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Information theory or communication theory ?

Queuing
theory
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The standard P2P model
MeM W X
- f comp f enc Channel y
A MeM
Yy 9dec 4% 9decomp

e Compression (source coding) aims at reducing the number of
bits : H(M).

e Coding (channel cod) adds redondancy to protect from errors
H( W) < Cchanne/-

® Source and channel coding problems are separable (in the
asymptotic regime).
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Multi-user scenarios

W\ ( b

® Multi-user compression/communication take advantage of
spatial correlation.
e This is a hard problem in general.
Fundamental limits are known only for some specific simplified
scenarios.
e Challenging to comply with the explosion of decentralized
networks : URLLC, caching, privacy,... 5/88
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Some references

The standard knowledge on IT for communications :
Elements of Information Theory by Thomas Cover and Joy
Thomas.

An overview of problems related to Network Inf Theory :
Network Information Theory by Abbas EI Gamal et Young-han
Kim.

A modern vision on the IT method for communications :
Lecture notes on Informtion Theory by Y. Polyanskiy and Y.
Wu.

A detailed analysis of the non asymptotic regime :
Asymptotic Estimates in Information Theory with
Non-Vanishing Error Probabilities bu V. Tan.
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Don't forget

® The path from fundamental limits to a practical code may be
hard.

1948 : Claude Shannon .
| founded Information Theory g //l! 2
and provided, among many s
things his second theorem on &,&.Z.y‘
| system capacity: Claude shannon

C =W -log(l+ SNR)

But this limit was achieved within
1bitin 1993 only!!!

[turbo-codes, Berrou and Glavieux]
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Maracas research group

Our research group is associated to Inria, located at Insa Lyon.

® Objective : contribute to the design of future communication
systems.

® Researh line : from theory to practice.
® Hot topics : low latency, reliability, privacy, massive access.
Some research topics you may be interested in

® Theory : How can we deal with a large quantity of small
information in a distributed system.

® Theory : Associate IT with other theoretical tools (stoch
geometry, graphs, ...).

® Algorithms : machine learning is on the place. Quantum
information is not far.

® Experimentation : around CorteXlab.
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Information

Given, a countable measurable space (X, F)
One probability measure P on (X, F)
X ~ P (discrete).

¢ Information
(for a discrete variable only)

® Entropy : H(X) = Ex [1x(X)].
ZX(X):|Og2<PX1(X)> py - H(X) [ (

Throughout this document, V(X) will be assumed finite.

® Varentropy : V(X) = Var (1x(X)).
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Given, a measurable space (X, F)
Two probability measures P, Q on (X, F) with P < Q
X~P, Y ~Q.

® Relative information

dP ® Relative entropy :
x|y (x) = logz (dQ(X)> D(X||Y) = Ex [ux)v(X)]-

® |nformation density

SN ) ® Mutual information :
v (X5 Y) = thyy |pepy (X1 Y) I(X;Y) = Exy [1x,y(X; Y)].
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Given a sequence of i.i.d. discrete random variables
S =(X1,X2,...,Xn).
By independency :

15(8) =D ax(X). (1)
k=

12/88
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i.i.d sequence

Given a sequence of i.i.d. discrete random variables
S =(X1,X2,...,Xn).
By independency :

15(8) =D ax(X). (1)
k=
WLLN (foll. Chebyshev inequality) :
lim P [ S _ H(x } =0 2)
A E |~ X > e =0

for any € > 0. When n — oo the random vectors concentrate in a

typical set.

12/88
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i.i.d sequence (cont’)

Second order properties (using CLN) :

im p |30 ol o), (3)

n—o0 ) /n\/(X)

where ®(a) is the cdf of a r.v. ~ N (0,1).

13/88
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i.i.d sequence (cont’)

Second order properties (using CLN) :

lim P [S—nH(X) < a] = ®(a),
n—00 n\/(X)

where ®(a) is the cdf of a r.v. ~ N (0,1). It means that :

% % N (H(X), V(X)/n).

Conclusions
[e]e]

(4)
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The information theory method
e A fundamental tradeoff is explored.
® Find a converse (the space of non achievable solutions).
® Find an achievable solution that approach the converse.
e |f both matches, the fundamental limit is known.
e Explore constructive solution that approach the fundamental
limit.
QoS metrics
A
f \
Datarate Reliability

Power Latency

Resources

‘ Bandwidth System
— complexity 14 /88
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3 - Lossless compression
Single-shot compression
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Lossless compressor

Consider :
® A single block source M defined on M, a countable set.

® A coding space :
w c {0,1}* = {0,0,1,00,01,10, 11,000, ... }.

17/88
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Lossless compressor
Consider :

® A single block source M defined on M, a countable set.

® A coding space :

W c {0,1}* = {0,0,1,00,01,10, 11,000, . .. }.

Definition 1 (Lossless compressor).

A lossless data compression code is a pair of mappings defined as :
e Compressor (encoder) : f: M — W
® Decompressor (decoder) : g : W — M.

such that g(f(m)) = m (lossless constraint).

MeM

w={0,1}* MeM
#’ 9decomp €

— f comp

17/88
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® Lossless compression imposes that i1 = g(w) exists s.t.
m=m.

® Hence, f(M) is injective : |[W| > |M|.

¢ Single shot compressor : to compress M from a single
observation.

18/88
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® Lossless compression imposes that i1 = g(w) exists s.t.
m=m.

® Hence, f(M) is injective : |[W| > |M|.

¢ Single shot compressor : to compress M from a single
observation.

Definition 2 (Length function).
The length function / : WW — Nj counts the number of bits for any

element of {0,1}".
We note the r.v. L = [(f(M)).

18/88
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Remarks

Lossless compression imposes that m = g(w) exists s.t.
m=m.

Hence, f(M) is injective : |[W| > |M|.

Single shot compressor : to compress M from a single
observation.

Definition 2 (Length function).
The length function / : WW — Nj counts the number of bits for any

element of {0,1}".
We note the r.v. L = [(f(M)).

Optimal compressor : minimize some metric Q = Ep [q(/(f(M)))]
(g() is monotonically increasing).

18/88
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Optimum compressor

Theorem 3 (Optimum lossless compressor).

WLOG, let assume that Py (1) > Pp(2) > ... Py (JMY).
The optimal compressor f* allocates the codes iteratively from

m = 1 by assigning one of the smallest available codes to the
message m.

Then :
1. The length of message m is given by I(f*(m)) = |log,(m)].
2. Any lossless compressor f(m) verifies :

PI(f(M)) < a] <P[I(f*(M)) < 4],

st.
which can be written as L > L*.

L* is the length random variable associated to the optimal

compressor. 19/88
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[[lustration

The idea is to assign shorter codewords to most likely symbols :
PM(m)

0 1 00 01 ... 000 ... 01..110

20/88
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The idea is to assign shorter codewords to most likely symbols :
PM(TI’L)

0 1 00 01 ... 000 ... 01..110

st.
Then, stochastic dominance L > L* follows :

PIL < ]

20/88
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Proof of Th.3

® The first item comes directly from the compressor strategy. Nb
of codes with /(f(m)) < n:2"—1.
Nb of codes with /(f(m)) = n: 2".

21/88
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Proof of Th.3

® The first item comes directly from the compressor strategy. Nb
of codes with /(f(m)) < n:2"—1.
Nb of codes with /(f(m)) = n: 2".
® The second item :
1. For any compressor f : lossless = Nb of msg s.t. /(f(m)) < a
to be < 2" —1.
2. Note A* = {m; I(f*(m)) < a}. It contains already the most
prob. msg. .
3. Any permutation between A" and A = reduction of P(.A").

Thus Q = Epn [q(/(F(M)))] is minimum for £*.

21/88
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Average length is (almost) Entropy

The av. nb of bits to store the message M is a useful operational
metric. Its minimal value can be related to the entropy :

22/88
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Average length is (almost) Entropy

The av. nb of bits to store the message M is a useful operational
metric. Its minimal value can be related to the entropy :

Theorem 4 (Entropy vs minimum nb of bit).

The minimal average number of bits required to compress a
single-block source M is given by

L[F =T [L*] = By [I(F¥(M))].
It is bounded by

H(M) — log,(e) — log, (H(M) +1) < L* < H(M).

First strong connection between a theoretical measure (entropy)
and an operational one.

22/88
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Proof of Theorem4

® RHS:
1. from Th.3 : /(f*(m)) < log,(m).
2. Py(m) < Py(m—1) = P, (M) <1/m which means :

logy(m) < — logy(Pm (M)) = tm(m).

3. Then, for any m : I(f*(m)) < p(m), take expectation.

23/88



Introduction

000000

Preliminaries  Lossless compression  Almost lossless compression  Lossy compression  Conclusions
000000

[e] o [e] e}
00000000800 00000000000 000

0000 0000000000000 0000 0000000000
0000000000 [e]e]e}

Proof of Theorem4 (cont)

o LHS : H(M) = H(M, L*) = H(M|L*) + H(L*)

1.

Use H(M|L* = 1) < I . ( 2/ codes of length | = entropy at
most /).

Then : H(M|L*) < E,. [L]

For H(L*), use the following lemma (not proved here) with
Z=1"+1:

Given ar.v. Z on Ny :

H(Z) < h(1/E[Z]) - E[Z]

. Combining these equalities give the proof.

24 /88
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Bounds on the codelength distribution

Theorem 5 (Optimal length distribution).
Given the optimal lossless compressor f*, the cdf of L* is bounded
by

Plim(M) < k] <P[L* < K < Plim(M) < k+7]+277+

Proof : sketch-up
® LHS : same argument : /(f*(m)) < up(m).
® RHS : use conditionnng w.r.t. 1y (M) :
1. :inf. spectrum splitting

P[L* < k] =P[L* < klam(M) < k+7]-Pam(M) < k + 7]
+P[L* < klim(M) > k4 1] - P [apg(M) > k + 7]
<Papy(M) <k+7]+P[L" < k,apy(M) > k+7].

(5)
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Bounds on the codelength distribution (cont’)

2. The last term can be bounded as follows :
PL* < k,apy(M) > k+ 7]
= Z Pr (m) - Lgies (myy<ir * Lapp(my>ket7}
memM (6)

= D Pu(m) - Ly (my<iy - Lpymy<a-sr}
memM

(2k+1 _ 1) . 2—k—’7'.

IA

26 /88
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3 - Lossless compression

Dataflow compression (lossless)
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Problem formulation

w={01} Ses

- fcomp ——————— YGdecomp

S = M1M2 e Mn
—_—
nmessages
Dataflow : § = (My,...,M,) € § = M".
Without latency constraint, the compressor can apply the singleshot
approach to the source S as a whole.

28 /88
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Problem formulation

W= {01} Ses

- f comp ——————— " Gdecomp

S:MlMQ‘.‘Mn
—_—

nmessages

Dataflow : S = (My,...,M,) € S = M".

Without latency constraint, the compressor can apply the singleshot
approach to the source S as a whole.

Th.5 applies to S. Taking 7 =+/nand k=u-n:

]PMSUSPL—*gugPls(s)gu+i+2—ﬁ+l’
T s < [T <[ 0 .

= L* and 15(S) converge in distribution to a same random variable
Ur.

28 /88
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Second order limit
With 7 = n*/* and k = H(S) + /n - u, Th.5 shows :
L* — H(S) 15(S) — H(S)
P{ NG “} ZP[ Jn S “}
]

b [L* — H(S) b [15(5) — H(S)
vn vn
zs(S)an(S) and L*%(S)

IN

IN
IN

< u+n—1/4} 4o/

(8)
=
random variable Us.

converge in distribution to a same

20 /88



Lossless compression

[e]e] o]

Second order limit
With 7 = n*/* and k = H(S) + /n - u, Th.5 shows :

P [L*_H(S) < u} <P {ZS(S)_H(S) <u+ n—1/4} 4o/

vn vn
(8)

= ZS(S)an(S) and L*?/'%(S) converge in distribution to a same
random variable Us.

For an i.i.d source, the rate at the output of the decoder

converges to :

L* V(M
R(S) = &~ x (Hemy, VDY) Q

20/88
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Homework

Consider a grey image of N, pixels. Each pixel is coded with 8 bits.
Compare the compression factor that can be achieved, if the pixels
are coded independently or as a whole. The grey levels are assumed
i.i.d. according to one of the following distributions :

1. uniform pmf.
2. some sampled exponential pmf.

Compute (numerically) the average length and plot the length
distribution in each situation, as a function of n.

30/88
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3 - Lossless compression

Uniquely decodable codes
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Code extension

Still a dataflow, but the messages M,, are compressed separatly,
transmitted one after each other.

Definition 6 (Extension of a code).

Given a compressor f : M — W (see def.1), its extension is

fr:mt - {0,1}",

fr(my, ma,...,m,) = (f(my),f(m2),...,f(m,)) (concatenation).
Note that M™ contains all non-empty finite-length strings of
symbols from M.

32/88
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Uniquely decodable codes

e Uniquely decodable : guarantee the decodability of a sequence
of codes.

® The compressors that fulfills this rule are called uniquely
decodable codes.

® Prefix codes belong to this set codes :

Definition 7 (Prefix codes).

A compressor f : M — W (def.1) is a prefix code if no codeword
is a prefix of another one.

Example :...

33/88
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Kraft-McMillan inequality

Theorem 8 (Kraft-McMillan).

1. Given f : M — W (def.1), uniquely decodable. Then f
satisfies the Kraft inequality :

> 2<

memM

where |, = I(f(m)) is the code length.

2. Conversly, for any set {\(i);i € {1,2,...,|M|}}, s.t. the
Kraft inequality is verified, there exists a prefix code f, such

that I(f(m)) = A(m).

34/88
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Optimal uniquely decodable code

Definition 9 (Optimal average codelength for prefix
codes).

The minimal average codelength among all prefix codes is the
solution of the following problem

Loc 2 min > P (M) Iy
memM
s.t. Z 27Im <1
memM
Im € Njp.

This is a linear programming (IP) problem which can be solved with
the Huffman algorithm.

36/88
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Huffman algorithm
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Bounds on the minimal average length

This optimal length can be bounded as follows :

Theorem 10 (fundamental bounds of the optimal
codelength).

H(M) < Lpe < H(M) + 1.

We can compare with the bounds found for L* :

H(M)—logy(e)—logy (H(M) + 1) < L" < H(M) < Lpe < H(M)+1.

38/88
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Proof of Th10

1. Achievabilty (Lpc < H(M) +1) :
Use the Shannon code :
let define code lengths s.t. I, = [ap(m)].
It fulfills the Kraft inequality (prove it). Then, from the
Kraft-McMillan theorem, such a code exists.

30/88
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Proof of Th10 (cont’)

2. Converse (H(M) < Lp) :
Use the KL divergence between Py, and another prob. meas.

on M : Qu(m) = 2=

ZmEM 27Im -
Computes the KL divergence :

D(Pml|@u) = Y Pu |0g2( >

mem
= > Pulogy (Py) = > Pulog, (Qu)
memM memM
= —H(M) + Ep[I(f(M))] + log, < Z 2" ’m> .
memM

(10)

The sum in the log is lower than 1, which concludes the proof.
40/88
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4 - Almost lossless compression
Fixed length codes
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Almost lossless codes
W ={0,1}* ?
MeM = {0, MeM

— f comp 9decomp

The compression/decompression constraint is now

g(f(m)) =

{m if meD
e oft.

where D is the subset of decodable messages.

Conclusions

e}
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(k, €)-code

Definition 11 ((k,¢)-code).
A compressor-decompressor code (f, g) is called a (k, €)-code if

f: M>Ww
g: W— MuU{e}

with W = {0, 1}, and such that P [g(f(M)) = €] < e.
The fundamental limit is the minimal achievable error :

(M, k) 2 inf {€; 3(k, €)-code for M} .
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Minimal error

Given a source M, where the messages are ordered from the higest
to the lowest probability.
Theorem 12 (Minimal error probability).

The min. error prob. for k < log,(|M|) relies onto the optimal
variable lenght compressor f*(m) (see def 3) :

2k—1

(M, k) =1-"Y" Pu(m)

m=1

:PW&M»ZH
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Remarks

The proof is immediate. One code is reserved for the error message
(all non detectable messages are compressed with this code), and
the 2K — 1 messages with the highest probabilities are coded
without errors.
® f maps the elements in D into the codes from (00...00) to
(11...10).
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® f maps the elements in D into the codes from (00...00) to
(11...10).
® This theorem shows the link with the codelength distribution
of the variable length coding.
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Remarks

The proof is immediate. One code is reserved for the error message
(all non detectable messages are compressed with this code), and
the 2K — 1 messages with the highest probabilities are coded
without errors.

® f maps the elements in D into the codes from (00...00) to
(11...10).

® This theorem shows the link with the codelength distribution
of the variable length coding.

e Alternatively, if a detectable error is not imposed, 2% codes can
be used for detectable messages and the non detectable
messages can be coded by any of the other codes. Gain is
marginal.
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Shannon theorem |
Theorem 13 (Shannon source coding).
Consider a sequence S = (M4, ..., M,) of i.i.d. messages. Then,

the following holds :

lim €*(S,nR) =

n—o0

{o R > H(M)
1 R < H(M)
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Shannon theorem |
Theorem 13 (Shannon source coding).
Consider a sequence S = (M4, ..., M,) of i.i.d. messages. Then,
the following holds :
. 0 R>HWM
lim €*(S,nR) = { (M)
o 1 R < H(M)

A L
Note R = krepresents the source rate (in bits per channel use) at
the output of the compressor.
The proof follows directly form Th.12 and from the bounds of L* in

(9)-
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Second order

A second order approximation can be also obtained from the CLT
on L*, leading to :

lim €*(S,nR)=1—-9 vn-(R—H(M))
n—o0 ! L/(Aﬂ)

(11)
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Second order

A second order approximation can be also obtained from the CLT
on L*, leading to :

lim €*(S,nR)=1—-9®

n—o0

V(M)

Coming back to the single shot compressor, the relations obtained
in Th.5, allow to bound the error probability as follows :

Plipy(M)>k+7] 277 <e"(M, k) <Piy(M) >k —71]+277,
(12)
V7 > 0.
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e Converse : follows directly Th.5.

® Achievability : random coding argument (the method will be
detailed later for another proof).
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Second order : refine achievability

It is worh noting that a better achievability can be obtained :
(M, K) < P [ (M) = K]. (13)

The proof follows directly from the achievability proof of Th.5.
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Remarks

® The random coding argument based achievzbility wad initial
Shannon'’s proof.

e This later is connected to the AEP for memoryless sources,
concentration inequalities.

® Defining the typicality set :
0 n 1
T, =14s=m": ;zs(s) —H(S)| <

where | T9| < 2(H($)+0)n « | M ",
Then P [S € T)] — Las n— oc.
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Notes on linear codes

® Among all possible codes, linear codes have interesting
properties.

® Why : in order to find strutured codes (making decoding easier
and faster).

® Key result : asysmptotically, linear codes can achieve the
fundamental bounds.

Further work on this : coding theory in Galois fields.
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4 - Almost lossless compression

Multi-terminal compressors
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Side information available at both sides

Idea : what can we do if the two sides share a common
information ?

Note : when a message is sent an explicite (correlated with M)
information is know at both sides.

MeM W ={0,1}* M e MU {e}

I comp 9decomp —

Side information
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Side information : definition

Definition 14 (Compression with side information).

Given Py, with M a disrete random variable.
A compressor with side information is given by :

e f MXY W
* g:WxY— MU{e}
such that P [g(f(M,Y),Y) # M] < e
with M = {0, 1}K.
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Side information : definition

Definition 14 (Compression with side information).

Given Py, with M a disrete random variable.
A compressor with side information is given by :

*f  MxY—->W

* g:WxY— MU{e}
such that P [g(f(M,Y),Y) # M] < e
with M = {0, 1}K.
The fundamental limit is

" (M|Y, k) = inf {¢; A(k, €)-code} (14)
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Fundamental limits

Theorem 15 (Shannon source coding w side inf.).
Consider a sequence (S, T) = (M1, Y1),...,(Mp, Y,) of i.id.
messages. Then, the following holds :

lim €*(S|T,nR) =

n—oo

{ 0 R> H(M|Y)
1 R<H(M|Y)
and for the error bounds, from (12), one have :

P [ZM‘y(M|Y) > k—|—T]—2_T <MY, k) <P [ZM‘y(/V”Y) >k — T]—|—2_T,
(15)
V7 > 0.
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Proof

Apply Theorem 13 with the channel Py y instead of Py :
e Start from the bounds obtained from P2P channel.

® Consider the optimal compressor under Py y—,. That means
that the compressor changes with y.

® Average over Py.
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Application

If both Tx and Rx know a common information related to the
source, they can take benefit from it.

Example : Consider images, wher both sides share some side
information about the input distribution. This side information can
be the realisation of the previous image.

The codebook can be modified according to y.
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Slepian-Wolf : Side information available at the receiver only

Idea : How much is lost when only the receiver knows y ?

Note : the receiver knows some observation y that the transmitter
does not know.

MeM w={0,1}* M e MU{e}
fcomp 9decomp —
Side information i
Ye)y
Pyy # Py - Py
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Slepian-Wolf : definition

Definition 16 (Slepian-Wolf compression).

Given Py, with M a discrete random variable.
A Slepian-Wolf compressoris given by :

e f - M—=W

°* g WxY— MU{e}
such that P [g(f(M),Y) # M] < ¢
with W = {0, 1}~
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Slepian-Wolf : definition

Definition 16 (Slepian-Wolf compression).

Given Py, with M a discrete random variable.
A Slepian-Wolf compressoris given by :

e f - M—=W

°* g WxY— MU{e}
such that P [g(f(M),Y) # M] < ¢
with W = {0, 1}%.

The fundamental limit is
esw(M|Y, k) = inf {e; 3(k, €)-code} (16)

Note that undetected errors are allowed.
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Fundamental limits

Surprisingly : no loss!!

Theorem 17 (Slepian-Wolf bounds).

Consider a sequence (S, T) = (M1, Y1),...,(Mp, Y,) of i.id.
messages. Then, the following holds :

o, {0 R>H(M|Y)
Jim_ esw(SIT,nR) = { 1 R< H(M|Y)
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Fundamental limits

Surprisingly : no loss!!

Theorem 17 (Slepian-Wolf bounds).

Consider a sequence (S, T) = (M1, Y1),...,(Mp, Y,) of i.id.
messages. Then, the following holds :

o, {0 R>H(M|Y)
Jim_ esw(SIT,nR) = { 1 R< H(M|Y)

and for the error bounds, one have :
(MY, K) < (MY, K) < P [y (M]Y) > k— 7] +277,
(17)

61/88
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Proof

e Converse : obvious
® Achievability : random codes approach :

1. Generate a random codebook C = {c,, € W; m € M},
independently of M, Y : f(m) = cp.
2. Let defined :
J(m,Cly) & {m # m; oy = Cmy gy (m'ly) < k — 7}
3. And : J(M7C|Y) = Zm,y PMy (m,y) ]l{J(m,CLy)?go}.
4. Decoding rule :

m 3dlm  s.it.ch, = w, mly) <k—-T
g(w,y)z{ 0 othw. v ()

item The error associated to this codebook is :
eC)="P [ZM|y(M|Y) >k —T1orJ(M,C|Y) # O] (18)
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Proof (cont’)
® This error can be bounded (union bound) :

€(C) <P [y (M|Y) > k—7] +P[J(M,C|Y) #0] (19)

outage

confusion
The confusion is upper bounded, considering

® The number of codes belonging to the decodable set is at
most 2k~7.

® Averaging over all random codebooks : P [c,, = c,v] = 27K,
This concludes the proof.

Now, if a random code achieves this bound, there exists a
deterministic code that achieves it as well.

The randomisation, and the duality confusion/outage is an
usual approach in IT proofs.
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Multi-terminals extension

Can we deal with correlated sources compressed independently ?

MeM

W ={0,1}*

MeM

f comp

f comp

W' ={o,1}*

9decomp

(M, M) € M x M"U{e}
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Multi-terminal Slepian-Wolf

Definition 18 (Multi-terminal compression).

Given P, with M, M’ discrete random variables.
A biterminal compressor is :

e i M—W

e H: M =W

* g WXxW - Mx M U/{e}
such that P [(M, M') # (M, M/)] se
with W = {0, 1}k, W' = {0, 1},

The fundamental limit is

(M, M, k, k') = inf {¢; I(k, k', €)-code} . (20)
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Fundamental limits

Theorem 19 (Multi-terminal bounds).

Consider a sequence (S, T) = (My, My), ..., (Mp, M},) of i.i.d.
messages. Then, the following holds :

. ~n_ |0 (R R) € int(Rsw)
Am esw(S, T.n, R, K) = { 1 (R,R) ¢ Rsw ’
where the Slepian-Wolf region is :

x> H(MM)
Rsw ={x,y}h{ y > HM|M)
x+y>HM,M)
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Achievable region : converse
HM) .
: b
- H(M)
H(M|M')
Converse :
® R < H(M|M') : this bound holds with side information at
both sides.

* RN < H(M'|M) : idem.
®* R+ R < H(M, M) : compression cannot do better than joint

compression. 6788
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Achievability proof

Achievability :
e Achieve corner points by sort of successive decompressor.

e Combine these two compressors by time sharing : alternate
codebooks with the two strategies determinstically or randomly

(common randomness).

W = {0,1}*
M e M— feomp ———————— Gdecomp M e MU {e}

W ={0,1}¥ M e M'U{e}

! !
M e M— feomp Gaecomp

The idea of time-sharing is usual. Convexity of achievable rate
regions is valid in many scenarios.
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Remarks

e Slepian-Wolf opened a lot of fundamental applications
(security, water-marking, differential compression).

® The non asymptotic regime received a lot of recent attention,
see The dispersion of Slepian-Wolf coding by V. Tan and O.
Kosut (2012).

® Recent use for immersive video application, see Rate-storage
regions for Extractable Source Coding with side information by
E. Dupraz, A. Roumy, T. Maugey and M. Kieffer (2020).
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Lossy compression is necessary for continuous signals, and
anyway useful for discrete signals (jpg, mpeg,...).

A continous signal takes values on a continuous space and is
defined on a continuous time s(t).

The discretiation involves two steps : sampling and
quantization.

Sampling theory is out of the scope of this course (rely on
Fourier transform, filtering,...).

Introduction to quantization in IT : Rate-distortion theory.

Again a fundamental tradeoff : rate versus distortion.
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General ideas on quantization

® Scalar quantizer.

e Vector quantizer (Lloyd's algorithm).
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Hamming game

Given 100 unbiased bits, drawn indepndently.
What is the maximum information we can store on 50bits ?
From the 50 bits, you want to guess the 100 bit values.

® Scalar coding : store 50 values, and guess the other randomly :
Perr = 25%.

® Vectorial coding : thanks to concentration of measures, we can
optimize the joint coding and obtain P, = 11%.

[llustration.
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W={12,...,M,} A
X c X 14 ) w
y fcomp 9decomp Xed

Definition 20 (Lossy compressor).
A lossy compressor/decompressor pair (f, g) is defined by :
e A compressor : f : X — W, with w = f(x)
* A decompressor : g : W — X, with & = g(w)
® a distortion metric (loss function) :
d(X,X): X x X - RU{+o0}
® a cost function Q(d) = E, ¢ [q(d(X,)A())} that measures the
performance of the compressor.

where W is a countable set, and Xis a continuous set.
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Rate-distortion formulations

Different possible settings :
e fixed length, average distortion : W € {1,2,..., M, },
Qmoy(d) = Exz [d(X, X)].
e fixed length, excess distortion : W € {1,2,..., M,,},
Qexc(d) = Exx {]l{d(x,f()>D}}'
e variable length, max distortion : W € {0,1}*, and
min(H(W)), s.t. Qexc(d) = 0.
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Rate-distortion formulations

Different possible settings :
e fixed length, average distortion : W € {1,2,..., M, },
Qmey(d) = By [d(X, X)].
e fixed length, excess distortion : W € {1,2,..., M,,},
Qexc(d) = Exx []l{d(x,)”()>D}}-
e variable length, max distortion : W € {0,1}*, and
min(H(W)), s.t. Qexc(d) = 0.
Definition 21 (Separable distortion metric).
For a sequence of X’-valued random variables

X = (X1, X2,...,Xy), a separable distortion metric is defined as
the average of single-letter distortions :

1>

WAL .
d(x, %) ;Zd(Xkan)'
k=1

75/88



Introduction  Preliminaries Lossless compression ~ Almost lossless compression  Lossy compression  Conclusions

000000 000000 [e] o [e] e}
00000000000 00000000000 000
0000 0000000000000 0000 00@0000000
0000000000 [e]e]e}

Lossy compressor to be studied

Definition 22 ((n, M, D)-code).

An (n, M, D)-codeis a lossy compressor with W = {1,2,..., M}
and average distortion metric.

The fundamental limit (operational metric) is given by :

M*(n, D) = min{M : 3(n, M, D)-code}

1 (21)
R(D) := nll_)ngo sup log, M*(n, D)

76 /88



Introduction  Preliminaries Lossless compression ~ Almost lossless compression  Lossy compression  Conclusions

000000 000000

[e] o [e] e}
00000000000 00000000000 000
0000 0000000000000 0000 000@000000

000

Minimal information

Definition 23 (Minimal information under distortion
constraint).

Given a continuous source X € X, the minimal mutual information
under distortion constraint D is defined as :

px(D) = I(X;Y), (22)

= inf

Py|x:Ex v[d(X,Y)]<D
where Y is defined on some domain Y, with the unique constraint
that d(X,Y) is defined.
Let be denoted the minimal distortion such that a quantization is
feasible :

Do = inf{D; px(D) < oo}

The solution Y for which vx(D) is achieved, contains the minimal

information on X, such that the distortion is bounded.
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Properties of ¢x(D)

1. @x is convex, non increasing.
thanks to convexity of Pyx — I(Px, Py|x).
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Properties of ¢x(D)

(px Is convex, non increasing.
thanks to convexity of Pyx — I(Px, Py|x).

@x is continuous on (Dp, o).
follows form convexity.
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Properties of ¢x(D)

1. @x is convex, non increasing.
thanks to convexity of Pyx — I(Px, Py|x).

2. px is continuous on (Dp, c0).
follows form convexity.

3. If d(x,x) = Dg and d(x,y # x) > Dy, then
ox(Do) = I(X; X).

all information is needed.
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Properties of ¢x(D)

. (px Is convex, non increasing.

thanks to convexity of Pyx — I(Px, Py|x).

. px is continuous on (Dg, 00).

follows form convexity.
If d(x,x) = Dy and d(x,y # x) > Dy, then
ox(Do) = I(X; X).

all information is needed.

Lossy compression  Conclusions
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Given Dpmax = infz Ex [d(X, 2)] then ¢x(D > Dmax) = 0.

no information is needed.
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Information Rate-Distortion

Theorem 24 (Single letterization).

Given an i.i.d. sequence X = (X1, Xa,...,Xy), and a separable
distortion

where
Definition 25 (R;(D)).

The information rate-distortion function is defined by

Ri(D) := lim suplgox(D)

n—o0 n

79/88



Introduction  Preliminaries  Lossless compression  Almost lossless compression  Lossy compression  Conclusions
000000 000000

[e] o [e] e}
00000000000 00000000000 000

0000 0000000000000 0000 0000008000
0000000000 [e]e]e}

Proofs

® Achievability : choose Py|x = Py, then ox(D) < npx(D)
(M.1 property)
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® Achievability : choose Py|x = Py, then ox(D) < npx(D)

e Converse :

(M.] property)

I(X, X) > Z 1(Xi, X))

j=1
> Z ox(E. [d(le)A(l)])
j=1

vV
S
©

>

| =
=
Y
x
x

Lossless compression ~ Almost lossless compression  Lossy compression  Conclusions
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Shannon's rate distortion theorem

Theorem 26 (rate distortion limit).

Given a i.i.d. sequence X = (X1, Xa,...,Xy) (stationary and
memoryless), given a non negative and separable distortion metric

d(x, x), such that Dp.x < 00, and a target distortion D > Dy,
Then

R(D) = Ri(D) = inf 1(X; X)
P)?t\X;EX)A([d(X’)A()]SD
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Shannon's rate distortion theorem

Theorem 26 (rate distortion limit).

Given a i.i.d. sequence X = (X1, Xa,...,Xy) (stationary and
memoryless), given a non negative and separable distortion metric

d(x, X), such that D,y < 0o, and a target distortion D > Dy,
Then

R(D) = Ri(D) = inf 1(X; X)
P)?t\X;EX)A([d(X’)A()]SD

This theorem links the operational and the information
rate-distortion functions.
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General converse proof

The converse is immediate from information theory properties :

logo(M) > H(W) entropy max for equiprobable source
> I(X; W) M.IL always lower than entropy (23)
> I(X; X ) processing reduces entropy

> px(D). def ofp.
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Intuition on the achievability

Random coding argument for a sequence : create a random
codebook C{cy,..., ey}, drawn iid. ~ QF on X.
Define the following compressor-decompressor pair :

® f(x") = argmin, d(x", cy).

° g(w)=cy.
ConsiAder the excess ditortion metric :
Perr =P [Ve, € C,d(X, cuwp) > DJ.

~ M

which can be bounded : Pe,, ~ (1 — P [d(X,th) < D] .
Then using large deviation, take enough codes to make this
probability low (i.e; to I(S;S) +9).
Then choose Q5 which minimizes this number and give the
achievability.

Compare excess and average distorsions.
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Homework

Don't forget to answer the question asked at last course.

Write the complete proof of Shannon's rate-distortion
theorem, in a very comprehensive way, using the definitions
and theorems presented in the course and the first part.

You can start from the lecture notes of Yuri Polianskiy, but

write it from your own, with proper justification of all steps.

Latex file is preferable.
[llustrations are welcome.

As well as pedagogic comments on the different calculation
steps.
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Application example : Gaussian

e A Gaussian source is defined on X = R, and
X ~N((,0),0?).
® We want to minimize MSE distortion : d(x, %) = |x — £|°.
® Result : R(D) = 3 log™ %2_
Tips : this gives the rate required to achieve some distortion target.
® The proof uses an achievability/converse approach.
® The achievability uses a code such that S = 5 + Z.

® The converse uses a change of measure.
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Recent references

® fixed-length lossy compression in the finite blocklength
regime, by Kostina, V., and Verdq, S. (2012).

® Rate-distortion performance of lossy compressed sensing of
sparse sources by Leinonen, M., Codreanu, M., Juntti, M., and
Kramer, G. (2018).
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What has been done so far

Focus on source coding :
® Show the path from theoretical bounds to operational bounds.

® Use classical techniques in IT : achievabnility/converse, use of
change of measure, thresholding the information measure,
outage versus confusion.

® Introduction to multi-user settings.
Homework :
® Two problems have been introduced.

® Few references have been reported. Some fo you may choose a
paper related to this topic.

® Next week : go to channel coding.
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