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Abstract

Understanding human behaviour and its activities facilitate the advancement of nu-
merous real-world applications and is critical for video analysis. Despite the progress
of action recognition algorithms in trimmed videos, the majority of real-world videos
are lengthy and untrimmed with dense regions of interest. An effective real-world ac-
tion understanding system should be able to detect multiple actions in long untrimmed
videos. In this thesis, we focus mainly on temporal action detection in untrimmed
videos, which aims at finding the action occurrences along time in the video. Specif-
ically, temporal action detection methods face three main challenges: (a) modelling
in a video the temporal dependencies between actions, including composite and co-
occurring actions, (b) learning the representation of fine-grained actions as well as (c)
learning a representation from multiple modalities.

In this thesis, we first introduce a large indoor action detection benchmark: Toyota
Smarthome Untrimmed, which provides spontaneous activities with rich and dense
annotations to address the detection of complex activities in real-world scenarios. Af-
ter that, we propose multiple novel approaches towards action detection in untrimmed
videos. These approaches are targeting the aforementioned three challenges: Firstly,
we study temporal modelling for action detection. Specifically, we study how to en-
hance temporal representation using self-attention mechanisms. Our proposed meth-
ods allow for processing long-term video and for reasoning about temporal depen-
dencies between video frames at multiple time scales. Secondly, we explore how to
recognize and detect fine-grained actions using semantics of object and action con-
tained in the video. In this work, we propose a general semantic reasoning framework.
This framework consists of mainly two steps: (1) extracting the semantics from the
video to form a structural video representation; (2) enhancing the video representa-
tion by reasoning about the extracted semantics. The proposed semantic reasoning
strategy improves the detection of fine-grained actions and shows its effectiveness in
action recognition and detection tasks. Thirdly, we tackle the problem on how to rep-
resent untrimmed video using multiple modalities for action detection. We propose
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two cross-modality baselines based either on attention mechanism or on knowledge
distillation. Both methods leverage the additional modalities to enhance RGB video
representation resulting in better action detection performance.

Our methods have been extensively evaluated on challenging action detection
benchmarks. The proposed methods outperform previous methods, significantly
pushing temporal action detection to real-world deployments.

Thesis Supervisor: Francois Bremond
Title: Professor
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Chapter 1

Introduction

Computer vision is a field of artificial intelligence that focuses on mimicking parts of

the human visual system and enabling computers to derive information from images,

videos, and other inputs. Nowadays, smartphone and various cameras continually

produce tremendous video and media content from individuals every day. Therefore,

video understanding and analysis has become one of the essential research subjects

in computer vision. Video analysis can be defined as a combination of understand-

ing the scene, objects, actions, events, attributes, and concepts [48] from a series of

frames (i.e., a video). Although deep learning techniques have accomplished remark-

able performance in many computer vision tasks (e.g., image classification, object

detection), video understanding is still far from ideal. Among the topics in video un-

derstanding, analysis of action in the video is one of the most critical and challenging

tasks. In fact, human beings play an prominent role in the video. Statistics show

that 35%, 34%, and 40% of pixels in movies, TV and YouTube videos are related

to humans [133]. Hence, studying the human actions and behaviour in a video can

help to understand its contents. As an important element of video analysis, action

understanding facilitates the progress of numerous real-world applications, such as

smarthome, sport analysis system, or human-robot interaction.

In the action understanding domain, action recognition is the fundamental task,

it aims at classifying the action categories of trimmed video. In this thesis, we define

trimmed videos as "pre-segmented" video clips, where each video contains only a sin-
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Figure 1-1: Temporal action detection aims to localize action instances in time and
to recognize their categories. Here is an example of an untrimmed video that includes
multiple action instances of interest with various lengths and categories. Moreover,
action instances can overlap.

gle action instance. In other words, the context of the action, i.e., moments before or

after the action are not included in the trimmed video. Therefore, action recognition

only needs to classify the action categories without the need to detect starting and

ending timestamps. However, the majority of videos in the wild (i.e., recorded in

unconstrained environments), are naturally untrimmed. Untrimmed videos are long

unsegmented videos which may contain several action instances along with the mo-

ments before or after each action (i.e., temporal background). The action instances in

one video can belong to several action classes. Besides, action instances may occur at

any time of the video and may have various duration. Moreover, overlapping can exist

between action instances (i.e., co-occurring actions). An example of the real-world

untrimmed video is shown in figure 1-1. The task of detecting actions in untrimmed

videos is called temporal action detection.

Temporal action detection can be defined as the ability to localize the action

instances in time and to recognize their categories. This task has received a lot

of attention recently, as it can provide information on: what are the actions and

when do the actions happen? The moments right before or right after an action

may be very similar in appearance to the start or end of the action, which makes

the localization of action intervals very challenging. Previous studies on temporal

action detection mainly focused on actions of high-level semantics and videos with

a sparse set of actions [166, 96, 235]. However, the action may occur "densely" in

real-world scenarios. Besides, low-level "fine-grained" actions can also be important
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for many applications. For instance, collaborative robots need to recognize how a

human partner completes the job in sub-steps to cope with the variations in the task,

and sport analysis systems must comprehend fine-grained game actions to report

commentaries of live activities, etc. In this thesis, we focus on the temporal action

detection that targets fine-grained actions and videos with dense occurrence

of actions. While the temporal action detection task has been studied in both

full and limited supervision settings, for the action detection in video with dense

action occurrence, the methods still highly rely on full supervision. This is because

of the complex temporal relations among action instances, dense action regions, and

numerous action categories in the videos. Hence, in this thesis, we only studied fully

supervised action detection methods. The goal is to predict action labels at every

frame of the video [176, 223, 188].

Temporal action detection has drawn much attention in recent years and has

broad applications in video analysis tasks. With the cameras, an automatic detection

system may help the deployment of an indoor vision intelligence system system, such

as human less store and smarthome. Take smarthome as an example: a temporal

action detection module can detect the behavior of the human subject in real-time and

send this information to the support robot (e.g., Partner Robot-HSR [217]), to better

interact with the user in the smarthome. Also, suspicious events (e.g., falling down)

can be detected automatically by the action detection module and reported to the

caregivers. Another application is instructional videos. With the growing popularity

of social media, many people follow tutorials online to learn cooking or assembling

furniture. The instructional videos are usually untrimmed and they include several

steps for a main task. Temporal action detection may help detect the main action

steps to facilitate the learning process.

The rest of the introduction is organized as follow: firstly, we define the problem

statement of action recognition and detection in Sec. 1.1. Secondly, we introduce the

applications for action understanding in Sec. 1.2. Then, we describe the scientific

challenges in the task of action recognition and detection in Sec. 1.3. Finally, we

summarize our contribution in Sec. 1.4. The structure of the thesis is outlined in
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Figure 1-2: The difference between action recognition and temporal action detection
tasks. f indicates the network of each task. For action recognition task, its network
maps a video clip into an action category label. For temporal action detection task,
its network maps a series of frames of untrimmed video into a series of frame-level
predictions.

Sec. 1.5.

1.1 Problem Statement

This thesis involves mainly two tasks: Action Recognition and Temporal Action De-

tection. Action recognition aims at the classification of clipped action instances.

Compared to the vanilla action recognition task, temporal action detection is more

challenging. This is because locating the instances in the video is also required in

action detection task. An overall difference between action recognition and temporal

action detection is shown in Fig. 1-21. Below, we provide the problem statements and

their definition for these two tasks.

1.1.1 Action Recognition

Action recognition, also known as action classification, is a specific task in video

classification, which aims at recognizing the actions in trimmed video sequences.

Normally, the video clips are short (e.g around 10 sec./clip) and a video clip contains

only a single action without context. The action category (i.e., label) is composed of

verb, noun and adverb.

Task Definition: Given a set of videos V and a set of the corresponding action

1Action figures are taken from: https://www.pinterest.fr/pin/1688918602463243/
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categories C. Each video 𝑉 ∈ V contains one label 𝑐𝑉 ∈ C. Hence the objective of

action recognition is to predict the label 𝑐𝑉 based on a video representation of video

𝑉 . This statement could be extended for multiple action instances in a video clip,

where 𝑐𝑉 ∈ C is a set of action categories (i.e., multi-label video classification).

1.1.2 Temporal Action Detection

Temporal action detection is an extension of the action recognition problem. Besides

recognizing the action categories, temporal action detection task consists in localiz-

ing the action instance in the untrimmed video as well. The untrimmed video can be

complex: a video may contain one or more action instances and the action instances

can overlap (i.e., concurrent actions). Normally, (1) the task designed for videos with

a sparse set of actions [96, 235] is referred to as "temporal action localization" [228].

(2) the task that focuses on fine-grained actions can be referred to as temporal action

detection [97, 223, 150, 149] or segmentation [107, 57]. In this thesis, we focus on the

fine-grained action detection for videos with dense occurrence of actions. As a result,

we follow the naming convention in [223], using the term "temporal action detection".

Task Definition: Formally, for a video sequence of length 𝑇 , each time-step 𝑡 is

associated with a ground-truth action label 𝑦𝑡,𝑐 ∈ {0, 1}, where 𝑐 ∈ {1, ..., 𝐶} indi-

cates an action class. For every time-step, an action detection network predicts class

probabilities 𝑦𝑡,𝑐 ∈ [0, 1].

Similar Tasks: there are many similar tasks to temporal action detection. We

present below their definitions along with the differences compared to temporal ac-

tion detection.

• Temporal Action Proposal Generation: This task evaluates the ability of

algorithms to generate high-quality action proposals. The goal is to produce

a set of candidate temporal segments that are likely to contain a human ac-

tion. Unlike temporal action detection, temporal action proposal generation is
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a class-agnostic task. This task usually acts as a sub-task of event-level action

detection.

• Untrimmed Video Classification: This task aims at recognizing all the ac-

tions that appear in an untrimmed video. Unlike temporal action detection,

untrimmed action classification does not need to predict the temporal bound-

aries of the action instances.

• Spatio-temporal Action Localization: This task is intended to evaluate the

ability of algorithms to localize human actions in both space and time. Unlike

temporal action detection, this task also needs to detect the spatial location of

the subject who performs the action.

• Online Action Detection: Unlike previous tasks, the goal of online action

detection is to detect an action as it happens and ideally even before the action

is fully completed. Being able to detect an action at the time of the occurrence

can be useful in many real-world practical applications.

We claim that for an effective and efficient real-world action understanding system,

the system should be able to detect multiple actions in long untrimmed videos. In

this thesis, we focus mainly on temporal action detection in untrimmed videos, which

aims at finding the action occurrences along time in the videos. Nevertheless, we also

evaluate some proposed methods on trimmed action recognition task for validating

the model generalization. For convenience and with a slight abuse of terms, hereafter

in this thesis, we often refer to action detection as the problem of temporal action

detection. Also, we may utilise "activity" to indicate "action" in this thesis.

1.2 Applications

Temporal action detection bears a significant potential for numerous real-world ap-

plications. In the following, we introduce four representative applications.

Smarthome: With the ageing population issue, a Smarthome system could relieve
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the dramatic need of caregiver workforce. With such a smart indoor camera-based

system, the elderlies can live better alone at home. Such a system can work with a

partner robot. The real-time information is sent to the robot to better interact with

the older adult and helps them. Moreover, such a system can help detect and report

potentially dangerous situations to caregivers if necessary. It can also analyse daily

living actions to improve life quality. For example, how much water is drunk a day,

or how much time is spent reading or using electronic devices. In such a system, the

temporal action detection module can be seen as the core component for detecting

actions from those streaming videos.

Video Summarization: The goal of video summarization is to produce a compact

visual summary that encapsulates the key components of a video (i.e. highlight mo-

ments). Its main value is to turn hours of video into a short summary that can be

interpreted by a human viewer in seconds. Creating visual diaries and video high-

lights are popular usages of video summarization. As humans play an important role

in human recorded videos, action detection can help to retrieve the key points from

the untrimmed videos. The video summarization has already been used in real-world

applications, such as video highlights in smartphone albums.

Skill Assessment: Many domains now require to analyze the quality of a person’s

activities and to assess whether the action is being performed correctly. Such skill

assessment is, for example, relevant for progress assessment in physical rehabilitation,

or for coaching in some sports (e.g., basketball, tennis). Skill Assessment allows ath-

letes to take a critical look at their performance in order to improve their skills and

prevent injuries. As an action can composed of several atomic actions, learning the

occurrences of such atomic action relies on temporal action detection techniques.

Human-Robot Interaction: Ability to perceive human actions plays a key role in

many human-robot interaction scenarios. With the development of action recognition

and detection, a robot is able to recognize actions or gestures done by a user and to

trigger appropriate feedback. Such solutions have been already introduced to some

human assistant robots or autonomous vehicles. For example, smart car systems
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rely on action detection systems to understand human’s gestures, such as change the

music or answer a call.

1.3 Scientific Challenges

Over the past years, deep learning has led to huge success in image and video analy-

sis. Among video analysis tasks, temporal action detection is a novel but important

research problem. Many unanswered questions keep this problem challenging.

1.3.1 Video Representation Learning

The input of action detection model is an untrimmed video, which is a sequence of

frames of a scene at a given frame rate. Processing long-term videos is challenging as

the input data can be very large. For example, a 5 minutes video with 24 fps and VGA

resolution (i.e., 640 × 480) contains more than 2.2 billion pixels. Detecting actions in

a video relies on the capacity of the model that extracts the action related information

from the video. Therefore, how to effectively and efficiently model the representation

of the video is challenging and crucial in temporal action detection. To tackle this

challenge, previous methods utilized a two-stage framework [19, 150, 215]: Firstly,

extracting the features of the local video snippets using a visual encoder (e.g., 3D

Convolutional Network [17, 189] or Transformer [6, 128]). The visual encoder is used

to model the spatio-temporal relations in the short-term video snippet. Secondly,

after stacking the extracted features along time, temporal models (e.g., LSTM [86] or

TCN [107]) are used to explore the long-term temporal dependencies. This framework

effectively reduces the computation cost. In this thesis, similarly to previous work,

we follow a two-stage framework. Our focus for video representation learning lies in

the second stage: how to effectively model long-term temporal information?

Recently, some researchers have found that the temporal model performance is

limited by the visual encoder. Because of the dissociation with the visual encoder,

the temporal model can not take full advantage of the spatial information of the video

to model temporal dependencies. To tackle this issue, some researchers firstly improve
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visual encoder by leveraging the attention mechanism [161, 205] to filter more salient

spatial information from the video. Secondly, few recent methods [26, 229] utilize the

momentum updated memory bank to connect the visual encoder and the temporal

model, so that they can train jointly the two stages in a latent manner. As the training

process is costly and not all the data is necessary used to train the model, we keep the

framework in a two-stage fashion in this thesis. Studying long-term spatial-temporal

modelling will be one of our future works.

1.3.2 Supervision-level

Supervision-level indicates how much ground truth labels we need for learning the

discriminative representation for a specific task. The challenge consists in using as

few annotations as possible. The annotation process is complex and costly, especially

for large datasets. Therefore, the model that relies on less annotations is essential but

challenging. There are some propositions in the community for designing algorithms

with less annotations. For example, weakly-supervised action detection learns the

model using only video-level labels to detect actions from untrimmed videos. However,

current methods for this task highly rely on a filter that can distinguish the foreground

and background actions [108, 109]. Therefore, those models are evaluated on simple

videos with sparse action regions. For the videos with a dense occurrence of actions,

current methods still highly rely on full supervised annotation. The situation is

even more severe for a model that has lesser supervision (e.g., unsupervised action

detection).

As we focus on analysing videos with dense action occurrences, we provide full

ground truth to our model in this thesis. However, with supervised setting, it is still

challenging to get high performance. How to learn the representation of untrimmed

video with less supervision is our future work.
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1.3.3 Cross-dataset Generalization

The ultimate goal for temporal action detection is to detect action instances from

arbitrary real-world videos. This objective requires the model to be general enough

to cope with various environments and scenarios. To tackle this point, a new task is

proposed in the community. This task requires the model to be trained dataset-by-

dataset and prevent the model performance from decreasing on the previous dataset.

In the training phase, the new dataset may introduce new action classes, which makes

the task more challenging [56]. In other words, if a dataset represents the source

domain and another dataset represents the target domain, we want the knowledge

learned by the model from the source domain can be generalized to the target do-

main [137, 28]. Such an action detection system requires the model to learn a robust

representation of different scenarios and environments. Limited by the annotation

issue, current methods [137, 56, 28] have been tried only in trimmed video clip for

video classification. As the action detection task input is the untrimmed videos for

which action instances are not pre-segmented, generalising the representation for ac-

tion detection across different domains is more challenging. In this thesis, we keep the

same domain for the training and testing sets of our method. However, we evaluate

these methods on multiple large datasets to show the generalization and robustness

of our methods.

1.3.4 Class-imbalance

In the real world, action distribution is in general highly imbalanced with a long-tail

distribution [89], with a few categories covering most of the data (so-called head of

the distribution), and the rest having only a few samples per category (so-called tail).

Training the model with imbalanced data is challenging, as it is difficult to learn the

representation of tail action classes while training along with the head action classes.

To train on imbalanced data, some methods firstly introduced focal loss [119] to

reassign the importance of different samples. Nevertheless, giving more focus on the

rare samples led the model to focus more on the outliers and may cause over-fitting.
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Secondly, some methods [233, 148, 193] used the sampling and data augmentation

techniques to re-balance the number of samples for each class. However, limited by

the imperfect synthetic samples (i.e., data generation), the few sampled class detection

is not getting effectively improved. In this thesis, we pre-trained our visual encoder

on large balanced action datasets (i.e., kinetics [99]) and fine-tuned the visual encoder

on the training set of the target dataset. This strategy helps the model better learn

the few-sampled action representation and alleviates the class imbalance issues to

some extent.

1.3.5 Filming Setting

Videos are captured in the open world with variant filming settings. The subject can

be far away from the camera or close to it, resulting in various sizes of the subject

in the video. Furthermore, the video may not be recorded by a cameraman but by a

fixed camera, thus the subject can be partially not in the centre of the frame and can

occur anywhere in the frame even outside. Moreover, the subject can be captured in

diverse camera views (not frontal) and can be partially occluded by objects in the

environment. How to make the representation robust to different filming settings is

crucial for designing a model for the real world. In this thesis, we introduce a large

indoor dataset: Toyota Smarthome, which comprises multiple camera views along

with a real-world filming setting. We evaluated our models in both settings: We

utilize the popular benchmarks which have Lab settings to compare our models with

SoTA methods. In addition, we experiment with Toyota Smarthome which features

a new setting to evaluate our models in real-world conditions.

1.3.6 Complex Temporal Relations

By contrast to trimmed videos, untrimmed ones contain rich semantics with com-

plex temporal relations. As mentioned earlier, in the standard two-stage temporal

action detection framework, the untrimmed video needs to be partitioned into shorter

clips for feature extraction. Processing these shorter clips independently can lead to
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Figure 1-3: Complex temporal relations in untrimmed videos. On the left,
we show a set of actions performed in a sequential manner in a video. On the right,
we present two examples of co-occurring actions. The sampled frames are taken from
Charades dataset.

loss of information corresponding to the temporal or semantic dependencies between

video segments. Therefore, temporal modelling is critical to capture these depen-

dencies, in order to benefit from the video context to refine the clip representation.

Effective reasoning across time can help predict the action category of the clip and

predict the action completeness. Modelling temporal dependencies is essential espe-

cially for videos with complex temporal relations. For example, a set of actions that

occur together often follow a well defined temporal pattern. As shown in figure 1-3,

when "making breakfast", the sub-actions "opening fridge", "taking food" and "make

sandwich" can be performed in a sequential manner. Besides, both short-term and

long-term actions may occur at the same time in the same video. For example, per-

forming the short action eating snack while playing smartphone (i.e., long action). To

detect the actions in such complex videos, it is important to model both short-term

and long-term temporal dependencies of the actions. Therefore, temporal modelling

is one of the focus in this dissertation.

1.3.7 Fine-grained Actions

Knowing fine-grained details of the action is critical for some context-aware scenarios.

For example, while cooking, knowing cutting either "beef " or "onion" can provide

clues for learning a better model for cooking instructional videos. However, recogniz-

ing and detecting fine-grained actions from videos is challenging, as there are subtle

inter-class variations among the fine-grained action categories (e.g., drink from bottle
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Figure 1-4: Semantic reasoning helps action detection. (1) Object semantics: Know-
ing the existence of the action relevant objects (onion, hands) and the "motion"
between them can help determine action peeling onion. (2) Action semantics: know-
ing the existence of action taking a book can help predicting its relevant action reading
book. The red arrows represent the relation between the semantics. Sampled frames
are taken from EPIC-KITCHENS [38] and Charades [176] datasets.

or can). Hence, detecting such actions needs to capture both the relevant semantic

information and the cross-semantic relationships in the video. For example, as shown

in Figure. 1-4, modelling the relation between different "object" semantics such as

hand and onion can help detect the fine-grained action instance (e.g., peeling onion).

Also, one untrimmed video may contain multiple action instances. Detecting an ac-

tion in the video may rely on the representation of other relevant action instances in

this video. For example, knowing "taking the book" action can help detect "reading

book" action in the same video, and vice versa. In this thesis, we propose a se-

mantic reasoning framework for detecting actions in the aforementioned challenging

scenarios.

1.3.8 Multi-modalities

While recording a scene, data can be captured by different sensors to have different

modalities, such as RGB, depth, audio, etc. Those modalities can be complementary

for recognizing complex actions. For example, taking on and taking off glasses are

similar in RGB frames while the difference can be salient in the optical flow frames

(see figure 1-5). Thanks to the complementary nature between modalities, learning

from multiple modalities can improve the action detection performance. While two-
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Figure 1-5: Complementary nature of different modalities. Here we take an example
of actions taking on and off glasses with RGB and optical flow. The sampled frames
are taken from PKU-MMD [120] dataset.

stream networks [177] have become a conventional setting in the action detection

framework, how to fuse the different modalities remains a challenging and worthy

research problem.

The sensors for capturing the modalities are costly. With the development of re-

cent algorithms, additional modalities can be extracted from RGB videos in a "post-

processing" step (e.g., optical flow, skeletons). However, extracting those modalities

from RGB is quite computationally expensive. The difficulty remains in effectively

leveraging multiple modalities of an untrimmed video with reasonable computation

cost. In this thesis, we introduce two methods for leveraging additional modalities to

enhance the RGB representation, in a light-weighted manner.

1.4 Contributions

Our contributions are motivated by the complex challenges involved in real-world

videos. To address these challenges, we made four key contributions. The first contri-

bution includes a real-world indoor dataset containing action videos performed in a

spontaneous manner. Our second contribution are three temporal models that lever-

age attention mechanisms for enhancing the temporal representation. Our third con-

tribution is a semantic reasoning framework that can learn the relationships among

video semantics for fine-grained action understanding. Our fourth contribution is

two multi-modal strategies to take the benefits of multiple modalities into account

for detecting actions. Below, we briefly describe these contributions.
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1.4.1 Smarthome Dataset

In this thesis, we introduced a real-world indoor dataset: Toyota Smarthome Untrimmed

(TSU), which contains daily-living activities performed in a natural manner and cap-

tured from multiple non-optimal viewpoints. Activities performed in a spontaneous

manner lead to many real-world challenges that are often ignored by the vision com-

munity. This includes composite action detection, concurrent action detection, low

camera framing, action-class imbalance, and occlusions. We provide rich and dense

annotations of TSU dataset to address the detection of complex actions in real-world

scenarios.

1.4.2 Temporal Relational Reasoning

Temporal modelling is important for processing sequential data, including videos. As

mentioned earlier, it is essential to model the temporal dependencies between different

time steps (i.e., snippet) in a video. In this dissertation, we proposed three effective

temporal modelling networks for action detection:

Self-Attention Temporal Convolutional Network (SA-TCN): SA-TCN is an

attention-based model which features an encoder-decoder structure to shrink the tem-

poral resolution. Between the encoder and decoder, a self-attention block is used to

capture the non-local dependencies between different time-steps in the video. We ar-

gue that such an architecture design can help model long-term temporal dependencies

in untrimmed videos.

Pyramid Dilated Attention Network (PDAN): similar to SA-TCN, PDAN also

relies on attention mechanism. The basic component Dilated Attention Layer

(DAL) allocates attentional weights to neighbouring features in the kernel, which en-

ables it to learn better local representation across time. PDAN is built upon DALs,

which can model short-term and long-term temporal relations simultaneously by fo-

cusing on local segments at the level of low and high temporal receptive fields. This

property enables PDAN to handle complex temporal relations between different ac-
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tion snippets in long untrimmed videos.

Multi-Scale Temporal ConvTransformer (MS-TCT): Benefiting from the Trans-

former and Temporal Convolution architecture, we proposed a ConvTransformer

based architecture for the action detection task. This network comprises a Tem-

poral Encoder module which extensively explores global and local temporal relations

at multiple temporal resolutions. Then, a Classification module is used to learn the

instance center-relative position and to predict the frame-level classification scores.

1.4.3 Semantic Relational Reasoning for Action Detection

Videos may contain rich semantic information such as objects, actions, and scenes.

Relationships among different semantics are high-level knowledge which is critical for

understanding the video content. Therefore, semantic relational reasoning can help

determine the action instance occurrences and locate the actions in the video. To

leverage semantic for action understanding, we proposed two semantic modelling net-

works: CTRN is designed to capture the "inter-action" relations for action detection

and THORN aims at modelling the "intra-action" relations for action recognition.

Class-Temporal Relational Network (CTRN) is a network for the action detec-

tion task. This network targets modelling the complex action relations in a video and

refining action detection precision based on the learned global action relationships.

In other words, CTRN enhances the action detection performance by exploring the

inter-action class relationships. In practice, CTRN filters the action class-specific

representation from the mixed representations and then models the action class and

temporal relations alternatively. With CTRN, we can effectively detect the actions

in complex videos with dense action regions. CTRN has achieved competitive state-

of-the-art performance in challenging action detection datasets.

Temporal Human-Object Relational Network (THORN) is a network for

action recognition, which can be seen as a continuation of CTRN, and which explores

the intra-instance semantic relationship. Unlike CTRN which aims to model the
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action relations across time, THORN focuses on exploring the object semantics in

the spatio-temporal space. In practice, we extract the object representation from the

spatio-temporal representation and we model the cross-object relations to predict the

action. THORN has achieved competitive state-of-the-art performance in egocentric-

view action recognition datasets.

1.4.4 Multi-Modal Learning

Recognizing and detecting actions in videos involves understanding different cues.

The cues that are computed from different modalities are complementary in their

feature space. Thus, fusing them in a common feature space enables a classifier to

learn even more discriminative features compared to their classification in an indi-

vidual feature space. Therefore, to incorporate the effectiveness of each modality, we

propose two strategies to learn a multi-modal representation for action detection.

Attention Guided Network (AGNet): For leveraging multiple modalities, we

firstly propose to utilize the additional modality to guide the RGB stream based on

the attention mechanism. The goal of this method is to leverage the complementary

nature of the different modalities (e.g., Optical Flow, 3D Poses) to guide the RGB

stream for better action detection. The main contribution is the attention module,

which utilizes additional modalities to generate the attention weights at multiple

temporal scales and which indicates the region of interest of the action in the video.

AGNet is the baseline proposed in Toyota Smarthome Untrimmed for the action

detection task.

Knowledge distillation for action detection: The two-stream structure is ef-

fective for action detection. However, using such a setting is contingent upon the

availability of multiple modalities and of expensive processing resources. To handle

this, we propose a knowledge distillation framework that can encourage the RGB

stream to learn both local and global video information from additional modalities.

With this new framework, the distillation is realized at both atomic and sequence lev-

els. The result is an Augmented-RGB stream that achieves competitive performance
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as the two-stream network while using only RGB at inference time.

1.5 Thesis Structure

In the following chapters: Firstly, we review methods related to this thesis, especially

the state-of-the-art methods in action detection in chapter 2. Then, we introduce our

proposed dataset and methods:

• In chapter 3, we introduce a challenging indoor dataset Toyota Smarthome

Untrimmed [33] for action detection. We also compare this dataset with other

related datasets to highlight the challenges featured by Toyota Smarthome

Untrimmed dataset.

• In chapter 4, the methods aiming at modelling temporal relations in the video

are introduced. In this chapter, we describe three networks: SA-TCN [34],

PDAN [32] and MS-TCT [31], which combine self-attention with temporal con-

volution to capture both local and global temporal dependencies in untrimmed

videos.

• In chapter 5, we present a semantic reasoning framework for action under-

standing. To study that this framework can model both spatial and temporal

semantics, experiments are conducted on both action detection [29] and recog-

nition [75] tasks.

• In chapter 6, we focus on the multi-modal framework. We introduce two meth-

ods that leverage the attention mechanism [33] and knowledge distillation [30]

for multi-modal action detection.

Finally, we summarize the thesis contributions and we describe several perspectives

as future work in chapter 7.

1.5.1 Publication List

We list all publication contributions in the course of this thesis.
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Chapter 2

Literature Review

In this chapter, we overview how previous methods address action detection task.

Firstly, we discuss the framework and relevant methods for the temporal action de-

tection task. We then introduce the principle loss function, evaluation metrics and

datasets that we utilized in this task. More fine-grained related work to each contri-

bution will be discussed in the corresponding chapters respectively.

2.1 Action Detection Methods

Action detection involves representing an untrimmed video. To model the video repre-

sentation, most recent action detection frameworks involve two steps: (1) Extracting

frame or snippet level features using a model trained for the action classification task,

we call this step visual encoding or video encoding; (2) Modelling the temporal re-

lation across the snippet-level features. After that, the prediction heads detect the

action instance with the obtained video representation. Below we revise the relevant

methods for each of these two steps.

2.1.1 Visual Encoding

Learning representations for video has been popular over the years [177, 50, 17, 189,

60, 72]. As mentioned earlier, an untrimmed video consists of a huge number of pixels,
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thus an effective and efficient manner is required to light-weight the computation cost.

Modelling a video into a sequence of snippet-level features is the conventional way

of processing long untrimmed videos [107, 237, 230, 215, 228, 150, 149, 57]. More

specifically, in this step, frame or snippet level features are extracted using a model

which is trained on action clips. These features are further input to a model which

is trained for the task of action detection. Thus, the efficiency of the detection

task highly relies on the quality of the extracted features or, in other words, on the

learned representations of the action classification models. These classification models

vary based on the input data modality. For instance, 3D human poses are generally

processed by sequential networks or graph convolutional networks, whereas RGB

images and optical flow images are generally treated by 3D convolutional networks.

3D human pose is a popular modality which provides the location of the key joints

of a subject for every frame [234]. This modality is also dubbed the human skele-

ton data. Skeleton data attracted considerable attention due to their strong adapt-

ability to dynamic motion and complicated background [167, 197, 121]. Conven-

tional deep learning based methods manually structure the skeletons as a sequence

of joint-coordinate vectors [52, 167]. However, representing skeleton data as a vec-

tor sequence can not fully express the dependency between correlated joints. Re-

cently, graph convolutional networks (GCNs) have been applied to model the skele-

ton data [218, 169, 221, 130, 124]. Yan et al. [218] have constructed a spatial graph

based on the natural connections of joints in the human body. Inspired by [218],

Shi et al. [169] have proposed a two-stream GCN to better model the spatial infor-

mation within a short period of time. Most recently, Duan et al. [53] proposed to

utilise 3D heatmap volume instead of a graph sequence as the base representation of

human skeletons. Compared to GCN-based methods, their method is more effective

in learning spatio-temporal features and more robust against pose estimation noises.

Skeletons can be effective for representing the pose of the person performing an ac-

tion and capturing human-centred motion. But what about contextual information

like environmental details (e.g. sink for clean dishes with water), encoding object

information (e.g. glasses)? For that, we need RGB frames.
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Figure 2-1: A typical action detection framework. There are two types of predictions:
(1) event-level and (2) frame-level prediction.

RGB images are the commonest modality which is utilized by many effective meth-

ods in order to model the appearance information. Few works [50, 141] learn appear-

ance features from the frame-level classification of actions, using 2D CNNs [82, 184].

3D CNNs are the natural evolution of their 2D counterparts [189, 17, 60, 153]. Tran et

al. [189] have proposed 3D CNNs (C3D) to capture spatio-temporal patterns from a

sequence of 8 RGB frames. In the same vein, I3D [17] inflates the kernels of ImageNet

pre-trained 2D CNN to jump-start the training of 3D CNNs. While these methods

are effective for the recognition of fine-grained and object-based actions with a short

temporal extent, they are too rigid and computationally expensive to handle minute-

long videos [205, 93]. In order to effectively learn temporal localization of actions

in long videos, the existing action detection methods process the videos on top of

the aforementioned 2D or 3D CNNs. As Optical Flow and Depth videos have

the similar data structure as RGB (i.e., Height × Width × Time × Channel), these

modalities follow an RGB-like fashion for visual encoding.

Recently, many transformer-based models [128, 6, 11] are proposed in video clas-

sification task that outperformed the state-of-the-art 3D CNNs performances. Those

video transformers can model the spatio-temporal information from the video clips in

an effective manner, and hence can be utilized as the visual encoder in future work.
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2.1.2 Temporal Action Detection

The second step is to utilise the encoded visual features for temporally detecting the

actions. As shown in Fig. 2-1, there are principally two types of prediction [139]:

event-level (i.e., instance-level) and frame-level predictions. The prediction head is

relevant to the prediction type. For video with sparse action regions [14, 96, 235],

extracting the foreground events from the background is straightforward. As a result,

after the temporal modelling, a typical framework is composed of two main compo-

nents as prediction head: an event proposal generator to generate the potential event

regions and a classifier to recognize the action labels for the proposed event. Action-

ness [237, 199, 67] and anchor [212, 228, 68] based proposal generation are wildly

used for generating the action proposals. When processing densely labelled videos

with fine-grained actions [105, 179, 176, 223], the prediction head is formulated as

learning a mapping function that maps a series of temporal features to a series of

predictions. For the feature at every time step (i.e., frame or snippet), the prediction

head predicts its action labels. In this dissertation, we focus on the frame-level predic-

tion in videos with dense action occurrences. Below, we present the aforementioned

techniques in detail.

Proposal-based Methods

Inspired by the proposal-based object detection [22], recent action detection methods

with sparse action occurrences are proposal-based methods which possess a proposal

generator in their framework. There are principally two types of proposal generators:

actionness-based and anchor-based generators.

Actionness-based methods [237, 211, 118, 242] composed of two classifiers. In

these methods, one binary classifier provides the actionness score (i.e. foreground

action or background) for each frame to generate the action proposals, while another

classifier predicts the action class of these proposals. The actionness detection can

also be decomposed of the detection of the action-start and action-end [118] or the

composition of action-start and action end[117, 230, 226]. Actionness detection is
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similar to the object location heat-map in anchor-free object detection methods [156].

However, different from the class-specific heat-map in object detection, the actionness

detector is class-agnostic. Therefore, an additional classifier is required to classify the

proposals. As the standard actionness-based methods rely on the binary classifier to

filter the foreground actions from the background, this strategy can not handle the

videos with dense foreground action regions.

Anchor-based architecture [212, 228, 68, 20, 215] is inspired by two-stage object

detection framework [22], which leverages a set of predefined anchors to generate

action proposals along with another classification stage. The proposals are the multi-

sized windows centred at the anchor. An NMS post-processing is normally used to

filter the high overlapped action proposals. However, anchor-based methods require a

large number of anchors for generating the proposals and the computation increases

exponentially with the increase of the number of anchors. Moreover, the anchor-

based methods with NMS may fail on detecting the co-occurring action pairs. Hence,

anchor-based methods normally fail in densely labelled datasets [212, 20].

Recently, with the advances of Transformer architectures, proposal-based methods

can handle more complex videos. RTD-Net [185] is built based on transformer decoder

DETR [241] for generating action proposals in videos. However, this network relies

on boundary attentive representations to detect the action boundaries. Similar to

the previous mentioned actionness strategy, such module can not work on a densely

annotated dataset which does not have clear foreground and background boundaries.

Similarly, Nawhal et al. [139] propose an encoder-decoder transformer: Activity Graph

Transformer. This model also follows a structure similar to DETR. Activity Graph

Transformer represents video in a graph structure and utilises graph attention to learn

the video’s global context. After that, with the learned global context, this model

transforms a set of queries into contextual embedding. These embeddings are then

used to provide predictions of action instances. However, limited by the fixed number

of queries (i.e., proposals), the model struggles in densely labelled videos where there

is a large variation in the number of action instances in the video.
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Sequence-to-Sequence Model

To handle the issues in anchor-based techniques for processing densely labelled videos,

some methods [107, 149, 180, 91, 57] borrow the Seq2Seq framework from Natural

Language Processing (NLP) [43] to apply it to frame-level action detection. This

process is also similar to image semantic segmentation as both aim to classify every

single instance, i.e., frames in the temporal domain versus pixels in the spatial domain.

After the visual encoding, Seq2Seq methods feature an efficient temporal module

to model the temporal information and a classifier to perform the frame-level action

detection. This framework "interprets" the image sequence into a sequence of predic-

tion scores. In other words, frame-level action detection can be seen as a class-specific

actionness detector. To compare with the proposal-based methods and evaluate with

sparsely labelled datasets, by referring to advances in "actionness" detection, the ac-

tion proposals (i.e., discrete detection instances) can be further generated from the

frame-level detection results via a post-processing manner [223, 149, 91]. Below, we

briefly introduce some representative sequence-to-sequence models; a more detailed

representation is provided in the related work of chapter 4.

Recurrent Neural Networks (RNNs) [223, 46, 16, 91] have been popularly used

to model the temporal relations between frames. In this network, connections between

nodes form a directed or undirected graph along a temporal sequence. This allows

it to exhibit temporal dynamic behaviour. However, RNNs only implicitly capture

relationships between certain actions with high motion. Furthermore, due to the

vanishing gradient problem, RNN-based models can only capture a limited amount

of temporal information and short-term dependencies.

Temporal Convolutional Networks (TCNs) [107, 49, 110, 57, 35] are another

group of temporal processing methods, which is a one dimensional convolutional net-

work [143]. Contrary to RNN-based methods, TCNs can process long videos thanks

to the fact that kernels share weights for all the time steps. However, the transla-

tion invariance and Pooling layers may lead the convolution network to ignore the

relationship between the part and the whole [84]. Moreover, the shared kernel allo-
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cates the same weights to each local feature in the kernel. This property prevents

TCN from extracting the key information efficiently from videos. As a result, cur-

rent methods can only process datasets with videos characterized by simple temporal

relations [179, 105].

Transformers: inspired by the advanced methods in the NLP domain, some re-

searchers [188, 141, 224, 236] leverage the Transformer architecture and the self-

attention mechanism [194] for temporal modelling in action detection. Transformer

architectures feature general modelling capability, which can model all token-to-token

relationships in sequence-to-sequence tasks. Besides, unlike the aforementioned local

operations, the transformer can model the temporal dependencies by attending to the

entire sequence information, which is a global operation. Moreover, this architecture

is scalable to large models and large data. For the above reason, Transformers are

getting more and more popular in the computer vision domain and become dominant

in many sequence-to-sequence tasks.

2.2 Loss Function

In this thesis, we focus on fully supervised frame-level action detection. Full super-

vision is a process to train a network (i.e., algorithm) to map the input data into

prediction labels, where each training data has its corresponding ground truth label.

In the task of temporal action detection, full supervision employs the labels of the

training set that contains the action category labels and the corresponding temporal

annotation information, i.e., action occurrences for each category at each time step.

Videos with dense action occurrence contain co-occurring actions, i.e., multiple

instances occurring at the same time. Since the video has been embedded into a se-

quence of frame-level or snippet-level features by the visual encoder, detecting actions

from such temporal features can be seen as multi-label classification task on top of

these features. Hence, sequence-to-sequence action detection frameworks utilize the
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Figure 2-2: Confusion matrix. "P" indicates the Positive (i.e., with action) and "N"
indicates the Negative (i.e., without action).

binary cross entropy loss (ℒ𝐵𝐶𝐸) [138]:

ℒ𝐵𝐶𝐸 = − 1

𝑇

𝑇∑︁
𝑡=1

𝐶∑︁
𝑐=1

𝑦𝑡𝑐𝑙𝑜𝑔(𝑃𝑡𝑐) (2.1)

Where 𝑇 is the number of the frames or snippets, 𝐶 is the number of action classes

and 𝑃 is the predicted score. In other words, after temporal modelling, we perform a

binary classification for each frame or snippet feature and for every action class. This

loss term is the main loss for frame-level action detection in this thesis.

2.3 Evaluation Metrics

In this section, we revise the common action detection evaluation metrics. We first

revise the basic concepts for the evaluation of the detection task, and then we revisit

the main evaluation metrics in the event-level and frame-level action detection.

2.3.1 Basic Concepts

For each class 𝑐 ∈ 1, 2, ..., 𝐶 in the dataset, we denote 𝑇𝑃 𝑐, 𝐹𝑃 𝑐, 𝑇𝑁 𝑐 and 𝐹𝑁 𝑐 the

number of True-Positive, False-Positive, True-Negative and False-Negative frames,

respectively. These four parameters are used to calculate many kinds of performance

evaluation metrics. The logical details of these four parameters are shown in Fig. 2-2.

By utilizing these parameters we can compute the following two measures:

(1) Precision (𝑃 𝑐) is the percentage of the predicted real positive samples in pre-
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dicted results. The formula is as follows:

𝑃 𝑐 =
𝑇𝑃 𝑐

𝑇𝑃 𝑐 + 𝐹𝑃 𝑐
(2.2)

(2) Recall (𝑅𝑐) is the coverage of predicting correctly. Specifically, recall corresponds

to how many real positive samples in the testing set were identified. The formula is

as follows:

𝑅𝑐 =
𝑇𝑃 𝑐

𝑇𝑃 𝑐 + 𝐹𝑁 𝑐
(2.3)

(3) Intersection over Union (𝑡−𝐼𝑜𝑈) can be understood as the overlap between the

predicted instance by the model and the ground truth instance for the action detection

in an untrimmed video. The calculation formula is the intersection of Detection

Result and Ground Truth compared to their union. IoU is used to check whether the

IoU between the predicted results and the ground truth is greater than a predicted

threshold.

2.3.2 Event-level Evaluation

The datasets that contain videos with sparse action occurrences leverage the event-

level (i.e., instance-level) evaluation. There are two main evaluation metrics: (1)

Average Recall (𝐴𝑅) summarises the distribution of recall across a range of over-

lap thresholds, which is the principle evaluation metric for temporal action proposals

generation. Because proposal generation is irrelevant to category classification, i.e.,

it only focuses on finding the action instance boundaries. 𝐴𝑅 are often used to mea-

sure the completeness of generated temporal proposals, which is critical for proposal

generation models. Normally, 𝐴𝑅 is defined as the mean of all recall values using

tIoU thresholds between 0.5 and 0.95 with a step size of 0.05. (2) Mean Average

Precision (𝑚𝐴𝑃 ) [55] is the evaluation metrics which is the most commonly used in

the community. This metrics is similar with metrics used in object localization task.

The general definition for the Average Precision (𝐴𝑃 ) is finding the area under the

precision-recall curve. 𝑚𝐴𝑃 is the average of AP over all action class categories.
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2.3.3 Standard Frame-level Evaluation

In order to evaluate videos with dense action occurrences, previous methods chose

frame-wise metrics [192, 223, 105, 176]. One of the common metrics is the Frame-

wise Accuracy (𝐹𝐴1), which represents the ratio of correctly classified frames to all

frames in the dataset. Frame-wise accuracy is defined as:

𝐹𝐴1 =

∑︀
𝑐 𝑇𝑃

𝑐∑︀
𝑐 𝑁𝑐

(2.4)

where 𝑁𝑐 is the number of the frames in the dataset for class 𝑐. Note that this

metrics is sensitive to the class distribution but provides an intuitive measure of

the algorithm ability to recognize actions. A second metrics is the F-Score, which

combines precision (𝑃 𝑐) and recall (𝑅𝑐) for each class 𝑐 and is defined as the harmonic

mean of these two values:

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2

|𝐶|
∑︁
𝑐

𝑃 𝑐 ×𝑅𝑐

𝑃 𝑐 +𝑅𝑐
(2.5)

where 𝑃 𝑐 and 𝑅𝑐 are precision and recall metrics of class 𝑐 respectively. As the focus of

our work is to evaluate the model performance with real-world dense labeling videos,

we evaluate our models using Average Precision (𝐴𝑃 ) measured on our frame-level

labels [223]. For every action class 𝑐, we compute its own average precision 𝐴𝑃 𝑐.

Frame-level mean average precision (𝐹 − 𝑚𝐴𝑃 ) is the mean value of 𝐴𝑃 𝑐 for

all the classes (𝐶).

𝐹 −𝑚𝐴𝑃 =
1

𝐶

∑︁
𝑐𝜖𝐶

𝐴𝑃 𝑐 (2.6)

This metric can handle the case where one frame contains multiple labels.

2.3.4 Action Dependency Metrics

As mentioned earlier, the problem of temporal action detection consists in predicting

the action, or actions, occurring at each time-step of a video. The standard metrics

for evaluating temporal action detection performances, such as 𝐹 − 𝑚𝐴𝑃 , treats
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each time-step as an individual sample. More specifically, 𝐹 − 𝑚𝐴𝑃 measures the

performance of each class independently, and averages their scores, but it overlooks

the measure if models learn the relationships between these classes. This issue is

not unique to 𝐹 − 𝑚𝐴𝑃 . Other per-frame action detection metrics or multi-label

classification metrics [111, 190, 209] also do not consider the relationships between

different action classes or time-steps, which makes them unsuitable to evaluate how

well action dependencies are modeled. Such property is important to evaluate if the

model can handle the complex temporal relation among different action instances in

a video. To this end, Tirupattur et al. [188] propose a set of action detection metrics

which measure the ability to model both co-occurrence dependencies and temporal

dependencies of the proposed method.

We first introduce the Action Conditional Precision and Recall. As presented in

the basic concepts, the standard precision and recall measure a model performance

in individual classes. However, they do not take into account the relationships and

dependencies between these classes. Action-conditional precision and recall can solve

this issue. For an action class 𝑐𝑖, we measure its action conditional precision and

recall when another action (𝑐𝑗) is present within a temporal window 𝜏 [188] following:

𝑃𝐴𝐶(𝑐𝑖|𝑐𝑗, 𝜏) =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑐𝑖|𝑐𝑗)
𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑐𝑖|𝑐𝑗)

(2.7)

𝑅𝐴𝐶(𝑐𝑖|𝑐𝑗, 𝜏) =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑐𝑖|𝑐𝑗)
𝑁𝑔𝑡(𝑐𝑖|𝑐𝑗)

(2.8)

These metrics measure the precision and recall of an action 𝑐𝑖, given that action

𝑐𝑗 was present within the last 𝜏 time-steps. We also want 𝑐𝑗 not to be present

within the current time-step as this condition ensures that it measures only temporal

dependencies and not co-occurrence dependencies. For a given video 𝑘 and at time-

step 𝑡, we formulate such condition as:

𝑦
(𝑘)
𝑡,𝑐𝑗 = 0

⋂︁
∃𝑦(𝑘)𝑡*,𝑐𝑗 = 1, 𝑡* ∈ [𝑡− 𝜏, 𝑡) (2.9)

Therefore, the action-conditional precision (𝑃𝐴𝐶) and recall (𝑅𝐴𝐶) can be computed

59



with the following equations:

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑐𝑖|𝑐𝑗, 𝜏) =
∑︁
𝑘,𝑡

1[𝑦
(𝑘)
𝑡,𝑐𝑖 = 𝑦

(𝑘)
𝑡,𝑐𝑖 = 1]1[𝒳 ] (2.10)

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑐𝑖|𝑐𝑗, 𝜏) =
∑︁
𝑘,𝑡

1[𝑦
(𝑘)
𝑡,𝑐𝑖 = 1]1[𝒳 ] (2.11)

𝑁𝑔𝑡(𝑐𝑖|𝑐𝑗, 𝜏) =
∑︁
𝑘,𝑡

1[𝑦
(𝑘)
𝑡,𝑐𝑖 = 1]1[𝒳 ] (2.12)

Here, 𝒳 is the condition in equation 2.9. 𝑃𝐴𝐶 and 𝑅𝐴𝐶 can measure the precision

and recall of an action class 𝑐𝑖 when 𝑐𝑗 is present within the given time-step and these

metrics are not symmetric.

For measuring the capacity for handling the co-occurrence relationship, we com-

pute the formulation with 𝜏 = 0. In practice, when 𝜏 = 0, we replace the 1[𝒳 ] with

1[𝑦
(𝑘)
𝑡,𝑐𝑗 = 1] in Eq. 2.10, Eq. 2.11 and Eq. 2.12. After that we can measure the capacity

of the proposed model for detecting two actions occur within the same time-step.

Since some actions never co-occur or follow each other, the overall metrics is

computed by averaging all action pairs (𝑐𝑖, 𝑐𝑗), 𝑖 ̸= 𝑗, such that 𝑁𝑔𝑡(𝑐𝑖|𝑐𝑗, 𝜏) > 0.

More complex performance metrics like F1-score and mAP can also be computed

using the action-conditional precision and recall metrics.

2.3.5 Conclusion

Frame-level metrics are robust to annotation ambiguity [223, 176]. However, event-

level evaluation metrics enable us to get a better insight into action detection as this

metric is not biased by action duration. Moreover, event-level evaluation measures

the continuity and completeness of the action prediction, which are overlooked in

frame-level metrics. For this reason, although most action detection methods on

densely annotated datasets [223, 176, 105] still rely on frame-level metrics [97, 150,

149, 188, 57], we believe that future action detection algorithms should focus more

on event-level evaluation.
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2.4 Datasets

In this section, we describe the datasets that are used to evaluate our method in this

dissertation. More discussion about action detection datasets in the community is

provided in chapter 3.

2.4.1 Untrimmed datasets

Depending on the density of annotations, there are two kinds of datasets for action

detection: (1) Sparsely labelled [96, 14, 121, 235] and (2) Densely labelled [223,

176, 105, 179] datasets. Densely labelled datasets contain more foreground action

instances and may include fine-grained actions occurring concurrently. As they are

more challenging and closer to real-world scenarios [223], more and more attention is

given to densely labelled datasets. In this thesis, we focus on the densely annotated

datasets.

Charades [172] was recorded by hundreds of people in their private homes. This

dataset consists of 9848 videos across 157 actions. The actions are mainly object-

based daily living actions performed at home. Each video is about 30 seconds con-

taining complex co-occurring actions. In our experiments, we follow the original

Charades settings for action detection [172] (i.e. Charades v1 localize evaluation).

The performances are measured in terms of mAP by evaluating per-frame prediction.

DAHLIA [192] is a large ADL dataset for detection. Contrary to some widely

used datasets, in which labelled actions are very short and with low-semantic level,

DAHLIA focuses on high-semantic level longer actions. It contains 8 ADL action

classes performed by 51 subjects on 3 camera views. The duration of videos ranges

from 24 mins to 64 mins. In each video, an average of 6.7 actions are performed. The

mean duration of actions is 6 mins. By default, we performed experiments using the

cross-subject protocol. The final result is obtained as the average of the results on

the 3 camera views.
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Breakfast [105] features over 1.7𝑘 video sequences of cooking in a kitchen environ-

ment. The overall duration is 66.7ℎ. The dataset contains 48 action classes. In each

video, an average of 4.9 actions are performed. The mean duration of actions is about

30s. Actions are thus shorter than those in DAHLIA, but they are more diverse. We

performed our experiments using the protocol described in [49].

PKU-MMD [121] covers a wide range of complex human actions with well annotated

information. This dataset contains 1076 long video sequences in 51 action categories,

performed by 66 subjects. PKU-MMD provides multi-modality data sources, includ-

ing RGB, depth, Infrared Radiation, and Skeleton. Following the original paper of

PKU-MMD, the performances are evaluated in terms of event-based mAP in Cross-

Subject protocol (CS).

THUMOS14 [96] and MultiTHUMOS [223]: Different from the aforementioned

daily living action datasets, THUMOS datasets contain sport videos form YOUTUBE.

There are two version of THUMOS datasets in the community (see Fig. 2-3), we

choose MultiTHUMOS as the main dataset in this thesis, which is an enhanced ver-

sion of the THUMOS14 dataset with dense annotations. This dataset consists of 65

action classes, compared to 20 in THUMOS14, and contains on average 10.5 action

classes per video and 1.5 labels per frame and up to 25 different action labels in each

video. THUMOS14 and MultiTHUMOS consists of YouTube videos of various sport

actions like baseball games or cliff diving.

2.4.2 Trimmed datasets

In this thesis, it involves several datasets for action recognition tasks. Note that, there

are multiple tasks for EPIC-Kitchen [38] and EGTEA Gaze+ [115] datasets. In this

work, we utilizes only the trimmed version of these datasets for action recognition

task.

NTU RGB+D [167] is acquired with a Kinect V2 camera and consists of 56880

video samples with 60 action classes. The actions were performed by 40 subjects and

recorded from 80 viewpoints. For each frame, the dataset provides RGB, depth, and
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Figure 2-3: THUMOS dataset. (1) THUMOS14: the sparsely annotated version and
(2) MultiTHUMOS: the densely annotated version.

a 25-joint skeleton of each subject in the frame.

EPIC-KITCHENS 55[38] is an egocentric dataset which contains 55 hours of

recording of 32 different kitchens in 4 cities. This dataset focuses on fine-grained

cooking actions with a total of 125 verbs and 352 nouns.

EGTEA Gaze+ [115] is an egocentric dataset which contains 28 hours of cooking

actions from 86 unique sessions of 32 subjects, with over 10k video clips of 106 fine-

grained egocentric actions.

2.5 Conclusion

In our literature survey we have observed that current action detection methods rely

on an effective visual backbone to extract the spatio-temporal features and on a tem-

poral module to model the temporal dependencies among different temporal features.

The main focus for current action detection methods lies in the second step, i.e., how

to effectively model the temporal relations in the long-term video. Recently, 1D tem-

poral convolutional networks have become an obvious choice for temporal modelling

in videos but with additional functionalities to address the complex temporal relations

in densely annotated videos. However, limited by the local operation of convolution,
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how to model the complex temporal relations and how to model both local and global

dependencies remain challenging for temporal convolutional networks. To tackle this

issue, we study different directions to enhance the vanilla temporal convolutional net-

work in the following chapters by: (1) self-attention mechanism in chapter 4, (2)

semantic reasoning in chapter 5, and (3) additional modalities in chapter 6.

In the next chapter, we propose a novel dataset Toyota Smarthome Untrimmed

to include the challenges in real-world indoor action detection. We further compare

this new dataset with current benchmarks in the next chapter.
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Chapter 3

Toyota Smarthome Untrimmed:

Real-World Untrimmed Videos

In this chapter, we introduce a challenging indoor dataset: Toyota Smarthome Untrimmed

(TSU) that features many real-world challenges for action (i.e., activity) detection.

Constructing this dataset is part of a Toyota project that aims at developing a

"Smarthome" indoor video understanding system for the elderly living alone at home.

This system is intended to work with a partner robot - Toyota HSR. The real-time

information will be sent to the robot to better interact with the older adult and to

facilitate their life. With TSU, researchers can develop novel approaches to promote

Smarthome activity detection systems in the wild. This work has been accepted by

IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) [33].

3.1 Introduction

According to a recent report of the United Nations [1], the global population aged 60+

is projected to grow from 0.9 billion in 2015 to 1.4 billion in 2030. This demographic

trend results in a dramatic need for an increase of the workforce in healthcare. A

great support to the healthcare workforce could come from activity detection systems,

which help monitor the health state of older patients and could early detect potential

physical or mental disorders. For instance, monitoring patients’ eating habits allows
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doctors to track the state of a patient and to react before serious health conditions

arise. Thanks to such systems, seniors could stay longer at home without the need

of being hospitalized, which would greatly improve their comfort and quality of life.

Building such activity detection systems requires fine-grained understanding of long

untrimmed videos.

In recent years, numerous datasets for activity classification in trimmed videos

have been proposed [167, 197, 99], whereas very little has been done for activity de-

tection in untrimmed videos. By activity detection, we mean predicting the activity

labels as well as their temporal boundaries within an input video. This detection

task has to cope with important open challenges: i) handling the combinatorial ex-

plosion of activity proposals while detecting accurate temporal boundaries in long

video sequences, ii) managing concurrent activities, and iii) distinguishing between

background and foreground activities (e.g. standing still/using telephone). In this

work, we focus on untrimmed videos of Activities of Daily Living (ADLs). These

videos contain activities that usually occur in the daily lives of older people. Typ-

ically ADLs feature activities with similar motion (e.g. eating/drinking), activities

with high temporal variance (e.g. putting on glasses in 5 sec./ reading for 10 min.),

or subtle motions (e.g. stirring the coffee).

Most of the untrimmed video datasets that are widely adopted in the literature do

not focus on ADLs. These datasets are often collections of videos from the web [14,

96, 3, 207, 223, 235]. For instance, ActivityNet [14] and MultiTHUMOS [223] are

collections of a large number of videos encompassing sports and outdoor activities.

These activities are often characterized by high inter-class variation due to large and

distinctive motions. Other datasets contain movie excerpts or instructional videos [74,

135]. The videos in these datasets retain only the key part of the activity and are

mostly recorded by a cameraman from a frontal viewpoint, with nearly no occlusions.

Some ADL datasets have been proposed in the past few years [176, 121, 192].

These datasets share common characteristics: i) Subjects usually follow a rigid script,

which results into unnatural movements; ii) Videos and thus activities are usually

short; iii) Subjects are usually centered in the middle of the frame and perform
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Figure 3-1: Overview of the challenges in TSU.

activities facing the camera (i.e. high camera framing). These characteristics do not

reflect the spontaneity of human activities in real-world scenarios.

Motivated by the shortcomings of current datasets, we introduce Toyota Smarthome

Untrimmed (TSU). TSU provides realistic untrimmed videos with diverse sponta-

neous human activities and real-world settings. We invited 18 volunteers to a record-

ing session in a smart home. The volunteers are senior people in the age range of 60 to

80 years. Their daily lives were recorded by multiple cameras in the apartment. The

resulting data consists of 536 long RGB+D videos with 51 annotated activity classes.

This dataset is an extension of our previously published dataset [40], which was de-

signed for the classification task of clipped videos. Unlike most previous datasets in

the community, the TSU videos are unscripted. Activities are annotated with both

coarse and fine-grained labels. This dataset poses several challenges: high intra-class

temporal variance, high class imbalance, composite and elementary activities, and

activities with similar motion. In our data acquisition process, each participant was

recorded continuously for 8 hours. We believe that this setup reduced camera aware-

ness in the participants, leading to increased spontaneity. Consequently, in TSU, the

participants may commit errors, search for items, and repeat several times the same

activity before succeeding. The fact that activities are performed in a spontaneous
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manner also amplifies other challenges such as low camera framing and high temporal

variance.

Some of the challenges in TSU dataset are illustrated in Fig. 3-1. In this figure,

on the left part, we present challenges related to spontaneous behaviours: For the

first two examples, we present the activity following a strict script on the left, and

the same activity performed spontaneously in TSU on the right: i) In Charades [176],

using drawer is performed quickly once per video, in TSU, using drawer may be

repeated several times in a video, and the subject may keep several drawers open at

the same time to facilitate finding things. ii) In PKUMMD [121], the subject shortly

uses the telephone while looking at the camera. In contrast in TSU, the subject is

deeply involved with his telephone and the activity may last several minutes instead

of few seconds. iii) In TSU, subject may stay seated or stand up to cut the bread in

an easier manner.

Besides the spontaneous behaviours, we also illustrate on the right part the fol-

lowing real-world challenges: 1) Camera framing: subject is not in the middle of the

image and can be even outside the field of view. 2) Object-based activities: similar

activities can be performed while interacting with different objects. 3) Multi-views:

activities look differently from different view points. 4) Composite activity: compos-

ite activities can be split into several elementary activities (e.g. instead of having

breakfast, we may cut bread, spread butter and eat at the table). Moreover, these

complex composite activities can last a long period of time. Large variations of ap-

pearance make the recognition challenging, requiring to understand the composition

of elementary activities to better recognize the composite activities. 5) Concurrent

activities: activities can be performed concurrently (e.g. take note while having a

phone call). 6) High temporal variation: in the same untrimmed video, we may have

short activities (e.g. taking on glasses) and long ones (e.g. playing tablet). Different

instances of the same activity class can also be short or long (e.g. writing) corre-

sponding to high intra-class temporal variance. In section 3.3, we analyse in detail

the characteristics and novelty of the proposed dataset.

Experimentally, we find out that state-of-the-art activity detection methods fail

68



to address the aforementioned real-world challenges offered by TSU. We also find that

the model trained on the untrimmed TSU outperforms the same model trained on

the trimmed version [40], reflecting the difficulty of handling background actions.

In general, the low performance achieved by activity detection methods on TSU

highlights the many challenges that are yet to be addressed. To promote the devel-

opment of novel activity-detection methods that can better address such challenges,

we have released TSU to the research community.

3.2 Related Work

In this section, we give an overview of publicly available untrimmed activity detection

datasets.

Dataset Spontaneous Camera Object-based Multi- Composite Concurrent Var. activity Temporal View Video
behaviour framing activities view activities activities duration annotation type type

MEVA[2] High Low Yes No No No Low Precise Monitoring Surveillance
ACTEV/VIRAT[39] High Low Yes No No No Low Precise Monitoring Surveillance

DALY[207] Medium High No No No Yes Low Precise Shooting Web
HACS[235] Medium High Yes No No No Medium Precise Shooting Web

YouTube’8M-Segments[3] Medium High No No No No Low Noisy Shooting Web
ActivityNet-200[14] Medium High Yes No No Few Medium Precise Shooting Web

THUMOS14[96] Medium High No No No No Low Precise Shooting Web
MultiTHUMOS[223] Medium High No No No Yes Medium Precise Shooting Web

AVA[74] Medium High No No No Yes Low Precise Shooting Movie
How2[164] Low High Yes* No - - - Noisy Shooting Instructional

HowTo100M[135] Low High Yes* No - - - Noisy Shooting Instructional
Coin[186] Low High Yes No No No Medium Noisy Shooting Instructional
ADL[151] High High Yes No No No Low Precise Egocentric ADL

Charades-ego[173] Medium High Yes No No No Low Precise Egocentric ADL
50 Salades[179] Medium High Yes No No No Low Precise Top-view Cooking

EGTEA Gaze+[58] Medium High Yes No No No Low Precise Egocentric Cooking
EPIC-KITCHENS[38, 37] High High Yes No Few Yes High Precise Egocentric Cooking

MPII Cooking 2[160] Low High Yes No woT No Medium Precise Shooting Cooking
Breakfast[105] Medium Medium Yes Yes woT No Medium Precise Shooting Cooking
CAD-120[83] Low High Yes No Yes No Low Precise Shooting ADL
DAHLIA[192] High Low No Yes No No High Precise Monitoring ADL

PKU-MMD[121] Low High No Yes No No Low Precise Shooting ADL
Charades[176] Low High Yes No No Yes Low Precise Shooting ADL

Toyota Smarthome Untrimmed High Low Yes Yes Yes Yes High Precise Monitoring ADL

Table 3.1: Untrimmed dataset comparison along the seven real-world challenges. *Indicates
that the activity labels are provided in terms of caption. With ’woT’ we indicate that the
composite labels are provided without the corresponding temporal boundaries. Although
MPII Cooking 2 was recorded in multi-camera scenario, the authors have released only a
single view version.

The availability of videos replicating real-world challenges is crucial to design ro-

bust activity detection algorithms. Among existing datasets, only few of these chal-

lenges are properly addressed. To understand the limitations of currently available

datasets, we introduce the following 7 real-world challenges.
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Spontaneous behaviour: activities in the real-world are performed naturally. How-

ever, most existing datasets are acquired by providing the subjects with a strict script.

Besides, as the subjects are aware that their activities are being recorded, they of-

ten overact. To quantify spontaneous behaviour, we define a heuristic that considers

three aspects: (i) Scripted or unscripted: The datasets following a strict script always

have lower spontaneity. We assign the datasets that follow strict script 1 point; the

datasets following a coarse script (e.g. cooking a specific meal in a video) 0.5 point; un-

scripted 0 point. (ii) Camera Awareness: Camera awareness also affects spontaneity.

We assign 1 point to the datasets recorded by the cameraman/self-recorded/wearable

sensor. We assign 0.5 point to datasets with continuous videos that were recorded

for a long duration (at least 30 minutes). For monitoring datasets recorded for a

long duration, we assign 0 point. (iii) Environment: it is also an important factor

for spontaneity. Activities are often more spontaneous when performed in a familiar

environment. Here, we assign a dataset that is recorded in an unfamiliar location 1

point, in a familiar location (e.g. home) 0 point. Datasets with continuous videos

that were recorded for a long duration in the same environment are given 0.5 point,

as people get accustomed to the location. Following these criteria, we re-evaluate

all datasets. The datasets with less than 1 point are considered as featuring high

spontaneity, more than 2 points obtained low spontaneity, the others are rated with

medium spontaneity.

Camera framing: when videos are recorded by a cameraman, subjects mostly ap-

pear in the middle of the image and facing the camera (high camera framing). On

the other hand, when videos are recorded automatically by a monitoring system us-

ing fixed cameras, subjects can often be offset from the center, occluded or partially

outside the field of view (low camera framing).

Object-based activities: similar activities that can be performed while interacting

with different objects (e.g. drinking from cup or from bottle) are more challenging to

classify. In Table 3.1, object-based activities indicates the availability of object level

fine-grained annotation for these activities.

Multi-views: activity detection methods need to be robust against view-point vari-
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ations. Therefore, benchmark datasets should provide samples of the same activities

recorded from different views.

Composite activities: Some complex ADLs can be decomposed into several ele-

mentary activities. For example, having breakfast may contain elementary activities

like cutting bread, spreading butter and eating at table. In Table 3.1, the composite ac-

tivities column indicates whether the dataset provides annotation for both composite

activities and their respective elementary activities.

Concurrent activities: activities, such as making a phone call and taking notes

may be performed simultaneously. The appearance of activities can drastically change

when multiple activities are performed at the same time. In Table 3.1, concurrent

activities indicates whether the dataset provides samples and annotations in which

activities are performed simultaneously.

Variation of activity duration: this property indicates the level of variation in the

length of activities in the dataset. In this table, the high variation indicates that the

average duration of an activity class is more than 80 times larger than the one of the

lowest activity class. The low variation indicates that the highest average duration

of an activity class is less than 30 times than the one of the lowest activity class.

To be noted that, activity detection methods need precise temporal annotation

(i.e. start time and end time) for each activity. We consider that a dataset features

Noisy annotation when: (i) the dataset provides temporal annotation only for part

of the activities in the video [3], or (ii) the dataset only provides caption of the

video [135, 164].

Table 3.1 summarizes the comparison of most used public untrimmed video datasets

based on the above challenges. Below, we detail how these untrimmed datasets differ

from our proposed TSU.

3.2.1 Surveillance Datasets

Surveillance datasets, such as VIRAT and MEVA [39, 2], have fixed camera views and

are designed to monitor human activities in the wild. These datasets are collected

in natural scenes showing people performing normal activities in standard contexts,
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most of the time outdoors. Besides, activities look natural as they are performed by

actors following a light script. For these datasets, only few simple human activities

are annotated (i.e. crouching, standing...) along with the object information (i.e.

carrying a box). These datasets thus differ from TSU as the complexity of surveillance

activities is significantly lower than the one from daily-living activities, for example,

no concurrent & composite activities.

3.2.2 Web & Youtube & Movie Datasets

A large number of datasets are collected from YouTube or movies [207, 3, 235, 14,

96, 223, 74]. Most of these videos are self-recorded or recorded by a cameraman from

a single view, which causes the subject to be centered within the image frame (i.e.

high camera framing), facing the camera and with limited occlusions. These videos

are carefully selected and only the key parts of the activities are retained, in which

the subjects always perform the activities smoothly without hesitation in front of

the camera (i.e. reduced spontaneity). Thus, these videos are less representative of

real-world scenarios compared to TSU videos.

3.2.3 Instructional Videos

Similar to the above category of datasets, instructional videos [164, 135, 186] are

collected from internet sources. These videos provide intuitive visual examples for

learners to acquire knowledge to accomplish different tasks. In contrast to TSU, these

instructional videos have noisy annotations which are often text descriptions [164, 135]

and follow strict temporal ordering of the activities [186]. Similar to web videos,

the subjects always perform the activities smoothly without hesitation in front of

the camera [186, 135]. These characterizations of the instructional videos are not

adequate for real-world activity detection task.
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3.2.4 Activities of Daily Living (ADL)

Activities of daily living are performed in indoor environments such as homes or labs.

These activities are usually characterized by low inter-class variation and subtle mo-

tion. Below, we discuss the ADL datasets categorized by their camera viewing angle.

Egocentric view datasets: In Egocentric datasets [38, 37, 173, 58, 151], the

videos are recorded with a wearable camera (i.e. reduced spontaneity) or from a

top view [179] that captures the scene directly in front of the user at all times, in

which only hands are visible in the center of the camera view (i.e. high camera fram-

ing). Egocentric videos are designed to study the activities, where the user’s hands

are manipulating various objects. However, the egocentric paradigm can only collect

the activity information from a very restricted viewpoint. This restricted viewpoint

makes the appearance of egocentric activities very different from third person view

datasets like TSU (e.g. poses are unavailable) and prevent the recording of those

activities that cannot be observed from this viewpoint (e.g. making a phone call).

Due to these characteristics, our comparison mainly focuses on third-view datasets.

Third person view datasets: Many of the ADL datasets [105, 160, 159] are lim-

ited to kitchen activities. MPII Cooking 2 [160] and Breakfast [105] contain only

cooking activities (like preparing recipes or making breakfast). The subject is asked

to cook a single dish (i.e. composite activities) in each video in these datasets. How-

ever, there are no temporal boundaries (i.e. no ground truth timestamps) for the

composite activities as they correspond to a whole video. Besides, some of the com-

posite activities occur only once in the dataset. In these datasets, subjects are asked

to prepare a specific recipe in a video clip, therefore the activities are performed in

rapid succession without hesitation or mistake (reduced spontaneity). Moreover, the

dataset lacks the presence of secondary activities irrelevant to cooking (e.g. drinking

water) but often occurs in real-life. In MPII Cooking 2, the subjects follow strict

scripts (i.e. low spontaneity) and are always in the center of the frame (i.e. high

camera framing). Although the videos are recorded from 8 camera views, only a

single view is released for this dataset. In Breakfast, the hands of the subjects and
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the objects used are always at the center of the frame without much occlusion (i.e.

medium camera framing). Moreover, the number of views are not fixed, even in the

same kitchen (from 2 to 5). As mentioned, the subjects in these two datasets per-

form the activities quickly without much hesitation, which means the datasets are

characterized by medium temporal variation and no concurrent activities. So, in the

following, we present the datasets that encompass a larger variety of ADLs which are

not only restricted to kitchen activities and where not only the top body part can be

observed.

CAD-120 [83] is a small dataset (about 60 K frames in total). This dataset comprises

of 20 different activities (including composite and object-based activities) performed

by four people in different rooms. The subjects are always in the center of the scene

performing short sub-activities following a script (i.e. high camera framing & no

spontaneity). Because of the simplicity of activities, current state-of-the-art meth-

ods [90, 77] can already achieve excellent results on this dataset. DAHLIA [192] is

recorded in a single room in a lab with 44 subjects. Each subject has about 40 min

recording from 3 fixed camera views (i.e. high spontaneity, low camera framing). The

dataset contains only 8 coarse activity classes, thus it does not have the challenges of

concurrent, composite and object-based activities. In PKU-MMD [121], the videos

are recorded from 3 camera views. The activities are performed in the center of the

scene by the subjects following a strict script. Besides, there are pauses in between

the activities which makes the problem of distinguishing between an activity and

background easier compared to real-world scenarios. Thus, this dataset lacks spon-

taneity & concurrent activities in addition to high camera framing. Charades [176]

explores object-based activities and concurrent activities. The videos are recorded by

hundreds of people in their private homes following strict scripts. Although Charades

depicts large numbers of environment diversity, these self-recorded activities are very

short (30 sec./video, 10 sec./activity) with low variation of activity duration and in

general performed in unnatural manner (overacted), in the center of the camera view

(high camera framing). All in all, current ADL datasets address only partially the 7

aforementioned challenges of real-world scenarios. This motivates us to propose TSU.
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3.3 Toyota Smarthome dataset

In this section we describe the main features of Toyota Smarthome Untrimmed dataset.

Our goal is to create a large scale dataset with daily-living activities performed in

spontaneous manner.

3.3.1 Data Collection

Collection Setup

We use 7 Microsoft Kinect sensors in the recording phase. The apartment plan and

camera locations are shown in Fig. 3-5. Cameras 1 and 2 cover the dinning room

area, 4 and 5 the living room, 3, 6 and 7 the kitchen. Thus, we have a coverage over

the entire apartment from at least 2 distinct viewing angles. The videos are recorded

at 20 frames per second, the size of RGB is VGA (640×480), the standard resolution

in most real-world scenarios. The dataset offers 3 modalities: RGB, depth and 3D

skeleton (i.e. pose) (see fig. 3-2).

For the skeleton modality, we fine-tune LCR-Net++ [158] on TSU and then ex-

tract the 2D skeletons. As the video recording is unconstrained, the subject may be

partially occluded by the objects or equipment in the scenarios. For this reason, we

utilise our SSTA-PRS [221] to refine the prediction of 2D skeletons. Finally these 2D

skeletons are processed through VideoPose3D [146] to extract the 3D skeletons. We

observe that this mechanism extracts 3D poses of better quality compared to those

obtained using depth or LCRNet++ [221].

(1) RGB (3) Depth (2) 3D Skeleton

Figure 3-2: Available modalities in Toyota Smarthome Untrimmed. Note: in the
sub-figure of RGB modality, we also mark the 2D skeleton joints.
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Cut vegetable

Cook

Put sth. on table

Use drawer

Walk

Get water

Walk

Put sth. on table

Cut vegetableSet stove

WalkWalk Walk

Dump in trash

Take sth. off table

1:21 1:25 1:26 1:29 1:31 1:34 1:35 1:38 1:41 1:43 1:45

Figure 3-3: An example of annotation on TSU dataset. ’←’ and ’→’ indicate respec-
tively the start and end of an activity.

Data Collection Protocol

One of the key applications of daily-living activity detection is older patient monitor-

ing. Thus, in our dataset, we invited 18 volunteers to our dataset recording sessions.

The age of the volunteers ranges between 60 and 80 years old. Each volunteer was

recorded for 8 hours in one day starting from morning at 9 a.m. until afternoon at 5

p.m.. On the day of recording, the volunteer arrived in the apartment at 8 a.m. and

had a visit to get acquainted with the place and to learn how to use the household

equipment such as coffee machine, television, remote control, etc.. The volunteers

also received an informal description of what it was expected with reference to having

meals and interacting with anything in the apartment as it was a normal day at home.

No further guidance was provided about how the activities should be performed.

In total, we recorded hundreds of hours of video data. Based on these data we

prepared two datasets: Toyota Smarthome dataset [40], previously published, and

Toyota Smarthome Untrimmed dataset that is introduced in this paper.

3.3.2 Toyota Smarthome Trimmed dataset

Toyota Smarthome Trimmed [40] has been designed for the activity classification task.

It consists of 16K short RGB+D clips of 31 activity classes. Each clip is about 12.5 sec.

long and contains only one activity. Unlike previous datasets [167, 197], activities were

performed in a natural manner. As a result, the dataset poses a unique combination of

challenges: high intra-class variation, high class imbalance, and activities with similar

motion and high duration variance. Activities were annotated with both coarse and
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fine-grained labels. These characteristics differentiate Toyota Smarthome Trimmed

from other datasets for activity classification.

3.3.3 Toyota Smarthome Untrimmed dataset

Toyota Smarthome Untrimmed and Toyota Smarthome Trimmed are obtained from

the same recording footage. Different from the Toyota Smarthome Trimmed, TSU is

targeting the activity detection task in long untrimmed videos. Therefore, in TSU,

we kept the entire recording when the person is visible. The dataset contains 536

videos with an average duration of 21 mins. Since this dataset is based on the same

recording as Toyota Smarthome Trimmed version, it features the same challenges

and introduces additional ones. In section 3.3.3, we describe the annotation protocol.

Then, we present the properties of the TSU dataset in section 3.3.3, we present its

challenges in section 3.3.3, and finally we compare this untrimmed version of the

dataset (i.e. TSU) with its trimmed version in section 3.3.3.

Annotation Protocol

TSU is designed particularly for the activity detection task. With the support of

a medical staff, we have identified 51 activities of interest to annotate. A team of

annotators manually annotated the videos using the open-source toolkit ELAN [94].

The videos were annotated individually without relying on the fact that some camera

views overlap. The annotation process took more than 6 months, including verifica-

tion and quality checks. We performed the quality check with the help of 5 annotators.

We estimated the precision of the annotation by considering the same 50 long videos

annotated by different annotators. These 50 videos are randomly chosen and cover

all the subjects and camera views. The precision of annotation of those 50 videos is

96.8%. Additionally, we reviewed, normalized and corrected the 25 hours of anno-

tation by checking again the videos where the methods were achieving low activity

detection performance. Fig. 3-3 shows an example of the annotation. This exam-

ple corresponds to composite activity cooking. While cooking, the subject abruptly
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(a) Composite (b) Elementary

(e) Similar motion/activity

Add coffee grain Add water to machine Open/close fridge Open/close cupboard

Stir the pot Stir the coffee/tea Read Write

Cut bread Cut vegetables/meat Put sth. on  table Put sth. in sink

Consume medicine Eat snacks Take sth. off table

Drink from cup Drink from bottle Pour from kettle Pour from bottle

Drink from glasses Drink from can Pour from can

(f) Subtle motion

Work with laptop

Play tablet

Write
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Boil water

Set stove

Spread butter/jam

Open fridge Open cupboard
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(c) High related

Composite & Elementary 

Get up

Lay down

Walk

Sit down

Enter

Leave

Put sth. on table

Take sth. off table

(d) Pose-based activities

Figure 3-4: On the top row, we divide the 51 activities in TSU into (a) composite
and (b) elementary activities. Then, we analyze the activities along four properties:
(c) highly related composite and elementary activities, (d) pose-based activities, (e)
similar motion/activities, and (f) activities with subtle motion.

stops cutting vegetables and starts heating water in a pot so that she can have boiled

water after cutting the vegetables. After setting up the stove, she resumes cutting

the vegetables. This process does not follow a strict temporal order and reflects the

spontaneous behaviour of the participant.

Dataset Properties

The result of the extensive annotation process is a rich corpus of activities. Fig. 3-4

presents the diversity of activities in this dataset. The activities are categorized into

composite and elementary activities. Composite activities are the complex activi-

ties that are composed of several elementary activities that may or may not follow

a temporal ordering. TSU contains 5 composite activities which are relatively long.

Elementary activities are atomic activities which may be performed concurrently in
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time. These activities may or may not be part of a composite activity. TSU contains

46 elementary activities and these activities may be long or short. In Fig. 3-4 (c), we

illustrate the composite activity cooking, with its elementary activities. In Fig. 3-4 (a)

and (b), the composite and its corresponding elementary activities are marked with

the same color.

TSU contains a rich diversity of elementary activities. We present three challeng-

ing scenarios that might occur while attempting to recognize these activities. Firstly,

the dataset contains pose-based activities for which poses could be sufficient for clas-

sification. In contrast, the appearance information may not improve the recognition

of these activities. In Fig. 3-4 (d), we provide 8 such pose-based activities. For ex-

ample, sit down only needs the 3D poses to be distinguished, whereas the books and

laptop around the subject may mislead an appearance-based classifier to recognize

an activity related to those objects, such as reading. Secondly, TSU contains many

elementary activities characterized by similar motions and interactions with objects.

These objects provide strong clues to distinguish an activity. However, a reliable

detection of the object while processing the whole video is a challenge. Sometimes,

the objects are occluded within the hands of the subject, like in the case of grasp-

ing a cup while drinking. As a result, these activities with similar motion are often

miss-classified amongst each other. In Fig. 3-4 (e), we provide 22 such activities.

For example, the subjects performing use fridge and use cupboard have very similar

poses. A fine understanding of the object information (e.g. fridge and cupboard) may

facilitate the recognition of these activities. Finally, the dataset contains fine-grained

activities characterized by subtle motions, which presents additional challenges for

the recognition task. In Fig. 3-4 (f), we describe 7 such activities. For example,

subjects who perform the activity Stir coffee/tea move only slightly their wrist and

forearm. Compared to activities with pronounced motions, such as sitting down,

learning discriminative representations for these activities with subtle motions is very

challenging.

We further analyze the distribution of the activities in TSU in Fig. 3-5. We first

provide a pictorial representation of the apartment along with the camera placements.
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Figure 3-5: On top row (from left to right): we provide the 7 camera locations (C:
camera); activity distribution along the different (a) environments, (b) duration and
(c) temporal variance. Remark: (a) is per activity instance, (b),(c) are per activity
class. On bottom row: we provide the (d) instance frequency and corresponding (e)
temporal variance heat map (e.g. the lighter the larger variance), (f) distribution of
performing environment for each activity.

TSU features multi-view settings, as all the activities are captured by more than one

camera. Then, we provide 6 statistics pertaining to the activity distribution in the

dataset. Fig. 3-5 (a) depicts a distribution of activity instances across the different

rooms. Most activities occur in the living room, then kitchen and dinning room. This

is similar to real life distribution as we spend most of our time in the living room.

Correspondingly, Fig. 3-5 (f) presents the distribution of environment for each activity.

We find that 51% of the activities are environment independent. For instance, we can

eat snack or work with laptop in all these three environments. However, activities that

rely on specific equipment occur in the same environment, such as using oven in the

kitchen. Fig. 3-5 (b) shows the activity distribution across the activity duration. We

find that in TSU, most activities are short activities, followed by medium and long

activities. This is because long activities have few occurrences but longer duration.

Interestingly, short activities are often more challenging to detect compared to the
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Figure 3-6: Spatial Distribution of the person location in normalized image coordi-
nates for 3 datasets, dark regions correspond to high frequency areas of the person
position. The green bounding boxes embrace the high frequency locations. From
the size of the bounding box, we find that TSU exhibits the largest spatial scatter,
indicating the low camera framing property.

longer ones [174]. Fig. 3-5 (c) shows the distribution of activities based on their intra-

class temporal variance. We notice that 22% of the activities have high temporal

variance (i.e. vary more than 500 sec.). Correspondingly, Fig. 3-5 (e) provides the

heat map of the temporal variance of these activities. The lighter grey means that the

temporal variance is higher. Such intra-class variance within the same activity class

further complicates the task of detection. Finally, Fig. 3-5 (d) provides the occurring

frequency for every activity in the dataset. We have a non-uniform distribution of

activities following the Zipf’s law [89]. This long-tail distribution characterizes the

real-world scenarios [233].

In addition, we leverage the spatial distribution of the person location to illustrate

the camera framing property. We use the key-joint locations of Poses to compute the

coordinates of the human position. Fig. 3-6 shows the spatial distribution of the

person center location in different views. Compared to other similar datasets, TSU

exhibits a significantly larger spatial scatter for all camera views. In most cases, the

subjects move along the edge of the camera coverage area. Consequently, we consider

TSU to have relatively low camera framing.
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Challenges

TSU provides the 7 real-world challenges which are discussed in Section 3.2. (1)

Spontaneous behaviour: TSU is an untrimmed ADL dataset where people are

recorded while performing activities in a spontaneous manner. This property defines

the uniqueness of TSU dataset. (2) Low camera framing: because of the long

duration of the recording, the subjects do not pay attention to the fixed cameras.

Therefore, activities can be performed very far, very close or out of view of the camera.

Activities can also be partially occluded by furniture. (3) Object-based activities:

The annotations in TSU include the fine-grained details of activities performed using

different objects (e.g. drinking from a cup, can or bottle). TSU contains 7 object-based

activities. (4) Multi-views: TSU features 7 camera views. As shown in Fig. 3-5, the

camera placement enables 2-3 camera views for each environment. In this work, we

use these different views for increasing the view diversities in order to design view-

invariant methods. (5) Composite activities: TSU contains 5 composite activity

classes and 16 related elementary activity classes. (6) Concurrent activities &

dense annotation: TSU contains up to 4 concurrent activities for a single frame.

About 10% of the frames contains more than one activity label. On an average, there

are about 76 activity instances per video. (7) High temporal variance: This new

dataset offers a large variation of activity duration and intra-class temporal variance.

TSU features short activities (e.g. taking on glasses), long activities (e.g. reading

book), and instances of the same class that can be long or short (e.g. writing ranges

from 3 seconds to 10 minutes). As a result, handling temporal information is critical

to achieve good detection performance on TSU.

Toyota Smarthome Trimmed Vs Untrimmed dataset

The Toyota Smarthome Trimmed dataset contains only a single activity instance per

video. In contrast, TSU dataset is composed of untrimmed videos and these videos

are intermixed with multiple activity instances and backgrounds. The complexity of

the problem is increased by the presence of concurrent activities and composite
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activities. Learning the dependencies across such activity instances is an important

prospect for video understanding which was not considered in the previous trimmed

version of Smarthome. Both the trimmed version and TSU feature spontaneous

behaviours. As untrimmed videos contain multiple activities, the degree of spon-

taneity is also enhanced by the dependencies among the activities. For example, with

spontaneous behaviour, the order of the elementary activities in composite activities

can vary largely in untrimmed videos. For intra-class temporal variance, activity

recognition methods on trimmed videos can handle this issue easily by sampling a

fixed number of frames from different videos. However, in untrimmed videos where

the task involves predicting the activity occurring at each timestamp, sampling mech-

anisms could lead to imprecise detection of activity boundaries. Thus, learning an

activity classifier for untrimmed videos which is robust to intra-class temporal invari-

ance is a real-world challenge and is often ignored in trimmed scenarios. Concerning

data size, as shown in Table 3.2, TSU is 1.6 times larger in terms of activity classes

compared to the previous version of the dataset, 2.8 times larger in terms of activity

instances, and 3.5 times larger in terms of total number of frames.

3.3.4 Benchmark Evaluation

In TSU, we define 2 evaluation protocols: Cross-Subject and Cross-View. We provide

also two evaluation metrics (frame-based and event-based mAP). For frame-based

evaluation, we adapt the protocol of [172] to evaluate the same mAP metric on single

frames. This way of evaluating detection is robust to annotation ambiguity. For

event-based evaluation, we adapt the protocol of [121]. This metric enables us to get

a better insight into activity detection as not biased by activity duration.

Cross-Subject (CS): For cross-subject evaluation, we split the 18 subjects into

training and test sets. To balance the number of videos for each activity category,

we use 11 subjects for training and the 7 remaining ones for testing. This protocol

considers all the 51 activities.

Cross-View (CV): For cross-view evaluation, the training set contains the videos

from cameras 1, 3, 4, 6, 7. The remaining cameras (2, 5) are reserved for testing.
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Table 3.2: Comparison between the two versions
of Toyota Smarthome.

Dataset Smarthome Smarthome
Version Trimmed [40] Untrimmed
Task Recognition Localization
#Classes 31 51
#Instances 16 K 41 K
#Frames 3.9 M 13.8 M

The training set contains all the 51 activities and the testing set contains 32 activities

from these two camera views.

3.4 Experiments

The goal of these experiments is to verify that the TSU dataset provides the novel

challenges that are not yet addressed by the state-of-the-art algorithms. We evaluate

9 popular methods on TSU dataset, which represent the state-of-the-art on other

densely-annotated datasets [176, 223]. Note that we have also proposed a multi-modal

baseline method along with the dataset. This multi-modal method is introduced in

section 6.3 with more analysis on TSU.

3.4.1 Implementation Details

Video Encoding

We use three types of encoders to extract the encoding of the input videos. For

AGCN [169] and I3D [17] (pre-trained on Kinetics [99]), we fine-tune them on TSU and

then the features are extracted. Besides, we also evaluate this dataset on frame-level

feature. We use Inception V1 [184] pre-trained on ImageNet [47] to extract the

features. The channel size of I3D and Inception V1 is 1024, channel size of AGCN is

256.
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State-of-the-Art Methods

Nine activity detection methods are evaluated on our dataset, namely, bottleneck,

Non-local network [205], LSTM [86], Bidirectional-LSTM [73], Dilated-TCN [107],

R-I3D [189], Super-event [150], TGM [149] and MS-TCN [57]. The method using

Bottleneck has only one dropout layer (with dropout probability 0.5) followed by

a bottleneck layer as the classifier. Non-local [205] has one non-local block applied

on the features of the whole video before the classifier. LSTM [87] has one LSTM

layer with 512 hidden units and one dropout layer (with dropout probability 0.5).

Similarly, for Bidirectional-LSTM [73], we have two opposite direction 512 hidden

units LSTM layers. The features are concatenated before the classifier. R-I3D [212]

uses I3D [17] as its SD-TCN. We set the anchor scale value to [0.3, 0.6, 1.0, 1.5, 2,

2.5, 2.75, 3, 3.5, 4, 4.5, 5,5.5, 6, 6.5, 7, 7.5, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 38,

42, 50, 58, 66, 78, 84, 90, 96]. For TGM [149], we add one layer to have a 4-layer

structure. All the methods use the same video encoding and they are trained with

binary cross-entropy loss with sigmoid activation [138]. The unspecified parameters

are similar to the original papers.

3.4.2 Comparative Study on TSU

CS CV
AGCN+Bottleneck [169] 10.1 12.6
AGCN+LSTM [87] 17.0 14.8
Inception+Bottleneck [184] 11.5 5.2
Inception+LSTM [87] 13.2 5.3
R-I3D [212] 8.7 -
I3D (Trimmed)+Bottleneck [17] 7.4 4.3
I3D+Bottleneck [17] 15.7 9.2
I3D+Non-local block [205] 16.8 9.6
I3D+Super event [150] 17.2 10.9
I3D+LSTM [132] 22.6 12.9
I3D+Bidirectional-LSTM [73] 24.5 15.1
I3D+Dilated-TCN [107] 25.1 13.9
I3D+MS-TCN [57] 25.9 13.1
I3D+TGM [149] 26.7 13.4

Table 3.3: Frame-level mAP on TSU dataset.
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CS CV
IoU Threshold (𝜃) 0.3 0.5 0.7 0.3 0.5 0.7

Bottleneck [17] 5.0 2.5 0.5 2.3 1.1 0.2
Non-local block [205] 4.9 2.2 0.6 1.6 0.7 0.1

Super event [150] 5.7 2.8 0.7 1.8 0.9 0.1
LSTM [87] 11.6 6.4 2.2 6.0 3.2 0.7

Bidirectional-LSTM [73] 13.3 7.9 3.5 9.0 5.4 1.2
Dilated-TCN [107] 12.8 6.9 3.0 5.8 3.3 0.8

MS-TCN [57] 13.2 7.6 3.0 5.3 3.1 0.4
TGM [149] 15.1 9.4 4.2 5.5 3.2 0.4

Table 3.4: Event-based mAP (%) for different IoU thresholds for the TSU dataset.
Note that, the input are I3D feature from RGB stream.

Table 3.3 provides the results of the considered activity detection methods on TSU.

Here, we focus on the comparison of performance of the representative baselines on

TSU. The comparative study is conducted with the I3D RGB features. The first

method is a proposal-based method that adopts R-C3D [212] with I3D base network

(we call this method R-I3D). This method fails to generate precise proposals for

long activities with dense labels due to high computational cost. Consequently, it

yields the worst detection performance on TSU. The second and the third methods

are the Bottleneck [17] and the Non-local block [205]. We find that the non-local

block can provide the information of one-to-one temporal dependency to the local

features (+ 0.9% w.r.t. Bottleneck on TSU-CS), however, Non-local block is not

effective enough. Similarly, Super-event [150] utilizes temporal structure filters to

model latent representation of composite activities and then compute their affinity

with each frames (+4.2% w.r.t. Bottleneck on TSU-CS). However, videos in TSU are

long and complex, thus it is hard to model latent representation of composite activities

in this dataset. We need the temporal filter to gradually embed the information of the

local frames to the current frame. LSTM [87] and Bidirectional-LSTM [73] are RNN

based methods. These methods can model short temporal relations (up to +8.8%

w.r.t. Bottleneck on TSU-CS), but fail to model the long temporal relationships in the

complex activities of TSU. Dilated-TCN [107], TGM [149], MS-TCN [57] use temporal

Gaussian/Convolutional filters which better capture the temporal relationships in

long activities (up to +13.5% w.r.t. Bottleneck on TSU-CS). Thanks to the effective

temporal filters, these methods can process long-term temporal relations.
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Figure 3-7: Histogram of activity instance duration in Smarthome and Charades. X
axis represents the duration in seconds, Y axis represent the number of instances in
log scale.

We then show that the method trained on the trimmed version (i.e. I3D(Trimmed)+Bottleneck)

fails to generalize to the untrimmed version. Firstly, we train an I3D model with

the trimmed version of TSU (51 class version). Secondly, we leverage a sliding

window framework to utilize the I3D model to predict the action class for each

window, in which the classifier is fine-tuned for the frame-level action detection

task. Note that I3D (Trimmed)+Bottleneck is very close to the I3D+Bottleneck

model. The difference mainly lies in the I3D training process. For this baseline I3D

(Trimmed)+Bottleneck, I3D is trained with the clipped action instances, whereas I3D

+ Bottleneck is trained with random snippets that may include action instances or

even a mix of actions and background. From Tab. 3.3, we find that this baseline

trained on the trimmed version under-performs in detecting actions in TSU. This

is due to the lack of contextual relationships present among the action instances in

the trimmed version and hence the baseline fails to generalize over the untrimmed

scenario.

In table 3.4, we present the event-based evaluation of the baselines. The overall

low performance indicates that current methods are far from addressing real-world

situations.
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TSU-CS Charades
Human Center Human Center

I3D + Bottleneck [17] 15.7 10.8 15.8 15.6
I3D + Super event [150] 17.2 12.1 18.4 18.6

Table 3.5: Address the camera framing challenge

3.4.3 Comparative Analysis between TSU & Charades

The results of the activity detection methods on different datasets provide us valuable

insights into the key properties of the datasets themselves. Closely related to TSU,

we choose the Charades dataset to perform a comparative study. Both datasets focus

on daily living activities. They are densely annotated containing many concurrent

activities and object-based activities. However, these datasets differ on several points.

(1) In Charades, due to the self-recorded video settings, the activities are fast and

the camera framing is high, and as a consequence, the subject is always in the center

of the camera view. In contrast, in TSU, the subjects performing the activities have

high spontaneity leading to higher intra-class variability and lower camera framing.

(2) In Charades, the larger number of activity classes originates from the combination

of only 33 verbs with different objects (e.g. holding some food, holding a sandwich).

In comparison, the 51 activities in TSU originate from 35 different semantic verbs.

Therefore, the Charades dataset has more activity classes relative to objects while

having less semantic verbs of daily living activities. (3) TSU has longer videos (20

mins on average), compared to the on average 30 second clips in Charades. As a

result, Charades does not have long activities, and the temporal variance of activity

instances is low in this dataset. Fig. 3-7 presents the temporal duration of activity

instances in Charades and Smarthome. We find that Smarthome has larger scope

and higher temporal variance for the activity duration.

To quantify the level of camera framing in TSU as compared to Charades, we

evaluate three baseline methods trained/tested using crops around the human body

or crops in the middle of the images (Fig. 3-8). The crops around the human body

are extracted using SSD [126]. The results are reported in Table 3.5. To evaluate

the performance on Charades, we measure the frame-based mAP for activity detec-
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Figure 3-8: SSD & Center crops

tion [172, 150]. For Charades, the methods using human crops and center crops

obtain similar results, suggesting that Charades has high camera framing—that is,

the subject in the videos is usually centered within the frames. On the other hand,

in TSU, the use of human crops improves performance significantly (+5.1%). Indeed,

TSU has low camera framing—that is, subjects often perform activities at the image

borders.

3.5 Conclusion

In this chapter, we introduce a novel untrimmed benchmark: Toyota Smarthome

Untrimmed (TSU) that features spontaneous behaviors and several real-world chal-

lenges for activity detection. This dataset contains hundreds of hours of videos of

elderlies’ daily life recorded in indoor smart home scenarios. Our comparative study

shows that the activity detection performance for the SoTA methods on TSU is still

low, highlighting the remaining open issues related to real-world conditions. Cur-

rently, TSU dataset is licensed for academic research purposes1. This will allow

researchers to develop novel action understanding approaches for smart home scenar-

ios.

However, the TSU dataset still remains some limitations, such as the lack of

generality to new locations and annotation bias of the manual annotations. We will

1TSU Dataset is available at: https://project.inria.fr/toyotasmarthome
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refine the annotation quality and enrich the environmental diversity in the future.

Along with the dataset, we have also proposed a multi-modal baseline method:

Attention Guided Network (AGNet). This network leverages multiple modalities pro-

vide in TSU. More experimental analysis of TSU, especially the analysis of modalities,

is given in section 6.3.
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Chapter 4

Temporal Relational Reasoning for

Action Detection

Temporal relational reasoning – the ability to link meaningful transformations of

objects or entities over time – is a fundamental property of intelligent species. In this

chapter, we introduce three neural networks for temporal reasoning in untrimmed

videos. All three networks enhance temporal modelling by self-attention mechanism.

Thanks to the different temporal modelling and self-attention strategies, the three

proposed networks focus on different challenges in temporal modelling. The works

in this chapter have been published in IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS) 2019 [34], IEEE/CVF Winter Conference

on Applications of Computer Vision (WACV) 2021 [32] and IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR) 2022 [31].

4.1 Introduction

The capacity to reason about the relations between entities over time is crucial for

intelligent decision-making, such as action recognition and detection tasks. A single

action can consist of several temporal relations at both short-term and long-term

timescales. For example, the composite action "making sandwich" contains the sub-

actions with long-term temporal relations of cutting bread, spreading the butter and
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putting bread together. Short-term temporal relations are also needed to capture the

correlations between different states of the sub-actions in a video sequence. Temporal

relational reasoning allows the model to analyze the current situation relatively to

the past and to formulate hypotheses on what may happen next. The detection

decision at each frame should be done considering both short-term and longer-term

temporal structures. This is critical especially when processing data with multiple

actions occurring concurrently over different time spans.

More specifically, in the current action detection framework, the long-term videos

are encoded into snippet-level features. Those snippet-level features are fed into

the temporal module and then into a classifier for the action detection task. Be-

cause a snippet is often shorter than the action instance and action instances are

usually highly relevant in an untrimmed video. Therefore, the action detection mod-

els rely on the temporal module that explores the contextual information of snippet

sequences. With such temporal reasoning across snippets, action detection models

can learn discriminative action representation and then recognize the action label for

each snippet-level feature in the video. To this end, in this work, we focus on how to

effectively perform temporal reasoning across the snippet-level features.

Following the recent advances of Recurrent Neural Networks (RNNs) in processing

sequence data, numerous approaches are using RNN-based model to model temporal

relations for action detection [13, 178, 91, 223]. Memory cells help RNNs capture

temporal information from video sequences [86], while forgetting cells drop informa-

tion that is irrelevant for the long-term encoding. Therefore, RNNs can only capture

a limited amount of temporal context in videos, which is not suitable to process

long-term data.

Temporal Convolutional Networks (TCNs) utilize one-dimensional convolutions

and are another way to compute features encoded across time. Contrary to RNN-

based methods, TCN computations are performed layer-wise: that means that at

every time-step the network weights are updated simultaneously, which allows TCN

to process long-term sequences. In this work, we choose Temporal Convolutional

Network as the base temporal network.
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There have been already several applications of TCN in action detection [107, 49,

57]. However, recent studies focus on short-term action datasets as [179, 59], where

the mean action duration is less than 30 seconds. This cannot be straightforwardly

generalized to ADL datasets, where actions can last dozens of minutes [192]. Because

of the limited receptive field of CNN kernels, TCNs still have limitations when deal-

ing with dependencies between long-range patterns in videos. As a result, we firstly

introduce Self-Attention - Temporal Convolutional Network (SA-TCN) for

modelling long-term temporal relations. SA-TCN is a TCN-based model embedded

with a temporal self-attention block. This network features an encoder-decoder archi-

tecture where the temporal information is abstracted by the temporal convolutions

and an attention block extracts a global temporal attention mask from the hidden

representation laying between encoder and decoder. Thanks to TCN structure and

self-attention block, our proposed attention mechanism can better focus on long tem-

poral patterns and their dependencies. In this work, we used DAHLIA [192] as the

main dataset to evaluate our proposed method, along with a medium-term dataset,

Breakfast [105], to show the robustness of the framework. Our proposed method

achieves state-of-the-art performance on both datasets.

Besides the long-term temporal dependencies, there are many other challenges

related to complex temporal relation in untrimmed videos (see Figure 4-1), including:

(i) manage concurrent actions occurring at the same time. For example, eating snack

while playing smartphone, and (ii) model both long-term and short-term dependencies

in the video. For example, short-term dependencies from action ‘playing smartphone’

and long-term dependencies from action ‘taking snack’ can both provide contextual

information to detect the action ‘eating snack’.

To handle the challenges of complex temporal relation, we firstly propose the

Pyramid Dilated Attention Network (PDAN), which is composed of a series

of Dilated Attention Layers (DAL). The main novelty of this architecture is how

the attention weights are allocated to local frames at multi-temporal scales. A stan-

dard temporal convolution layer features shareable kernels which allocate the same

importance to local frames in the kernel. This property prevents the temporal con-
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Figure 4-1: An example of complex temporal relation in a video. The actions occur
densely in a video. The point indicates the center of the action instance. We provide
the sampled image for each action center.

volutional kernels from selecting the key information. This is a limitation especially

when large temporal receptive fields are required for modeling long untrimmed videos.

To overcome this limitation, we build a novel attention mechanism to explore the lo-

cal context inside the kernel. The kernel ultimately processes the entire video, but at

each time step the inputs are only those frames comprised in the kernel (i.e., a small

window). DAL explores the relations between the center frame and the neighbouring

frames in the kernel (called local context). This local attention mechanism enables

the proposed framework to learn representations for short actions. Additionally, by

introducing dilation in the aforementioned temporal attentional operations, we build

a Pyramid Dilated Attention Network (PDAN) which consists of a hierarchy of DALs.

These DALs are configured with different dilation rates to increase exponentially the

size of the filter receptive field. This hierarchical structure allows PDAN to allocate

attention weights to different temporal resolutions using the different DAL layers.

This structure design is instrumental for the action detection of densely annotated

videos. We evaluate PDAN using three densely annotated action detection datasets:

Charades [176], MultiTHUMOS [223], and our TSU. PDAN achieves competitive

state-of-the-art performance on all the datasets.

PDAN is an effective manner for modelling complex temporal dependencies in a

video. However, convolution-based methods as PDAN are limited by their kernel size

and can only directly access to local information in a video. Thus, such methods

fail to model long-range interactions between segments (i.e., snippets) which may be
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important for action detection. With the success of Transformers [194, 241, 51, 128]

in natural language processing and more recently in computer vision, recent meth-

ods [188, 185] have leveraged multi-head self-attention (MHSA) to model long-term

relations in videos for action detection. Such attention mechanisms can build direct

one-to-one global relationships between temporal segments (i.e., temporal token) of a

video to detect highly-correlated and composite actions. However, existing methods

rely on modeling such long-term relationships on input frames themselves. In this

case, a temporal token covers only a few frames, which is often too short w.r.t. the

duration of action instances. Moreover, transformers need to explicitly learn strong re-

lationships between adjacent tokens which arise due to temporal consistency, whereas

it comes naturally for temporal convolutions (i.e., local inductive bias). Therefore,

a pure transformer architecture may not be sufficient to model complex temporal

dependencies for action detection.

By rethinking the manner of combining convolutions and self-attention, we pro-

pose Multi-Scale Temporal ConvTransformer (MS-TCT). In this network, we

use convolutions in a token-based architecture to promote multiple temporal scales of

tokens, and to blend neighbouring tokens imposing a temporal consistency with ease.

In fact, MS-TCT is built on top of temporal snippets encoded using a 3D convolutional

backbone [17]. Each temporal snippet is considered as a single input token to MS-

TCT, to be processed in multiple stages with different temporal scales. These scales

are determined by the size of the temporal segment (i.e., snippet), which is considered

as a single token at the input of each stage. Having different scales allows MS-TCT

to learn both fine-grained relations between atomic actions (e.g. ‘open fridge’ ) in the

early stages, and coarse relations between composite actions (e.g. ‘cooking’ ) in the

latter stages. To be more specific, each stage consists of a temporal convolution layer

for merging tokens, followed by a set of multi-head self-attention layers and temporal

convolution layers, which model global temporal relations and infuse local informa-

tion among tokens, respectively. As convolution introduces an inductive bias [45],

the use of temporal convolution layers in MS-TCT can infuse positional information

related to tokens [76, 95], even without having any positional embeddings, unlike pure
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Figure 4-2: Relative temporal position heat-map (G*): We present a video
clip which contains two overlapping action instances. The Gaussians indicate the
intensities of temporal heat-maps, which are centered at the mid point of each action
in time.

transformers [51]. Followed by the modeling of temporal relations at different scales,

a mixer module is used to fuse the features from each stage to get a unified feature

representation. Finally, to predict densely-distributed actions, we introduce a heat-

map branch in MS-TCT in addition to the usual multi-label classification branch.

This heat-map encourages the network to predict the relative temporal position of

instances of each action class. Fig. 4-2 shows the relative temporal positions, which

are computed based on a Gaussian filter parameterized by the instance center and

its duration. It represents the relative temporal position w.r.t. the action instance

center at any given time. With this new branch, MS-TCT can embed a class-wise

relative temporal position in token representations, encouraging discriminative token

classification in complex videos.

To summarize, our contributions in this chapter: (i) We introduce SA-TCN, which

leverages encoder-decoder architecture to abstract the salient temporal information of

the video and utilizes the self-attention mechanism to model dependencies across time

for long videos. (ii) We design PDAN, which can effectively learn the dependencies

between action instances by applying DAL at different temporal scales. The DAL

inside PDAN can improve the quality of the local feature representation across time.

(iii) We propose MS-TCT, which is an effective and efficient ConvTransformer for

modeling complex temporal relations in untrimmed videos. Moreover, we introduce

a new branch to learn the position relative to instance-center, which promotes action

detection in densely-labelled videos.
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In the following sections, we first revise the related work in temporal modelling

and attention mechanism. After that, we introduce the three model structures and

experiment for each method.

4.2 Related Work

In this section, we review how previous works learn temporal relations and utilize

attention for action detection.

4.2.1 Temporal Modelling

After encoding the video, action detection can be seen as a sequence-to-sequence

problem. Inspired by the advancement in natural language processing, there are

three principle branches for sequential modelling in recent years: Recurrent Neu-

ral Networks, Temporal Convolution Networks, Transformers. We will revise these

techniques below.

Recurrent Neural Networks (RNNs) [223, 46, 16] have been popularly used to

model the temporal relation between the action instances. Singh et al. [178] feed per-

frame CNN features into a bi-directional long short-term memory network (LSTM)

model and apply non-maximal suppression to the LSTM output. MultiLSTM [223]

extends the vanilla LSTM for handling videos with dense action regions. This method

expands the temporal receptive fields at both input and output to be a window length

of frames. Moreover, a soft-attention weighting is learned over the input window to

select the action related frames. Huang et al. propose Although the above meth-

ods is LSTM methods only implicitly capture relationships between certain actions

with high motion. Furthermore, due to the vanishing gradient problem, RNN based

models can only capture a limited amount of temporal information and short-term

dependencies.

Temporal Convolutional Networks (TCNs) are another group of temporal process-

ing methods. In contrast to RNN based methods, TCNs can process long videos due

to the kernels sharing weight for all the time steps. The result is a feature vector
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preserving the spatio-temporal information, along with contextual information from

the neighboring frames. Some recent variants of TCNs for action detection include

ED-TCN, Dilated TCN [107] and MS-TCN [57]: Lea et al. [107] design two tem-

poral convolutional networks for action segmentation and detection task, transform-

ing successful approaches from natural language processing. ED-TCN uses pooling

and up-sampling to efficiently capture long-range temporal patterns whereas Dilated-

TCN increases the temporal reception field by using dilated convolutions to model

long temporal patterns. Dilated-TCN is extended by MS-TCN [57] which stacks

multiple Dilated-TCNs to construct a multi-stage structure, where each stage re-

fines the prediction of the previous one. In addition, Temporal Aggregation Network

(TAN) [35] consists of dedicated temporal aggregation blocks, which is designed to

encode multi-scale spatio-temporal patterns, and larger temporal context can be cap-

tured by dilated convolutions effectively. However, standard convolutions allocate the

same importance to each local feature in the kernel. This property prevents temporal

convolution kernels from extracting the key information efficiently from long complex

untrimmed videos.

With the introduction of datasets like MultiTHUMOS [223] and Charades [176]

having dense labelling and concurrent actions (i.e. multi-label), more and more method-

ological attempts to model complex temporal relations between action instances have

been made.

There are also some temporal operations in the community that can be seen as

variants to temporal convolution. Piergiovanni et al. proposed a global represen-

tation, namely super-event [150]. In this model, Cauchy distribution based filters

process the video across time to learn a latent contextual representation of the ac-

tions on particular sub-intervals of the video. The set of filters are summed by a

soft attention mechanism to form the global super-event features. During predic-

tion, the local I3D features are used with the super-event features to better model

the global context. Similarly, Piergiovanni et al. [149] introduced Temporal Gaussian

Mixture (TGM) layers. In contrast to standard convolution layer, TGM computes

the filter weights based on Gaussian distributions, which enables TGM to learn longer
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temporal structures with a limited number of parameters. Although the above meth-

ods [150, 149] achieve state-of-the-art results in modeling complex temporal relations,

the non-adaptive receptive field limits the ability of the models to capture the dy-

namics for both short and long patterns.

4.2.2 Self-Attention Mechanisms

Self-attention mechanisms focus on the salient part of a scene relative to a target

task, which was proposed by Transformer Networks [194] for natural language pro-

cessing. This operation enforces a network to establish one-to-one relations to under-

stand the dependencies between their local representations. Employing self-attention

mechanisms has gained popularity for different downstream tasks: Ramachandran et

al. [155] proposed “fully attentional network", which achieves competitive prediction

results on image classification tasks. This model replaces the standard 2D convolution

layer with local attention layer in ResNet [82]. This layer learns the representation

based on the relative position of the spatial features in the kernel. Similar to [194],

Girdhar et al. [72] proposed the Action Transformer model for the task of action de-

tection. This model inherits the transformer-style architecture to modulate features

with attention weights from the spatio-temporal context within a video. This atten-

tion mechanism emphasizes the region-of-interest (e.g. actors’ hands, faces), which

are often crucial to recognize an action. However, Action Transformer is embedded

in I3D [17] as the base network, which restricts its input size to only short video clips

(i.e. 64 frames). Our target is to detect both long and short actions in a long video,

far beyond 64 frames. Thus, we need a better attention mechanism that is dedicated

to model temporal relations. Wang et al. [205] designed a Non-Local (NL) layer

that achieves SOTA performance in action recognition task. This block leverages the

self-attention mechanism to learn an attention map representing the spatial-temporal

one-to-one dependencies of the 3D features. Extending NL layer, Cao et al. [15] intro-

duced Global Context (GC) layer, which has same performance as the NL layer but

with fewer parameters. While adapting NL layer and GC layer for action detection

task, the receptive field of the layer is always the full video. The fixed global receptive
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field introduces more noise of the irrelevant actions in the attention map, thus can

not provide effective attention information especially for the videos that concurrently

have both multiple long and short actions.

4.2.3 Video Transformer

Recently, with the advent of Vision Transformer [51], Transformer architectures have

been successful in both image and video domain [241, 128, 239, 203, 202, 210, 25, 6,

129, 11, 161]. Although Vision Transformers [128, 6, 11], such as TimeSformer [11]

can consider frame-level input tokens to model temporal relations, it is limited to

short video clips which is insufficient to model fine-grained details in longer real-

world videos. As a compromise, recent video understanding methods use multi-head

self-attention layers on top of the visual segments encoded by 2D/3D convolutional

backbones [17]: Video Transformer Network [141] builds on top of a given 2D convo-

lutional network and feeds the encoded feature to the transformer encoder for tem-

poral modelling. VidTr [231] is another Transformer model features pooling layers

for attention. This operation drops non-informative features along temporal dimen-

sion thus achieve better performance in video understanding with higher efficiency.

MTCN [100] is a multi-modal Transformer model, which benefits from the temporal

context of action and labels to enhance the action predictions using a Transformer

encoder. TQN [229] is designed for recognizing fine-grained actions. TQN factorizes

categories into pre-defined attribute queries to predict fine-grained actions with a

Transformer Decoder. However, all these methods are designed for action recognition

and not trivial to extend them to action detection in untrimmed videos. Regarding

untrimmed video: LSTR [216] employs a long- and short-term memory mechanism

to model streaming data. This model consists of an encoder that obtains coarse-

scale historical information, together with an LSTR decoder to model the fine-scale

characteristics of the data. However, similar to the drawback of LSTM, this method

only benefits from the previous time-steps of the current time, and thus is utilized

for online action detection. RTD-Net [185], an extension of DETR [241], uses a

transformer decoder to model the relations between the proposal and the tokens.
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However, this network is designed only for sparsely-annotated videos [96, 14], where

only a single action exists per video. In dense action distributions, the module that

detects the boundaries in RTD-Net fails to separate foreground and background re-

gions. MLAD [188] learns class-specific features and uses a transformer encoder to

model class relations at each time-step and temporal relations for each class. How-

ever, MLAD struggles with datasets that has complex labels [176], since it is hard to

extract class-specific features in such videos.

In the following sections, we introduce the proposed temporal models in detail.

4.3 Self-Attention - Temporal Convolutional Network

(SA-TCN)

In this section we propose our model: the Self-Attention - Temporal Convolutional

Network (SA-TCN), which retains the encoder-decoder architecture of ED-TCN to

capture long-range patterns and embeds a self-attention mechanism to capture the

long range dependencies between those patterns. The overview of this architecture

is shown in Fig. 4-3 and consists of 3 main components: visual encoding, encoder-

decoder TCN, and self-attention block.

4.3.1 Visual Encoding

The first step in our architecture is the extraction of a visual encoding. As opposed to

the other TCN-based methods [107, 49] that use multi-modal inputs (i.e. RGB+flow),

we attempted to use RGB only. To reduce the redundancy coming from extracting

background features, we apply SSD [126] to detect the subjects and crop patches

based on those detections. The patches are then resized to 224 × 224 and fed into

an Imagenet pre-trained Resnet-152. We extract features from the penultimate layer

of Resnet-152. We group 64 contiguous extracted feature sets per snippet. The

temporal context of the video is handled by the aggregation operator using max and

min pooling across the snippets. This pooling mechanism helps to choose salient
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values from the feature map. The visual encoding that we obtain from this step will

be the input of encoder-TCN.

4.3.2 Encoder-Decoder TCN

SA-TCN retains the encoder-decoder architecture of [107], with the addition of some

points of improvement.

As shown in Fig. 4-4, we have 𝑘 layers for both the encoder and the decoder. In the

encoder part, each layer consists of temporal convolutions, batch normalization, ReLU

activation, and a temporal max pooling. We set a fixed convolution kernel size for

all the layers. First, we applied temporal convolution (Conv-1D) to extract high-level

features. Second, differently from ED-TCN, we applied batch normalization to avoid

Figure 4-3: SA-TCN model. Given an untrimmed video, we represent each non-
overlapping snippet by a visual encoding over 64 frames. This visual encoding is
the input to the encoder-TCN, which is the combination of the following operations:
1D temporal convolution, batch normalization, ReLu, and max pooling. Next, we
send the output of the encoder-TCN into the self-attention block to capture long-
range dependencies. After that, the decoder-TCN applies the 1D convolution and
up sampling to recover a feature map of the same dimension as visual encoding.
Finally, the output will be sent to a fully connected layer with softmax activation to
get the prediction.
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Figure 4-4: Encoder-decoder architecture. This figure represents the network
structure of (a) encoder-TCN and (b) decoder-TCN. As the architecture has k layers,
it will have k iterations.

vanishing or exploding gradients. Third, we added a spatial dropout layer along with

a ReLU non-linearity to help controlling over-fitting and to speed up convergence.

Finally, we max pool the feature map across time to halve the temporal dimension.

Pooling enables us to efficiently compute activations over long temporal windows.

Our decoder is similar to the encoder, except for the fact that we replace the

pooling operation with up sampling. This up sampling step is similar to [107]: each

entry is repeated twice. After that, another temporal convolution is performed to

reduce the aliasing effect of up sampling. Finally, a snippet-wise fully-connected

layer with softmax activation is used to generate the class probabilities at each time

step.

4.3.3 Self-Attention Block

In this section, we introduce our temporal self-attention block. We construct this

temporal attention mechanism based on the scoring system presented in [194].

The purpose of attention block is to build a one-to-one association between all the

temporal moments. We do not rely on any outside information, so it is called self-

attention. To implement this, the input 𝐼 is branched out into three copies 𝑄𝑢𝑒𝑟𝑦,
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Figure 4-5: Structure of self-attention block between encoder-TCN and decoder-
TCN.

𝐾𝑒𝑦 and 𝑉 𝑎𝑙𝑢𝑒. Through the calculation of similarity between 𝑄𝑢𝑒𝑟𝑦 and each

𝐾𝑒𝑦, we can get the attention score 𝑠, which is the importance of different temporal

moments. This attention score is then normalized by softmax to have a mask 𝛼.

Finally, we multiply the 𝑉 𝑎𝑙𝑢𝑒 by this mask to have the attention-weighted feature,

and then, add back the input to have our output result 𝑂.

Fig. 4-5 shows a diagram of the self-attention block, where 𝐼 𝜖 R𝐶×𝑇 denotes the

input features from the previous hidden layer. 𝐼 is first transformed into two feature

spaces 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦, where 𝑄𝑢𝑒𝑟𝑦(𝐼) = 𝑊𝑄𝑢𝑒𝑟𝑦𝐼 , 𝐾𝑒𝑦(𝐼) = 𝑊𝐾𝑒𝑦𝐼. Both 𝑊𝑄𝑢𝑒𝑟𝑦

and 𝑊𝐾𝑒𝑦 𝜖 R𝐶×𝐶
8 . In this work, 𝑉 𝑎𝑙𝑢𝑒 is computed from 𝐼 with a 1× 1 convolution

layer. Thus we have 𝑉 𝑎𝑙𝑢𝑒(𝐼𝑖) = 𝑊𝑉 𝑎𝑙𝑢𝑒𝐼𝑖, where 𝑊𝑉 𝑎𝑙𝑢𝑒 𝜖 R𝐶×𝐶 . The number of

filters of 𝑉 𝑎𝑙𝑢𝑒 is same as the channel size of 𝐼. 𝑄𝑢𝑒𝑟𝑦 and 𝐾𝑒𝑦 are similar to 𝑉 𝑎𝑙𝑢𝑒,

except for the fact that the number of filters is one-eighth of 𝑉 𝑎𝑙𝑢𝑒. If 𝛼𝑗,𝑖 indicates

the extent to which the model attends to the 𝑖𝑡ℎ location when synthesizing the 𝑗𝑡ℎ

region, we have:

𝛼𝑗,𝑖 =
𝑒𝑥𝑝(𝑠𝑖𝑗)∑︀𝑇
𝑖=1 𝑒𝑥𝑝(𝑠𝑖𝑗)

, (4.1)

where 𝑠𝑖𝑗 = 𝑄𝑢𝑒𝑟𝑦(𝐼𝑗)𝐾𝑒𝑦(𝐼𝑖)
𝑇 .

Then the output of the weighted attention map is 𝐴𝑡𝑡 = (𝐴𝑡𝑡1, 𝐴𝑡𝑡2, ..., 𝐴𝑡𝑡𝑗, ..., 𝐴𝑡𝑡𝑇 )
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𝜖 R𝐶×𝑇 , where,

𝐴𝑡𝑡𝑗 =
𝑇∑︁
𝑖=1

𝛼𝑗,𝑖𝑉 𝑎𝑙𝑢𝑒(𝐼𝑖) (4.2)

Finally, we add back the input feature map to assign weight to non-local evidence.

Therefore the output 𝑂𝑖 is given by:

𝑂𝑖 = 𝛾 × 𝐴𝑡𝑡𝑖 + 𝐼𝑖 (4.3)

where 𝛾 represents a learnable parameter. The output 𝑂 will be fed into decoder-

TCN.

4.3.4 Experiments

In this work, we performed experiments mainly on DAHLIA [192], which is a dataset

contains long-term video and long-range temporal dependencies. We also evaluate

on Breakfast [105] dataset to show the robustness of our method. In the following,

we describe the baseline methods used in our study. We provide a comparative anal-

ysis of our method against other action detection architectures. In all experiments,

frame-wise accuracy(𝐹𝐴1), F-score, Intersection over Union(IoU) and mean Average

Precision(mAP) [107] are reported.

Implementation Details

We implemented our model in Keras 2.0.8 with Tensorflow as back-end. The experi-

ments were performed on a GTX 1080 Ti GPU with 11 GB memory. For the visual

encoding, we performed experiments using both Resnet-152 [82] and I3D [17] as the

feature extractor. With Resnet, we extracted the features as described in detail in

section 3.1 leading to 8192 features per snippet. With I3D, we chose the Kinetics

pre-trained I3D. First, we added a fully connected layer with 1024 units before the

classification layer. Secondly, we fine-tuned the architecture on the NTU-dataset[167]

and extracted features from the new fully connected layer (1024 features per snip-

pet). We ran experiments with both Resnet-152 and I3D on DAHLIA. The results
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obtained with the two feature extractors are similar. On the Breakfast dataset, we

use the features provided on the dataset’s website. The length of these features is

64/snippet.

In our model, the attention operation does not change the dimension of the feature

map. Besides, we assign the parameters of the encoder-decoder TCN so that the size

of the feature map before the first encoder layer is the same as the output of the last

decoder layer: we set the pooling and up sampling rate to 2, the number of filters in

the three layers to {48, 64, 96} and {96, 64, 48} for encoder and decoder respectively.

Finally, we compared several kernel sizes for the 1D convolution, and found that a

size of 25 for every layer gives the best results.

The training was conducted with RMSprop with a learning rate of 0.001 and batch

size 8 for both DAHLIA and Breakfast datasets. On DAHLIA, we split the train and

validation set with 15% validation rate. We trained the model for 100 epochs and

measured detection performance on the test set.

Model 𝐹𝐴1 F-score IoU mAP
DOHT [18] 0.803 0.777 0.650 -
GRU* [157] 0.759 0.484 0.428 0.654
ED-TCN* [107] 0.851 0.695 0.625 0.826
Negin et al. [140] 0.847 0.797 0.723 -
TCFPN* [49] 0.910 0.799 0.738 0.879
SA-TCN 0.921 0.788 0.740 0.862

Table 4.1: Action detection results on DAHLIA dataset with the average of view 1,
2 and 3. *marked methods have not been tested on DAHLIA in their original paper.

Model 𝐹𝐴1 F-Score IoU mAP
GRU [157] 0.368 0.295 0.198 0.380
ED-TCN [107] 0.461 0.462 0.348 0.478
TCFPN [49] 0.519 0.453 0.362 0.466
SA-TCN 0.497 0.494 0.385 0.480

Table 4.2: Action detection results on Breakfast dataset.
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Actions Background House work Working Cooking
AP 0.36 0.65 0.95 0.96

Actions Laying table Eating Clearing table Wash dishes
AP 0.90 0.97 0.80 0.97

Table 4.3: Average precision of ED-TCN on DAHLIA.

Model 𝐹𝐴1 F-score IoU mAP
TCFPN [49] 0.910 0.799 0.738 0.879
SA-TCFPN 0.917 0.799 0.748 0.894

Table 4.4: Combination of attention block with other TCN-based model: TCFPN.
(Evaluated on DAHLIA dataset)

Figure 4-6: Detection visualization. The detection visualization of video
’S01A2K1’ in DAHLIA: (1) ground truth, (2) GRU [157], (3) ED-TCN [107], (4)
TCFPN [140] and (5) SA-TCN.

Results Analysis

In this section, we analyze the results of our method and of the other state-of-the-art

baselines.

Table 4.1 and 4.2 show the results of all the methods considered on DAHLIA and

Breakfast datasets, respectively. Our method achieves state-of-the-art performance

on both datasets.

DOHT and Negin et al.’s method, which train a SVM with deep or hand-crafted fea-

ture encoding, do not perform well on DAHLIA. This is because approaches based on

a sliding window can only capture window-size patterns. Although a post-processing

step is used to filter noise, these approaches still fail at capturing long temporal
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information.

Compared to TCN-based networks, GRU does not perform well on DAHLIA. Fig. 4-6

shows that GRU fails at distinguishing short actions performed between long actions

(i.e. laying table and clearing table). Moreover, GRU produces noise while detecting

long actions due to the fact that RNN-based networks can not focus on long temporal

information.

ED-TCN lacks precision in detecting the action boundaries. As CNNs have a limited

receptive field for each layer, they fail in detecting the dependencies between long-

distanced features. The results obtained by ED-TCN on DAHLIA are reported in

Table 4.3. The low precision achieved on the ’Background’ action is due to the shorter

duration of this action compared to the others, which results in a lower number of

training samples.

Both TCFPN and our SA-TCN outperform ED-TCN. The pyramid structure with

lateral connections helps TCFPN to make use of both low-level and high-level features.

The temporal attention block of our SA-TCN enables a better understanding of the

dependencies between the different actions performed in the video.

To understand if our solution can be integrated with other temporal models, we

embedded our temporal self-attention block in TCFPN to obtain SA-TCFPN. As re-

ported in Table 4.4, SA-TCFPN outperforms TCFPN on all the metrics on DAHLIA.

This shows that our temporal attention block is general and can be effectively inte-

grated with other temporal models.

4.4 Pyramid Dilated Attention Network (PDAN)

In this section, we introduce Pyramid Dilated Attention Network (PDAN), an end-

to-end model for action detection. The main goal is to learn frame-level feature

representation that encodes spatio-temporal information so that the model can ef-

fectively exploit information from multiple temporal scales to predict the actions for

each frame. The basic building block in PDAN is a Dilated Attention Layer (DAL)

followed by ReLU activation and a bottleneck with residual connection. Note that
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in this work, bottleneck indicates the 1D convolution that processes across time and

kernel size is 1. Different from previous dilated-TCN layers [107, 57], DAL com-

putes adaptable probabilistic scores for each local feature of the kernel through a

self-attention mechanism. Thanks to multiple DALs with pyramid dilation setting,

PDAN weights local input feature to capture their saliency at several temporal scales,

which enables the model to capture meaningful temporal relationships between com-

plex atomic actions. Our intuition for the design of PDAN is that using attention,

dilation and residual connections together can capture salient segments of an action

at several temporal resolutions and provide a robust representation against temporal

variation of actions. An overview of the proposed PDAN is shown in Fig. 4-7. The

RGB and the Flow stream have similar structure, the only difference is the input

to the 3D CNN. When both modalities are available, we apply a late fusion of their

prediction logits. In the following sub-sections, we elaborate our model.
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Figure 4-7: Overview of the Pyramid Dilated Attention Network (PDAN). In this figure,
we present the structure of PDAN for one single stream. Note that RGB and Flow
stream have same structure inside PDAN. Two streams are connected by late fusion
operation before classification. DAL indicates the dilated attention layer, in which, KS
is the kernel size, D is the dilation rate.

4.4.1 Video Feature Extraction

Similar to most action detection models, our model can process on top of video

segment representations (usually from frame-level or segment-level CNN features).

In this work, we use spatio-temporal features extracted from the RGB and Flow I3D
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networks [17] to encode appearance and motion information respectively. To achieve

this, a video is divided into 𝑇 non-overlapping segments, each segment consisting of

16 frames. The inputs to the RGB and Flow deep networks are the color images

and corresponding Flow frames of a segment respectively. We stack the segment-level

features along temporal axis to form a 𝑇 ×𝐶1 dimensional video representation where

1 × 𝐶1 is the feature shape per segment. This video representation denoted as 𝐹0 is

further input to the RGB or Flow stream in our architecture. Below, we detail the

basic component of our proposed PDAN, which is DAL.

4.4.2 Dilated Attention Layer (DAL)

As earlier said, standard temporal convolution layer assigns the same importance to all

the input features of the kernel. However, with multi-scale receptive fields, providing

relevant attention weights can benefit modelling of complex temporal relationships.

To this end, we propose DAL with multiple dilation rates that inherently learns the

attention weights at different temporal scales. As most temporal filters [149, 150],

DAL processes the feature maps across the temporal domain only to preserve spatial

information.

As shown in Fig. 4-8, the input features are processed in two steps in each kernel

of DAL. Take the 𝑖𝑡ℎ block as an example: First, the elements (i.e. segment) around

a center element 𝑓𝑖𝑡 at time 𝑡 ∈ [1, 𝑇 ] are extracted to form a representative vector

𝑓
′
𝑖𝑡. This feature representation is based on the kernel size: 𝑘𝑠 and dilation rate at 𝑖𝑡ℎ

block. Note that: feature 𝑓𝑖𝑡 ∈ R1×𝐶2 , 𝑓 ′
𝑖𝑡 ∈ R𝑘𝑠×𝐶2 . Second, the self-attention scor-

ing system [194] is invoked by projecting the representative vector 𝑓
′
𝑖𝑡 to a memory

embedding (Key: 𝐾𝑖 and Value: 𝑉𝑖) using 2 independent bottleneck convolutions:

𝐾𝑖(𝑓
′
𝑖𝑡) = 𝑊𝐾𝑖

𝑓
′
𝑖𝑡, 𝑉𝑖(𝑓

′
𝑖𝑡) = 𝑊𝑉𝑖

𝑓
′
𝑖𝑡, both 𝑊𝐾𝑖

and 𝑊𝑉𝑖
∈ R𝐶2×𝐶2 . Then, 𝑓𝑖𝑡 is pro-

jected to the Query 𝑄𝑖 using another bottleneck convolution: 𝑄𝑖(𝑓𝑖𝑡) = 𝑊𝑄𝑖
𝑓𝑖𝑡 and

𝑊𝑄𝑖
∈ R𝐶2×𝐶2 . The output of the attentional operation for the 𝑡𝑡ℎ time step is gen-

erated by a weighted sum of values 𝑉𝑖, with the attention weights obtained from the
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Figure 4-8: Dilated Attention Layer (DAL). In this figure, we present an example of a
computation flow inside the kernel at time step 𝑡 (kernel size ks is 3, dilation rate is
2). Note: in this figure, the subscript of block 𝑖 should be 2.

product of the query 𝑄𝑖 and keys 𝐾𝑖:

𝑎𝑖(𝑓𝑖𝑡) = 𝑉𝑖(𝑓
′
𝑖𝑡)[𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑖(𝑓𝑖𝑡)𝐾𝑖(𝑓

′
𝑖𝑡))]

T (4.4)

In contrast to the previous work [205] where the authors calculate one-to-one cor-

relation between all the elements, the attention mechanism in DAL computes the

correlation inside the kernel between the center element and the other local elements,

which significantly reduces the number of parameters. Finally, the output of a DAL

is obtained by concatenating the outputs for all the time steps 𝑡 of the video.

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖(𝐹𝑖) = [𝑎𝑖(𝑓𝑖1)
T, 𝑎𝑖(𝑓𝑖2)

T, ..., 𝑎𝑖(𝑓𝑖𝑇 )
T] (4.5)

where 𝐹𝑖 is the input feature map of DAL at the 𝑖𝑡ℎ block.

4.4.3 Comparison with Non-Local layer

Transformer [194] is not directly applicable to action detection. Its extension to

video, Action-Transformer [72] can only process short video clips (i.e. 64 frames)

and its attention mechanism is not designed to model temporal relations. Non-Local

(NL) [205] has a similar structure to that of the attention head in Transformer,

and is used in action detection task. Hence, we only compare DAL with the NL

layer. The 1-dimensional NL layer’s receptive field corresponds to the full video.

These filters learn an attention map of dimension 𝑇 × 𝑇 reflecting the one-to-one
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Figure 4-9: On the left, we visualize the attention map for DAL for four layers
(𝑖 ∈[1,4]). On the right, we present a group of frames at different temporal scales
that are associated with 𝑎4(𝑓4𝑡) along with the corresponding attention weights. The
circle represent the frame-level features (i.e. feature in 𝐹𝑖), and the arrow represents
the attention-enhanced connection between the corresponding frames provided by
DAL. The bounding box in the attention map corresponds to the colored arrow at
right.

dependency for every frame in the full video. On the other hand, DAL’s receptive

field at each time step 𝑡 covers only the neighbouring frames in the kernel. The kernel

ultimately processes the entire video, but at each time step 𝑡, the input are only

those frames included in the kernel (of size 𝐾𝑆). Thus, DAL learns an attention

map of dimension 𝑇 × 𝐾𝑆, i.e. it explores the relations between the center frame

and its 𝐾𝑆 neighbouring frames in the kernel. Moreover, by stacking multiple layers

with different dilation rates, the receptive field is expanded gradually in higher layers

to model longer actions. Consequently, both DAL and NL layers explore the whole

content of the video. Real-world untrimmed videos [223] have long duration, large

temporal variance, and concurrent actions. While processing such videos, the fixed

global receptive field of the NL layer implies that information linked to irrelevant

actions happening potentially far away from the current frame will introduce noise to

the representation of the current frame. In contrast, DAL reformulates the attention

mechanism for detecting long and short actions in a sparse and hierarchical manner.

This design enables the attention mechanism at each layer to focus on actions of

different temporal lengths, thus providing better context information and filtering

irrelevant information from the distant actions. Our ablation study confirms the
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effectiveness of DAL. In Fig 4-9, we give an example where DAL assigns different

attention weights for local frames at every time step and at multi-temporal scales.

The efficiency and effectiveness of NL layer and DAL is discussed in Sec. 4.4.5. In

the following section, we describe how we use DALs at multiple-temporal scales.

4.4.4 Pyramid Structure of Temporal Layers

Applying self-attention on multi-temporal scale is an essential ingredient for modeling

complex temporal relations. PDAN is based on a pyramid of DALs with same kernel

size and different dilation rates. The pyramid increases exponentially the size of the

receptive field of the model. This structure allows the network to model short and

long action patterns by focusing on the local segments at the level of low and high

temporal receptive fields.

As shown in Fig. 4-7, the input feature 𝐹0 ∈ R𝑇×𝐶1 is firstly fed to a bottleneck

layer to lightweight the model by reducing the channel size from 𝐶1 to 𝐶2. Then,

𝑁 blocks are stacked, each block 𝑖 is a cascade of a DAL with ReLU activation,

𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 convolution and a residual link. This structure allows the receptive field

to increase exponentially while keeping the same temporal length 𝑇 as the input. In

our experiment, we set the kernel size (ks) to 3 for all blocks, dilation and padding

rate to 2𝑖−1, thus the reception field is up to 2𝑖 + 1 for the 𝑖𝑡ℎ block. The set of

operations in each block can be formulated as follow:

𝐹𝑖+1 = 𝐹𝑖 +𝑊𝑖 *𝑅𝑒𝐿𝑈(𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖(𝐹𝑖)) (4.6)

where 𝐹𝑖 indicates the input feature map of the 𝑖𝑡ℎ block. In the attention layer

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖 the dilation rate varies with 𝑖. 𝑊𝑖 ∈ R𝐶2×𝐶2 indicates the weights of

the 𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘𝑖. Finally, we compute per-frame binary classification score for each

class (i.e. prediction logits). Therefore, the 𝑁 𝑡ℎ block is followed by a bottleneck

convolution with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation:

𝑃 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝐵𝑁+1
𝐹𝑁+1) (4.7)

where 𝑃 ∈ R𝑇×𝐶3 is the prediction logits and 𝑊𝐵𝑁+1
∈ R𝐶3×𝐶2 , 𝐶3 corresponds to
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the number of action classes. To learn the parameters, we optimize the multi-label

binary cross-entropy loss [138].

4.4.5 Experiments

The goal of these experiments is to verify that our proposed method can effectively

model complex temporal relations. First, we perform an ablation study to validate

the design choice of our model. Second, we compare our model with the current

SOTA models on 3 densely annotated datasets to prove its effectiveness.

Evaluation datasets

We evaluate our PDAN on three challenging datasets: MultiTHUMOS, Charades and

Toyota Smarthome Untrimmed (TSU) dataset. All these three datasets are densely

annotated with concurrent actions, allowing us to validate the effectiveness of PDAN

in handling complex temporal relations. For all these datasets, we follow the original

evaluation settings for the action detection task (i.e., frame-level mAP).

Implementation details

In PDAN, we set 𝑁 = 5 blocks, 𝐶1 = 1024 and 𝐶2 = 512 (see Fig. 4-7). For each DAL

in the aforementioned blocks, the kernel and stride size are set to 3 and 1, respectively.

The dilation and padding rates are set to 2(𝑖−1) for block 𝑖 ∈ [1, 𝑁 = 5]. We use Adam

optimizer [103] with an initial learning rate of 0.001, and we scale it by a factor of 0.3

with a patience of 10 epochs. The network is trained on a 4-GPU machine for 300

epochs with a mini batch of 32 videos for Charades, 8 videos for MultiTHUMOS and

2 videos for TSU dataset. Depending on the available modalities within the datasets,

we use RGB-stream only for TSU dataset and two-stream structure for Charades and

MultiTHUMOS datasets. Mean pooling of the prediction logits has been performed

to fuse the RGB and Flow streams.
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Dilation Residual DAL in block Charades TSUlink 1 2 3 4 5
Simple(STCL) × × × × × × × 17.8 15.0
Simple(DAL) × × ✓ ✓ ✓ ✓ ✓ 18.9 16.1

Dilation (STCL) ✓ × × × × × × 21.8 24.0
Dilation (DAL) ✓ × ✓ ✓ ✓ ✓ ✓ 23.2 26.1
Residua (STCL) × ✓ × × × × × 21.8 24.3
Residua (DAL) × ✓ ✓ ✓ ✓ ✓ ✓ 23.5 26.5
PDAN (STCL) ✓ ✓ × × × × × 24.1 29.0
PDAN(Low) ✓ ✓ ✓ ✓ × × × 25.3 30.1
PDAN(High) ✓ ✓ × × × ✓ ✓ 25.4 30.1
PDAN (DAL) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 26.5 32.7

Table 4.5: Frame-based mAP (%) to show the effectiveness of the components
in PDAN. The ✓ indicates that we use this component in all the PDAN blocks.
PDAN (DAL) is our proposed PDAN.
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Figure 4-10: The frame-based mAP performance for Short and Long actions on Cha-
rades with (1) different levels of attention, (2) different numbers of PDAN Blocks.

Ablation studies

In this section, we demonstrate the effectiveness of each component of our PDAN.

Block components:

In Table 4.5, we first alternatively apply or remove dilation, residual link and DAL

in all the blocks to show the effectiveness of these components (see Fig. 4-7). We test

three configurations: (1) Simple: no residual link and no dilation1 in any PDAN’s

block. (2) Dilation: no residual link but dilation in all the blocks. (3) Residual: no

dilation but residual link in all the blocks. We indicate between the brackets when

DAL or Standard Temporal Convolution Layer (STCL) is used in the blocks. Note

1No dilation indicates that all the blocks are set with dilation rate 1.
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Figure 4-11: Qualitative analysis of the attention map. On the top, we visualize the
attention map of DAL for 5 layers (𝐶2 × 𝑇 × 3 for each layer). On the bottom, we
present the corresponding ground truth and PDAN detection for this video.

that, DAL and STCL have the same kernel size and dilation rate. Results show that

for both datasets dilation and residual link lead to similar improvements (+4.0% on

Charades). When accompanied by the residual link (i.e. PDAN (STCL)), dilation

boosts the action detection performance by up to 2.3% on TSU w.r.t. dilation only.

Using DAL in all the layers, PDAN outperforms all these ablation baselines (+1.1%,

+2.1%, +2.2% and +3.7% w.r.t. Simple, Dilation, Residual and PDAN (STCL)

on TSU). These results suggest that DAL is a more effective temporal filter than

STCL and that dilation with residual link help boost DAL’s performance. We then

study to which block, attention should be integrated. We apply attention mechanism

on different blocks to build four ablation baselines: PDAN (STCL), PDAN (Low),

PDAN (High) and PDAN (DAL). Low and high indicates that instead of using STCL,

we apply DAL in the first two blocks and last two blocks, respectively. PDAN (Low)

and PDAN (High) correspond to a low (< 5.6 sec.) and high (> 24.8 sec.) receptive

field respectively. Table 4.5 shows that both baselines can improve the performance

(up to 1.3% w.r.t. Residual+Dilation on Charades). In Fig. 4-10 (1), we show that

PDAN (Low) can better detect short actions, and PDAN (High) can better detect

the Long actions. PDAN incorporates the attention mechanism on all the blocks

and achieves the best performance for both long and short actions (+2.4% w.r.t.
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Num. Blocks Temp. Field Charades TSU
3 15 23.3 29.4
4 31 25.0 30.3
5 63 26.5 32.7
6 127 25.6 30.5

Table 4.6: Ablation study to determine the number of blocks in PDAN. "Temp.
Field" indicates the length of temporal reception field (expressed in seconds) for the
kernel at the last block.

PDAN (STCL) on Charades dataset). In Fig. 4-11, we present the attention map of

DAL for 5 layers (on top), and the corresponding ground truth vs PDAN detection

results (on the bottom). In area (A), with only long actions (e.g.work at table), only

the higher layers allocate high attention weights to the frames in the kernel. This

reflects that the higher layers are more sensitive to long-term actions. In area (B),

with both long and short actions, both higher and lower layers allocate high attention

weights to the frames in the kernel. In area (C) (at the bottom), while detecting short

actions, DAL allocates high attention weights at the lower layer, corroborating that

the lower layer is particularly sensitive to short actions.

Number of blocks:

Table 4.6 reports the performance while using different numbers of blocks in PDAN.

This performance depends on the size of the temporal receptive field and the average

action length in the videos. With more blocks, PDAN can have a larger temporal

reception field. Here, 5 block structure indicates that PDAN’s reception field explores

up to 63 segments (i.e. about 1 min), which can satisfy the requirements of both

datasets. In Fig. 4-10 (2), we analyse the performance of the number of PDAN blocks

for actions with different duration. 5-blocks structure achieves the best performance

for frame-based mAP (up to 2.4% w.r.t. 4 block structure on TSU). While increasing

to 6-blocks improves the performance for long actions (+0.4%), it deteriorates the

performance for short actions. This can be explained by the fact that having more

layers tends to diminish the importance of local context.

DAL & NL layer:

. In Table 4.7, we measure the efficiency of DAL compared to the Non-Local (NL)
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layer [205]. While replacing all the DALs by STCLs in the PDAN block, we ob-

tain PDAN (STCL) (see Fig. 4-7). We have tried two different ways of integrating

the NL layer. NL-T1 indicates that we add one NL layer before the classifier in

PDAN (STCL); NL-T2 indicates that we replace the DAL layer by a STCL and a NL

layer in every PDAN block (see Fig. 4-7). As mentioned in Sec. 4.4.2, PDAN (STCL)

and PDAN have similar parameters. Besides, DAL outperforms both NL-T1 and

NL-T2 with large margin (+1.9% and +2.4% w.r.t. NL-T1 and NL-T2 on Charades),

while having less parameters and less operations (i.e. FLOPs). This result reflects

that DAL is more efficient and effective than NL layer for action detection in densely

annotated videos.

Timeception + DAL:

Finally, we embed DAL in another structure based on temporal convolution [93] to

confirm the effectiveness of DAL. Different from PDAN, Timeception [93] utilizes sev-

eral temporal convolutions in parallel with different dilation rates. This design enables

Timeception to explore multi-temporal scales in one layer. However, Timeception is

designed for multi-label action classification, not for action detection. So, it applies

max pooling to aggregate the temporal information and halve the temporal resolu-

tion at every layer. Hence, we remove the max pooling from the original Timeception

structure to utilize the temporal information for the action detection task (i.e. Time-

ception (STCL)). Based on this new structure, we replace the standard temporal

convolution with our proposed DAL (i.e. Timeception (DAL)) to demonstrate that

DAL can be combined with other architectures. In Table 4.8, we report the mAP

performance of 3-layer Timeception. We find out that Timeception (DAL) improves

the base network performance (up to +2.3% on TSU w.r.t. Timeception (STCL)),

but it under-performs compared to PDAN.

Comparison with State-of-the-Art Methods

The proposed PDAN is compared with previous methods on the MultiTHUMOS,

Charades and TSU (CS) datasets in Table 4.9, Table 4.10 and Table 4.11. To be

noticed, the I3D baseline (i.e. I3D in the tables) used for comparison is a classifier on
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#Param (M) FLOPs (GMac) Charades TSU
PDAN (STCL) 5.9 0.59 24.1 29.0

PDAN (STCL)+NL-T1 6.4 0.65 24.6 29.2
PDAN (STCL)+NL-T2 8.5 0.88 23.9 28.5

PDAN (DAL) 5.9 0.62 26.5 32.7

Table 4.7: Frame-based mAP (%) to show the effectiveness of the components in
PDAN. PDAN (STCL) indicates that we replace DAL in the PDAN block by the
standard temporal convolution layer. NL-T1 indicates that we add one Non-Local
layer before the PDAN (STCL) classifier. NL-T2 indicates that we add one NL-layer
after every STCL in PDAN (STCL).

#Param FLOPs Charades TSU
I3D+Timeception (STCL) 4.8 M 0.46 G 21.8 27.0
I3D+Timeception (DAL) 4.8 M 0.47 G 23.0 29.3

Table 4.8: Frame-based mAP (%) to show the effectiveness of DAL integrated in
Timeception structure.

mAP
Two-stream [223] 27.6
Two-stream+LSTM [223] 28.1
Multi-LSTM [223] 29.6
SSN [237] 30.3
I3D [149] 29.7
I3D + LSTM [149] 29.9
I3D + temporal pyramid [149] 31.2
TAN [35] 33.3
I3D + Dilated-TCN* [107] 43.2
I3D + 3 TGMs [149] 44.3
I3D + MS-TCN* [57] 45.3
I3D + 3 TGMs + Super event [149] 46.4

I3D + PDAN 47.6

Table 4.9: Performance of the state-of-the-art methods and our approach on Multi-
THUMOS. I3D model is two-stream, using both RGB and optical flow input. Note:
cited papers may not be the original paper but the one providing this mAP results.
*indicates the results obtained by running the available code.

top of the segment-level I3D features. Unlike the other SOTA, I3D baseline does not

have further temporal processing after the visual encoding part. Thus, this method

cannot model long temporal information, which is crucial for action detection. In

contrast, the other action detection baselines as [150, 149, 223] focus on the temporal

processing. The improvement over I3D baseline reflects the effectiveness of modeling

temporal information. PDAN consistently outperforms the prior methods [223, 71,
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Modality mAP
Two-stream [172] RGB + Flow 8.9
Two-stream+LSTM [172] RGB + Flow 9.6
R-C3D [212] RGB 12.7
Asynchronous Temporal Fields [172] RGB + Flow 12.8
I3D [150] RGB 15.6
I3D [150] RGB + Flow 17.2
I3D + 3 temporal conv.layers [149] RGB + Flow 17.5
TAN [35] RGB + Flow 17.6
I3D + WSGN (supervised) [63] RGB 18.7
I3D + Stacked-STGCN [71] RGB 19.1
I3D + Super event [150] RGB + Flow 19.4
I3D + 3 TGMs [149] RGB + Flow 21.5
I3D + 3 TGMs + Super event [149] RGB + Flow 22.3
I3D + Dilated-TCN* [107] RGB + Flow 23.5
I3D + MS-TCN* [57] RGB + Flow 24.2
I3D + PDAN RGB 23.7
I3D + PDAN RGB + Flow 26.5

Table 4.10: Per-frame mAP on Charades, evaluated with the Charades localization
setting. Note: cited papers may not be the original paper but the one providing this
mAP results. *indicates the results obtained by running the available code.

mAP
R-I3D [212] 8.7
I3D+Dilated-TCN [107] 25.1
I3D+MS-TCN [57] 25.9
I3D+TGM [149] 26.7
I3D+PDAN 32.7

Table 4.11: Frame-level mAP on TSU dataset (CS protocol).
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Figure 4-12: Handling 2 challenges related to complex temporal relations on Charades
dataset: (1) Multi-tasking, (2) Short and long temporal duration. We calculate the
mAP for each group of actions for each challenge.

150, 35, 149] for action detection on all the three challenging datasets. For Dilated-

TCN and MS-TCN, PDAN improves the performance with a large margin. In the

community, some researchers have also applied the proposed PDAN in egocentric

fine-grained action segmentation and revealed promising results [227].
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We then study how our proposed method can tackle complex temporal relations.

We perform this comparison with I3D baseline [17], and TGM + Super event [149].

In Fig. 4-12, we first study the performance along the multi-tasking challenge on Cha-

rades dataset and for detecting both long-term and shot-term temporal duration on

TSU dataset with the appropriate metrics. To study the ability of the different ap-

proaches to handle concurrent actions, we created 3 groups of actions depending on the

number of co-occurring actions per frame. Sparse: 1-5 concurrent actions, Medium:

6-9 concurrent actions and Dense: more than 10 concurrent actions. We compute the

mAP for these three groups and find out that PDAN consistently achieves the best

performance (see Fig. 4-12 (2)). Secondly, we study the performance along different

temporal lengths of the actions. High intra-class temporal variance indicates the ac-

tions where the temporal variance is larger than 10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. We then separate the

remaining actions into short actions (≤10 sec) and long actions (> 10 sec). We find

out that PDAN outperforms TGM + Super event for all these action types reflecting

better handling of both short-term and long-term duration. Thanks to the use of the

dilated attention layers with multi-temporal scales, PDAN can deal with actions of

variable length. This comparison with SOTA methods confirms that PDAN can bet-

ter handle complex temporal relations for actions from densely annotated untrimmed

videos.

4.5 Multi-Scale Temporal ConvTransformer

First, we define the problem statement of action detection in densely-labelled settings.

Formally, for a video sequence of length 𝑇 , each time-step 𝑡 contains a ground-truth

action label 𝑦𝑡,𝑐 ∈ {0, 1}, where 𝑐 ∈ {1, ..., 𝐶} indicates an action class. For each

time-step, an action detection model needs to predict class probabilities 𝑦𝑡,𝑐 ∈ [0, 1].

Here, we describe our proposed action detection network: MS-TCT. As depicted in

Fig. 4-13, it consists of four main components: (1) a Visual Encoder which encodes

a preliminary video representation, (2) a Temporal Encoder which structurally

models the temporal relations at different temporal scales (i.e., resolution), (3) a
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Temporal Scale Mixer, dubbed as TS Mixer, which combines multi-scale temporal

representations, and (4) a Classification Module which predicts class probabilities.

In the following sections, we present the details of each MS-TCT component.

4.5.1 Visual Encoder

The input to our action detection network: MS-TCT, is an untrimmed video which

may span for a long duration [33] (e.g. multiple minutes). However, processing

long videos in both spatial and temporal dimensions can be challenging, mainly due

to computational burden. As a compromise, similar to previous action detection

models [188, 149], we consider features of video segments extracted by a 3D CNN as

inputs to MS-TCT, which embed spatial information latently as channels. Specifically,

we use an I3D backbone [17] to encode videos. Each video is divided into 𝑇 non-

overlapping segments (during training), each of which consists of 8 frames. Such RGB

frames are fed as an input segment to the I3D network. Each segment-level feature

(output of I3D) can be seen as a transformer token of a time-step (i.e., temporal

token). We stack the tokens along the temporal axis to form a 𝑇 × 𝐷0 video token

representation, to be fed in to the Temporal Encoder.

Figure 4-13: The Multi-Scale Temporal ConvTransformer (MS-TCT) for action de-
tection is composed of four main parts. (1) Visual Encoder, (2) Temporal Encoder,
(3) Temporal Scale Mixer (TS Mixer) and (4) Classification Module. Note that 𝑇𝐶
indicates the 1-dimensional convolutional layer with kernel size 𝑘.
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4.5.2 Temporal Encoder

Figure 4-14: A single stage of our Temporal Encoder consists of (1) a Tempo-
ral Merging Block and (2) ×𝐵 Global-Local Relational Blocks. Each Global-Local
Relational Block contains a Global and a Local Relational Block. Here, 𝐿𝑖𝑛𝑒𝑎𝑟 and
𝑇𝐶 indicates the 1D convolutional layer with kernel size 1 and 𝑘 respectively.

As previously highlighted in Section 5.1, efficient temporal modeling is critical for

understanding long-term temporal relations in a video, especially for complex action

compositions. Given a set of video tokens, there are two main ways to model tempo-

ral information: using (1) a 1D Temporal Convolutional layer [107], which focuses on

the neighboring tokens but overlooks the direct long-term temporal dependencies in a

video, or (2) a Transformer [194] layer that globally encodes one-to-one interactions of

all tokens, while neglecting the local semantics, which has proven beneficial in model-

ing the highly-correlated visual signals [92, 65]. Our Temporal Encoder benefits from

the best of both worlds, by exploring both local and global contextual information in

an alternating fashion.

As shown in Fig. 4-13, Temporal Encoder follows a hierarchical structure with 𝑁

stages: Earlier stages learn a fine-grained action representation with more temporal

tokens, whereas the latter stages learn a coarse representation with fewer tokens.

Each stage corresponds to a semantic level (i.e., temporal resolution) and consists of

one Temporal Merging block and ×𝐵 Global-Local Relational Blocks (see Fig. 4-14):

Temporal Merging Block is the key component for introducing network hierarchy,

which shrinks the number of tokens (i.e., temporal resolution) while increasing the

feature dimension. This step can be seen as a weighted pooling operation among the
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neighboring tokens. In practice, we use a single temporal convolutional layer (with

a kernel size of 𝑘, and a stride of 2, in general) to halve the number of tokens and

extend the channel size by ×𝛾. In the first stage, we keep a stride of 1 to maintain

the same number of tokens as the I3D output, and project the feature size from 𝐷0

to 𝐷 (see Fig. 4-13). This is simply a design choice.

Global-Local Relational Block is further decomposed in to a Global Relational

Block and a Local Relational Block (see Fig. 4-14). In Global Relational Block, we

use the standard multi-head self-attention layer [194] to model long-term action de-

pendencies, i.e., global contextual relations. In Local Relational Block, we use a

temporal convolutional layer (with a kernel size of 𝑘) to enhance the token represen-

tation by infusing the contextual information from the neighboring tokens, i.e., local

inductive bias. This enhances the temporal consistency of each token while modeling

the short-term temporal information corresponding to an action instance.

In the following, we formulate the computation flow inside the Global-Local Rela-

tional Block. For brevity, here, we drop the stage index 𝑛. For a block 𝑗 ∈ {1, ..., 𝐵},

we represent the input tokens as 𝑋𝑗 ∈ R𝑇 ′×𝐷′ . First, the tokens go through multi-head

attention layer in Global Relational Block, which consists of 𝐻 attention heads. For

each head 𝑖 ∈ {1, ..., 𝐻}, an input 𝑋𝑗 is projected in to 𝑄𝑖𝑗 = 𝑊𝑄
𝑖𝑗𝑋𝑗, 𝐾𝑖𝑗 = 𝑊𝐾

𝑖𝑗 𝑋𝑗

and 𝑉𝑖𝑗 = 𝑊 𝑉
𝑖𝑗 𝑋𝑗, where 𝑊𝑄

𝑖𝑗 , 𝑊𝐾
𝑖𝑗 , 𝑊 𝑉

𝑖𝑗 ∈ R𝐷ℎ×𝐷′ represent the weights of linear

layers and 𝐷ℎ = 𝐷′

𝐻
represents the feature dimension of each head. Consequently, the

self-attention for head 𝑖 is computed as,

𝐴𝑡𝑡𝑖𝑗 = Softmax(
𝑄𝑖𝑗𝐾

⊤
𝑖𝑗√

𝐷ℎ
)𝑉𝑖𝑗 . (4.8)

Then, the output of different attention heads are mixed with an additional linear

layer as,

𝑀𝑗 = 𝑊𝑂
𝑗 Concat(𝐴𝑡𝑡1𝑗 , ..., 𝐴𝑡𝑡𝐻𝑗) +𝑋𝑗 , (4.9)

where 𝑊𝑂
𝑗 ∈ R𝐷′×𝐷′ represents the weight of the linear layer. The output feature size

of multi-head attention layer is the same as the input feature size.

Next, the output tokens of multi-head attention are fed in to the Local Relational

Block, which consists of two linear layers and a temporal convolutional layer. As shown
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Figure 4-15: Temporal Scale Mixer Module: The output tokens 𝐹𝑛 of stage 𝑛 is
resized and up-sampled to 𝑇 ×𝐷𝑣, then summed with the tokens from the last stage
𝑁 .

in Fig. 4-14, the tokens first go through a linear layer to increase the feature dimension

from 𝐷′ to 𝜃𝐷′, followed by a temporal convolutional layer with a kernel size of 𝑘,

which blends the neighboring tokens to provide local positional information to the

temporal tokens [95]. Finally, another linear layer projects the feature dimension back

to 𝐷′. The two linear layers in this block enable the transition between the multi-

head attention layer and temporal convolutional layer. The output feature dimension

remains the same as the input feature for the Local Relational Block. This output is

fed to the next Global Relational Block if block 𝑗 < 𝐵.

The output tokens from the last Global-Local Relational Block from each stage

are combined and fed to the following Temporal Scale Mixer.

4.5.3 Temporal Scale Mixer

After obtaining the tokens at different temporal scales, the question that remains is,

how to aggregate such multi-scale tokens to have a unified video representation? To

predict the action probabilities, our classification module needs to make predictions

at the original temporal length as the network input. Thus, we require to interpolate

the tokens across the temporal dimension, which is achieved by performing an up-

sampling and a linear projection step. As shown in Fig. 4-15, for the output 𝐹𝑛 from
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stage 𝑛 ∈ {1, ..., 𝑁}, this operation can be formulated as,

𝑔𝑛(𝐹𝑛) = UpSampling𝑛(𝐹𝑛𝑊
𝑛) , (4.10)

where 𝑊 𝑛 ∈ R𝐷𝑣×𝛾𝑛−1𝐷 with an upsampling rate of 𝑛. In our hierarchical architecture,

earlier stages (with lower semantics) have higher temporal resolution, whereas the

latter stages (with high semantics) have lower temporal resolution. To balance the

resolution and semantics, upsampled tokens from the last stage 𝑁 is processed through

a linear layer and summed with the upsampled tokens from each stage (𝑛 < 𝑁). This

operation can be formulated as,

𝐹 ′
𝑛 = 𝑔𝑛(𝐹𝑛)⊕ 𝑔𝑁 (𝐹𝑁 )𝑊𝑛 , (4.11)

where 𝐹 ′
𝑛 is the refined tokens of stage 𝑛, ⊕ indicates the element-wise addition and

𝑊𝑛 ∈ R𝐷𝑣×𝐷𝑣 . Here, all the refined token representations have the same temporal

length. Finally, we concatenate them to get the final multi-scale video representation

𝐹𝑣 ∈ R𝑇×𝑁𝐷𝑣 .

𝐹𝑣 = Concat(𝐹 ′
1, ..., 𝐹

′
𝑁−1, 𝐹𝑁 ) . (4.12)

Note that more complicated fusion methods [36, 125] can be built on top of these

multi-scale tokens. However, we see that the simple version described above performs

the best.

The multi-scale video representation 𝐹𝑣 is then sent to the classification module

for making predictions.

4.5.4 Classification Module

Training MS-TCT is achieved by jointly learning two classification tasks. As men-

tioned in Section 4.1, in this work, we introduce a new classification branch to learn

a heat-map of the action instances. This heat-map is different from the ground truth

label as it varies across time, based on the action center and duration. The objective

of using such heat-map representation is to encode temporal relative positioning in

the learned tokens of MS-TCT.
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In order to train the heat-map branch, we first need to build the class-wise ground-

truth heat-map response 𝐺* ∈ [0, 1]𝑇×𝐶 , where 𝐶 indicates the number of action

classes. In this work, we construct 𝐺* by considering the maximum response of

a set of one-dimensional Gaussian filters. Each Gaussian filter corresponds to an

instance of action class in a video, centered at the specific action instance, in time.

More precisely, for every temporal location 𝑡 the ground-truth heat-map response is

formulated as,

𝐺*
𝑐(𝑡) = max

𝑎=1,...,𝐴𝑐

Gaussian(𝑡, 𝑡𝑎,𝑐;𝜎) , (4.13)

Gaussian(𝑡, 𝑡𝑎,𝑐;𝜎) =
1√
2𝜋𝜎

exp−
(𝑡−𝑡𝑎,𝑐)

2

2𝜎2 . (4.14)

Here, Gaussian(·, ·;𝜎) provides an instance-specific Gaussian activation according to

the center and instance duration. Moreover, 𝜎 is equal to 1
2

of each instance duration

and 𝑡𝑎,𝑐 represents the center for class 𝑐 and instance 𝑎. 𝐴𝑐 is the total number of

instances for class 𝑐 in the video. As shown in Fig. 4-13, heat-map 𝐺 is computed

using a temporal convolutional layer with a kernel size of 𝑘 and a non-linear activation,

followed by another linear layer with a sigmoid activation. Given the ground-truth

𝐺* and the predicted heat-map 𝐺, we compute the action focal loss [240] which is

formulated as,

ℒFocal =
1

𝐴

∑︁
𝑡,𝑐

⎧⎪⎨⎪⎩
(1−𝐺𝑡,𝑐)

2log(𝐺𝑡,𝑐) if 𝐺*
𝑡,𝑐 = 1 ,

(1−𝐺*
𝑡,𝑐)

4(𝐺𝑡,𝑐)
2log(1−𝐺𝑡,𝑐) if 𝐺*

𝑡,𝑐 ̸= 1; ,

(4.15)

where 𝐴 is the total number of action instances in a video.

Similar to the previous work [188], we leverage another branch to perform the

usual multi-label classification. With video features 𝐹𝑣, the predictions are computed

using two linear layers with a sigmoid activation, and Binary Cross Entropy (BCE)

loss [138] is computed against the ground-truth labels. Only the scores predicted from

this branch are used in evaluation. Input to both the branches are the same output

tokens 𝐹𝑣. The heat-map branch encourages the model to embed the relative position

w.r.t. the instance center in to video tokens 𝐹𝑣. Consequently, the classification

branch can also benefit from such positional information to make better predictions.
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The overall loss is formulated as a weighted sum of the two losses mentioned above,

with the weight 𝛼 is chosen according to the numerical scale of losses.

ℒTotal = ℒBCE + 𝛼 ℒFocal . (4.16)

4.5.5 Experiments

Datasets: Similar to PDAN, we evaluate our framework on three challenging multi-

label action detection datasets: Charades, TSU and MultiTHUMOS.

Implementation Details: In the proposed network, we use number of stage 𝑁 = 4

the number of Global-Local Relational Blocks 𝐵 = 3 for each stage. Note that

for small dataset as MultiTHUMOS, 𝐵 = 2 is sufficient. The number of attention

heads for the Global Relational Block is set to 8. We use the same output feature

dimension of I3D (after Global Average Pooling) as input to MS-TCT, and thus

𝐷0 = 1024. Input features are then projected in to 𝐷 = 256 dimensional feature

using the temporal merging block in the first stage. We consider feature expansion

rate 𝛾 = 1.5 and 𝜃 = 8. Kernel size 𝑘 of temporal convolutional layer is set to be

3, with zero padding to maintain the resolution. The loss balance factor 𝛼 = 0.05.

The number of tokens is fixed to 𝑇 = 256 as input to MS-TCT. During training, we

randomly sample consecutive 𝑇 tokens from a given I3D feature representation. At

inference, we follow [188] to use a sliding window approach to make predictions. Our

model is trained on two GTX 1080 Ti GPUs with a batch-size of 32. We use Adam

optimizer [103] with an initial learning rate of 0.0001, which is scaled by a factor of

0.5 with a patience of 8 epochs.

Ablation Study

In this section, we study the effectiveness of each component in the proposed network

on Charades dataset.

Importance of Each Component in MS-TCT: As shown in Table 4.12, I3D fea-

tures with the classification branch only, is considered as the representative baseline.

This baseline consists in a classifier that discriminates the I3D features at each time-
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step without any further temporal modeling. On top of that, adding our Temporal

Encoder significantly improves the performance (+ 7.0%) I3D feature baseline. This

improvement reflects the effectiveness of the Temporal Encoder in modeling the tem-

poral relations within the videos. In addition, if we introduce a Temporal Scale Mixer

to blend the features from different temporal scales, it gives a + 0.5% improvement,

with minimal increase in computations. Finally, we study the utility of our heat-map

branch in the classification module. We find that the heat-map branch is effective

when optimized along with the classification branch, but fails to learn discrimina-

tive representations when optimized without it (25.4% vs 10.7%). The heat-map

branch encourages the tokens to predict the action center while down-playing the

tokens towards action boundaries. In comparison, the classification branch improves

the token representations equally for all tokens, despite action boundaries. Thus,

when optimized together, both branches enable the model to learn a better action

representation. While having all the components, the proposed network achieves a

significant + 9.8% improvement I3D feature baseline validating that each component

in MS-TCT is instrumental for the task of action detection.

Design Choice for a Stage: In Table 4.13, we present the ablation related to the

design choices of a stage in the Temporal Encoder. Each row in Table 4.13 indicates

the result of removing a component in each stage. Note that, removing the Temporal

Merge block indicates replacing this block with a temporal convolutional layer of stride

1, i.e., only the channel dimension is modified across stages. In Table 4.13, we find that

removing any component can drop the performance with a significant margin. This

observation shows the importance of jointly modeling both global and local relations

in our method, and the effectiveness of the multi-scale structure. These properties in

MS-TCT make it easier to learn complex temporal relationships which span across

both (1) neighboring temporal segments, and (2) distant temporal segments.

Analysis of the Local Relational Block: We also dig deeper in to the Local

Relational Block in each stage. As shown in Fig. 4-14, there are two linear layers

and one temporal convolutional layer in a Local Relational Block. In Table 4.14,

we further perform ablations of these components. First, we find that without the
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Temporal TS Heat-Map Classification mAP
Encoder Mixer Branch Branch (%)
× × × ✓ 15.6
✓ × × ✓ 23.6
✓ ✓ × ✓ 24.1
✓ ✓ ✓ × 10.7
✓ ✓ ✓ ✓ 25.4

Table 4.12: Ablation on each component in MS-TCT: The evaluation is based
on per-frame mAP on Charades dataset.

Temporal Global Local mAP
Merge Layer Layer (%)
✓ ✓ × 24.0
✓ × ✓ 20.9
× ✓ ✓ 22.7
✓ ✓ ✓ 25.4

Table 4.13: Ablation on the design of a single stage in our Temporal En-
coder, evaluated using per-frame mAP on Charades dataset.

temporal convolutional layer, the detection performance drops. This observation

shows the importance of mixing the transformer tokens with a temporal locality.

Second, we study the importance of the transition layer (i.e., linear layer). When the

feature size remains constant, having the transition layer can boost the performance

by + 1.8%, which shows the importance of such transition layers. Finally, we study

how the expansion rate affects the network performance. While setting different

feature expansion rates, we find that temporal convolution can better model the local

temporal relations when the input feature is in a higher dimensional space.

Comparison to the State-of-the-Art

In this section, we compare MS-TCT with the state-of-the-art action detection meth-

ods (see Table 4.15). Proposal based methods, such as R-C3D [212] fail in multi-label

datasets due to the highly-overlapping action instances, which challenge the proposal

and NMS-based methods. Superevent [150] superimposes a global representation to

each local feature based on a series of learnable temporal filters. However, the dis-

tribution of actions varies from one video to the other. As super-event learns a fixed

filter location for all the videos in the training distribution, this location is suitable
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Feature Expansion Temporal mAP
Rate (𝜃) Convolution (%)

8 × 22.3
× ✓ 22.4
1 ✓ 24.2
4 ✓ 24.9
8 ✓ 25.4

Table 4.14: Ablation on the design of Local Relational Block: Per-frame mAP
on Charades using only RGB input. × indicates we remove the linear or temporal
convolutional layer. Feature expansion rate 1 indicates that the feature-size is not
changed in the Local Relational Block.

Backbone GFLOPs Charades MultiTHUMOS TSU
R-C3D [212] C3D - 12.7 - 8.7
Super-event [150] I3D 0.8 18.6 36.4 17.2
TGM [149] I3D 1.2 20.6 37.2 26.7
PDAN [32] I3D 3.2 23.7 40.2 32.7
Coarse-Fine [97] X3D - 25.1 - -
MLAD [188] I3D 44.8 18.4 42.2 -
MS-TCT I3D 6.6 25.4 43.1 33.7

Table 4.15: Comparison with the state-of-the-art methods on three densely
labelled datasets. Backbone indicates the visual encoder. Note that the evaluation
for the methods is based on per-frame mAP (%) using only RGB videos.

to mainly actions with high frequency. TGM [149] and PDAN are methods based on

temporal convolution of video segments. Nevertheless, those methods only process

videos locally at a single temporal scale. Thus, they are not effective in modeling long-

term dependencies and high-level semantics. Coarse-Fine Network [97] achieves 25.1%

on Charades. However, this method is built on top of the visual encoder X3D [60],

which prevents the usage of higher number of input frames. Moreover, it relies on

a large stride between the frames. Therefore, it fails to model fine-grained action

relations, and can not process long videos in MultiTHUMOS and TSU. MLAD [188]

jointly models action class relations for every time-step and temporal relations for

every class. This design leads to a huge computational cost, while under-performing

on datasets with a large number of action classes (e.g. Charades). Thanks to the

combination of transformer and convolution in a multi-scale hierarchy, the proposed

MS-TCT consistently outperforms previous state-of-the-art methods in all three chal-

lenging multi-label action detection datasets that we considered. We also compare
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𝜏 = 0 𝜏 = 20 𝜏 = 40
𝑃𝐴𝐶 𝑅𝐴𝐶 𝐹1𝐴𝐶 𝑚𝐴𝑃𝐴𝐶 𝑃𝐴𝐶 𝑅𝐴𝐶 𝐹1𝐴𝐶 𝑚𝐴𝑃𝐴𝐶 𝑃𝐴𝐶 𝑅𝐴𝐶 𝐹1𝐴𝐶 𝑚𝐴𝑃𝐴𝐶

I3D 14.3 1.3 2.1 15.2 12.7 1.9 2.9 21.4 14.9 2.0 3.1 20.3
CF 10.3 1.0 1.6 15.8 9.0 1.5 2.2 22.2 10.7 1.6 2.4 21.0
MLAD [188] 19.3 7.2 8.9 28.9 18.9 8.9 10.5 35.7 19.6 9.0 10.8 34.8
MS-TCT 26.3 15.5 19.5 30.7 27.6 18.4 22.1 37.6 27.9 18.3 22.1 36.4

Table 4.16: Evaluation on the Charades dataset using the action-conditional
metrics: Similar to MLAD, both RGB and Optical flow are used for the evalua-
tion. 𝑃𝐴𝐶 - Action-Conditional Precision, 𝑅𝐴𝐶 - Action-Conditional Recall, 𝐹1𝐴𝐶 -
Action-Conditional F1-Score, 𝑚𝐴𝑃𝐴𝐶 - Action-Conditional Mean Average Precision.
𝜏 indicates the temporal window size.

the computational requirement (FLOPs) for the methods built on top of the same

Visual Encoder (i.e., I3D features), taking as input the same batch of data. We

observe that the FLOPs of MS-TCT is higher with a reasonable margin than pure

convolutional methods (i.e., PDAN, TGM, super-event). However, compared to a

transformer based action detection method MLAD, MS-TCT uses only 1
7
th of the

FLOPs.

We also evaluate our network with the action-conditional metrics introduced

in [188] on Charades dataset in Table 4.16. These metrics are used to measure a

method’s ability to model both co-occurrence dependencies and temporal dependen-

cies of action classes. Although our network is not specifically designed to model

cross-class relations as in MLAD, it still achieves higher performance on all action-

conditional metrics with a large margin, showing that MS-TCT effectively models

action dependencies both within a time-step (i.e., co-occurring action, 𝜏 = 0) and

throughout the temporal dimension (𝜏 > 0).

Finally, we present a qualitative evaluation for PDAN and MS-TCT on the Cha-

rades dataset in Fig. 4-16. As the prediction of the Coarse-Fine Network is similar to

the X3D network which is limited to dozens of frames, thus we can not compare with

the Coarse-Fine network on the whole video. Here, we observe that MS-TCT can

predict action instances more precisely compared to PDAN. This comparison reflects

the effectiveness of the transformer architecture and multi-scale temporal modeling.
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Figure 4-16: Visualization of the detection results on an example video along
time axis. In this figure, we visualize the ground truth and the detection of PDAN
and MS-TCT.

Table 4.17: Study on stage
type showing the effect of hav-
ing both convolutions and self-
attention.

Stage-Type mAP
Pure Transformer 22.3
Pure Convolution 21.4
ConvTransformer 25.4

Table 4.18: Study on 𝜎
showing the effect of scale
of Gaussians in heat-maps.

Variance: 𝜎 mAP
1/8 duration 24.6
1/4 duration 24.8
1/2 duration 25.4

Discussion and Analysis

Transformer, Convolution or ConvTransformer? To confirm the effectiveness

of our ConvTransformer, we compare with a pure transformer network and a pure

convolution network. Each network has the same number of stages as MS-TCT with

similar settings (e.g. blocks, feature dimension). In pure transformer, a pooling layer

and a linear layer constitute the temporal merging block, followed by 𝐵 transformer

blocks in each stage. A transformer block is composed of a multi-head attention

layer, norm-add operations and a feed-forward layer. A learned positional embedding

is added to the input tokens to encode the positional information. This pure trans-

former architecture achieves 22.3% on Charades. In pure convolution-based model,

we retain the same temporal merging block as in MS-TCT, followed by a stack of

𝐵 temporal convolution blocks. Each block consists of a temporal convolution layer

with a kernel-size of 𝑘, a linear layer, a non-linear activation and a residual link.

This pure temporal convolution architecture achieves 21.4% on Charades. In con-

trast, the proposed ConvTransformer outperforms both the pure transformer and the

pure convolutional network by a large margin (+ 3.1%, and + 4.0% on Charades,
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respectively. See Table 4.17). It shows that ConvTransformer can better model the

temporal relations of complex actions.

Heat-map Analysis: We visualize the ground truth heat-map (𝐺*) and the corre-

sponding predicted heat-map (𝐺) in Fig. 4-17. We observe that with the heat-map

branch, MS-TCT predicts the center location of the action instances, showing that

MS-TCT embeds the center-relative information in to the tokens. However, as we op-

timize with the focal loss to highlight the center, the boundaries of the action instance

in this heat-map are less visible. We then study the impact of 𝜎 on performance. As

shown in Table 4.18, we set 𝜎 to be either 1
8
, 1

4
or 1

2
of the instance duration while

generating the ground-truth heat-map 𝐺*. MS-TCT improves by + 0.5%, + 0.7%, +

1.3% respectively the MS-TCT without the heat-map branch, when 𝐺* set to different

𝜎. This result reflects that a larger 𝜎 can better provide the center-relative position.

We investigate further by adding a heat-map branch to our PDAN (see Sec. 4.4).

Although the heat-map branch also improves PDAN (+ 0.4 %), the relative improve-

ment is lower compared to MS-TCT (+ 1.3 %). Our method features a multi-stage

hierarchy along with a TS Mixer. As the heat-map branch takes input from all the

stages, the center-relative position is embedded even in an early stage. Such tokens

with the relative position information, when fed through the following stages, benefits

the multi-head attention to better model temporal relations among the tokens. This

design makes MS-TCT to better leverage the heat-map branch compared to PDAN.

Number of Tokens 𝑇 . As mentioned in the implementation details, we randomly

select consecutive 𝑇 tokens for each video in the training phase and utilize the sliding

window at inference. Here, we have studied how the number of tokens 𝑇 affects the

action detection performance. When 𝑇 is set to 128, 256 and 512 tokens, MS-TCT

achieves 25.0%, 25.4% and 25.5% on Charades. There is no significant difference in the

action detection performance while changing the number of input tokens. However,

increasing the number of tokens 𝑇 in MS-TCT increases the FLOPs. For the trade-

off between the computation cost and performance precision, we set 𝑇 to 256 tokens,

which corresponds to 2048 frames (about 86 sec.) of video.

Temporal Positional Embedding: We further study whether the Temporal En-
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Figure 4-17: Heat-map visualization along time axis: On the top, we show the
ground truth heat-map (𝐺*) of the example video. On the bottom is the correspond-
ing learned heat-map (𝐺) of MS-TCT. As the heat-map is generated by a Gaussian
function, the lighter region indicates closer to the center of the instance.

coder of MS-TCT benefits from positional embedding. We find that the performance

drops by 0.2% on Charades when a learnable positional embedding [51] is added to

the input tokens before processing them with the Temporal Encoder. This shows

that the current design can implicitly provide a temporal positioning for the tokens.

Adding further positional information to the tokens makes it redundant, leading to

lower detection performance.

4.6 Conclusion

In this chapter, we study different strategies for modelling temporal dependencies

in untrimmed videos. Our focus lies in how to leverage the attention mechanism to

enhance temporal modelling.

Firstly, we introduce the SA-TCN. This network features an encoder-decoder ar-

chitecture along with a self-attention block in-between the encoder and decoder to

model the temporal dependencies in long-term videos. However, the encoder network

shrinks the temporal features into a low-resolution status and the decoder network

then recovers the information. Limited by the low temporal resolution in the middle

stage, SA-TCN can not effectively detect the fine-grained short actions from the video
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and the region with co-occurring actions. As SA-TCN aims at processing temporal

relations in long-term videos, we evaluate this model with DAHLIA dataset, which

has an average video duration of 40 mins. SA-TCN achieves competitive performance

with respect to the state-of-the-art methods.

For detecting actions with variant length and dense occurrence, we propose PDAN,

which is a temporal convolutional network. PDAN features temporal kernels which

are adaptive to the input data based on the proposed kernel-level attention mech-

anism. This property makes PDAN able to model the complex temporal relations

across snippets in videos. Although PDAN achieves state-of-the-art performance in

modelling complex temporal relations, the distant cross-snippet relations can only

be obtained based on the result of low-level layers. We still need a framework that

can model the long-term temporal relations more effectively and directly. Recently,

we propose the MS-TCT, which inherits a transformer encoder architecture, while

also gaining benefits from temporal convolution. With the hierarchy structure, our

method can model temporal dependencies both globally and locally at different tem-

poral scales. Moreover, the heat-map branch that introduce in MS-TCT can help

model the action centre location and predict the action occurrence, especially for

videos with dense action occurrence. Both PDAN and MS-TCT outperform state-of-

the-art methods on the multi-label action detection benchmarks. As MS-TCT can

further model the temporal dependencies in multiple temporal scales, it provides a

more precise detection than PDAN.
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Chapter 5

Semantic Relational Reasoning for

Action Understanding

As explained in the previous chapters, one of the major challenges in video analytic

involves detecting fine-grained actions in the video. We argue that learning the se-

mantic relations in the video can help to learn the representation of the challenging

fine-grained actions. Consequently, in this chapter we propose two models following a

similar framework aiming to be effective for fine-grained action recognition and detec-

tion. The work presented in this chapter has been published as full conference papers

in The British Machine Vision Conference (BMVC) in 2021 [29] and International

Conference on Pattern Recognition (ICPR) in 2022 [75].

5.1 Introduction

Real-world videos contain rich semantic information. For instance, understanding

the relation between knife and vegetables can help to detect the action cutting vegeta-

bles. Also, knowing the existence of the action class "open the book" can help detect

the action "reading book" in a video. Such semantic information can help represent

the challenging fine-grained actions as these actions always feature low inter-class mo-

tion variations and fine-grained object details (e.g., drink from bottle and eat snack).

As introduced in the previous chapter, existing methods have mostly focused
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Figure 5-1: Class-temporal relation. In a densely labelled video, there are dependen-
cies between action classes (1) across different time steps in black arrows and (2) at
the same time step (i.e. co-occurring actions) in green arrows.

on modelling the variations of visual cues (i.e., features extracted by visual encoder)

across time locally [107] or globally [150] within a video. However, these methods only

take into account the temporal information without any further "semantics". Real-

world videos contain many complex actions with inherent relationships between action

classes at the same time steps or across distant time steps (see Fig. 5-1). Modelling

such class-temporal relationships can be extremely useful for locating actions in those

videos. Moreover, a sequential processing model is problematic when the action

instances in a video have non-sequential dependencies or non-linear temporal ordering:

for example, overlapping action instances or re-occurrence of action instances over the

course of the video [139].

To this end, we introduce a Class-Temporal Relational Network (CTRN)

to harness the relationships among the action classes in a video to enhance action de-

tection. To explore such relations, CTRN first filters the class-specific representations

from the input features at each time step in a video. Then, the transformed per-class

representation is utilized for modelling the inter-class relations. (1) Across different

time steps, a graph-based layer is proposed to learn the dependencies between differ-

ent action classes of the video. This learned relation map is shared between all the

time steps to refine the action features of the related actions (e.g. open the book and

read book). Then, a temporal layer is used to aggregate features from the same class

over time to allow the graph-based layer to explore both short-term and long-term

class dependencies. (2) At the same time step, a graph-based classifier is proposed
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to leverage the privileged co-occurring action probabilities to improve co-occurring

action detection. We evaluate our model on challenging densely labelled datasets

such as Charades and MultiTHUMOS for the action detection task. Our method

outperforms state-of-the-art results using fewer parameters and FLOPs.

Due to the limitation of computation resources, offline action detection methods

are built on top of pre-extracted flattened 1-dimensional features (i.e., snippet-level

feature). Although those features still preserve the spatial video information latently,

the dissociation between the visual encoder and the temporal module limits the ac-

tion detection model to directly model the appearance and spatial semantics in the

video. To verify that our method can be generalized to extract the spatial-temporal

semantics and to model their relationships (see Fig. 5-2), we construct a semantic-

reasoning enhanced visual encoder, Temporal Human Object Relation Network

(THORN), for action recognition. THORN follows a similar framework as CTRN,

but it aims at modelling the relations of object semantics in the video clips. The main

difference lies in the semantic extraction part: THORN extracts the semantics of the

objects from the spatial-temporal representation of the visual encoder. To ensure the

object-specific semantics, those extracted object representations are supervised by the

pseudo-labels generated by an pre-trained object classifier. With the semantic extrac-

tion module, THORN can enhance the human or object representation (i.e., noun)

and capture the relation across the human and the objects in the videos (i.e., verb),

which results in better representing the fine-grained actions and categorizing them. To

show the robustness of THORN, we evaluate it on EPIC-KITCHENS 55 and EGTEA

Gaze+, two challenging first-person datasets with many human-object interactions.

THORN achieves competitive state-of-the-art performance on both datasets.

In the following sections, we review the previous semantic reasoning methods for

action detection and we introduce the proposed methods in detail.
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Figure 5-2: An example of the Human-Object Interactions of wash plate in an first-
view video. Green arrows represent interactions at the same time step (i.e., spatial
relation) while black arrows represent interactions across time. In practice, the model
captures all the detected objects. For simplicity reasons, here we highlight only the
relevant objects related to wash plate. The sampled frames are taken from EPIC-
KITCHENS.

5.2 Related Work

In this section, we review the methods that designed to model the relations between

different semantics. Recently, graphs have been a popular way for modelling relation

between the semantics in the video [91, 219, 228, 220].

In action understanding, Lan et al. [106] propose to represent videos by a hi-

erarchy of mid-level action elements (MAEs), where each MAE corresponds to an

action-related spatio-temporal segment in the video in an unsupervised manner. This

method is capable of distinguishing action-related segments from background seg-

ments and representing actions at multiple spatio-temporal resolutions. Sigurdsson

et al. [172] propose a fully-connected temporal CRF model for reasoning over variant

intent of videos. The intent are defined as the clustering of similar activities (e.g.,

actions, object) in a video. Fully-connected CRFs are applied as a post-processing of

per-frame CNN features and object features. Although these approaches can struc-

tural the video using semantics, they do not learn the explicit temporal structure,

nor are they learned in an end-to-end fashion.

In recent years, Wang et al. [206] propose to utilize the graph to represent the
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video and modelling the interaction between objects and humans via graph reasoning.

The method is built on top of I3D features and formulates the node representation

by ROI alignment and via an object detector. However, the method that defines its

nodes by using ROI-Align from the encoded feature is not optimal. This is because

multiple objects are present at the scene and some of them are very close to each

other in most cases. As a result, the projected coordinates of different objects tend

to be in the same feature patch (a set of pixels). Therefore, extracting an object’s

specific feature from a feature map with low resolution becomes difficult. For this

reason, they can not extract the object semantics precisely. Likewise, Ghosh et al. [71]

proposed a method based on Graph Convolutional Network (GCN), namely stacked-

STGCN, which extend STGCN [219] for action detection. Different from standard

STGCN where the nodes of a graph represent the body joints, in stacked-STGCN,

the nodes represent different elements related to the actions such as actors, objects,

etc. Nodes are connected along the spatial and temporal dimensions to form the

edges of the graph. Such a graph representation characterizes better the complex

object-based actions in videos. But the challenge of handling actions over a long

range of time still persists. Moreover, the ROI Align issue also exists in stacked-

STGCN. Recently, Zhang et al. [232] extract action-specific feature descriptors for

each action and learn action correlations using an attention mechanism. However the

framework roots in video-level multi-label classification as the mechanism is designed

for summarizing the video content. Therefore this method is not trivial to extend to

action detection tasks. Most related to our research direction, Tirupattur et al. [188]

introduced MLAD that can explore the class-temporal relations with a set of self-

attention layers: an inter-class attention map for every time step and an inter-time

attention map for every action class. However, the large number of attention maps

leads to huge computational costs for long untrimmed videos and hence, limits the

model to learn the discriminative relations among the action classes.

To tackle this, we propose CTRN, which is a graph-based model. Different from

MLAD, CTRN explores the action class relation shared by all the time steps but

in different temporal scales. This design enables CTRN to effectively handle both
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short-term and long-term action relations simultaneously. We also extend CTRN’s

framework in visual encoder level (i.e., THORN) to show the generalization of this

framework. In the following sections, we introduce the proposed networks.

5.3 Class Temporal Relational Network

In this section, we formulate the proposed end-to-end model Class-Temporal Rela-

tional Network (CTRN) for action detection. As shown in Fig. 5-3, our model is

composed of four major components. The Visual Encoder encodes the video into

a sequence of snippet-level spatio-temporal representation. This representation is fed

to a Class-temporal Relational Network (CTRN) that predicts the action labels at

each time instant. The sub-components in CTRN consist of the following: Firstly,

a Representation Transform Module, which transforms the mixed visual rep-

resentation into a class-wise representation. Secondly, a Class-Temporal Module

explores the action class relations across different time steps and at different tempo-

ral resolutions. Finally, a G-Classifier which classifies the class-temporal features

into action categories. Unlike previous binary classifiers [150, 149] that overlook the

dependencies between the action classes, G-Classifier leverages the privilege class de-

pendencies within the training data, thus improving the co-occurring action detection

performance. In the following, we introduce these modules in details.

5.3.1 Visual Encoder

Similar to most action detection models [107, 150], our model processes the features

on top of video snippet representations extracted from 2D/3D CNNs. In this work,

we use spatio-temporal features extracted from RGB and Optical Flow (OF) I3D net-

works [17] to encode appearance and motion information respectively. Then, a video

is divided into 𝑇 non-overlapping snippets, each snippet consisting of 16 frames. The

inputs to the RGB and Flow deep networks are either the color images or the cor-

responding OF frames of a snippet. We stack the snippet-level features along the

temporal axis to form a 𝑇 ×𝐷1 dimensional video representation, denoted as 𝑋. The
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action instances in 𝑋 are always longer than a snippet and their visual represen-

tation mixes information of all action classes. As a result, 𝑋 is not discriminative

enough, and needs both temporal and class modelling. To this end, we develop the

class-temporal relationship from the input representation 𝑋 within CTRN which is

described in the following. Note that the model architecture remains the same for

both RGB and OF streams.

5.3.2 Representation Transform Module

The input 𝑋 is first fed into the Representation Transform Module (RTM). The

goal of this module is to transform the input to a class-specific representation and

to lightweight the channel size to facilitate the following computation (see Fig. 5-

4). In practice, RTM duplicates the input features 𝐶 times into a new dimension

representing the action classes followed by a channel-mixer MLP with non-linear

activation and dropout. MLP is the linear transformation layer [4] to do the linear

projection. The equation can be formulated as:

𝑋 ′
𝑖 = 𝑅𝑒𝐿𝑈(𝑀𝐿𝑃 (𝑋)) (5.1)

𝑋 ′ = 𝐷𝑟𝑜𝑝𝑂𝑢𝑡([𝑋 ′
1, 𝑋

′
2, ...𝑋

′
𝐶 ])) (5.2)

where 𝑋 ′ ∈ R𝑇×𝐶×𝐷2 is the output representation of RTM. 𝐷2 = 𝐷1

𝛽
in which 𝛽 is

larger than 1 to shallow the channel size. In order to learn class-specific representation,

we embed an auxiliary branch with a G-classifier that maps 𝑋 ′ to the action labels

(see Fig. 5-3). This transformed feature representation is further exploited to explore

the class and temporal relations in the subsequent modules of the network. The

computation flow is given in Fig. 5-5.

5.3.3 Class-Temporal Modeling

The Class-Temporal Module (CTM) is the key component of CTRN that exploits the

class-temporal relations of its input feature. Inspired by the recent success of Graph

Convolutional Network (GCN) in relational reasoning [104, 228, 91, 170], we build
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Figure 5-3: Overall structure. The model composed of a Visual Encoder, a Represen-
tation Transform Module, a Class-Temporal Module (with C-GCN and TCN) and a
G-Classifier (i.e. G-Clf). Note: Two G-Clfs are sharing the weights.

Figure 5-4: The RTM extracts the class-specific information of action from the I3D
feature. The semantic extraction is supervised by the action occurrence of each
snippet.

Figure 5-5: Computation flow of RTM.

this module with GCN. The objective of this component is to update the feature

representations by propagating the information across different classes and across

different time steps. For modelling the action class relations, we introduce a Class-

GCN (C-GCN) layer while the traditional Temporal Convolutional Network (TCN)
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layer [107] is utilized to aggregate the temporal information. The combination of C-

GCN and TCN enables CTM to capture the class semantic information along different

temporal hierarchies. Thanks to the learnable graph structure, C-GCN is adaptive

with the temporal scale set by TCN.

In the following, we first introduce how we map the feature representation to the

graph structure and then we introduce the CTM components.

Representation-to-Graph Mapping

For GCN to process the action relations, the data is to be converted into a graphical

structure. As we have transformed the representation into the class-specific format,

thus each vertex of the graph represents an action class at a time step with an em-

bedding vector belonging to R𝐷2 . In total, the graph consists of 𝐶×𝑇 vertices whose

topology is defined by an adjacency matrix (𝐴𝒞). This matrix determines whether

there are connections (i.e. relations) and its weights determine the intensity of the

connections.

Class-GCN (C-GCN)

Class-GCN aims at performing the cross-class reasoning over the constructed graph

representation. The relations between the many action instances are complex and

are different across videos. Besides, multiple C-GCNs are stacked in CTM through

which C-GCNs capture different levels of semantic information. Consequently, the

graph adjacency 𝐴𝒞 learns from the data itself for it to be adaptive across different

temporal scales.

In practice, 𝐴𝒞 ∈ R𝐶×𝐶 is parameterized and is optimized together with other

parameters in the training process. Moreover, to differentiate the class relations owing

to different videos, the adjacency matrix 𝐴𝒞 learns the inter-dependencies among the

classes using a self-attention mechanism. For this, the input feature 𝑋𝐶𝑖𝑛
∈ R𝐷2×𝑇×𝐶

is first embedded using bottleneck convolutional layer (i.e. 1 × 1). After that, the

output feature maps are rearranged into R𝐷2𝑇×𝐶 and R𝐶×𝐷2𝑇 followed by a matrix

multiplication. The value of the resultant matrix is then normalized by a softmax
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Figure 5-6: Computation flow of C-GCN.

activation. Now, the superimposed adjacency matrix 𝐴′
𝒞 can be formulated as:

𝐴′
𝒞 = 𝐴𝒞 + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊⊤

1 𝑋⊤
𝐶𝑖𝑛

𝑊2𝑋𝐶𝑖𝑛) (5.3)

where 𝑋𝐶𝑖𝑛
is the input of the C-GCN, and 𝑊1 and 𝑊2 are the weights of the bot-

tleneck convolutions. Each value in this matrix can be seen as a soft edge between

two vertices. The learned graph is shared across different time steps but unique for

different layers and videos. This design choice can capture the inter-class dependen-

cies in a video and makes C-GCN scalable across different temporal scales. Finally,

we perform the graph convolutional operation with the formulation in [104]:

𝑋𝐶𝑜𝑢𝑡 = 𝐴′
𝒞𝑋𝐶𝑖𝑛𝑊3 (5.4)

where 𝑊3 ∈ R𝐷2×𝐷2 is the learnable weight matrix. The operation with 𝐴′
𝒞 and with

𝑊3 represents the message passing and vertex feature updating, respectively. Finally,

𝑋𝐶𝑜𝑢𝑡 is rearranged to R𝐷2×𝑇×𝐶 . A computation flow of a C-GCN block is given in

Fig. 5-6.

CTM Block

As shown in Fig. 5-3, there are 𝐿 blocks in CTM, each block is composed of a C-

GCN and a TCN layer along with batch normalization and non-linear activations.

To stabilize the training, two residual connections are added in each block.

As mentioned earlier, TCN [107] aggregates the features across the temporal di-

mension while increasing the size of the temporal receptive field. In this work, we set

a fixed kernel size 𝐾 for all the TCNs. Thanks to the hierarchical structure of CTM,
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Figure 5-7: Thanks to the hierarchical structure of CTM, the Class-GCN can focus
on short-term action-dependencies in lower blocks and long-term action dependencies
in higher blocks.

C-GCN can focus on short-term action-dependencies in lower blocks and long-term

action dependencies in higher blocks (See Fig. 5-7). The refined feature representation

from the last block is fed into G-Classifier for the snippet-level classification.

Note that such a hierarchical structure is close to PDAN’s pyramid structure

that is introduced in Chapter 4.4. The main difference is that PDAN features the

novel dilated attention layer and modelling only the dependencies across time (i.e.,

snippets). CTM utilises the standard temporal convolutional layers and explores the

dependencies among extracted semantics (i.e., action classes) in multiple temporal

levels.

5.3.4 G-Classifier

Finally, we introduce a graph-based G-Classifier to perform the final snippet-level

classification. In action detection, multiple actions could happen simultaneously;

thus, prior knowledge of inter-dependencies among different action classes can ben-

efit in making precise predictions. To this end, inspired by [23, 24] in multi-label

image recognition, we introduce a GCN-based classifier in action detection. Com-

pared to the standard binary classifier for multi-label classification, G-Classifier has

an additional message passing step between the potential co-occurring action pairs,
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thus improving the co-occurring action detection performance. Different to C-GCN,

G-Classifier focuses only the actions that occur simultaneously (i.e., in a snippet-level

feature).

In practice, we follow the similar computation process as [24]. Firstly, we compute

the co-occurrence probabilities of all the action pairs in the training snippets. 𝑀𝑖𝑗

indicates the concurring times for action class 𝐶𝑖 and 𝐶𝑗. Then, the conditional

probability matrix 𝑃𝑖𝑗 = 𝑃 (𝐶𝑗|𝐶𝑖) is given by:

𝑃𝑖𝑗 = 𝑀𝑖𝑗/𝑁𝑖 (5.5)

where 𝑁𝑖 indicates the occurrence times of 𝐶𝑖 in training set, and 𝑃𝑖𝑗 ∈ R𝐶×𝐶 indicates

the probability of class 𝐶𝑗 given that 𝐶𝑖 occurs at the same time. In fine-grained

action datasets, some rare co-occurrences may add noise for detecting other common

actions, and the number of co-occurrences from training and test set may not be

completely consistent. In this work, we perform a thresholding operation to binarize

the conditional probability matrix to filter the noisy edges and make the classifier more

robust to inconsistent action classes. If 𝑃𝑖𝑗 ≥ 𝜃, 𝐴𝑆𝑖𝑗
is assigned 1, otherwise 0, where

𝜃 is the threshold. The computed co-occurrence matrix 𝐴𝑆 is a binary correlation

matrix which in turn defines the adjacency matrix of the graph for G-Classifier. The

feature of a node is computed by the weighted sum of its own features and the

adjacent nodes’ features. However, the binary correlation matrix may change the

feature scale [104] and make the node feature over-smoothed [113]. To alleviate this

problem, we normalized the 𝐴𝑆 following the re-weighted scheme in [23]. Different

to the learnable adjacency matrices in C-GCN, 𝐴𝑆 is fixed during training. The

formulation of this G-Classifier is given below [24]:

𝑆 = 𝜎(𝐴𝑆𝑋
𝐿𝑊𝑆) (5.6)

where 𝑆 is the prediction score, 𝜎 is the sigmoid activation. 𝑋𝐿 is the output feature

from the last block of the Class-Temporal Module, and 𝑊𝑆 ∈ R1×𝐷2 are the learnable

weights of the G-Classifier.

To learn the parameters, we optimize the multi-label binary cross-entropy loss

with the prediction results from the RTM and CTM. The total objective is formulate
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as:

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐶𝑇𝑀 + 𝛼ℒ𝑅𝑇𝑀 (5.7)

where 𝛼 is a weighting factor. Thus, by jointly optimizing both the entropy losses,

the model learns the relevant action labels per segment along with learning the class-

specific semantics across the Representation transform module.

5.3.5 Experiments

Datasets

To evaluate the capacity of the model for handling the complex fine-grained action

relations in the video, we choose three densely labelled action detection datasets:

Charades [172], TSU and MultiTHUMOS [223]. We follow the original settings of

these datasets for action detection. By default, all these datasets are evaluated by

the per-frame mAP.

Implementation

To have a fair comparison with previous works [188, 150], our network is built on top

of I3D, where 𝐷1 is 1024 and 𝐷2 is 64. Dropout probability is 0.3. For CTM, we

choose a 5-block (𝐿) structure. For C-GCN, the adjacency matrix is initialized by

1 and normalized by columns. In TCN, the kernel size 𝐾 is 9 and padding rate is

4. For G-Classifier, 𝜃 is set to 0.05. While learning the parameters, the weighting

factor 𝛼 is 1.2 and the random seed is fixed. We use Adam optimizer [103] with an

initial learning rate of 0.001, and we scale it by a factor of 0.3 with a patience of 10

epochs. The network is trained on a 4-GPU machine for 300 epochs. For two-stream

network, a mean pooling is performed between the prediction logits of the RGB and

Flow streams.

Comparison with State-of-the-Art Methods

The proposed CTRN is compared with previous state-of-the-art methods on the Cha-

rades, TSU and MultiTHUMOS datasets in Table 5.1. Our proposed method out-
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Model Modality Charades TSU MultiTHUMOS
R-C3D [212] RGB 12.7 8.7 -
I3D + TAN [35] RGB+OF 17.6 - 33.3
I3D + Superevent [150] RGB 18.6 17.2 36.4
I3D + TGM [149] RGB 20.6 26.7 37.2
I3D + TGM [149] RGB+OF 21.5 - 44.3
I3D + TGM + Superevent [149] RGB+OF 22.3 - 46.4
I3D + MLAD [188] RGB 18.4 - 42.2
I3D + MLAD [188] RGB+OF 22.9 - 49.6
I3D + CTRN RGB 25.3 33.5 44.0
I3D + CTRN RGB+OF 27.8 - 51.2

Table 5.1: Comparison with the State-of-the-art on three densely labelled datasets. The
results are given in per-frame mAP (%). RGB +OF indicates the late fusion performance.

performs current state-of-the-art methods on all three datasets. For example, +6.9%

(relatively +37.5%) w.r.t. MLAD [188] on Charades while using only RGB. We

then show the ability of CTRN capturing action co-occurrence, we evaluate with the

action-conditional metric [188] in Table 5.2. Compared with state-of-the-art meth-

ods, our method achieves higher performance on all action-conditional metrics show-

ing that CTRN effectively models action dependencies both within a time-step (i.e.

co-occurring action, 𝜏 = 0) and throughout time (𝜏 > 0).

To confirm the advancement of our method, we present further comparisons with

MLAD. We compare the model efficiency and complexity. MLAD is about 2 times

larger in parameters and 3.5 times larger in FLOPs than CTRN while processing the

same batch of videos. Hence, our method is more lightweight and computationally

efficient than MLAD. This is because MLAD predicts an inter-class attention map for

every time step and predicts an inter-time attention map for every action class. For

CTRN, we construct a temporal hierarchy structure. In each temporal scale, CTRN

learns a single global class relational graph shared by all time steps. Therefore, CTRN

is more lightweight and efficient.

Ablation Study

In Table 5.3, we study the complementation of the components in the proposed net-

work on the Charades dataset. We first discuss how RTM leads to a better feature

representation of the input spatio-temporal feature map from I3D. RTM is an essen-
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𝜏 = 0 𝜏 = 20 𝜏 = 40
𝑃𝐴𝐶 𝑅𝐴𝐶 𝐹1𝐴𝐶 𝑚𝐴𝑃𝐴𝐶 𝑃𝐴𝐶 𝑅𝐴𝐶 𝐹1𝐴𝐶 𝑚𝐴𝑃𝐴𝐶 𝑃𝐴𝐶 𝑅𝐴𝐶 𝐹1𝐴𝐶 𝑚𝐴𝑃𝐴𝐶

I3D 14.3 1.3 2.1 15.2 12.7 1.9 2.9 21.4 14.9 2.0 3.1 20.3
CF 10.3 1.0 1.6 15.8 9.0 1.5 2.2 22.2 10.7 1.6 2.4 21.0
MLAD [188] 19.3 7.2 8.9 28.9 18.9 8.9 10.5 35.7 19.6 9.0 10.8 34.8
CTRN 23.9 8.0 11.9 29.7 21.7 9.1 12.9 36.8 23.0 9.3 13.2 35.5

Table 5.2: Evaluation on the Charades dataset using the action-conditional met-
ric [188]. 𝑃𝐴𝐶 - Action-Conditional Precision, 𝑅𝐴𝐶 - Action-Conditional Recall, 𝐹1𝐴𝐶

- Action-Conditional F1-Score, 𝑚𝐴𝑃𝐴𝐶 - Action-Conditional Mean Average Precision.
𝜏 indicates the temporal window size. 𝜏 = 0 corresponds to the actions occuring at
the same time.

CTRN Components Charades
RTM C-GCN TCN G-Classifier Per-frame mAP
× × × × 15.6
✓ × × × 16.1
✓ ✓ × × 19.9
✓ × ✓ × 21.4
✓ ✓ ✓ × 24.7
✓ × × ✓ 18.4
✓ ✓ ✓ ✓ 25.3

Figure 5-9: The adjacency matrix of the
G-Classifier 𝐴𝑆.

tial pre-step before class-temporal modelling. Thanks to RTM that filters the class-

specific feature, the model can slightly improve the detection performance (+0.5%).

We then explore how the different components in CTM affects the action detec-

tion performance. We find that both C-GCN and TCN improve the performance

w.r.t. a model with only RTM (+23.6, and 32.9% relatively). The action detec-

tion performance is further improved by the combination of both C-GCN and TCN,

thus reflecting the complementary nature of both the operations. Finally, we study

the performance with/without G-Classifier. With the proposed classifier, RTM and

RTM+CTM further improve the action detection performance by +2.3% and +0.6%

respectively. Note that for the baseline without G-Classifier, similar to the previous

work [150], we utilize a 1×1 convolution as the classifier. These results show that the

different components of CTRN contribute to the overall performance of our network.
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Figure 5-10: Visualization of the learned C-GCN adjacency matrix 𝐴′
𝒞 for different

layers. Here, we visualize the 1𝑠𝑡, 3𝑟𝑑 and 5𝑡ℎ block’s adjacency matrices. For sim-
plicity, we provide only the relevant action classes in the example video.

Qualitative Study

In Fig. 5.6, we show the adjacency matrix of G-Classifier in Charades (157 classes),

which provides the information of all the co-occurring action pairs with high proba-

bilities. For example, holding a vacuum & tiding something on the floor and fixing

hair & watching in a mirror are the actions always occur at the same time. Prior

access to such privilege knowledge is crucial for detecting the co-occurring actions in

the densely labelled videos.

In CTM, TCN is used to aggregate the temporal information which enables C-

GCN to explore action relations at different temporal scales. To validate the usage

of these layers, in Fig. 5-10, we visualize the learned adjacency matrix of C-GCN

from three different blocks. We find that in Block 1, C-GCN focuses on capturing the

contextual information pertaining to locally related action classes. For example, eat

sandwich & hold sandwich and drink water & hold cup are always occurring closely in

the video. Then we find that, Block 3 has increased the temporal receptive field, thus,

C-GCN can capture the long-term dependencies between distant action classes. For

example, Pour water and Drink water. Finally, Block 5 possess the largest receptive

field where each local snippet feature contains the whole video information. Therefore,

C-GCN in this block models all the potential action relations in the video, resulting

in many activated links in the adjacency matrix.
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Additional Studies

In the following, we provide more studies of CTRN. This includes the number of

blocks, the design choice of the adjacency matrix in CTM, and results with different

modalities.

Number of Blocks

We first explore the impact of the number of blocks (𝐿) of CTM in CTRN. As men-

tioned in the proposed method, TCN is used to aggregate the temporal information.

Thus, with more blocks, CTRN can model high level temporal information while ex-

panding the scale across time for very long videos. Table 5.3 shows the results on

Charades with different blocks, we find that CTRN achieves similar performance for

5 and 6 blocks. Thus, 5-block is sufficient for encoding the temporal information in

complex untrimmed videos.

#Blocks 4 5 6
Performance (%) 24.2 25.3 25.3

Table 5.3: Study on number of blocks 𝐿 of CTM in CTRN. We evaluate on Charades
dataset for action detection using only RGB.

Adjacency Matrix 𝐴′
𝐶

As mentioned earlier, C-GCN’s graph is composed of a learnable adjacency matrix

𝐴𝐶 and an attention mask which is superimposed on the former. Here we further

analyze that both the components are complementary. In Table 5.4, we find that the

performance declines in the absence of either 𝐴𝐶 or the attention mask in C-GCN,

reflecting both components are crucial for learning the the graph structure.

Adjacency Matrix 𝐴𝐶 Attention Mask mAP (%)
× × 21.4*
✓ × 24.3
× ✓ 24.5
✓ ✓ 25.3

Table 5.4: Study on adjacency matrix in C-GCN. We evaluate on Charades dataset
for action detection using only RGB. * indicates the results of CTM w/o C-GCN but
only a TCN.

Modalities
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Modalities RGB OF RGB+OF
Charades 25.3 20.3 27.8

MultiTHUMOS 44.0 47.5 51.2

Table 5.5: Study on RGB and optical flow. RGB+OF indicates the late fusion.

Our model can be used with both RGB and Optical Flow (OF). Here, we provide the

results with RGB and OF. For a fair comparison, similar to the previous works [150,

149], we fuse the two modalities through a late-fusion of the logits. From Table 5.5,

we find that: (1) For sport actions in MultiTHUMOS, Optical Flow stream yields

better performance than RGB stream (+4.3%). (2) For object-based actions with low

motion in Charades, RGB stream achieves better performance (+3.8% w.r.t. Optical

Flow stream), which indicates that RGB can better model the object appearance

information, especially for low motion frames.

5.4 Temporal Human Object Relation Network

CTRN is a two steps method, which is built on top of pre-extracted flattened 1-

dimensional features. The dissociation between the visual encoder and temporal

module makes the model overlook the appearance and spatial information in the

video. To validate that the proposed mechanism can also perform effective semantic

reasoning on the spatio-temporal representation, we propose Temporal Human-Object

Relation Network (THORN). This model can leverage such semantic relation mod-

eling mechanism for action recognition to extract detailed action semantics (e.g.

object, verb) in an end-to-end manner (as shown in Fig. 5-2). THORN features a sim-

ilar semantic reasoning framework as CTRN. Firstly, a 3D Visual Encoder which

encodes the video into a spatio-temporal embedding. Then, the previously extracted

embeddings are passed to the Object Representation Filter (ORF). This filter

extracts class-specific features. Finally, the Class-Temporal Module computes the

relation between the different objects to predict the "verb" of action. This module

also refines the node representation to predict the "noun" of action. Fig. 5-11 provides

an overview of the model.
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Figure 5-11: THORN architecture contains three main components: (1) a Visual
encoder (i.e., X3D) encodes the input RGB clip into a primary spatio-temporal rep-
resentation. (2) The obtained representation is fed to the Object Representation
Filter, which maps the previous representation into object-class representation. To
ensure a discriminative object representation, an object classifier is added on top
of the object-class representation. This classifier is trained with the pseudo-object
ground truth provided by an object detector. (3) The object-class representation is
also sent to the Class-Temporal Module to model the temporal-object relation in
a dissociated manner. Finally, two classifiers are used to predict the verbs and nouns
relevant to the action.

In the following, we detail the architecture of THORN, especially, the difference

between the THORN and CTRN.

5.4.1 Visual Encoder

Different from CTRN, the visual encoder in THRON is trained end-to-end with the

following modules, thus can better extract the primary spatial-temporal represen-

tation. In this work, we utilized X3D [60] as the visual encoder. The lightweight

property of X3D can help to train the Visual Encoder jointly with the proposed

modules. In practice, the input to the visual encoder is a series of frames. Different

from CTRN, the visual encoder outputs a spatio-temporal representation 𝐹 of shape

𝑇 ×𝐻 ′×𝑊 ′×𝐷1, where: 𝐻 ′ = 𝑊 ′ = 7, 𝐷1 = 432, while 𝑇 is the same as the input.

This embedding carries both spatial and temporal information. The spatial informa-

tion is important, as it provides object-related information, such as its appearance,

shape and position (e.g. drawers usually appear at the bottom of the image). That is

why instead of using the X3D final output of shape 𝑇 × 2048 to construct our nodes,

we use a finer spatial representation of shape 𝑇 × 7 × 7 × 432, making nodes of our
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graph contain more and finer information about the objects.

5.4.2 Object Representation Filter

Our main objective through THORN is to have object-based reasoning. This ob-

jective relies on obtaining effective object representation in scene representations.

Therefore, we developed the Object Representation Filter module, capable of extract-

ing semantic representation specific to each object class from the previous overall

representation. This module serves as a filter to obtain the object-specific represen-

tation from the output of the visual encoder. Note that this module is similar to

Representation Transform Module (see Sec. 5.3.2) in CTRN. The difference mainly

lies in that the semantics are extracted from spatio-temporal feature maps and the

semantics represent objects.

In practice, firstly, we reshape the representation 𝐹 from the visual encoder to

shape 𝑇 ×𝐻 ′𝑊 ′𝐷1. After that, we duplicate the reshaped features 𝐹 ′ for 𝐶𝑜 times,

where 𝐶𝑜 indicates the number of object classes in the dataset. For each class, we

use a channel-mixer MLP (i.e., linear transformation layer), followed by non-linear

activation and dropout. We argue that each MLP layer learns to extract features

specific to a certain object class. The equations in this module can be formulated as:

𝐹 ′
𝑖 = 𝑅𝑒𝐿𝑈(𝑀𝐿𝑃 (𝐹 )) (5.8)

𝐹 ′ = 𝐷𝑟𝑜𝑝𝑂𝑢𝑡([𝐹 ′
1, 𝐹

′
2, 𝐹

′
3...., 𝐹

′
𝐶𝑜
]) (5.9)

where 𝐹 ′ ∈ R𝑇×𝐶𝑜×𝐷2 . 𝐷2 is smaller than 𝐷1 to shallow the channel size. Here 𝐹 ′′ ∈

R𝑇×𝐶𝑜×1. To ensure the object-specific representation, we add a frame-level object

classifier on 𝐹 ′′.

𝐹 ′′ = 𝑅𝑒𝐿𝑈(𝑀𝐿𝑃 (𝐹 ′)) (5.10)

As the frame-level object label is not provided by the dataset, the object classifier is

trained with the pseudo label provided by an object detector (i.e. Fast-RCNN [22]).

156



Note that, we are not relying on the location information of the object (i.e., only the

existing object categories). In the video, multiple objects can appear in a frame, thus,

we train the object classifier with binary cross-entropy loss: ℒ𝑐𝑙𝑖𝑝−𝑜𝑏𝑗𝑒𝑐𝑡𝑠. Finally the

ORF module outputs a representation for each object-class. We still need to correlate

and refine these object representations to explore their interactions and model the

actions.

5.4.3 Class-Temporal Module

In order to learn the relations between the extracted object semantics, THORN

has a similar graph reasoning module as CTRN. This module sequentially stacks

graph convolutional layers and temporal convolutional layers to model the semantic-

temporal relation in the video clip. The architecture of this model has been provided

in Sec. 5.3.3. This module can help to refine the node representation from the related

nodes and can also capture the correlation between the nodes.

5.4.4 Prediction

The predictions are based on the learned nodes and adjacency matrix. In the evalu-

ated datasets, fine-grained actions are composed of verbs and nouns. For this reason,

we use the learned adjacency matrix for predicting the verb and the learned nodes

for noun prediction. This is because the adjacency carries more information about

how different objects interact with each others, while the nodes carry a refined object

representations, after been processed through the Class-Temporal Module. As shown

in Fig. 5-11, the output of CTM is sent to two classifiers: one projecting the output

representation from R𝐷2×𝐶𝑜 to R1×𝐶𝑜 , and the other classifier projecting 𝐴′
𝐶𝑜

from

R𝐶𝑜×𝐶𝑜 into R1×𝐶𝑣 , where 𝐶𝑜 and 𝐶𝑣 stand for the number of object classes and verb

classes respectively.

As shown in Fig. 5-11, our objective is a sum of three losses and can be formulated as :

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑣𝑒𝑟𝑏𝑠 + ℒ𝑛𝑜𝑢𝑛𝑠 + ℒ𝑐𝑙𝑖𝑝−𝑜𝑏𝑗𝑒𝑐𝑡𝑠 (5.11)
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Where ℒ𝑣𝑒𝑟𝑏𝑠 and ℒ𝑛𝑜𝑢𝑛𝑠 are the negative log-likelihood losses (since each action is

composed of one verb and one noun). As described earlier, the ℒ𝑐𝑙𝑖𝑝−𝑜𝑏𝑗𝑒𝑐𝑡𝑠 is the

binary cross-entropy loss to ensure the semantic of the object representation.

5.4.5 Experiments

Dataset

We evaluate our model on two of the largest and challenging datasets for first-view

and human-object interaction action recognition. EPIC-KITCHENS 55[38] and

EGTEA Gaze+ [115]. In both datasets, each action is a combination of a verb and

a noun. Actions are relevant to different steps of preparing food (e.g. cleaning the

kitchen, cutting vegetables, preparing table).

Implementation

We implement our method using X3D as the visual encoder where 𝐷1 = 432, 𝐻 ′=

𝑊 ′= 7 and 𝐷2 is 128. We input a clip of 16 RGB frames for EPIC-KITCHENS

and 25 frames for EGTEA Gaze+. We use a dropout probability of 0.3. For the

Class-Temporal Module, 𝑁𝐵𝑙𝑜𝑐𝑘 is 5 blocks. We utilise a kernel size of 9 for temporal

convolution in Class-Temporal Module. In training phase, we utilized Adam [103] to

optimize the model with an initial learning rate of 0.00005. We scaled the learning

rate by a factor of 0.1 with the patience of 5 epochs. The network was trained on

a 4-GPU machine for 30 epochs. We evaluated our model using Top-1 and Top-5

accuracy on verbs and nouns for EPIC-KITCHENS, while for EGTEA Gaze+ we

evaluated directly on actions using top 1 accuracy.

Ablation Study

In this section, we validate our model design for the modules in the THORN. The

evaluation is conducted on the EPIC-KITCHENS dataset. We propose different set-

tings and see how each setting can improve the performance. The results are shown
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in table 5.6

Firstly, we compare our baseline model X3D with THORN. Note that, in THORN,

the graph nodes can be constructed either using the output of the last layer of X3D

(temporal nodes) or using its intermediate layer (spatio-temporal nodes). Here, we

first compared X3D with THORN (temporal nodes), i.e., we construct the nodes by

the features in shape of 𝑇 × 2048. In this setting, nodes would serve to predict both

verbs and nouns. In this scenario, we improve nouns prediction by +5.6%, while,

the verbs accuracy increased by +9.3% . Proving the importance of the cross-object

reasoning, compared to only capturing visual information from 3D-CNNs.

Secondly, we study the importance of the adjacency matrix for predicting the verbs.

To do so, we use the adjacency matrix (ADJ-matrix) to predict verbs, while keeping

the nodes to predict the nouns. In this setting, the verb prediction improves by

+4.5% compared to the previous setting and by +13.8% to the baseline X3D. This

is because the adjacency matrix captures the object interaction, hence, it is more

suitable for verb prediction.

Thirdly, we study the effect of changing the temporal nodes with the spatio-temporal

nodes. Spatio-temporal nodes are the nodes constructed by the middle layer of X3D

which contains the spatial information 𝑇 × 7× 7× 432. With spatio-temporal nodes,

THORN improves +1.8% on nouns. This is because, with spatial dimensions, the

ORF can better capture the object relative locations and the size of the object, then

embed them in the node representation. As a result, the noun accuracy improves.

This setting also brings +0.7% improvement on verbs.

Our overall architecture obtains +13.8% improvements on verbs and +8.6% on

nouns w.r.t. vanilla X3D. This reflects the effectiveness of our proposed modules

in THORN and how an object-centric method can improve results on human-object

interaction actions.

We then study the components for predicting the nouns in our model. In table 5.7,

we show that fusing scores of object detection and the scores obtained by the THORN

nodes representation works better than using only one of them. We also find that

predictions using only our model are better than the object detector itself. This shows
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Verbs Nouns Actions
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

X3D 46.5 79.8 34.3 65.3 21.0 38.7
THORN/temporal nodes 55.8 82.9 39.9 66.4 26.8 44.0

THORN/temporal nodes + ADJ-matrix 60.3 86.0 41.1 66.9 30.1 47.3
THORN/spatio-temporal nodes + ADJ-matrix 61.0 85.9 42.9 67.9 30.5 47.5

Table 5.6: Ablation study on different settings. This evaluation is on EPIC-
KITCHENS dataset. Temporal nodes means using the final output of X3D of size
𝑇 × 2048 to create nodes, while spatio-temporal nodes means using a mid layer of
size 𝑇 × 7 × 7 × 432 with more spatial information. Finally ADJ-matrix stands for
using the adjacency matrix for predicting the verbs instead of using only nodes for
nouns and verbs.

Faster-RCNN THORN Nouns
✓ × 31.5
× ✓ 32.8
✓ ✓ 42.9

Table 5.7: Ablation study on fusing the scores of THORN with the scores from the
object detector (Faster RCNN). This evaluation is on EPIC-KITCHENS dataset.
Fusing both scores brings significant improvement on top-1 accuracy. For the object
detector, we use an average pooling on all the video clip frames object detection scores
and add a thresh-hold of 0.3

that our model can refine the objects represented by the other objects (nodes) using

our graph-based module.

Comparison with the State-of-the-Art

We then compare our proposed method with the state-of-the-art methods on EPIC-

KITCHENS and EGTEA Gaze+ in table 5.8 and 5.9.

In Table 5.8, we compare our results with the state-of-the-art methods. Among

these methods, Long Features Bank (LFB) [208] proposes to use global as well as local

features for action recognition. To do so, they extract features on both clip and video

levels, and combine them to have a better understanding of the scene. Nevertheless,

this method still lacks accuracy for the objects. Moreover, LFB is a two step method

which trains separately an object and verb recognizer modules. For our THORN,

we train a single model for predicting both entities. As a result, we have a +8.5%

improvement on top 1 nouns and a +4.9% w.r.t. LFB on action recognition.
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Model Obj RGB Flow Audio Verbs Nouns Actions
top1 top1 top1

Baradel[8] × ✓ × ✓ 40.9 - -
3D-CNN [17] × ✓ × × 49.8 26.1 19.0

STO[208] ✓ ✓ × × 51.0 26.6 19.5
LFB[208] ✓ ✓ × × 52.6 31.5 22.8

AssembleNET++ ODF+SDF[198] ✓ ✓ ✓ × 60.0 37.1 25.2
THORN ✓ ✓ × × 61.0 42.9 30.5

Table 5.8: Comparing THORN model with other state-of-the-art methods on the
validation set. Even though some of these comparisons are not fair since these models
are using multi-modalities, we still hold the overall best accuracy, which shows the
strength of our model

Two-stream I3D [17] TSN [199] EGO-RNN [182] LSTA [181] SAP [204] THORN
ACC % 43.8 54.2 58.0 62.1 62.0 64.1 67.5

Table 5.9: Comparing THORN model with other state-of-the-art methods on EGTEA
Gaze+ split1. We hold the best accuracy on actions

Our method achieves the overall best performance. We claim that AssembleNet++

utilizes additional modality such as optical flow in both training and inference time.

Even though, we still have the lead in top 1 accuracy for the verbs, nouns and actions,

which proves again that having an object-centric and specific reasoning on object in-

teractions is a key solution for having a better action recognition on HOI datasets.

Finally, our results prove that using only RGB with an object-centric model achieves

better or similar results compared to methods relying on heavy multi-modality rea-

soning.

In table 5.9, we compare our method with the state-of-the-art on EGTEA Gaze+

dataset. We have the best accuracy w.r.t. the others methods, which shows the

generalization and robustness of our model on actions of HOI.

To sum up, compared to other methods, ours is lightly weighted as we use X3D,

while other methods rely on heavy 3D-CNNs such as I3D. THORN is trained jointly

on nouns and verbs as opposed to other methods such as LFB [208], and we only

need RGB frames and pseudo object labels per frame.
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Figure 5-12: Visualization of the Class Activation Mapping for the object extractors’
weights. The video name is highlighted in green and the extracted object is high-
lighted in blue.

Figure 5-13: Visualization of the learned cross-object relations. For the video "wash-
ing knife": the sampled frames is shown on the left, and the learned adjacency matrix
of the graph convolution module is given on the right.

Qualitative Study

Firstly, we analyse if the Object Representation Filter can focus on the action related

object region, and if it is robust across frames. In figure 5-12, we show two exam-

ple videos and their class activation map [238] of the object classifier in the object

representation filter. For video "washing leaf ", we find that the object region can be

extracted effectively with the proposed module, e.g. object "leaf" and "tap". Also

the object are extracted robust across different frames (e.g., "leaf" across two frames).

Similar observation can be found in video "mix meat".

Secondly, we visualize the learned adjacency matrix. As shown in figure 5-13, the

subject is washing knife. The graph module highlights the correlation between the

action relevant objects, i.e., object "knife" and object "water". Therefore, THORN
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is able to collect high inter-class relation to recognize the right "verb" and its relevant

"objects". Moreover, the irrelevant classes such as "fish", "tap" and "sponge" is not

interactive with the other objects in this example video.

5.5 Conclusion

In this chapter, we propose a generic framework to enhance video representation by

modelling the relationships between the different semantics in a video. There are

two main steps for this framework: (1) Extraction of the semantic representation

from the video. This extraction relies on a series of binary classifiers, each indicates

whether a certain semantic exists in the frame or not. (2) After having the semantic

representation, we model the relations across different semantics to have a refined

video representation. The learned representation is then sent to the prediction head

for the objective task.

We have evaluated the effectiveness of our method on two principal components

in action detection framework (visual encoder and temporal module). For the visual

encoder, we propose THORN, which refines the spatio-temporal representation by

modelling inter-object relationships in each video clip. THORN can better repre-

sent fine-grained actions relevant to objects than the vanilla visual encoder. For the

temporal module, we propose CTRN. This neural network enhances the temporal

modelling by modelling the inter-action relationships in untrimmed videos so that

CTRN can improve the detection of a series of correlated actions in the videos.

Although this chapter focused on modelling the action-action and object-object

interactions of the videos, the framework developed in this context goes beyond this

dissertation and can be generalized to other types of semantic relations (e.g. subject-

subject interactions for group activity detection).
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Chapter 6

Multi-Modal Representation Learning

for Action Detection

In this chapter, instead of understanding video using a single modality, we propose

two methods that can effectively and efficiently learn the multi-modality video repre-

sentation. The fusion-based method AGNet is the proposed baseline method for the

Toyota Smarthome Untrimmed dataset [33], which utilizes an additional modality to

generate the attention weights at multiple temporal scales for improving action detec-

tion performance. The distillation-based method has been published in IEEE/CVF

International Conference on Computer Vision (ICCV) [30] in 2021. This method

encourages the RGB stream to mimic the representation of the additional modality

stream in the training phase and avoids using the additional modality at inference

time.

6.1 Introduction

Video can be captured or represented in different modalities, such as RGB, optical

flow, 3D Pose, etc.. Each modality gives a view of the video which emphasizes an

aspect of the information in the video, thus the modalities are usually complemen-

tary to each other. For example, RGB focuses more on the appearance of the objects,

while optical flow gives more attention to the motion in the video. Thanks to this
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complimentary nature between modalities, learning representation of different modal-

ities has become an effective manner to represent the video content [177], especially

for scenarios requiring high precision. To this end, in the following, we study how to

model compact untrimmed video representation by multiple modalities. Since RGB

is the modality that contains the greatest amount of information, in this chapter we

focus on how to infuse information of other modalities into the RGB branch.

In previous works, to combine multiple modalities, a typical setting, called two-

stream network [177], consists in combining RGB with additional modalities like

optical flow [150, 215] or 3D poses [243, 42] to take into account the complementary

nature of modalities. To further benefit from multiple modalities, firstly, we learn

the multi-modal representation in a fusion manner. In this direction, we propose

Attention Guided Network (AGNet), which builds upon the existing temporal

model: SSTCN [57]. This network has two input modality branches (e.g. RGB and

3D Poses). The main branch inputs the RGB videos and the attention branch inputs

the additional modality. Similar to PDAN, each branch consists of five blocks and

each block represents a temporal level. There are attention blocks between the two

branches at each temporal level. More specifically, the attention block generates the

temporal attention map at each temporal level from the additional modal stream to

guide the RGB stream to predict more precise action boundaries. AGNet is proposed

as the baseline method in Toyota Smarthome Untrimmed dataset and we evaluate

AGNet with RGB and 3D Pose in the datasets. We show that AGNet efficiently

infuses the additional modality information into the RGB branch.

Two-stream architecture can effectively combine different modalities and has be-

come a typical setting in video understanding tasks. However, using such setting is

contingent upon the availability of multiple modalities and of expensive processing

resources. The cost of computing additional modalities could be prohibitive, espe-

cially for long untrimmed videos. These constraints limit the usage of multi-modal

action detection methods for real-world applications.

Previous studies [78, 79] have shown that cross-modal Knowledge Distillation

(KD) is an effective mechanism to avoid the computation of the additional modalities
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Figure 6-1: Proposed cross-modal distillation framework for action detection. Our
distillation framework is composed of three loss terms corresponding to different types
of knowledge to transfer across modalities. ℒ𝐴𝑡𝑜𝑚𝑖𝑐: Atomic KD loss; ℒ𝐺𝑙𝑜𝑏𝑎𝑙: Global
Contextual Relation loss; ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦: Boundary Saliency loss.

during test time, while preserving the complementary information from the additional

modalities. However, most previous works [27, 69, 70] in the video understanding do-

main have investigated solely the classification of short trimmed videos. In these

works, each video corresponds to a single action and the distillation framework in-

fuses the aggregated knowledge of an action instance from one modality into another.

Contrary to trimmed videos, untrimmed ones contain rich sequential knowledge with

complex temporal relations. Untrimmed videos in real-world scenarios tend to have

cluttered background and multiple correlated actions either in sequence [121] or in

parallel [223, 176]. Therefore, distillation mechanisms tailored for classification tasks

and extended for detection tasks lack in capturing fine-grained details along the tem-

poral dimension. Now the question remains, what should be the right strategy to

distillate cross-modal knowledge for action detection in untrimmed videos?

In this work, we propose a distillation framework to combine cross-modal infor-

mation for detecting actions with high precision and minimal resource. The goal is

to reach the two-stream performance while using only the RGB stream at inference
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time. The proposed distillation framework consists of a traditional teacher-student

network architecture which operates in a Seq2Seq fashion [149, 35], thanks to three

new distillation losses dedicated to the action detection task as illustrated in Fig. 6-

1. The first loss in our formulation is the Atomic KD loss, which enables the RGB

student network to mimic the feature representation of every individual snippet from

the teacher network in a contrastive manner. This loss-term extends the cross-modal

KD mechanism designed for the classification tasks to the temporal domain [131], by

transferring the knowledge only between one-to-one corresponding snippets of differ-

ent modalities. As a snippet is often shorter than the action instance in an untrimmed

video, this loss encourages a transfer of sub-representation [74] of the action, for ex-

ample, "raising arm" in the "drinking" action. Here, such sub-representation the

entire video corresponds to an atomic piece of knowledge within the complete ac-

tion feature distribution. However, an untrimmed video is composed of a sequence of

snippets, distilling only the atomic representation is not sufficient for learning discrim-

inative action representations. Thus, distillation mechanisms dedicated to represent

specifically an action within an untrimmed video are required.

We therefore introduce two loss-terms for sequence-level KD so as to transfer the

cross-snippet relations between different modalities. Firstly, we propose a Global

Contextual Relation loss to transfer the contextual information of the sequence be-

tween modalities. In our work, contextual information is defined as the embedding

of the correlation between all the snippet features. Thanks to this loss term, every

student snippet feature can learn in the latent space from all the correlated teacher

snippets within the untrimmed video (Fig. 6-1). With this loss-term, detecting one

action in a snippet can benefit from the information in the correlated snippets (cor-

responding to related actions, e.g. take and eat sandwich) across modalities, resulting

in better action detection performance. Secondly, we propose another KD loss to

distillate the boundary saliency from the teacher to RGB student network, dubbed

Boundary Saliency loss. This ensures a more precise action boundary detection of

the RGB student which is prone to imprecise action boundary detection due to weak

temporal signals. In an untrimmed video, the start and end moments of the action
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are usually more salient than other parts [116] (see Fig. 6-1). Intuitively, the feature

variation across consecutive snippets in the video can reflect such saliency of the ac-

tion boundaries. Therefore, learning this variation from a modality that can better

capture the human movement (e.g. optical flow, 3D poses) which encourages the RGB

stream representation to be more sensitive to the action boundaries.

Contributions: In this chapter, based on multi-layer temporal convolution net-

works, we propose two ways to leverage multiple modalities for action detection task.

We first introduce AGNet which leverages an additional modality to generate the tem-

poral region of interest (t-ROI) for the action instance in multiple temporal levels.

With these generated attention masks, AGNet can effectively detect the actions in the

video. Secondly, following a similar structure, we take a step towards the cross-modal

KD for action detection. More specifically, we build a Seq2Seq KD framework for ac-

tion detection with a novel formulation. This formulation consists of an atomic-level

KD loss and two sequence-level KD losses. The three loss terms in our formulation

are jointly optimized in an end-to-end fashion. To the best of our knowledge, we

are the first to propose a formulation containing sequential KD loss for the action

detection task.

6.2 Related Work

In this section, we briefly review the methods for combining multi-modalities and

methods for cross-modal distillation in action understanding.

6.2.1 Combining Modalities

With the prevalence of RGB-D sensors, multi-modal video data have become more

available for human action recognition and detection. Combining the advantages

of privileged modalities in order to make use of their complementary discriminative

power has been exploited widely in action recognition domain. Two-stream architec-

tures [177, 62, 17] that learn separate features from optical flow and RGB modalities,

outperform single modality approaches. Towards this direction, Ryoo et al. [163, 162]

169



have proposed a Neural Search Architecture (NAS) to combine both RGB and Op-

tical flow streams. In contrast to these methods, two complementary strategies are

adopted to combine RGB and pose modalities. One is fusion of both modalities in

feature space [168, 122, 154, 147]. However, these modalities are heterogeneous and

must be processed by different kinds of networks to show their effectiveness. Com-

bining these heterogeneous features from different modalities through feature/score

fusion introduce noise resulting in a downgraded action recognition performance [44].

The second is Pose-driven attention mechanisms to guide the RGB cues for action

recognition as in [10, 9, 40]. In [9, 10], the pose driven attention networks imple-

mented through LSTMs, focus on the salient image features and the key frames.

Then, with the success of 3D CNNs, 3D poses have been exploited to compute the

attention weights of a spatio-temporal feature map. Then, authors in [40] have pro-

posed a more general spatial and temporal attention mechanism in a dissociated

manner. But all the above methods have the following drawbacks: (i) there is no

accurate correspondence between the 3D poses and the RGB cues in the process of

computing the attention weights; (ii) the attention sub-networks neglect the topology

of the human body while computing the attention weights; (iii) the attention weights

in provide identical spatial attention along the video. As a result, action pairs with

similar appearance like jumping and hopping are mis-classified. Therefore, Das et

al. [42] propose a new spatial embedding to enforce the correspondences between

RGB and 3D poses which has been missing in the state-of-the-art methods. The

embedding is built upon an end-to-end learnable attention network. The attention

network considers the human topology to better activate the relevant body joints for

computing the attention weights. Recently, Duan et al. [54] propose to leverage a

3D heatmap stack instead of a graph sequence as the base representation of human

skeletons. After that, a Slow-Fast [61] fashioned two-stream network is utilized to

model the spatio-temporal relation jointly using RGB and Pose.

However, all the above approaches are designed for action recognition only. The

additional modalities should provide clues in long-term temporal modelling which

is missing in the short video clip. In action detection, previous methods utilizes
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the multiple modalities either in the early phase [188, 109] (i.e., input level) or late

fusion [150, 149] (i.e., output prediction score level). There are only a few meth-

ods [101, 7, 102] study the multi-modal fusion in the feature-level for action detection

task and all the methods are designed for the combination of audio and RGB. Conse-

quently, we propose a multi-modal action detection baseline method that enhances the

RGB stream by the additional modality-driven attention mechanism at the feature-

level. The additional modality can be modalities such as 3D poses or optical flow.

Different from the previous methods, our baseline method can generate the temporal

region of interest in multiple temporal scales.

6.2.2 Knowledge Distillation

The primary goal of Knowledge Distillation (KD) is to distill the information of a

model learned from a teacher network into a student network. Many KD studies [85,

21, 145, 191, 127] explored transferring the knowledge from large complex models to

small simpler models, i.e. model compression. In this work, we focus on cross-modal

KD, where the difference between the teacher and student models mostly relies on

input modalities rather than network architectures. In the video domain, Garcia et

al. [69, 70] developed a distillation framework for action classification with a four-

step process that hallucinates depth features into RGB frames. Similarly, MARS [27]

trains a RGB network in a single step, by back-propagating a linear combination of a

OF distillation and classification losses through the entire network. Recently, Luo et

al. [131] proposed a Graph Distillation (GD) method that can be applied to the action

detection task. This method utilizes sliding windows to process untrimmed videos

and distillates the knowledge of every window by minimizing the cosine distance

in a mutual learning manner. GD aims at exploiting the privileged modalities and

thus relies on a significant number of modalities. In contrast, our framework aims

at effectively performing the distillation from the available modalities. Moreover,

GD transfers knowledge only between the corresponding snippets (i.e. window), but

does not consider the relations across snippets in the distillation, which is critical for

handling a sequence of actions. Thus, to better tackle distillation for action detection,
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Figure 6-2: On the left, we present the overview of the AGNet. In this figure,
Bottleneck indicates the 1D convolution that processes the features across time
and which kernel size is 1. On the right, we present the computation flow for one
block. In each block, k is the kernel size and d is the dilation.

in this chapter, we introduce two sequence-level distillation loss terms to transfer

the long-range temporal knowledge for action detection. Thanks to our proposed

methods, the network can be effective even with few additional modalities.

Fairly recent, given the advance in Transformer architecture, some methods in-

troduce the class or distillation token in Transformer to fuse knowledge of different

modalities [134, 66] or distillate knowledge across modalities [225, 222]. How to lever-

age the Transformer to efficiently learn multi-modal representation to benefit action

detection task is our future work.

6.3 Attention-Guided Network (AGNet)

In this section, we introduce an end-to-end baseline method: Attention-Guided Net-

work (AGNet) for action detection which is built upon temporal convolutional net-

works [107]. An overview of the AGNet is shown in Fig. 6-2. The input is the encoding

of a video. The AGNet has two principal components: a stacked dilated temporal

convolution network (SD-TCN) and an attention module. In this work, the input

to the base-network is always the RGB frames. For attention module, the input is

another modality, such as 3D human poses or optical flow. For simplicity, in the fol-

lowing, we consider the 3D poses as the input to the attention module. The SD-TCN
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and the attention module have both a 5-block structure. These blocks have temporal

convolution with increased dilation rates setting, thus the receptive field increases

exponentially. The lower-blocks have smaller reception fields while the higher blocks

have larger receptive fields. For every block, the pose-attention module generates an

attention mask that represents the temporal saliency of human actions in a video.

The main contribution is the attention module, which utilizes 3D poses to generate

the attention weights at multiple temporal scales. We believe that 3D poses are com-

plementary to the RGB modality as they help filtering the irrelevant context in the

RGB frames and providing more weight to the pertinent frames of the video. Below,

we detail the video encoding and the model structure of AGNet.

6.3.1 Video Encoding

Similar to most action detection models [150, 149, 107], our model processes the en-

coding of video segments. In this work, we use state-of-the-art convolution model (i.e.

2D+T CNN or (2+1) D+T GCN) to extract appearance features in the video. The

RGB encoding is extracted by a CNN such as Inception [184] or I3D [17]. The pose

encoding is extracted by a GCN such as ST-GCN or 2s-AGCN [169]. We fine-tune

the 3D convolution model on the training set of TSU to better model the spatial

information in this dataset.

Training: To fine-tune the feature extraction model, firstly, we divide the video into

100-frame-long non-overlapping segments. For the RGB modality, to tackle the cam-

era framing challenge, we apply SSD [126] to extract the human crops (i.e. bounding

box) of the subject, and resize the crop into 224×224. For 3D poses, the subject would

always be re-projected at the center of the screen with a fixed scale by using [146].

We then train the classification model [17, 169] with the uni-sampled 16 frames for

each segment. For the RGB modality, we flip all the images in each segment with a

probability of 0.5. The inputs to the RGB or 3D pose convolution model are the RGB

human crops and corresponding skeleton of a segment respectively. We optimize the

multi-label binary cross-entropy loss [138] to learn the parameters.

Feature extraction: To extract the features, a video is divided into 𝑇 non-overlapping
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segments, each segment consisting of 16 frames. These segments of RGB human crops

or pose sequences are sent to the fine-tuned spatio-temporal model to extract the seg-

ment representation. We stack the segment-level features along the temporal axis to

form a 𝑇 × 𝐶𝑖𝑛 dimensional video representation where 1 × 𝐶𝑖𝑛 is the feature shape

per segment. This video representation denoted as 𝐹𝑖𝑛 is further input to the RGB

or pose stream in our architecture.

6.3.2 Model Structure

In this section, we present the structure of the AGNet.

Our stacked-dilated temporal convolution network (SD-TCN) is a TCN-based net-

work. This network has 5 blocks, each block has one 1-dimensional convolution layer,

one Hadamard product with the attention weights from the attention module and a

residual link. For different blocks, we give different dilation rates to the convolution

layer. With these different settings in dilation, we can model local context in the

lower block and global context in higher blocks. In our experiment, we set the kernel

size (𝑘) to 3 for all convolution layers, dilation (𝑑𝑖) and padding rate to 2𝑖−1, thus the

reception field is up to 2𝑖 + 1 for the 𝑖𝑡ℎ block.

In parallel to the SD-TCN, the attention module is another TCN-based model.

The attention module has a similar 5-block structure as the SD-TCN, and also the

same kernel and dilation setting for the convolution inside the block. Thus, the

attention module has the same receptive field as the SD-TCN for each block. However,

this module uses significantly lower channel capacity to generate the attention weights.

For each convolution layer, it has a ratio of 𝛽 (𝛽 ≤ 1) channels for the SD-TCN. The

typical value is 𝛽 = 1/8 in our experiments, which is much lower than the SD-TCN.

In the attention module, after the convolution layer, we generate the attention map

𝐴𝑖. A bottleneck layer is applied as a transformation to match the channel size to the

SD-TCN. Normalizing the high number of T attention weights with softmax leads to

extremely low values, which can hamper their effect. To avoid this, we use sigmoid

activation to generate the final attention map.

As shown in Fig. 6-2, the input RGB and pose encoding are firstly fed to the
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bottleneck layers. The output channel size from the bottleneck layers is 𝐶2 and 𝛽𝐶2,

corresponding to the SD-TCN and attention module respectively. Then 5 blocks are

stacked, the set of operations in each block can be formulated as follow:

𝐹𝐴
𝑖+1 = 𝐹𝐴

𝑖 +𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣1𝐷(𝐹𝐴
𝑖 , 𝑘, 𝑑𝑖)) (6.1)

𝐴𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣1𝐷(𝐹𝐴
𝑖 , 𝑘, 𝑑𝑖))) (6.2)

𝐹𝐵
𝑖+1 = 𝐹𝐵

𝑖 +𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣1𝐷(𝐹𝐵
𝑖 , 𝑘, 𝑑𝑖)) ∘ 𝐴𝑖 (6.3)

where 𝐹𝐵
𝑖 and 𝐹𝐴

𝑖 indicates the input feature map of the 𝑖𝑡ℎ block of the SD-TCN and

attention module respectively. 𝐴𝑖 is the attention mask generated from the 𝑖𝑡ℎ block.

∘ indicates the Hadamard product. 𝑊𝑖 ∈ R𝐶2×𝛽𝐶2 are the weights of the bottleneck

convolution in attention module.

Finally, we compute the per-frame binary classification score for each class (i.e.

prediction logits). The classifier is on top of the SD-TCN, which is another bottleneck

convolution with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation:

𝑃 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊
′
𝐹𝐵
6 ) (6.4)

where 𝑃 ∈ R𝑇×𝐶3 are the prediction logits and 𝑊
′ ∈ R𝐶3×𝐶2 are the weights of the

bottleneck convolution, 𝐶3 corresponds to the number of action classes. To learn the

parameters, we optimize the multi-label binary cross-entropy loss [138].

6.3.3 Comparison with PDAN

Both PDAN (see Sec. 4.4) and AGNet try to decompose the attention map into

different temporal levels. However, there are two main differences: firstly, instead of

self-attention using only RGB, AGNet explores cross-modality attention. Secondly,

AGNet utilises the snippet-level attention, not the kernel-level. we find that the cross-

modality model can not provide fine-grained information as kernel-level attention.
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Thus different from PDAN, we choose to learn the attention outside the kernel, which

provides the global temporal region information.

6.3.4 Experiments

As mentioned earlier, AGNet is the proposed baseline of TSU dataset. The goal

of these experiments is to verify that the TSU dataset provides novel challenges

that are not yet addressed by the other state-of-the-art datasets. For that, we show

that the state-of-the-art detection methods perform poorly on TSU and that our AG-

Net significantly improves the results on TSU as it is designed to address the targeted

real-world challenges. To evaluate the effectiveness of the AGNet, we compare it on

TSU dataset with 9 detection methods, which represent the state-of-the-art on other

densely-annotated datasets [176, 223]. We also perform a comparative study between

TSU and the challenging Charades dataset for the action detection task to better

highlight how real-world challenges are addressed by both datasets.

Implementation Details

Video encoding: We use three types of encoders to extract the encoding of the

input videos. As described in section 6.3.1, AGCN [169] and I3D [17] are fine-tuned

on TSU and then the features are extracted. Moreover, we also evaluate this dataset

on per-frame features. We use Inception V1 [184] pre-trained on ImageNet [47] to

extract the features. The channel size of I3D and Inception is 1024, the channel size

of AGCN is 256.

AGNet: We set 𝑁 = 6 blocks. For I3D and Inception features, the channel size is

1024, for AGCN pose features, the channel size is 256. 𝐶1 is 512 and 𝛽 is 8. We

use Adam optimizer [103] with an initial learning rate of 0.001, and we scale it by

a factor of 0.3 with a patience of 10 epochs. The network is trained on a 4-GPU

machine for 300 epochs with a mini batch of 32 videos for Charades and 2 videos

for TSU. The other baselines’ implementation is mentioned in chapter 3.4.1. As

mentioned in 3.4.1, the Bottleneck used for comparison is a Bottleneck on top of the
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CS CV

P
os

e

3D
+

T AGCN+Bottleneck [169] 10.1 12.6
AGCN+LSTM [87] 17.0 14.8
AGCN+SD-TCN 26.2 22.4

R
G

B

2D

Inception+Bottleneck [184] 11.5 5.2
Inception+LSTM [87] 13.2 5.3
Inception+SD-TCN 22.3 12.1

2D
+

T

R-I3D [212] 8.7 -
I3D+Bottleneck [17] 15.7 9.2
I3D+Non-local block [205] 16.8 9.6
I3D+Super event [150] 17.2 10.9
I3D+LSTM [132] 22.6 12.9
I3D+Bidirectional-LSTM [73] 24.5 15.1
I3D+Dilated-TCN [107] 25.1 13.9
I3D+MS-TCN [57] 25.9 13.1
I3D+TGM [149] 26.7 13.4
I3D+SD-TCN 29.2 18.3

RGB+Pose AGNet 33.2 23.2

Table 6.1: Per-frame mAP (%) on the Fine-grained TSU dataset.

CS CV
IoU Threshold (𝜃) 0.3 0.5 0.7 0.3 0.5 0.7

Bottleneck [17] 5.0 2.5 0.5 2.3 1.1 0.2
Non-local block [205] 4.9 2.2 0.6 1.6 0.7 0.1

Super event [150] 5.7 2.8 0.7 1.8 0.9 0.1
LSTM [87] 11.6 6.4 2.2 6.0 3.2 0.7

Bidirectional-LSTM [73] 13.3 7.9 3.5 9.0 5.4 1.2
Dilated-TCN [107] 12.8 6.9 3.0 5.8 3.3 0.8

MS-TCN [57] 13.2 7.6 3.0 5.3 3.1 0.4
TGM [149] 15.1 9.4 4.2 5.5 3.2 0.4
AGNet 22.7 15.3 6.0 12.5 7.8 2.9

Table 6.2: Event-based mAP (%) for different IoU thresholds for the TSU dataset.
The AGNet utilizes both pose and RGB modalities and the other methods utilize
only RGB.

segment-level features. The improvement over the Bottleneck reflects the effectiveness

of modeling temporal information.

Experimental Analysis on TSU

In this section, we conduct the ablation and data modality analysis on the fine-

grained version of the TSU. In Table 6.1, we firstly compare the three different video

encodings: AGCN pose features, inception RGB features and I3D RGB features. We

conduct the experiments on the Bottleneck, LSTM and the AGNet. The AGNet is the

SD-TCN (RGB) guided by a attention module (pose). On one hand, we observe that
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Figure 6-3: Average Precision for the actions in TSU. The classes are sorted by their
size. The mAP is marked by a red line. We can see that while there is a slight trend
for smaller classes to have lower accuracy, many classes do not follow that trend.

using I3D RGB features improves the detection results by up to 11.1% w.r.t. the same

method using Inception features. This improvement is intuitive because of the higher

ability of the 3D convolutional operations to capture spatio-temporal relations using

several datasets for pre-training. On the other hand, we find that, while using the

same method, 2D+T RGB features perform better than pose features in Cross-Subject

protocol. However, pose features perform better than RGB features in Cross-View

protocol (+4.1% for SD-TCN). This reflects that 3D skeleton is more stable while

changing viewpoints, which is very helpful in multi-view settings as in TSU. Finally,

for the AGNet: SD-TCN (RGB) guided by pose attention module, outperforms RGB

and pose SD-TCNs for both CS and CV protocol (+4.0% and +4.9% w.r.t RGB

SD-TCN for CS and CV protocol respectively). We also compared AGNet with late

fusion SD-TCN (RGB + Pose), our AGNet +0.6% w.r.t. late fusion mechanism on

TSU CS protocol. Note that our method lightweights Pose stream while late fusion

SD-TCN has regular streams for both RGB and Pose modals.

In table 6.2, we present the event-based evaluation of the detection methods. The

AGNet provides more precise predictions than the state-of-the-art methods. However,

all these performances are relatively low, indicating that current methods are far from

addressing real-world conditions.

Inspired by Charades, to understand the relation between the number of action

samples and performance, Fig. 6-3 illustrates AP for each action. In this figure, the

action classes are sorted by the number of available samples, together with the name

of best performing classes. The number of samples in a class is primarily decided

by the universality of the action (can it happen in any scene), and if it is typical of
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(1) Top 10 Skeleton>RGB (2) Top 10 RGB>Pose
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Figure 6-4: Frame-based mAP of the AGNet using different modalities: (1) Top
10 actions where the 3D skeleton stream outperforms the RGB stream for the CV
protocol. (2) Top 10 actions where the RGB stream outperforms the 3D Skeleton
stream for the CS protocol.
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Figure 6-5: Qualitative analysis of the detection result and the attention map. On
the top, we visualize the attention map 𝐴𝑖 for 5 layers. On the bottom, we present
the corresponding ground truth and detection performance for an example video.

household environments. It is interesting to notice that, while there is a trend for

actions with a higher number of examples to have higher AP, it is not true in general.

Activities such as breakfast, and get water have top-10 performance despite being

represented by only few examples.

To understand the advantages of 3D skeleton and RGB modality, in Fig. 6-4,

firstly, we select the top 10 actions where 3D skeleton stream outperforms RGB stream

in CV protocol. We find that 5 out of the 8 pose-based actions that we defined in

Fig. 3-4 (4) are in these top 10 actions. This confirms that 3D skeleton stream has

filtered the unnecessary context information in the image, resulting in a better model

for the posed-based actions. Secondly, we select the top 10 actions where RGB stream

outperforms 3D skeleton stream in CS protocol. We find 7 out of 10 actions are the

similar actions with different objects that we defined in Fig. 3-4 (5). This confirms
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Figure 6-6: Qualitative study
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Figure 6-7: We compare the AGNet against the Bottleneck approach across three
different action properties using both RGB and Pose modality. Evaluation is provided
on frame-based mAP on TSU-CS. The Bottleneck performs poorly on all these types
of actions, whereas the AGNet improves the performance on all of them.

that RGB stream provides the object information lacking in 3D skeleton, which is

critical to detect the actions highly correlated with objects. Finally, we show that,

while using our attention-based baseline, we can handle both challenges of pose-based

actions and similar actions involving different objects.

In Fig. 6-5, we present the attention map of the attention module for 5 layers

(on top), and the corresponding ground truth vs. action detection results (on the

bottom). On the one hand, in area (A), while detecting short actions, the attention

module allocates high attention weights at the lower layer, corroborating that the

lower layer is particularly sensitive to short actions. On the other hand, in area

(B), with long actions (e.g.Read book), only the higher layers allocate high attention

weights to the frames in the kernel. This reflects that the higher layers are more

sensitive to long-term actions.

In Fig. 6-6, we show qualitative visualization results of three model predictions. In

this video, there are one composite long action and 5 elementary actions. We notice
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that our AGNet can better tackle the long-term temporal relations, detecting the

composite action and the related elementary actions simultaneously. Additionally, the

AGNet provides better detection for both elementary (e.g. wipe table) and composite

actions (e.g. Clean dishes) compared to I3D and LSTM. However, the detection

precision is not sufficient, more work is needed to design better models to detect both

composite and elementary actions in untrimmed videos.

In Fig. 6-7, we compare the performance across 4 different action properties of

the AGNet and Bottleneck using both RGB and pose modalities (i.e. I3D+AGCN).

Bottleneck layer is the baseline reflecting the quality of the feature without temporal

processing. Thus, the comparison with the Bottleneck can reflect the improvement

from our proposed methods and the remaining open issues on Fine-grained TSU. In

Fig. 6-7 (1), we observe that the AGNet significantly improves the detection of pose-

based actions compared to Bottleneck. However, the AGNet does not tackle so well

similar motion and subtle motion actions. In Fig. 6-7 (2), we show that longer actions

are easier to recognize than shorter ones, similarly to [175]. The consistent perfor-

mance gain of the AGNet for actions with different temporal duration corroborates

its effectiveness to adapt to temporal dynamics. Finally, we show for the AGNet the

improvement in the detection of all actions, even of the ones with small numbers of

training samples. We are not applying specific measures in the AGNet to handle this

issue. Adopting strategies like class-weighting, optimizing through focal loss could be

explored in future work.

In summary, we find that the available modalities in TSU are complementary.

The AGNet leverages these modalities to address the challenges in TSU such as

multi-views, pose-based actions and similar motions.

6.4 Knowledge Distillation for Action Detection

In this section, we first describe the overall architecture of our approach. We then

detail the different losses in the proposed framework.
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6.4.1 Overall Architecture

An overview of the architecture is shown in Fig. 6-8. In this work, the knowledge

transfer occurs between the teacher and student networks. Both networks are com-

posed of a visual encoder and a temporal filter, following the Seq2Seq paradigm.

For the visual encoder, we use I3D [17] to encode the spatio-temporal information

of a snippet for RGB and Optical Flow (OF). Similar to previous action detection

methods [57, 230], sequences of 16 frames are encoded to a single feature vector rep-

resentation. The encoded feature maps of a video are then fed to the temporal filter.

The choice of the temporal filter is flexible, since we can choose any well-known tem-

poral model [149, 107, 86]. Here, we set a 5-layer SS-TCN [57] as default temporal

filter, which is based on Dilated-TCN [107]. Both student and teacher have the same

type of temporal filter with the same settings (i.e. dilation rate and channel size). In

the training phase, the knowledge distillation is performed from the output feature

of the teacher network towards the student network. Similar to [149, 35], this output

feature map is further classified and grouped as a class-wise actionness detector for

detecting the actions.

The input of teacher network is flexible to variant costly modalities (e.g. OF,

3D poses). By default, we chose the teacher network as OF stream, whereas the

student network as RGB stream. In the following sections, we express the feature

representation of a video indexed 𝑖 with 𝐹𝑟(𝑖, 𝑡, 𝑐), where 𝑟 ∈{𝒯 , 𝒮} represents the

teacher 𝒯 and student 𝒮; 𝑡 ∈ [1, 𝑇 ] represents the snippet index and 𝑇 the length

of the video in snippets; 𝑐 ∈ Z𝐶 represents the channel index, 𝐶 is the channel

size. This expression can be used for representing feature of a video or a snippet.

For example, 𝐹𝑟(𝑖, :, :) and 𝐹𝑟(𝑖, 𝑡, :) represent the feature map of a video 𝑖 and the

feature vector of a snippet for video 𝑖 at time step 𝑡, respectively. For an augmented

RGB representation, the distillation is performed in two levels. First, we perform

distillation at atomic-level to distillate the elementary representation of an action.

Second, we perform a sequence-level distillation to distillate (i) the salient relations

among the snippets, and (ii) the significant temporal variations across the snippets
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Figure 6-8: The proposed distillation framework. On the top, we present an example
of a batch size (ℬ) of 2 untrimmed videos (𝒱) for both student (𝒮) and teacher (𝒯 )
networks. In this example, the input includes a pair of positive videos and a pair of
negative videos. The sequence-level distillation and classification losses are employed
only for positive pairs, while atomic-level distillation leverages both positive and
negative pairs. On the bottom, we present the atomic-level distillation.

indicating action boundaries.

6.4.2 Atomic-level Distillation

To transfer the knowledge between two video sequence, firstly, we adapt and inte-

grate the "representation loss" [131] in our overall formulation, dubbed Atomic KD

loss. This loss term encourages the student to mimic the feature representation of

every individual snippet feature of the teacher network. Our formulation is different

from the previous work [131] that minimizes the cosine distance between the snippet

features. Inspired by the recent success on contrastive learning [187, 81, 144], we

build our model using a contrastive strategy to enhance the atomic-level knowledge
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imitation.

As shown in Fig. 6-8, let [𝐹𝒮(𝑖, 𝑡, :), 𝐹𝒯 (𝑖, 𝑡, :)] represents a pair of training snippets

from same video 𝑖 at time 𝑡 but across different modalities for the teacher and student

networks. Let 𝐹𝒯 (𝑗, 𝑡, :) be another snippet representation from a randomly chosen

video 𝑗 of the teacher stream and having a different label. We define the pair [𝐹𝒮(𝑖, 𝑡, :

), 𝐹𝒯 (𝑗, 𝑡, :)] as positive when 𝑖 = 𝑗, otherwise negative. We aim at pushing closer the

representations 𝐹𝒮(𝑖, 𝑡, :) and 𝐹𝒯 (𝑖, 𝑡, :), while pushing apart 𝐹𝒮(𝑖, 𝑡, :) and 𝐹𝒯 (𝑗, 𝑡, :),

which can be seen as a binary classification task that tries to maximize the log-

likelihood of the mutual information between the student and teacher representations.

In practice, the loss is updated by batches with a batch size ℬ. If 𝒩 negative pairs

exist for each positive pair, then the number of samples in a batch of 𝒫 positives is

given by ℬ = (𝒩 + 1)𝒫 (see Fig. 6-8). To measure the mutual information between

the student and the teacher, we compute:

ℒ𝐴𝑡𝑜𝑚𝑖𝑐 =
1

𝒫𝑇
∑︁
𝑖=𝑗

𝑇∑︁
𝑡=1

log[
exp𝐹𝒯 (𝑗,𝑡,:)⊤𝐹𝒮(𝑖,𝑡,:)

exp𝐹𝒯 (𝑗,𝑡,:)⊤𝐹𝒮(𝑖,𝑡,:) +𝜑
]+

1

𝑇

∑︁
𝑖 ̸=𝑗

𝑇∑︁
𝑡=1

[log(1− exp𝐹𝒯 (𝑗,𝑡,:)⊤𝐹𝒮(𝑖,𝑡,:)

exp𝐹𝒯 (𝑗,𝑡,:)⊤𝐹𝒮(𝑖,𝑡,:) +𝜑
)]

(6.5)

where 𝒫𝑇 represents total number of positive snippets, 𝜑 is the ratio of the negative

snippets to the cardinality of snippets in the training set. Note that, this loss term

is accompanied by a linear combination with the other distillation losses and the

class-wise entropy loss (i.e. supervised learning).

As the length of an action instance is often larger than a snippet, with atomic-

level distillation, the teacher network transfers only the sub-representation of the

actions [74]. Next, we propose a novel sequence-level distillation mechanism which

has been neglected in the state-of-the-art methods.

6.4.3 Sequence-level Distillation

Sequence-level distillation transfers cross-snippet knowledge between different modal-

ities in an untrimmed video by incorporating contextual information and taking ben-

efit from the variations of cross-modal representation along action boundaries. Con-
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sequently, we propose two sequence-level distillation losses: (1) Global Contextual

Relation, (2) Boundary Saliency, to improve action detection performance. Note that

both sequence-level distillation losses are applied only between positive video pairs,

corresponding to 𝒫 videos.

Global Contextual Relation

For sequence-level distillation, firstly, we propose to transfer contextual knowledge

between modalities of the entire video. Intuitively, the detection of one given action

could be supported by the detection of other related actions, which may be distant

in the untrimmed video. Hence, the representation of an action snippet could benefit

from the contextual information across other snippets in the video pertaining to

another modality. But the challenge in modeling such contextual relationships is the

high complexity of the model for taking into account all the snippets in a video in

relation with a single snippet. Therefore, we propose an embedding that projects the

student-teacher features in a space where the global contextual relations among all

actions are computed.

For the global contextual relation loss, we compute the Channel Covariance Matrix

(𝐶𝑜𝑣) of the sequence of snippets which projects the entire video into a compact

embedding space. Note that the length of untrimmed videos in the dataset may vary

a lot, while the channel size is fixed for all videos. Providing a feature map of the

video, 𝐶𝑜𝑣 encodes the variance within each channel and the covariance between all

channels over the whole video. Each element in the matrix reflects the correlation

between two channels, which can characterize the specific activation patterns along

time of an action class. Thus, the covariance matrix captures the relations between

snippets along time and indicates whether a salient relation exists (i.e. which may

be related to an action), while being computationally optimal. Here, the 𝐶𝑜𝑣 is

formulated as:

𝐶𝑜𝑣𝑟(𝑖) =
1

𝑇 − 1

𝑇∑︁
𝑡=1

[𝐹𝑟(𝑖, 𝑡, :)− 𝜇𝑖][𝐹𝑟(𝑖, 𝑡, :)− 𝜇𝑖]
𝑇 (6.6)

such that 𝑟 ∈ {𝒯 ,𝒮}, and 𝜇𝑖 represents the mean value of all the channels in the

feature map 𝐹𝑟(𝑖, :, :) of a video 𝑖. The covariance matrix 𝐶𝑜𝑣𝑟 ∈ R𝐶×𝐶 is a symmetric
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matrix and thus it is determined by 𝐶(𝐶+1)
2

values. We apply a filter mask extracting

all the entries on and above the diagonal of the covariance matrix. We reshape these

values in the form of a vector 𝐺𝑟(𝑖):

𝐺𝑟(𝑖) = 𝑚𝑎𝑠𝑘[𝐶𝑜𝑣𝑟(𝑖)] (6.7)

where 𝑚𝑎𝑠𝑘(.) is the filter mask operation. The obtained feature vector 𝐺𝑟(𝑖) repre-

sents the channel covariance of the video. We then enforce a distillation loss in the

embedded space from the frozen teacher to the student over the positive video pairs

(𝒫). This is performed by minimizing the mean square error, which is formulated as

the Global Contextual Relation loss:

ℒ𝐺𝑙𝑜𝑏𝑎𝑙 =
1

𝒫

𝒫∑︁
𝑖=1

||𝐺𝒯 (𝑖)−𝐺𝒮(𝑖)||2 (6.8)

The differential property of equation 6.6 enables to train our teacher-student frame-

work jointly with the other losses.

Boundary Saliency

The boundary saliency loss term is used in our formulation to learn comparatively

precise boundaries for action detection. In an untrimmed video, we find that the

starting and ending of the action are more salient than other parts, that brings us

crucial information to detect the transition of an action to another action or back-

ground. Intuitively, the sharp variation across consecutive snippets in the video can

reflect such saliency of the action boundaries, which is a cross-snippet knowledge.

Transferring the knowledge of feature evolution along time encourages the features to

be more sensitive at the action start and end, thus assisting the class-wise actionness

detector in the student network to detect precise boundaries of the action instances.

Such an approach is especially effective when the modality processed at the teacher

network provides pertinent boundary information. For instance, modalities which are

sensitive to motion (e.g. OF, 3D poses) are able to bring a significant benefit from

this loss term. In addition, this loss-term also encourages to retain the temporal

consistency across the different modalities.
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In practice, we first define the variation between consecutive snippets as 𝑉 𝑎𝑟(𝑖)

for video 𝑖, which is formulated as:

𝑉 𝑎𝑟𝑟(𝑖) =
1

𝑇 − 1

𝑇−1∑︁
𝑡=1

𝐶∑︁
𝑐=1

[𝐹𝑟(𝑖, 𝑡+ 1, 𝑐)− 𝐹𝑟(𝑖, 𝑡, 𝑐)] (6.9)

where 𝑟 ∈ {𝒯 ,𝒮}. Then, we define the Boundary Saliency loss as the 𝐿1 distance

between the frozen teacher and the student network over the 𝒫 positive pairs, which

is formulated as:

ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
1

𝒫

𝒫∑︁
𝑖=1

|𝑉 𝑎𝑟𝒯 (𝑖)− 𝑉 𝑎𝑟𝒮(𝑖)| (6.10)

With both sequence-level distillation losses, the student network learns two types

of cross-snippet information from the other modalities. Below, we summarize the

training procedure section.

6.4.4 Training and Testing

To sum up, firstly, we train the teacher networks with the classification (𝐶𝑙𝑠) loss, i.e

cross-entropy. The weights of the teacher network is then frozen followed by training

the student network. During training, multiple distillation losses are jointly opti-

mized with classification loss for the end task, i.e. action detection. On one hand,

the atomic distillation is trained in a contrastive manner (with positive and negative

pairs), whereas the sequence-level distillation losses are performed in a non-contrastive

manner by utilizing only the positive pairs in a batch. The overall objective is for-

mulated as:

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐶𝑙𝑠 + 𝛼1ℒ𝐴𝑡𝑜𝑚𝑖𝑐 + 𝛼2ℒ𝐺𝑙𝑜𝑏𝑎𝑙 + 𝛼3ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (6.11)

where 𝛼𝑖 are the loss weighting factors determined during the validation step. ℒ𝐶𝑙𝑠

represents the cross-entropy classification loss. We call the educated-student network

as Augmented-RGB. During inference time, we only use RGB videos as input to

detect the actions and up-sample the predicted logits to the same temporal resolution

as the ground truth to perform the evaluation.
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6.4.5 Experiments

To corroborate the effectiveness of our proposed KD framework, we perform an ex-

haustive experimental analysis for the action detection task.

Datasets

We evaluate our framework on five action detection datasets: Charades [172], PKU-

MMD [121], TSU [33], THUMOS14 [96], and MultiTHUMOS [223]. These datasets

contain videos of different types: (1) sport and daily living videos, (2) short and

long videos, (3) densely and sparsely labelled videos. Note: there are two settings

on Charades: (a) video-level action classification, (b) frame-level action detection

(Charades_v1_localize [172]). We only target the second one in this paper.

All the datasets are evaluated by the mean Average Precision (mAP). We evaluate

the per-frame mAP on densely labelled datasets following [223, 172].

Implementation Details

For extracting the additional modalities, Optical Flow (OF) is obtained using TVL1 [165],

the 3D Poses are extracted using LCRNet++ [158]. In this work, we adapt the 5-layer

SSTCN [57] as the temporal filter, the output channel size 𝐶 is 256. While training

the teacher-student framework, we use Adam optimizer [103] with an initial learning

rate of 0.001, and we scale it by a factor of 0.3 with a patience of 10 epochs. The

network is trained for 300 epochs with a mini-batch ℬ of 16 videos for Charades, 8

videos for PKU-MMD, THUMOS, and 4 videos for the TSU dataset. 𝒩 is set to 1, 𝒫

as ℬ
2

and 𝛼𝑖=[300, 100, 5]. We use binary cross-entropy for multi-label classification.

For sparsely-labelled datasets: THUMOS14 and PKU-MMD, following [131, 35], a

post-processing step is performed to generate the action events.

Ablation Study

Firstly, we discuss about the effectiveness of the losses proposed in our distillation

framework. Tab. 6.3 shows the comparison of action detection performance on Cha-
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ℒ𝐴𝑡𝑜𝑚𝑖𝑐 ℒ𝐺𝑙𝑜𝑏𝑎𝑙 ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 Charades PKU-MMD
Teacher-OF – – – 18.6 68.4
Vanilla-RGB – – – 22.3 79.6
Two-stream – – – 24.8 83.4

Atomic ✓ – – 23.9 82.7

Sequence
– ✓ – 23.8 83.7
– – ✓ 23.4 83.1
– ✓ ✓ 24.2 84.2

Mixture ✓ ✓ – 24.4 84.3
✓ – ✓ 24.2 83.7

Total ✓ ✓ ✓ 24.6 85.5

Table 6.3: Ablation study for the proposed framework on Charades and PKU-MMD
(CS) datasets. For PKU-MMD we consider IoU=0.1.

rades and PKU-MMD (IoU=0.1). This table also shows the impact of progressively

integrating the KD losses in our distillation framework. The vanilla-RGB is the net-

work trained using only ℒ𝐶𝑙𝑠 without distillation. Compared to vanilla RGB, while

training with ℒ𝐴𝑡𝑜𝑚𝑖𝑐, ℒ𝐺𝑙𝑜𝑏𝑎𝑙, ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 independently obtains an improvement of

+3.1, 4.1, 3.5% mAP on PKU-MMD respectively. The action detection performance

is further improved by the convex combination of any two losses their individual

counter-parts. This shows the complementary functionalities of the proposed losses.

Also, note that the combination of the sequence losses contributes higher than the

atomic loss. This observation supports the importance of the sequence-level losses

for action detection. Finally, when trained with all the three losses, the student

outperforms all the baselines (+2.3%, +5.9% vanilla RGB stream on Charades and

PKU-MMD). These results show that both our design choices and different losses

contribute to the overall performance of our approach.

In Tab. 6.4, we show that our distillation mechanisms perform better at feature-

level than at logit-level. The primary reason behind this trend is that we are perform-

ing cross-modal distillation, where the frozen teacher may under-perform compared to

the student network (e.g. OF on Charades and PKU-MMD) the different modalities.

As the logits represent the classification scores, they may introduce noise from the

weak teacher via KD into the RGB student.
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Table 6.4: Feature-level and logit-level
distillation. The student learns from
OF stream. For PKU-MMD, we set
IoU=0.1.

Charades PKU-MMD
Logit 23.7 84.9
Logit+Feature 24.2 85.4
Feature (Ours) 24.6 85.5

Table 6.5: Comparison with cross-modal
KD methods and ℒ𝐴𝑡𝑜𝑚𝑖𝑐 on Charades
and PKU-MMD datasets. For PKU-
MMD, IoU=0.1.

Charades PKU-MMD
Vanilla-RGB 22.3 79.6
+ℒ𝐻𝑎𝑙𝑙 [69] 22.7 81.5
+ℒ𝑀𝐴𝑅𝑆 [27] 23.5 81.7
+ℒ𝐺𝐷 [131] 23.3 82.2
+ℒ𝐴𝑡𝑜𝑚𝑖𝑐(Ours) 23.9 82.7

Charades PKU-MMD TSU-CS TSU-CV
Teacher-OF 18.6 68.4 29.4 17.5
Teacher-Pose 9.8 65.0 26.2 22.4
Vanilla-RGB 22.3 79.6 29.2 18.9
Two-stream RGB + Pose 23.0 82.9 32.6 23.7
Two-stream RGB + OF 24.8 83.4 33.5 19.5
Pose Augmented RGB 23.2 84.7 32.4 23.6
OF Augmented RGB 24.6 85.5 32.8 19.3
Pose + OF Augmented RGB 24.9 86.3 33.7 23.8

Table 6.6: Ablation for different modalities on Charades, PKU-MMD (CS), TSU-CS
and TSU-CV. For TSU, the reported values are frame-based mAP (%). The IoU
threshold for PKU-MMD is 0.1.

Analysis of our Distillation Framework

In this section, we further analyze our distillation framework in different aspects.

Comparison with popular cross-modal KD methods: Tab. 6.5 presents a

comparison of our extended atomic distillation with state-of-the-art cross-modal KD

methods, learning from OF. These baseline methods [88, 27, 69, 200] using traditional

losses like MSE and cosine distance are actually designed for classification tasks. For

the comparative analysis with our ℒ𝐴𝑡𝑜𝑚𝑖𝑐, we adapt them following [131] for the task

of action detection. ℒ𝐴𝑡𝑜𝑚𝑖𝑐 consistently outperforms all the baseline methods on

Charades and PKU-MMD datasets (+1.6%, +3.1% vanilla RGB stream on Charades

and PKU-MMD).

Analyzing our framework with different modalities: In Tab. 6.6, we validate

that our proposed method is generic and can be effective with different modalities. For

experimentation, we perform distillation from OF and 3D Poses. For 3D poses, the

teacher consists of 2s-AGCN [171] as visual encoder followed by the temporal filters

for detecting actions. In datasets like Charades, most actions involve human-object

interactions with prominent motion patterns and in datasets like PKU-MMD, most

190



Stream SH NTU-60 NTU-60 NTU-120 NTU-120 N-UCLA
(CS) (CS) (CV) (𝐶𝑆1) (𝐶𝑆2) (𝑉 3

1,2)
#training samples 8.8k 34.7k 37.6k 52.9k 52.2k 1k
RGB 53.4 85.5 87.3 77.0 80.1 86.0
3D Poses 51.5 85.8 93.8 79.6 81.1 78.2
RGB+3D Pose (Late Fusion) 63.0 87.7 94.8 81.1 83.3 87.1
Ours 67.1 90.8 93.8 85.1 87.6 89.1

Table 6.7: Top-1 accuracy of RGB, 3D Poses, and the Augmented-RGB on 4 datasets.

actions have similar appearance with variant motion over time. Thus, OF stream

provides more salient information than Pose stream on these datasets. Whereas 3D

Poses are robust to the change of the view-points and thus, significantly improves

the action detection performance in cross-view settings (see Tab. 6.6). Furthermore,

with a multi-teacher network with OF and Poses, the RGB stream now dubbed as

Pose + OF Augmented RGB learns some additional information (+2.6%, +6.7%,

+4.5%, +4.9% vanilla RGB stream on Charades, PKU-MMD, TSU-CS, TSU-CV

respectively).

Can ℒ𝐴𝑡𝑜𝑚𝑖𝑐 generalized to action recognition? As the proposed atomic-level

loss is close to action recognition task. We also conduct the experiment for studying

if this loss-term can benefit the action recognition task. In practice, we distillate the

knowledge from 3D poses to RGB stream, where RGB backbone is an I3D model [17]

and Pose backbone is a Graph Convolutional Network [170]. The distillation oc-

curs at the feature-level between the outputs of the two backbones. In Table 6.7,

we compare our distillation model with uni-modal models and their combinations on

SH [40], NTU-60 [167], NTU-120 [123] and N-UCLA [197] datasets. Following the

state-of-the-art trends, RGB and Poses are combined using score level fusion (i.e.,

late fusion). Our method significantly outperform the individual modalities. With

our contrastive distillation (ℒ𝐴𝑡𝑜𝑚𝑖𝑐), the Augmented-RGB outperforms the late fu-

sion strategy of combining RGB and Poses on all the datasets except NTU-60 (CV

protocol). This experiment shows the generalization and robustness of our atomic-

level distillation method. We have also extexded our Video Pose Network [42] by

this atomic-level distillation loss and further outperform SoTA on multi-modal action

recognition task [41].
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Figure 6-9: Precision vs Inference time per video on Charades.

Inference time & Complexity: Fig. 6-9 shows the precision vs inference time per

video on Charades dataset. The inference time includes the time of extracting the

additional modalities and the processing time of the visual encoder and temporal

filter. We find that Two stream RGB + TVL1 [165] achieves high precision on Cha-

rades, but at the expense of a high computational cost. In this work, we use TVL1 to

obtain the OF modality. Although there are methods [98, 183] that generate OF at

higher speed, these methods perform significantly worse than TVL1 [27]. Similarly,

the computation of accurate 3D Poses is not real-time, and hence doubles the video

processing time [158]. With these modalities in training phase, our proposed frame-

work avoids estimating these modalities at test time while keeping the performance

of two-stream network. The processing speed at the inference phase (I3D+SSTCN)

is about 140 fps using 4 GPUs, thus can be seen as a real-time processing.

Concerning complexity, as we have the same type of temporal filter and encoder

for teacher and student, the Augmented-RGB stream retains the same number of

parameters as the vanilla RGB stream at inference time, whereas two stream network

doubles the number of parameters often causing over-fitting [201].

Qualitative Analysis

With Global Contextual Relation loss, the student learns the relationships among

the action instances of the teacher network along with retaining the student’s indi-

vidual representation. As shown in Fig. 6-10, with only ℒ𝐺𝑙𝑜𝑏𝑎𝑙, the channel covari-
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Figure 6-10: Channel Covariance. We visualize the Covariance matrix of a video
for the vanilla RGB, vanilla OF, the two-stream RGB+OF, and the Augmented-
RGB (ℒ𝐺𝑙𝑜𝑏𝑎𝑙). For better visualization, we normalize the matrix to [0,1] and set a
threshold of 0.5.

Figure 6-11: Action boundary detection: (1) Ground truth indicates if it is action or
background at this frame. (2) The boundaries detected without ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦, (3) The
boundaries detected with ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦.

ance representation of Augmented-RGB is closer to the one of RGB+OF. Hence, the

Augmented-RGB achieves performance close to the one of the two-stream network.

We also compare the performance of RGB stream with Boundary Saliency distillation

and vanilla RGB stream. In Fig. 6-11, we find that the network with ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 detects

tighter temporal boundaries of the actions compared to the vanilla network. To fur-

ther show how two sequence-level distillation losses are complementary, we compare

APs for a student that is trained with only ℒ𝐺𝑙𝑜𝑏𝑎𝑙 or ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 on Charades in Fig. 6-

12. We find that ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 improves more the actions with high variation across time

(e.g. Throw pillow), ℒ𝐺𝑙𝑜𝑏𝑎𝑙 improves more the actions with relatively longer duration

(e.g. Holding mirror). While learning from ℒ𝐺𝑙𝑜𝑏𝑎𝑙+ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦, the student improves

all action types, reflecting how these two loss-terms complement each other.

Fig. 6-13 shows the class-wise actionness result of the vanilla-RGB and Augmented-

RGB in a densely labelled video along with the action detection results. We notice

that the Augmented-RGB detects tight action boundary the vanilla-RGB, e.g. use

cupboard, walk. Thanks to our distillation methods, the Augmented-RGB now pre-

dicts the use drawer action which is miss detected in vanilla-RGB.
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Figure 6-12: Difference of Average Precision for two sequence-level distillation losses
on Charades dataset. G: ℒ𝐺𝑙𝑜𝑏𝑎𝑙, B: ℒ𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦.

Figure 6-13: Class-wise actionness with the detection results.

Comparison with the State-of-the-Art

In Tab. 6.8, we compare other action detection methods with our Augmented-RGB

on PKU-MMD. Recall that our distillation mechanisms are build on SSTCN. While

one method [112] using Poses achieves very high performance, this method is skeleton-

based and applicable only for specific datasets (i.e. NTU-RGBD [167], PKU-MMD [121]),

where high quality 3D Poses are available. In contrast, our method is generic and

does not rely on Poses at inference time while being more effective compared to other

RGB based SoA methods, such as Graph Distillation [131] (+2.6%, +2.4%, +4.6%

for 0.1, 0.3, 0.5 IoU), which utilizes the same temporal filter but more modalities

(e.g. depth) at training time compared to our method.

To show the generalization of our method, we also evaluate our distillation frame-

work on Charades and TSU-CS, MultiTHUMOS and THUMOS in Table 6.9. For all

these comparisons, the student network is distilled with teacher pre-trained with OF
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mAP@tIoU (𝜃)
Method 0.1 0.3 0.5

Te
st

m
od

al
ity P
os

es

JCRRNN [114] 45.2 − 32.5
Convolution Skeleton [121] 49.3 31.8 12.1
Skeleton boxes [12] 61.3 − 54.8
Wang and Wang [196] 84.2 − −
Li et al. [112] 92.2 − 90.4

R
G

B

Deep RGB [121] 50.7 32.3 14.7
Qin and Shelton [152] 65.0 51.0 29.4
GRU+GD [131] 82.4 81.3 74.3
SSTCN+GD 83.7 82.1 76.5
Augmented-RGB 86.3 84.5 81.1

Table 6.8: Event-based mAP on PKU-MMD (CS) dataset. Only the last five rows
utilize RGB at inference time. Note that Graph distillation (GD) learns from more
than 4 modalities while our method learns from OF and Pose.

Type Model Dense Sparse
Charades TSU-CS MultiTHUMOS THUMOS14

Anchor

R-C3D [212] [HTML]FFCC6712.7 [HTML]FFCC678.7 — [HTML]FFCC6728.9
TAL [19] — — — 42.8
G-TAD [215] — — — 40.2
AFNet [20] [HTML]FFCC6713.1 — — [HTML]FFCC6749.5

Seq2Seq

TAN [35] 17.6 — 33.3 46.8
WSGM [63] 18.7 — — 32.8
TGM [149] 21.5 [HTML]FFCC6726.7 44.3 53.5
Vanila-RGB [57] [HTML]FFCC6722.3 [HTML]FFCC6729.2 [HTML]FFCC6737.8 [HTML]FFCC6746.1
Two-stream 24.8 33.5 44.4 53.7
Augmented-RGB [HTML]FFCC6724.6 [HTML]FFCC6732.8 [HTML]FFCC6744.6 [HTML]FFCC6753.3

Table 6.9: Comparison with State-of-the-Art action detection methods. Our method
learns only from OF. The cells in white are the two stream results (RGB+OF), while
the cell in orange represents using only RGB at Inference time. We report frame-based
mAP and event-based mAP for the dense and sparse labelled datasets respectively.
The IoU is 0.5 for THUMOS14.

in the training phase, as Poses are not always available. For a fair comparison with

our Augmented-RGB, Vanilla-RGB and Two-stream networks are implemented using

SSTCN. In this table, we find that, anchor-based methods (e.g. AFNet) perform

decently on sparsely-labelled datasets, while failing on densely labelled datasets due

to the combinatorial explosion of proposals. On the other hand, Seq2Seq architec-

tures are stable on both types of dataset. With the help of our proposed distillation

method, the Augmented-RGB achieves the competitive Two-stream performance on

all the datasets (+2.3, 3.6, 6.8, 7.2 % vanilla-RGB on Charades, TSU, MultiTHU-

MOS, THUMOS14 respectively). We observe that the performance improvement on

THUMOS which consists of sport videos, is significant due to strong motion patterns
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resulting to an effective OF based teacher network. Thus, Augmented-RGB while

using only RGB at inference, performs on par with Two-stream network for the task

of action detection.

6.5 Conclusion

In this chapter, we have introduced two frameworks for learning cross-modal represen-

tation for the action detection tasks. Both frameworks are built upon a temporal con-

volution network. Firstly, we propose AGNet, which is the baseline of TSU dataset.

This model is designed to address many real-world challenges existing in TSU. For

instance, for dealing with large temporal variance, the attention module generates

attention masks at different temporal scales to help detect actions with different tem-

poral lengths. For multi-view challenge, we use both RGB and 3D skeleton to better

tackle the view variance problem. This is because 3D skeleton is robust to different

view points. We show that our baseline outperforms the state-of-the-art on all the

evaluation protocols of TSU. As a continuation of AGNet, we build a distillation

framework for action detection, which leverages only RGB at inference time. This

distillation framework encourages the RGB stream to learn three types of knowledge

to better benefit from the cross-modal information in untrimmed videos. Thanks to

this framework, we can improve the performance of vanilla RGB networks and make

it possible to detect actions in real-time with high precision, even in case of densely

labelled datasets. Experiments show that the proposed method can efficiently infuse

different modalities into RGB. For instance, the Augmented-RGB network achieves

a performance similar to the Two-stream network while using only RGB at inference

time.
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Chapter 7

Discussion and Future Work

In the final chapter, we summarize the contributions of this thesis and depict the

future work directions.

7.1 Contribution Summarization

In this thesis, our work revolves around temporal action detection tasks in real-world

videos (see Fig. 7-1). We have a special focus on analysing the videos with dense

action occurrences and videos with fine-grained actions. Firstly, we introduce a real-

world indoor dataset: Toyota Smarthome Untrimmed (chapter 3). As the name

of the dataset suggests, we aim at providing a large indoor dataset to detect hu-

man behaviours in an ordinary smart-home. This is an important application for

action detection with the societal objective of helping older people to live longer in

their preferred environment. To this end, we recorded the daily life activities of 18

older people and we extensively annotated all the human actions that appear in those

videos. As the recording process is unscripted and without constraints, this dataset

features many properties that lie in the "real world" but that are overlooked by the

existing datasets. For instance, these properties include composite actions, concur-

rent actions, high camera framing, and so on. We compared this dataset with the

current state-of-the-art indoor action detection datasets and we showed the contribu-

tion of our dataset in terms of new challenges. We believe that releasing videos with
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Figure 7-1: Summary of Thesis.

those properties could help design better action detection methods for smart-home

applications.

Besides the dataset, we introduced multiple approaches for action detection. These

approaches can be divided into three topics, which aim at solving real-world challenges

in action detection in different manners.

(1) Temporal relational reasoning (chapter 4): As the action detection model

takes as input untrimmed videos, one of the primary focuses of this dissertation is on

the temporal modelling of the video. We proposed three different temporal networks.

SA-TCN features a temporal encoder and decoder structure. The attention module

on top of the shrunk temporal feature in the middle stage enables the model to handle

long-term temporal dependencies. However, the shrunk temporal feature may fail to

capture the short-term temporal dependencies. To model both short-term and long-

term temporal dependencies and complex temporal relations in videos, we propose

PDAN and MS-TCT. PDAN is a temporal convolutional network, with temporal

kernels which are adaptive to the input data. MS-TCT is a ConvTransformer network

that leverages both temporal convolutional layers and multi-head attention layers at

multiple temporal scales. Both networks can capture the different levels of temporal

dependencies in a video.
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(2) Semantic relational reasoning (chapter 5): Knowledge of action relations or

object relations can be critical to detect actions in a video, especially for complex

actions with long-term dependencies. In this thesis, we proposed a general semantic

reasoning framework that can extract the semantic representations (e.g. object, ac-

tion) from a video and which uses a graph convolutional network to learn the relations

across different semantics. We evaluated this framework to model the object-object

relations in the visual encoder and action-action relations in the temporal module.

As a briefly recap: the aforementioned visual encoder and temporal module are two

main components of the sequence-to-sequence action detection framework: (a) the vi-

sual encoder encodes a series of video frames into features, and (b) temporal module

models the temporal dependencies among the temporal features. The experiments

show that our semantic reasoning framework can effectively extract the semantic

representations and enhance the video representation for recognizing and detecting

fine-grained actions.

(3) Multi-Modality Representation Learning (chapter 6): The last contribution

was to propose to enhance RGB representation by learning from other modalities in

action detection. We firstly proposed AGNet which utilises an additional modality to

generate attention masks at multiple temporal scales. Each mask indicates the region

of interest of actions on a certain temporal scale, therefore it can help the RGB model

to better detect the action. However, AGNet still relies on the additional modality in

the testing phase. As a continuation, we proposed a knowledge distillation framework

that can transfer the knowledge from the additional modality and use only RGB

at inference time. The experiments show that our method can effectively transfer

knowledge from the representation of the additional modality to the RGB model.

7.2 Limitations and Perspectives

We then analyse the limitations of the current methods and we outline the future

work directions.
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7.2.1 Visual Encoding

The recent action detection methods’ [212, 215, 228] performance is not satisfying

on the popular benchmarks, especially for the datasets with dense action occur-

rences [20, 149], such as Charades and TSU. Although the proposed temporal models

are effective on other temporal reasoning tasks [194, 87, 143], due to the limitation of

an unoptimized spatio-temporal visual encoder, the final action detection results are

still low.

Firstly, the issue lies in the window approach of temporal feature extraction. The

current visual encoders, such as 3D Convolutional Networks [17, 60, 189] and video

Transformers [11, 129, 6], are all designed for pre-segmented videos, where each video

represents a complete action instance. The video snippet with the same label should

be represented similarly. However, in practice, the visual encoder extracts video fea-

tures from video snippets (i.e., no-overlapping small windows), not from the complete

action instances. Each snippet contains only a tiny part of action information and can

be taken from anywhere in the action instance. These incomplete snippets increase

extremely the data diversity at inference time resulting in an over-fitting issue for

the current models. There are some attempts [5, 213, 214] for introducing additional

completeness or boundary detection sub-tasks in the pre-training phase. However,

those methods are tailored for sparsely annotated videos and cannot handle videos

with dense action regions. As a future direction, utilizing masked auto-encoder [80],

which encourages the visual encoder to learn robust action instance representation

from randomly masked instances, may mitigate the over-fitting problem.

Another way to enhance the visual encoder is to utilise additional object trackers.

Currently, the input to the temporal module is a one-dimensional representation

where each time step corresponds to a single feature vector. This design makes the

temporal module difficult to capture the spatial or semantic information from the

video. To tackle this, object trackers can extract the object semantics from the

video and enrich the input of the temporal module. For example, we can input the

two-dimensional (𝑂𝑏𝑗𝑒𝑐𝑡 × 𝑇𝑖𝑚𝑒) feature map to the temporal module to explore
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the object-temporal relations. However, current object detection datasets are not

generalized enough for full semantic action understanding. This is because many

objects involved in fine-grained actions [176] may not be included in existing large

object detection or image classification datasets. Moreover, the imperfect object

detection performance, especially in the case of low-resolution videos, make it hard

to detect the object precisely from the video.

Furthermore, the disassociation of the visual encoder and temporal module may

lead the visual encoder can not effectively extract features for the final objective task

(i.e., not end-to-end training). In other words, this disassociation leaves the visual

encoding sub-optimal and restricts the action detection performance. Current visual

encoder and temporal module are not optimized jointly in our current networks, due

to hardware limitations. To link these two modules, a possible approach is to add

a momentum memory bank [26, 229] in-between the visual encoder and temporal

module. With this dynamic bridge between both modules, the temporal module

could gradually access the spatial information of the video. As a result, the visual

encoder and temporal module can be trained end-to-end. Note that the previous

approach can be seen as utilizing a frozen memory bank of the extracted snippet

feature, while this new manner provides the model with a memory bank which is

updated dynamically.

7.2.2 Other Challenges

Besides the limitations in visual encoder, we are interesting in tackling other chal-

lenges in action detection tasks.

Firstly, all the methods introduced in this thesis are fully-supervised action de-

tection methods which require the complete annotation of all action instances (i.e.,

temporal boundaries and categories) in training videos. However, such supervised

learning strategy is very time-consuming and costly. To eliminate the need for ex-

haustive annotations in the training phase, limited supervision is required. Contrary

to full supervision, in limited supervision, the annotations are unavailable or partially

available. In the future, we want to build a weakly supervised framework for action
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detection using only the video-level labels. With video-level labels, the network like

STPN [142] can leverage T-CAM to provide guidance to locate the action instance in

the video. T-CAM is a one dimensional class-specific activation map in the temporal

domain. As T-CAM quality highly relies on the temporal dependencies, it is possible

to extend our architecture to propose a weakly supervised learning strategy.

Secondly, how to handle long-tailed data for action detection? In this dissertation,

our methods do not have a specific design for the action categories which have only

a few samples. Therefore, the results are not balanced for the "head" categories

and the "tail" ones. To tackle this issue, a possible approach is similar to few-shot

learning [77] that learns the action representation more efficiently with only a few

samples. Another direction can be to pre-train the action representation from similar

large datasets and to transfer the knowledge to the domain of the target dataset.

As multiple actions can occur at the same time, the mix-up augmentation [195] for

different action instances during the pre-training phase can also help to learn the

co-occurring action representation.

Finally, how to detect actions that involve multiple subjects? In this thesis,

our detection focuses on actions performed by a single subject. Although we also

evaluate our methods on sport datasets such as MultiTHUMOS, the annotation is

subject-agnostic. To detect more complex activities that involve multiple subjects

(e.g. actions in basketball games), a framework is needed to explore the relations

across different subjects. Our future work is to extend the current semantic reason-

ing framework: not only modelling the object-object (i.e., THORN) and action-action

(i.e., CTRN) relations but also modelling the subject-subject relations in the videos.

In other words, we want to construct a novel hierarchical model for complex action

detection by combining different types of semantic reasoning modules.
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