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Abstract—The access link quality experienced by the end users
depends on the amount of traffic and on the presence of network
anomalies. Different techniques exist to detect anomalies, but
little attention has been devoted to quantify the access link quality
and to which extent network anomalies affect the end user’s
access link experience. We refer to this aspect as the impact factor
of the anomaly, that we define as the percentage of affected des-
tinations. In the ideal case, a node should continuously monitor
all possible routes to detect any degradation in performance, but
this is not practical in reality.

In this paper we show how a node can estimate the quality
of Internet access through a limited set of measurements. We
initially study the user’s access network to understand the typical
features of its connectivity tree. Then, we define an unbiased
estimator for the quality of access and we compute the minimum
number of paths to monitor, so that the estimator achieves a
desirable accuracy without knowing the underlying topology. We
use real data to construct a network graph and we validate
our solution by causing a large number of anomalies and by
comparing the real and the estimated quality of access for all
available end hosts. Our results show that the impact factor is a
meaningful metric to evaluate the quality of Internet access.

I. INTRODUCTION

The rapid expansion of applications and services, e.g., voice
over IP and video on demand, needs to face with the existent
Internet architecture controlled by Internet Service Providers
(ISPs). In this context, ISPs attract users offering flat rate
subscriptions with a minimum guaranteed bandwidth for their
traffic and rely on overprovisioning to meet their application
requirements. However, the quality of service perceived by
the user depends on many factors which might be out of
the control of the ISP: link failures and router congestion
inside the ISP network, or in other transit networks along
the path, can lead to a service degradation; saturation of
servers involved in the communication also impacts end user
performances. The detection of these network anomalies is
important for the ISP to manage the state of the traffic
and the network, but it is also very important for the end
user to assess the quality of its connection. In absence of
strict guarantees on the quality of service by ISPs, customers
are left themselves to judge the perceived quality of service
and estimate whether the ISP is fulfilling the Service Level
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Agreement (SLA). In the ideal case, the customers should
continuously monitor their connection and use tools, like those
provided by Grenouille [1], which allow measuring a set of
metrics, such as the speed of the downlink and uplink of the
end user’s connection. However, ISPs are hostile to such type
of measurements and often do not collaborate by blocking
measurement traffic or in the worst case by rerouting the users’
traffic so that the problem looks to be caused by other ISPs.

Generally, the detection of network anomalies and the
assessment of the Internet access by end users are quite
challenging due to the limited information available to them
and the limited set of achievable measurements. In recent
years, researchers have focused on estimating a set of metrics,
such as packet loss, bottleneck bandwidth, and round trip time
(RTT), and numerous solutions have been proposed to detect
anomalies [2]–[6]. The main idea is to infer network anoma-
lies by variation of path properties based on past observed
events. Network tomography is also a well established research
subject that uses end-to-end measurements to identify internal
characteristics of the network without any cooperation from
network devices [7], [8], and it has been used for anomaly
detection with topology information [9]. Although the problem
of detecting network anomalies has received a considerable
amount of attention, little has been done in estimating the real
impact of these anomalies on the user’s Internet access and in
determining scalable approaches that can work at the edges to
assess the quality of the network in general.

In this paper we take a first step toward the network anoma-
lies’ characterization at the edges of the network. We define
an anomaly as a deviation from the normal function of the
network due to a change in the path metrics, such as end-to-
end delay, bandwidth and so on. The approach we take is based
on inferring general properties from a small set of end-to-end
measurements to random destinations, i.e., landmarks, without
any assumption on the network topology. The advantage of this
approach has been demonstrated for delay estimation using a
subset of any network nodes [10] or for end-to-end network
monitoring using a subset of paths [11]. We leverage these
results to build a model for the characterization of anomalies
and for the evaluation of the Internet access provided by ISPs.

This work is motivated by the idea that the end user is
primarily interested in knowing what are the consequences



of an anomaly in the network more than in a macroscopic
diagnosis of the causes of the anomaly. Thus, the question we
try to solve in this paper becomes whether there is a network
anomaly and if so, what is the impact of this anomaly on the
service perceived by the user.

We define the impact factor, or seriousness, of an anomaly
as being the fraction of destinations and servers, across the
Internet, experiencing service degradation. The impact factor
ranges between 0 and 1, with 0 being the normal case and 1
the case when all possible IP destinations are affected by the
anomaly; the quality of access is no other than one minus the
impact factor. As an example, in case of a networking problem,
such as congestion in the backbone, the user measures normal
performance for local connections but he might have limited
access to any service located in other ISPs and reached via the
congested backbone link. This anomaly has different impact
than similar problems at the access link of the user which
will prohibit him from accessing any Internet service. When
the problem comes from the server delivering a service to the
user, the impact of the anomaly on the user’s Internet access is
almost nonexistent and the network service can be considered
as normal. As a general rule we can reason that the traffic
of the user is impacted by an anomaly if the packets traverse
the anomalous link and if the destinations reached via this
anomalous link are unreachable (or service unacceptable).

Our contributions in this work can be summarized as
follows. First we develop a probabilistic model to estimate
the value of the impact factor and the minimum number of
destinations, i.e., landmarks, to be monitored such that its
estimation has a satisfactory accuracy. Second, we use real data
to validate in practice our findings and to calculate the number
of landmarks, randomly chosen over the set of destinations,
so that the estimator of the impact factor achieves a given
significance level, without making any assumption on the
Internet topology.

The remaining of the paper is organized as follows. The
next section motivates our work by analyzing the topology
of the access network and by characterizing the properties
of the paths to different destinations. Section III introduces
the probabilistic model which is used as basis throughout
the study. Section IV details the methodology we follow to
estimate the impact factor. Section V presents the experimental
results for computing the impact factor, the minimum number
of landmarks, and the error of the estimation. Section VI
discusses the issues associated with the estimation of the
impact factor. Section VII concludes the paper and draws
future perspectives for this research.

II. MOTIVATIONS

Network anomalies can be classified based on the events that
generate them or on the type of traffic variations they cause in
the network [4]. In this paper, we do not specifically study how
the network adapts in case of anomalies, i.e., how the routing
algorithms compensate for any possible network problem.
We rather focus on the consequences of an anomalous event
on the users’ traffic and on the changes of the quality of

Internet access. An important initial step in this direction is the
analysis of the connectivity graph to shed light on the specific
features of the users’ access network. The user, i.e., the vantage
point for monitoring the status of the local connection, can
determine the graph using tools such as traceroute.

Let G = (V, E) be the connected tree representing the topol-
ogy having the vantage point as root, nodes V as intermediate
networking devices, and links E . Let D be the leaf nodes of
the tree, i.e., the destinations of the vantage point’s traffic.
We now construct the routing matrix G ∈ {0, 1}|E|×|D| whose
entries are Gij=1 if the path to destination j traverses link i,
otherwise Gij=0. The paths to the destinations are partially
disjoint, which is always the case when destinations do not
belong to the same LAN, and these paths share many common
links that are close to the vantage point. Thus, the paths are
linearly independent and the routing matrix is of full rank. Few
dimensions (few paths to the destinations) are more significant
than others, such that they might be sufficient to provide a
good approximation of the space defined by G. As a result,
the measurements on a subset of paths can be used to estimate
the properties and metrics of other paths by leveraging the
link sharing property in the Internet. This is the keystone of
the tomography problem that deals with the estimation of the
internal characteristics of the network [7], [8].

Following these intuitions, we analyze the vantage point
connectivity tree on the iPlane data [12] (Section IV-A de-
scribes in detail the data). The routing matrix is computed
for a total of 137 vantage points from one day’s traceroute
measurements. There are on average 18, 000 destinations per
vantage point, with IP addresses in separate /20 networks,
and we count on average more than 75, 000 unique links per
vantage point.

We compute the degree of the connectivity tree and show its
distribution versus the number of hops in Fig. 1, where the er-
ror bars indicate the standard deviation, and the minimum and
the maximum values. Fig. 1 (a) shows the degree distribution
of all 137 vantage points and Fig. 1 (b)-(d) show the degree
distribution for 3 representative vantage points. It is interesting
to notice that in general the degree of the connectivity tree
increases at the first few hops and then it falls below 2 after
12 hops. This is explained if we think that the traffic from a
vantage point to the destinations first travels along a limited
set of paths up to the core where most of the path diversity
originates, then uses a limited set of paths to reach destinations
in the same ISP. We expect a large set of shared links among
paths and the first hop links are shared more than the others.

We then study the spectrum of the tree to illustrate numer-
ically the topological properties of the connectivity trees and
this redundancy between paths. We estimate the magnitude
of the largest eigenvalues of the routing matrix G [13] [14]
to understand whether few paths are sufficient to represent
G [11]. The analysis of the eigenvalues also gives an insight
on the connectivity and clustering properties of the tree. The
computation of the eigenvalues is done on G · GT , and they
are no other than the square of the singular values of the
routing matrix G. We use the Matlab numerical Singular Value
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Fig. 1. Degree distribution of the vantage points versus number of hops on semi-logarithmic scale.
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Fig. 2. Largest 50 eigenvalues of the routing matrix of all 137 vantage
points (a) and 3 representative vantage points (b).

Decomposition technique for sparse matrices to compute the
first 250 singular values.

Fig. 2 (a) plots the mean of the ordered eigenvalues normal-
ized by the largest one for all 137 vantage points. This mean
is plotted on a semi-logarithmic scale and the error bars in
the plot indicate the standard deviation, the minimum and the
maximum values. The sharp decay of the curve indicates that
the rank of the routing matrix can be approximated in reality
by a smaller value. This ensures that fewer paths cover most of
the common initial parts of the tree. Indeed, the rightmost part
of the curve shows that the magnitude of the eigenvalues is
already negligible after 20. It is worth noticing that the second
eigenvalue in Fig. 2 (a) spans from 0.05 to 0.5: this means that
the trees have different structures reflecting how the number
of links grows with the number of hops [13] [14].

Fig. 2 (b) shows the eigenvalues of the 3 representative
vantage points that are geographically distant and exhibit
peculiar topology structures. The vantage point located in
USA has the largest second eigenvalue compared to others
(see Fig. 2 (b)) which characterizes the depth of the tree
and indicates that the degrees of the intermediate nodes are
comparable. Fig. 1 (b) shows for the same vantage point that
the degree distribution increases homogeneously and has a
small spike at hop 6. It is worth to analyze the differences
with the vantage point located in Czech Republic to derive
conclusions on the structure of the tree. Fig. 1 (d) shows a
huge spike at the two first hops, which corresponds to a larger
number of links at the first hops than the one in USA and
in this case the second eigenvalue of the routing matrix is
smaller. The different characteristics of the trees should be
reflected in the reachability of the destinations which depends
on the location of the anomaly and the structure of the tree.
We will discuss more about these properties in Section V. The
vantage point located in Slovenia shows the opposite extreme
case: all the paths share the same links in the first 5 hops, thus
the degree of the intermediate devices is 1 (Fig. 1 (c)). At hop
6 and 9 the degree distribution has two peaks with the second
considerably higher than the first. In Fig. 2 (b), the decay of
the curve in the second eigenvalue is more evident and the

subsequent eigenvalues are small. In general, we can notice
that the first 10 eigenvalues contain most of the information
on the routing matrix.

In this preliminary analysis we have discussed on the
structures of the connectivity tree of the vantage point. The
properties of most of the paths can be estimated from a smaller
number of monitored paths by using the shared links. This
observation applies very well to the impact factor where a
link failure impacts all paths passing through it. The drawback
is that the vantage point should construct the routing matrix,
but this is often unfeasible since the connectivity tree can
change due to routing updates and this is in any case not
scalable. Thus, we first propose an estimator for the impact
factor that not only reduces the number of monitored paths, but
does not require any topological information. We leverage the
monitoring and detection capabilities of the vantage point to
infer the seriousness of the anomaly and the quality of access.
This is summarized and quantified by the impact factor which
ranges between 0 and 1, with 0 being the normal case and 1
the case when all destinations are impacted by the anomaly.
The quality of the Internet access can be modeled as one minus
the impact factor.

III. IMPACT FACTOR ESTIMATOR

In this section, we define an unbiased estimator for the
impact factor and we formalize the problem subsequently
addressed. We consider a single end user, which is the van-
tage point for monitoring the local status of the network,
and we model the seriousness of an anomaly observed at
this point. For this analysis, we do not differentiate among
different network anomalies occurring at the same time but
we consider a general case when there might be more than
one anomalous link under the general term anomaly. We also
do not differentiate between a congested or unavailable link
since both problems cause performance degradation of the end
users’ traffic; we use them equally to refer a network anomaly.

Let D be the set of all possible destinations in the network,
nD = |D| being their number. Let L be a set of nL = |L|
landmarks randomly chosen among the destinations evenly
distributed (L ⊆ D), whose paths are continuously monitored
by the vantage point to detect network anomalies. Specifically,
the vantage point sends probing packets to observe and actively
measure the state of the links of the paths to the landmarks so
that it can determine whether they are still accessible with an
acceptable service level, or normal quality of the connection.
For instance, the vantage point can collect the round-trip times



(RTTs) to the landmarks and consider that a shift in the delay
means deviation from the normal conditions of the path. As a
general rule, the connection to a destination is not normal if
this destination is reached via one or more anomalous links.

We now formalize the problem as follows. Can we define
an unbiased estimator of the impact factor leveraging the
observations made on the path to the landmarks without
knowing any information about the topology? We assume
that an anomalous event causes the traffic to a destination to
experience a high delay, or a destination to be unreachable.
Let nu ≤ nD denote the number of all such destinations,
then we define the impact factor as If = nu

nD
. Now we want

to determine an unbiased estimator Îf of the impact factor
computed over nL ≤ nD observations, given that a smaller
nL reduces the overhead of the measurements. Based on the
analysis presented in Section II, the estimator should account
for an approximation of the connectivity tree to estimate the
fraction of destinations interested by the network anomaly.

Let’s consider an anomalous event. We construct the vector
X = {X1, X2, . . . , XnL} ∈ {0, 1}1×nL . Xl indicates the re-
sult of the observation made by probing landmark Ll: Xl = 1
if the probing packets to landmark Ll traverse the anomalous
link and Xl = 0 otherwise. By definition, the probability
that the vantage point probes the path containing one or
more anomalous links is the impact factor If itself. Now,
we define the random variable SL =

∑
lXl that indicates

the total number of paths to the landmarks that traverse the
anomalous link. Clearly, SL follows a Binomial Distribution
B(nL, If ): the probability of probing the anomalous link is the
impact factor, the landmarks are randomly selected, and the
measurements on the paths to the landmarks are independent
nL trials where SL indicates the number of “successes”. By
the law of large numbers, the impact factor can be defined as

If = lim
nL→∞

SL
nL

, (1)

since nL is the number of landmarks picked randomly and
we are modeling the problem with the Binomial distribution
where the landmarks are randomly sampled with replacement.
Note that at this point we do not make any assumption on the
selection of the landmarks and the same path can be selected
more than once in constructing the vector X . The expected
value and the variance of the binomial random variable SL are
E[SL] = nL ·If and V AR[SL] = nL ·If (1−If ) respectively.
It follows that an unbiased estimator of If is

Îf =
SL
nL

. (2)

It is very easy to prove that this estimator is the maximum
likelihood estimator for the impact factor given the observed
vector X whose sum of elements is SL. This estimator has
variance equal to If ·(1−If )

nL
, which drops to zero when the

number of landmarks increases to large values.

A. Estimation of the number of landmarks

We now study the minimum set of landmarks satisfying
a given accuracy of the estimator. Let’s consider two small

quantities ε and α characterizing the confidence interval and
the significance level of the estimator respectively. Now we
want to determine the minimum number of landmarks to be
monitored so that the Îf = SL

nL
can be used as an estimator for

the impact factor If in a confidence interval equal to (SLnL ±
ε) with a significance level 100(1 − α)%. For large nL, e.g.
nL > 30, thanks to the Central Limit Theorem the Normal
distribution N(nL · If , nL · If (1 − If )) can approximate the
Binomial distribution SL. For a small value of nL we refer
to the t-student distribution being aware of the error of this
approximation. At this point we are interested in computing
the order of magnitude of the number of landmarks and we will
investigate this problem in more details in Section V-B where
we analyze the empirical error of the approximation by varying
nL. Thus, the confidence interval of the estimator becomes
(Îf ± z1−α

√
V AR[Îf ]), where z1−α is the 100(1 − α)-th

percentile of the standard normal distribution and V AR[Îf ] =
V AR[SL]

n2
L

. By setting this interval to the target accuracy ε and
substituting V AR[SL] by its expression, one can easily obtain
that the number of landmarks should satisfy nL ≥ ( z1−αε )2 ·
If · (1− If ).
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Fig. 3. Minimum number of landmarks on a logarithmic scale to reach a
significant level 100(1− α)% for the estimator.

Fig. 3 plots the minimum number of landmarks to be ran-
domly selected as a function of the impact factor for different
significance levels such that an estimated impact factor lies in
a confidence interval defined by ε. We observe that the curves
are symmetric around If = 0.5 and for an impact factor close
to 0, or 1, the minimum number of landmarks needed can be
very small. In particular, the figures show that fewer landmarks
are needed for a reliable estimation if the anomaly affects
few destinations or a large set of them, in comparison to the
intermediate case when the entropy of the binomial distribution
is maximal. In practice, if there is no anomaly in the network,
all landmarks report normal conditions, hence few of them
are enough. In the opposite case if the anomaly is severe, all
network destinations will be unreachable; in these cases even
1 landmark is enough to monitor the status of this access link.
For values close to 0 or 1, a small confidence interval for a
given significance level is sensitive to both the small deviation
of the impact factor and to the number of landmarks, leading to
the sharp change of the curves. We can summarize the results
and say that few landmarks are sufficient to assess the quality
of its access link (really good or really bad), this quality being
one minus the impact factor we define.



IV. METHODOLOGY

The validation of our model is performed on a simulator
built on real data used to construct the local topology for each
vantage point, i.e., the connectivity tree, so that we are able to
control the experiments and study the impact factor in details.

A. Experimental data

In our analysis we use the data set of the iPlane project [12]
gathered on August 22, 2009. iPlane collects traceroute mea-
surements from 199 vantage points, located mostly on Planet-
Lab [15], to ∼142, 000 public IP addresses with more than one
destination in the same IP prefix. We resolve the aliases and
we only keep one destination in each /24 network prefix. From
this set, we filter out vantage points that have an incomplete
set of measurements or few destinations; although these trees
are also interesting to analyze, we prefer to avoid possible
bias in the evaluation of the estimator. We also filter out the
unreachable destinations and the traceroutes that exhibit some
known problems: routing loops, destination address in the
middle of the path, hidden and unknown intermediate routers.
The final data set for the experiments, unless specified, consists
of 137 vantage points and on average 29, 000 paths to unique
destinations and 75, 000 unique links per vantage point.

In this paper, we make no explicit assertions about the extent
to which this data set represents the actual core of the Internet
since there is no authoritative source for that information.
While the limitations of using Planetlab for investigations of
the Internet topology are known [16], we argue that both the
scope and content of the data are appropriate for our analysis
since the goal of this work is primarily methodological in
nature. Furthermore, the fact that our data are gathered during
a single day is not a limit of the analysis as our objective is
to use a realistic router-level topology as seen by an end user.

B. Anomaly simulator

Our goal is to analyze network anomalies in a real topology
to determine the real impact factor and validate the estimator
defined in Section III. We have deployed a simulator that
constructs the connectivity tree from the traceroute measure-
ments and generates some controlled anomalies. This choice
is determined by the fact that network anomalies in reality
might not happen at regular intervals to be able to study them
by real experimentations. Experimenting directly on the real
Internet does not allow a complete study of the impact factor
since network anomalies are hard to reproduce; further, it is
infeasible to compute in reality the impact factor to assess the
goodness of the estimator. We will discuss more about it in
Section VI. In summary, the simulator allows: (i) to control
directly the anomaly; (ii) to perform a sensitivity analysis on
the number of landmarks; (iii) to determine the uncertainty
in localizing the network anomaly; (iv) to understand the
limitations and advantages of the estimator in detail [17].
Nevertheless, we are interested in evaluating real scenarios,
thus, we define our simulator on top of real data to understand
how the impact factor estimator performs in reality.

The simulator processes the data of each vantage point
separately for constructing the connectivity tree. We fix the
number of landmarks used for the experiment and each vantage
point randomly selects the set among the destinations. This
set is the same for the entire duration to guarantee that the
experiments are as close as possible to the real case. In fact,
we assume that a vantage point selects its landmarks and
sticks with this choice to profit from temporal correlation
for detecting anomalies on these paths and for estimating the
Internet access quality on the time series of the impact factor.

We generate anomalies by eliminating links from the con-
nectivity tree to simulate broken or heavily congested links and
at fixed instants of time the vantage point constructs the vector
of observations, i.e., X , based on the results of the detection
mechanism: 1 in case of detected network anomaly and 0
otherwise. For each anomalous event and for each vantage
point, we check the tree to compute the real and the estimated
impact factor as the fraction of destinations and landmarks
interested by the anomaly, respectively. By considering that
the destinations in the iPlane data are not biased against some
specific ASes, this calculated impact factor can be safely
assumed to be close to the real one that the vantage point
would observe in the wild.

The major difficulty in our study comes from the uncertainty
in the set of feasible impact factor values in reality. This
uncertainty adds to the error introduced by the choice of a
limited set of landmarks to probe. The location of the anomaly
by inverting landmark-based probing is another interesting
question to handle. Without loss of generality, and supposing
all links can be anomalous with the same probability, the
present analysis should shed the light on how end-to-end
probes can evaluate the quality of an Internet access.

V. IMPACT FACTOR ANALYSIS

In this section, we study the impact factor on real traces and
determine how the impact factor varies. We experimentally
analyze the minimum number of landmarks to be monitored
for estimating the impact factor given a satisfactory accuracy.

A. Real Impact Factor

We start by analyzing the real impact factor considering
anomalies caused by one anomalous link at a time and iterating
for all links in the connectivity trees. The vantage points select
randomly the set of landmarks and use the same set for all
the measurements. In accordance with the way we define
our estimator, no consideration on the best or worst set of
landmarks is made.

In Section II, we analyze the connectivity graph and show
that the distribution of the links is function of the depth of
the connectivity tree. Let’s first consider a balanced tree, then
the impact factor is inversely proportional to the hop distance
of the anomalous link since the farther is the anomaly, fewer
destinations are connected through the anomalous link. For
instance if the connectivity tree is balanced and nodes have a
degree k, then we would expect that If = 1/kh, where h is the
number of the hops. In particular, the impact factor is 1/k at
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Fig. 4. Probability density function per hop of the Impact factor on real data

the first hop with probability 1/k and 0 with probability (k−
1)/k. Thus, the presence of intermediate values between 0 and
1 is determined by the degree of the routers in the connectivity
tree and by the links at few hop distance that connect only
few destinations. Fig. 4 plots the probability density function
of the impact factor for different values of the hop distance
of the anomalous link (the number of hops reaches 30 but
the plots are truncated for clearness). The plots show that the
intermediate values of the impact factor are possible only for
close anomalies.

Fig. 4 (a) plots the probability density function of the
average impact factor of all 137 vantage points used for the
experiments when the anomaly is located at a specific n-hop
distance from the vantage point. We notice that averaging
among all possible vantage points compensate for connectivity
trees that have a high or small degree for the intermediate
routers (see Fig. 1). Fig. 4 (a) shows that at the first hop the
impact factor is 1 with 0.85 probability and low probability is
associated to other possible values of the impact factor. This
means that the connectivity tree constructed by averaging all
vantage points is not balanced.

Fig. 4 (b), (c), and (d) plot the probability density of the
impact factor for the vantage points located in USA, Slovenia,
and Czech Republic respectively, whose connectivity trees
have been studied in Section II. The probability density of
the impact factor for the USA vantage point shows that the
impact factor at the first hop is 1 and anomalies at the second
hop span almost all possible values below 0.5. This confirms
the analysis of Section II about the degree distribution, Fig. 1
(b), and the eigenspectrum of the connectivity tree, Fig. 2 (b),
since the tree is almost balanced after the first hop. Fig. 4
(d) shows the results for the vantage point located in Czech
Republic. In this case, the impact factor has equal probability
to be close to 1 or 0; this is because the vantage point has
less shared links in the first hops but with high degree routers,
thus its impact factor becomes almost 0 at the second hop. An
opposite behavior is however shown in Fig. 4 (c). The vantage
point located in Slovenia has a degree distribution of 1 for the
first 5 hops and a peak at hop 6 (see Fig. 1 (c)). It follows
that an anomaly located at these 5 hops impacts seriously the
end user’s traffic, but the ones at hop 6 and more have almost
negligible impact.

B. Number of landmarks

In Section III we probabilistically compute the minimum
number of landmarks considering the range of all possible
values of the impact factor. However, we have noticed that

the impact factor presents values with a non uniform distri-
bution in reality, in particular the distribution has the mass
concentrated on low or high values.

We use the impact factor distribution of Fig. 4 (a) to
calculate the minimum number of landmarks sufficient to
estimate the impact factor itself for anomalous links at a
specific. We plot the cumulative distribution function in Fig. 5.
We analyze the significance level for a confidence interval
defined by ε = 0.01, in plots (a) and (b), and the confidence
interval for a 0.95 significance level, in plots (c) and (d); the
bottom of the plots shows the colored cumulative distribution.
In general, we observe that the minimum number of landmarks
is more sensitive to the size of the confidence interval, plot
(d). Fig. 5 (b) shows that for a 99% significance level, 75
landmarks can estimate the impact factor considering an error
of 1% for an anomalous link at any hop distance.

It is worth noticing the sharp increase of the number
of sufficient landmarks. The number at which we have the
increase is different and it reflects the distribution of the impact
factor. Indeed, a far anomalous link has an impact factor
close to 0 most of the time such that the required number of
landmarks is small; similarly an anomaly at the first hop has
impact factor 1 and few landmarks are enough also in this case.
On the contrary, when the impact factor is between 0 and 1,
there is higher uncertainty since the estimator is more sensitive
to the location of the landmarks and the links crossed, thus a
larger number of landmarks is required for the estimation. This
in line with the theoretical results in Fig. 3 of Section III-A.

Considering the cost of continuously monitoring the land-
marks and the most probable values of the impact factor, we
can conclude that in reality the end user does only need few
landmarks and 10 (Fig. 5 (a)) is a good compromise to have
an indication of the quality of the access network. In the rest
of this section we analyze the estimated impact factor in two
particular cases: 10 and 100 landmarks.

C. Estimated Impact Factor

The plots in Fig. 6 show the probability density function of
the estimated impact factor when 10 and 100 landmarks are
used; these are the plots (a)-(d) and (e)-(h), respectively. Fig. 4
(a) and (b) show that the estimator is able to infer correctly
the impact factor for all cases with only 10 landmarks. 10
landmarks normally would give a high error in the estimation
for an intermediate value of the impact factor. However, in
reality the most probable values of the impact factor are close
to 0 and 1, hence, a small number of landmarks is in practice
sufficient (see Fig. 5). This is evident for the vantage point
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(c) ε = 0.01% and α = 5%
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(d) ε = 0.001% and α = 5%

Fig. 5. Cumulative distribution function of the minimum number of landmarks based on the real impact factor.
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(c) Slovenia
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(d) Czech Republic
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(g) Slovenia
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(h) Czech Republic

Fig. 6. Probability density function of the estimated impact factor with 10 and 100 landmarks in plots (a-d) and (e-f), respectively.

located in Slovenia and Czech Republic (Fig. 6 (c) and (d))
since the real impact factor has few values between 0 and 1.
The vantage point of Fig. 4 (b) has its traffic equally divided
between the links at the first hops causing the estimator to
suffer from a poor selection of the landmarks. In reality, Fig. 4
(b) shows that 10 landmarks give a good estimate of the impact
factor. The estimator becomes more accurate when the number
of landmarks increases. Fig. 6 (e-h) show that an estimator
with 100 landmarks models well the impact factor in all cases.
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Fig. 7. Mean square error of the estimated impact factor in log-log scale

Fig. 7 shows the mean square error of the estimator versus
the number of landmarks for a connectivity tree up to hop 7,
since these are the hops where there is more uncertainty for the
value of the impact factor in case of an anomaly. We compute
the results for 1, 000 different selections of landmarks, over
all vantage points and anomalies. Fig. 7 plots the mean of the
estimated and expected square error, i.e., If ·(1−If )

nL·n , where n
is the number of different anomalies we consider. The curves
almost overlap and the mean square error is of the order of
0.1% for 10 landmarks; further, we have computed from the
data a maximum error of 1% in 99% of the cases.

We can summarize the results of this section saying that

an end user can estimate the quality of Internet access with
few landmarks. We have shown that 10 randomly selected
landmarks estimate in most of the cases the impact factor and
this depends on the connectivity tree of the vantage point.
Nevertheless, 10 is a sufficient number to have an idea of
how the anomalies impact the traffic. An important finding is
that an anomaly affects the Internet access of an end user if
anomalies are located at the first hops, otherwise the impact
factor is almost zero. This validates the use of the impact factor
as a metric to distinguish between an external problem to the
ISP causing the malfunctioning of the Internet access or an
internal problem of which the ISP should be responsible for.

VI. DISCUSSION

Critical to the real implementation of our model is the
anomaly detection phase, since techniques are prone to errors
in the measurements due to the intrusiveness of probes, ISPs’
behaviors and uncooperative nodes, such as routers which
block probing packets. In our analysis we have assumed that
the vantage points detect network anomalies on the monitored
paths without error. Whether this is desirable, in practice
the detection phase is not accurate and the filters might not
detect network anomalies or generate false alarms. Hence,
the measurement error affects the impact factor estimator.
We can refer to the performance of the detection filters
in terms of sensitivity (or true positive rate TP), i.e., the
actual network anomalies correctly reported, and specificity (or
true negative rate TN), i.e., normal path conditions correctly
reported. Then, the corrected impact factor estimator is simply
cIf = If · TP + (1 − If )(1 − TN). In practice, this means



that a larger number of landmarks is required to compensate
the detection error such that the sample size becomes nL ≥
( z1−α
ε(TN+TP−1) )

2 ·cIf ·(1−cIf ) to achieve a confidence interval
defined by ε with a confidence level 100(1−α)% [18]. In the
future we plan to investigate in reality the use of detection
filters. We also plan to study if it is possible to profit from
the impact factor distribution to improve the accuracy of the
estimator or if information about previous impact factors can
be used to compensate for the misclassification error while
maintaining the number of landmarks constant.

Another aspect worth of consideration for the real imple-
mentation of our framework is the definition of landmarks. The
performance of the estimator also depends on the position of
the landmarks and a bad selection can significantly reduce the
accuracy. For instance, a random selection of the landmarks
does not consider the users’ traffic preferences and the estima-
tor is unbiased with respect to a random destination. On the
contrary, if the traffic of the user is predominant toward some
IP networks connected by few links, monitoring landmarks in
only these autonomous system does not help in inferring the
impact factor as most of the destinations are left out. We plan
to use passive measurements to bias the selection of landmarks
toward some destination networks more interesting for the end
user.

Most of the detection tools probe continuously the paths
so that the landmarks should be willing to accept this extra
traffic. Our belief is that end users are willing to collaborate
if this serves to troubleshoot anomalies and to quantify the
quality of Internet access. For example, Grenouille [1] already
provides free software to measure a set of metrics and the end
users participate actively to monitor their access network. We
also envision the presence of multiple collaborative clients, but
we also expect the ISPs to provide some dedicated network
devices close to the access networks to give a guarantee
of their services. The collaboration of different end users is
also subject of future work. In this paper we have studied
each vantage point separately and in the future we plan to
investigate how the collaboration of the users and the spatial
correlation of the end-to-end measurements can improve the
accuracy of the estimator and the localization of the anomaly.

We also plan to evaluate the estimator on data sets that
resemble better the connectivity of the users, such as the
DIMES [19]. The iPlane data contains mostly vantage points
located on PlanetlLab which are connected to the Internet
through non-commercial autonomous systems. In this study
we have highlighted the characteristic of the connectivity tree
of the vantage points in such a way that we could detach the
properties of the estimator from the structure of the topology.
We notice that the real values of the impact factor are linked
with the connectivity of the end user; thus, we want to
understand whether we could exploit specific properties to
enhance the accuracy of the estimator.

VII. CONCLUSIONS

In this paper we propose a novel metric for the evaluation of
the Internet access to estimate whether the ISP is fulfilling the

Service Level Agreement. In contrast to previous work we fo-
cus on estimating the real impact of network anomalies on the
user Internet access and we define the impact of an anomaly
as being the fraction of destinations and servers unreachable
across the Internet. We have defined a probabilistic model to
infer the impact factor from a set of end-to-end measurements
to random destinations, substantially smaller than that needed
for exact monitoring, without assuming the knowledge of the
network topology. Our work is methodological in nature and
exploits the redundancy in links of the paths from the source
to the destinations. We have used a set of simulations based
on real traces to evaluate the estimator in practice and the
results confirm the validity of the impact factor as a metric,
showing that 10 landmarks are already sufficient to provide
an indication of the quality of access. Often, the estimator
has a small error which depends mostly on the size of the
landmarks set. The results of this paper shed light on other
practical issues and opens new research opportunities. From
the point of view of the probabilistic model, we have defined
the estimator without considering the temporal correlation
of the measurements, which can be exploited to reduce the
number of landmarks while maintaining the same accuracy.
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