noisy channel theorem

Theorem 13 (Shannon’s noisy channel capacity).
For a stationary memoryless channel, the asymptotic capacity is
given

Cε = Ci = sup
PX

I (X ;Y )

This theorem is perhaps the most significant result in information
theory.
The following proves this result.
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Proof : converse

Theorem 14 (Upper bound on Cε).
For any channel, ∀ε ∈ [0; 1)

Cε ≤
Ci

1− ε

and
C ≤ Ci

Proof :
1. Start from the generalized weak converse Th.5
2. Integrate Ci definition acc. to Def.10.
3. Takes the limit when n→∞.
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Proof : achievability

Theorem 15 (Lower bound on Cε).
For any channel, ∀ε ∈ [0; 1)

Cε ≥ Ci

The limit does not depend on ε ! !
Proof : the proof starts from the Shannon’s bound, with τ = δn,
log(M) = n(I (X ;Y )− 2δ), and δ > 0, arbitrarily small :

ε ≤ P

[
n∑

k=1

ıX ;Y (Xk ;Yk) ≤ nI (X ;Y )− δn

]
+ exp(−δn) (8)

Then there exists a sequence of (n,M, ε)-code with ε→ 0 and :

log(M(n)) = n(I (X ;Y )− 2δ)

that proves : Cε ≥ I (X ;Y )− 2δ. 43 / 80
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Second order approximation
Let be defined

Definition 16 (Dispersion).

V = min
PX ;I (X ;Y )=C

var[ıX ;Y (X ;Y )].

Then one have

log(M∗(n, ε)) ≥ nC −
√
nVQ−1(ε) + o(

√
n)
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Second order approximation : proof
Proof starts from the Feinstein’s bound, and uses WLLN.
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Differential entropy
Remind that for an absolutely continuous r.v. X on X :

Definition 17 (Differential Entropy).

h(X ) = −
∫
X
fX (x) · log(fX (x)) · dx .

Anbiguity of an information variable :

ıX (x)
?
= log

Å
1

fX (x)

ã
When one value is drawn from a continuous distribution, what is
the information you get ? infinite.
Problem : the differential entropy changes whith scaling.
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Mutual information of cont. variables
Remind :

Definition 18 (Mutual information).

I (X ;Y ) = D(PXY ||PXPY )

valid as well for discrete and absolutely continuous variables.

Then,
the information density exists for continuous variables :

ıX ;Y (x , y) = log
fX ;Y (x ; y)

fY (y) · fX (x)

This is why the former results relative to the channel capacity are
also valid for continuous channels.
It is remarquable that the mutual information for c.v. relies on
differential entropy with

I (X ;Y ) = h(X ) + h(Y )− h(X ,Y )
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Gaussian random variable
Given a Gaussian random variable X ∼ N ((, 0) , σ2). Its entropy is
given by :

h(X ) =
1
2

log(2πeσ2)

If Y is an absolutely continuous random variable of variance σ2,
then its entropy is upper bounded :

h(Y ) ≤ 1
2

log(2πeσ2)

Tips : The Gaussian random variable achieves the maximal entropy
under variance constraint.
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Tips on continuous variables
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Infinite capacity of a continuous channel
Consider the AWGN channel

Y = X + Z

What is the capacity of this channel ?

Under a given second order constraint E[X 2] = P , the capacity is
achieved with X ∼ N (0,P).
Then taking P →∞ means an infinite capacity.
Need to constrain the source to fit with some reasonable properties.
Objective : how theory can deal with input constraints ?
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Cost constraints
Given a channel (X ,Y ,PY |X ), an input constraint is defined by a
subset Fn ⊂ X n of feasible codes. Typically, the input mapping
cannot be done outside Fn.
Let be define a cost function c(X ) : X → R+ and a constraint
such that a code is feasible if c(X ) ≤ Pth.

Definition 19 (Channel with separable cost constraint).
A channel with separable cost constraint noted (X ,Y ,PY |X ,Pth)
is specified by
• X = X n,Y = Yn, input/output spaces.
• PYX : X → Y .
• cost c : X → R+

• a threshold Pth

and verifies : c(x) = 1
n

∑n
k=1 c(xk) ≤ Pth, où x = (x1, x2, . . . , xn).
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Example of usual constraints

Average power constraint : 1
n

∑n
i=1 |xi |2 ≤ Pth.

Max power constraint : max1≤k≤n |xk | ≤ A.
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Cost constrained code

Definition 20 ((n,M , ε,P)-code).
For any channel (X ,Y ,PY |X ), an (n,M, ε,P)-code is an
(n,M, ε)-code which satisfies the input cost constraint

Fn 4= {x ;
1
n

∑
k

c(xk) ≤ P}.

The input codes have to be selected in Fn.

A similar definition holds for the max error.

The maximal input alphabet (FBL regime) is given by

M∗(n, ε,P) = max {M; ∃(n,M, ε,P)-code} (9)
M∗max(n, ε,P) = max {M;∃(n,M, ε,P)max -code} (10)
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Capacity under constraints
Definition 21 (Multi-letter information capacity under
P constraint).
The information capacity of a multi channel (n,X ,Y ,PY |X ,P) is :

Ci = lim
n→∞

inf
1
n

sup
PX ;E[c(X )]≤nP

I (X ; Y ).

Note : the constraint should be an admissible constraint. I.e. there
exists at least one code.

Definition 22 (Operational capacity).
The asymptotic capacity under constraint is defined by
1. ε−capacity : Cε(P) = limn→∞ inf 1

n logM∗(n, ε,P).
2. Shannon noisy channel capacity : C (P) = limε→O+ Cε(P).
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Questions

The key question is now to show how the operational capacity
and the information capacity remain connected to each other.

As a side question, is the single-letterization for stationary
memoryless channels still valid ?
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Single Letterization

Theorem 23 (Information capacity of sationary
memoryless channel with cost).
The information capacity of a stationary memoryless channel with
separable cost is

Ci (P) = sup
PX ;E[c(X )]≤P

I (X ;Y )

The proof uses converse/achievability
Let be denoted :

c0(P) = sup
PX ;E[c(X )]≤P

I (X ;Y )
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Single Letterization : converse
Proove : Ci (P) ≥ c0(P)

This comes by taking PX = Pn
X (iid).

Then : I (X ; Y ) = nI (X ;Y ).

And the constraints are linked with

(E[c(X )] ≤ P)⇒ (E[c(X )] ≤ nP)

If a distribution PX achieves c0(P), Pn
X is valid (constraint)

and achieves c0(P). c0(P) is achievable.

59 / 80



Introduction Preliminaries (adds’) P2P discrete channels P2P continuous channels with constraint Multi-user channels Conclusions

Single Letterization : achievability
Proove : Ci (P) ≤ c0(P)

I (X ; Y ) ≤
n∑

k=1

I (Xk ;Yk)

≤
n∑

k=1

c0 (E[c(Xk)])

≤ nc0

(
1
n

n∑
k=1

E[c(Xk)]

)
= nc0(P)

The last inequality comes from the concavity of c0(P).
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Capacity under constraint

Theorem 24 (Noisy channel with cost constraint).
The operational capacity and the information capacity for a
staitonary memoryless channel with cost constraints are equal :

C (P) = Ci (P)

Proof :
1. General weak converse : Cε(P) ≤ Ci (P)

1−ε .
2. For any stationary memoryless channel with input constraints,

C (P) ≤ Ci (P).
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Weak converse
The weak converse follows the same reasoning (Fano, ...)
Taking one (n,M, ε,P)-code one can follow the Markov chain
W → X → Y → Ŵ :

−h(ε) + (1− ε) log(M) ≤ I (W ; Ŵ )

≤ I (X ; Y )

≤ sup
PX ;E[c(X )]≤P

I (X ; Y )

≤ nc0(P) = nCi (P).
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Achievability
First proove the following

Theorem 25 (Extended Feinstein’s lemma).
For a channel (X ,Y ,PY |X ,P), where F ⊂ X is the set of feasible
codes, the error probability is bounded by :

ε · PX (F) ≤ P [ıX ;Y (X ;Y ) < log(γ)] +
M

γ

Then apply this theorem with log(M) = n(I (X ;Y )− 2δ) and
log(γ) = n(I (X ;Y )− δ), leading to :

εPX (F) ≤ P [ıX ;Y (X ;Y ) < n(I (X ;Y )− δ)] + e−nδ

The result is obtained with the WLLN.
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Example : Capacity of an AWGN channel
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Multi-user scenarios

• Focus on Multiple Access Channel
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Other relevant scenarios
Some other models have been studied in the litterature : channel
with states, graphical networks, large scale Gaussian networks,
Wiretap channel.
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5 - Multi-user channels
General properties
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MAC : problem positionning
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Natural solution : time sharing
Time-sharing means alternative transmission : i.e. two P2P
independant transmissions.

Could we achieve a higher rate region ?
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The IT MAC model
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The IT 2-user MAC model (cont)

Definition 26.
(n,MA,MB , ε)−code for the multiple access channel For a MAC
channel (n,XA,XB ,Y ,PY |XAXB

), a (n,MA,MB , ε)−code is
defined by
• fA : WA → XA

• fB : WB → XB

• g : Y →WA ×WB

such that P
î¶

WA 6= ŴA

©
∪
¶
WB 6= ŴB

©ó
≤ ε
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Operational metrics

1. The fundamental limit is the closure of a capacity region :

R∗(n, ε) =
¶

(RA,RB);∃(n, 2nRA , 2nRB , ε)− code
©
.

2. Asymptotic regime

Cε = cl
(

lim
n→∞

infR∗(n, ε)
)
.

where cl denotes the closure set.
3. Capacity region :

C = lim Cε =
⋂
ε>0

Cε.

Note :
lim
n

infAn = {a; a ∈ An, ∀n > n0}
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Capacity region

Theorem 27 (2-user MAC Capacity region).
The capacity region of the 2-user MAC is :

Cε = co
⋃

PAPB

Penta(PA,PB)

=

 ⋃
PUPA|UPB|U

Penta(PA|U ,PB|U |PU)


Only the second definition is valid when the problem is with cost
constraint.
with
• co : convex hull followed by taking the closure.
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Penta function

• Penta(PA,PB) =

(RA,RB);
0 ≤ RA ≤ I (A;Y |B)
0 ≤ Rb ≤ I (B;Y |A)
RA + RB ≤ I (A,B;Y )

.

• Penta(PA|U ,PB|U |PU) =(RA,RB);
0 ≤ RA ≤ I (A;Y |B,U)
0 ≤ RB ≤ I (B;Y |A,U)
RA + RB ≤ I (A,B;Y |U)

.
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Achievability bound

Theorem 28 (2-user MAC achievability bound).
Give a MAC channel PA,B,Y = PA · PB · PY |AB ,then ∀γA, γB , γAB ,
∀MA,MB , there exists an (M1,M2, ε)-code, such that :

ε ≤P [{ıAB;Y (A,B;Y ) ≤ log(γAB)}
∪
{
ıA;Y |B(A;Y ) ≤ log(γA)

}
∪
{
ıB;Y |A(B;Y ) ≤ log(γB)

}]
+ (MA − 1)(MB − 1)e−γAB + (MA − 1)e−γA + (MB − 1)e−γB

Tips : use random coding, and threshold decoding with three
threshold tests on information densities.
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Equivalent with LLR tests
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Gaussian MAC
Model and results : toward superposition coding.
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