
Royal Institute of Technology (KTH), Dept. of Microelectronics
and Information Technology

Stockholm, Sweden

Wireless Center, Research Center at KTH
Stockholm, Sweden

Politecnico di Torino, Dept. of Telecommunication
Turin, Italy

Reconfigurable Application Networks

through

Peer Discovery and Handovers

Master of Science Thesis

June 2003

Student: Roberto Gioacchino Cascella
Supervisor at Politecnico: Prof. Fabio Neri
Supervisor at Politecnico: Prof. Carla-Fabiana Chiasserini
Technical Advisor: Dr. Theo Kanter
Supervisor at KTH/IT: Prof. Gerarld Maguire

Abstract

This Master thesis work was carried out at the Wireless Center at KTH and it is part of

a pilot project. This thesis is conducted for the Institute for Microelectronics and Infor-

mation Technology (IMIT) at the Royal Institute of Technology (KTH) in Stockholm

(Sweden) and for the Department of Telecommunications at Politecnico di Torino in

Turin (Italy).

This thesis addresses an area with significant potential for offering services to mo-

bile users. In such a scenario users should have minimal interaction with applications

which, by taking into account available context information, should be able to make

decisions, such as setting up delivery paths between peers without requiring a third

party for the negotiation.

In wireless reconfigurable networks, the mobile users are on the move and must

deal with dynamic changes of network resources. In such a network, mobile users

should be able to contact other peers or resources by using the current route. Thus

although manual configuration of the network is a possible solution, it is not easily

used because of the dynamic properties of the system which would demand too much

user interaction. However, existing discovery protocols fall short of accomodating the

complexity of reconfigurable and heterogeneous networks.

The primary objective of this thesis work was to investigate a new approach at

the application level for signaling by taking advantage of SIP’s features. The Session

Initiation Protocol (SIP) is used to provide naming and localization of the user, and

to provide functionality to invite users to establish sessions and to agree on commu-

nication parameters. The Specific Event Notification of the SIP protocol provides a

framework for the notification of specific events and I believed that it could be instan-

tiated as solution to the problem for reconfigurable application networks.

This thesis proposes a method for providing localization information to SIP User

Agents in order to establish sessions for service discovery. Furthermore, this method

should consider context meta-data to design strategies effective in heterogeneous net-

works. A viable solution must support (re)location of users at the application layer

when they roam between different wireless networks, such as GPRS and WLAN. An

analysis of the implications of the proposed model is presented; in this analysis em-

phasis has been placed on how this model interacts with existing services.

Acknowledgments

This Master Thesis was performed at Wireless Center at KTH and it is part of a pilot

project. I wouldn’t have been able to accomplish it without the help of many people

who supported, advised me, and encouraged me. First I would like to express my

gratitude to Professor Gerald Maguire Jr., my supervisor at KTH, for his patience,

assistance, and for his continuous support during this thesis work; he gave me a lot

of hints and helped me by proofreading this report. I was also very fortunate to have

Dr. Theo Kanter as my technical advisor. He has helped me during these months by

supporting me and suggesting to me how to finalize this thesis.

Many thanks to Professor Fabio Neri and Professor Carla-Fabiana Chiasserini for

being my supervisors at Politecnico di Torino and for following my thesis work giving

me comments and useful feedback.

I would also thank Andreas Wennlund and Asim Jarrar, with whom I participated

in the Pilot project, for their ideas and feedback. I also acknowledge Vahid Mosavat

for having helped me to understand the Java code of the SIP UA and for giving me

advise on the implementation of the proposed solution. I would like also to thank the

people that work at the Wireless Center, where I carried out this thesis.

Then, I would like to acknowledge the support of those who have helped me en-

dured the stress and enjoy the happiness that took me to end my studies, such as Marco

Cordella, Pietro Lungaro, Giulio Mola, Clarisse Adouard, Raffaele Digiovanni, and all

the others who are not mentioned here by name.

I want to dedicate this thesis to my Parents for their unending support, encourage-

ment, and patience during my studies.

IV

Contents

Acknowledgments III

List of figures XI

Acronyms XIII

1 Introduction 1

1.1 Overview . 1

1.2 Introduction to the problem area. 1

1.3 Problem specification. 3

1.3.1 Towards a Service Discovery Protocol. 4

1.3.2 Location and context based services. 5

1.3.3 Naming and localization of users. 5

1.3.4 Mobility and routing . 5

1.4 Goal of the thesis. 6

1.5 Methods. 6

2 Peer-to-Peer Technology for Service Discovery 9

2.1 Peer-to -Peer. 9

2.1.1 Static configuration. 10

2.1.2 Centralized model. 11

2.1.3 Decentralized model. 12

2.2 Universal Plug and Play. 14

2.2.1 UPnP network components. 14

2.2.1.1 Devices . 14

2.2.1.2 Services. 15

2.2.1.3 Control Points. 15

V

VI

2.2.2 Protocols used. 15

2.2.3 UPnP protocol overview. 16

2.2.3.1 Addressing. 16

2.2.3.2 Discovery . 17

2.2.3.3 Description . 17

2.2.3.4 Control . 17

2.2.3.5 Eventing. 18

2.2.3.6 Presentation. 18

2.3 Jini. 18

2.3.1 Jini requirements and components. 19

2.3.2 Services. 19

2.3.3 Infrastructure. 19

2.3.3.1 Remote Method Invocation (RMI) and security. . . 19

2.3.3.2 Lookup Service. 20

2.3.3.3 Discovery and Join Protocols. 20

2.3.4 Programming model. 21

2.3.4.1 Leasing . 22

2.3.4.2 Events and notification interfaces. 22

2.3.4.3 Transaction . 23

3 Mobile networks 25

3.1 Introduction. 25

3.2 Wireless LAN. 25

3.2.1 Registration in WLAN. 26

3.2.2 Ad hoc network mode. 27

3.3 GPRS network . 28

3.3.1 Registration in GPRS. 29

3.4 Mobile IP . 30

3.5 Vertical handover. 31

3.5.1 Handover GPRS to WLAN. 32

4 Session Initiation Protocol (SIP) 35

4.1 Introduction. 35

4.2 Entities . 35

4.3 SIP Messages. 36

VII

4.3.1 Methods . 36

4.3.2 Response messages. 37

4.3.3 Header field. 38

4.4 SIP Registration. 40

4.4.1 Registration. 41

4.4.2 Update registration. 42

4.4.2.1 Delete locations. 42

4.4.2.2 Refreshing locations. 43

4.4.2.3 Discovery of a registrar. 44

4.5 Dialog and Session. 44

4.5.1 Dialog. 44

4.5.2 Session. 45

4.5.3 SIP message transaction. 46

4.6 Locating SIP Servers. 48

4.7 Extension . 49

4.7.1 Specific Event notification. 49

4.7.1.1 SUBSCRIBE . 50

4.7.1.2 NOTIFY . 50

4.7.1.3 Event. 50

4.7.2 Extension for Presence. 51

4.7.2.1 Presencelist Extension. 52

4.7.3 Extension for Instant Messaging. 52

5 SIP in Mobile Networks 53

5.1 Introduction. 53

5.2 SIP’s mobility support . 53

5.2.1 Terminal mobility. 54

5.2.2 Personal mobility. 55

5.2.3 Session mobility. 56

5.2.4 Hierarchical registration. 56

5.3 Architectural alternatives using SIP for mobility. 57

5.4 SIP and NAT . 58

5.5 Proposed design for SIP enabled networks. 59

5.5.1 SIP URIs association in foreign and home domain. 62

5.5.2 Hierarchical registration in SIP. 65

VIII

5.5.2.1 A hierarchical presence structure. 67

6 The Service Peer Discovery Protocol 69

6.1 Introduction. 69

6.2 Issues and requirements. 70

6.2.1 SIP and service discovery. 71

6.2.2 Ad Hoc network and service discovery. 73

6.3 Representing services. 74

6.3.1 Taxonomy trees. 74

6.4 Overview of the architecture framework. 75

6.5 Service Peer Discovery Protocol. 77

6.5.1 SIP extension for service discovery. 78

6.5.1.1 SUBSCRIBE . 78

6.5.1.2 NOTIFY . 79

6.5.2 Entities . 79

6.5.2.1 User Agent. 79

6.5.2.2 File server service. 80

6.5.2.3 Context Server. 80

6.5.3 Messages. 81

6.5.3.1 Methods. 82

6.5.3.2 Header fields. 83

6.5.3.3 Body. 84

6.5.4 Session Discovery. 84

6.5.4.1 State Diagram. 85

6.5.4.2 Locating a Context Server. 86

6.5.4.3 Discovery . 86

6.5.4.4 Eventing. 89

6.6 SPDP for smart handover. 89

6.6.1 Redirection for content delivery. 91

7 Analysis of the Service Peer Discovery Protocol 93

7.1 Introduction. 93

7.2 Cellular networks and services. 93

7.3 WLANs and services. 95

7.4 Integration of SPDP with current services. 95

IX

7.4.1 Robustness of the SPDP protocol. 97

7.4.2 Delay . 98

7.4.3 Latency. 99

7.5 Different technologies for realizing the SPDP. 99

7.5.1 Using Instant Messaging. 99

7.5.2 Interoperability with other discovery protocols. 100

7.5.3 Using IPv6 instead of IPv4. 100

8 Conclusions and future work 103

8.1 Conclusions. .103

8.2 Future Works .104

8.2.1 Security. .104

8.2.2 Intelligent Agent . 105

8.2.3 Improvements to SPDP. 105

8.2.4 Testing the SPDP protocol using different scenarios. 105

Bibliography 112

A Implementation of the Service Peer Discovery Protocol 113

A.1 Introduction .113

A.2 Available software .113

A.3 Description of the implementation. 114

A.3.1 Testing the implementation. 115

X

List of Figures

2.1 Centralized model. 12

2.2 Decentralized model. 13

3.1 WLAN - Infrastructure Mode. 26

3.2 Ad Hoc Network . 28

3.3 The GPRS Network. 29

3.4 Vertical Handover. 32

4.1 Locating SIP Servers. 48

5.1 Hierarchical Registration in a foreign domain. 57

5.2 SIP proxy for connectivity through NAT for GPRS network. 60

5.3 GPRS network enabled for constant SIP connectivity using SIP proxies61

5.4 GPRS and WLAN networks for SIP communication. 62

5.5 SIP registration within a GPRS domain. 63

5.6 SIP registration within the home domain. 64

5.7 Hierarchical structure of SIP Servers for heterogeneous networks. . . 66

5.8 Hierarchical Registration for heterogeneous networks. 67

6.1 Service Taxonomy Tree. 75

6.2 Entities Taxonomy Tree. 76

6.3 Protocol Stack Overview. 76

6.4 User Agent . 77

6.5 File server: delivery scenario. 81

6.6 SPDP UA Flow chart. 85

6.7 Service Discovery Message. 88

6.8 Redirection of content delivery to different interface. 91

XI

XII

List of Abbreviation and Acronyms

ALG Application Level Gateway

AP Access Point

BSS Basic Service Set

BSC Base Station Controller

CXDP Context eXchange Data Protocol

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DS Distribution System

ESS Extended Service Set

FA Foreign Agent

FTP File Transfer Protocol

GENA General Event Notification Architecture

GGSN Gateway GPRS Support Node

GPRS General Radio Packet Service

GSM Global System for Mobile communication

HTTP Hyper Text Transfer Protocol

IAPP Inter Access Point Protocol

IBSS Independent Basic Service Set

IETF Internet Engineering Task Force

IP Internet Protocol

ISP Internet Service Provider

JAXB Java (TM) Architecture for XML Binding

JVM Java Virtual Machine

LAN Local Area Network

LSA Location Service Area

XIV

LSG Location Service GPRS

MCU Multi-point Control Unit

NAT Network Address Translator

PDA Personal Digital Assistant

QoS Quality of Service

RMI Remote Method Invocation

RTP Real Time Protocol

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SGSN Serving GPRS Support Node

SIP Session Initiation Protocol

SOAP Simple Object Access Protocol

SRG SIP Registrar for GPRS

SPDP Service Peer Discovery Protocol

SRW SIP Registrar for Wide area

SSDP Simple Service Discovery Protocol

TCP Transport Control Protocol

TLS Transport Layer Security

UA User Agent

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Universal Resource Identifier

URL Universal Resource Locator

VoIP Voice over IP

WAN Wide Area Network

WAP Wireless ApplicationProtocol

WLAN Wireless Local Area Network

XML eXtensible Markup Language

Chapter 1

Introduction

1.1 Overview

The increasing use of wireless infrastructure and portable technologies, such as lap-

tops, cellular phones, and Personal Digital Assistants (PDAs), puts new demands on

network infrastructures and network accessability. Ad hoc networks have changed the

role of the user in the network by offering new kinds of services that allow users to

communicate without any infrastructure. Furthermore, device mobility and user mo-

bility creates new interesting services designed for reconfigurable networks. The need

for connectivity along with this mobility puts high demands on the networks, as inter-

ruption of ongoing communications or transactions should be avoided.

Mobile users need to automatically discover services relevant to the their current

location, without needing to have complete apriori knowledge of the communication

environment. In such a network, the infrastructure should be self-configuring, and

should take in account the context of both users and their communication.

1.2 Introduction to the problem area

The rapid growth of wireless-enabled environments has increased the necessity for ser-

vice discovery protocols in order to dynamically provide users with the services they

wish and require. The user is able to move among different wireless networks while us-

ing the same user-identifier via a multi-access mobile device or multiple devices; thus,

when these (wearable) devices are equipped with multiple interfaces (GPRS, WLAN,

Ethernet, IR, etc.), roaming and handovers must be possible betweenany combina-

1

2

tion of network types. Accessing each type of network requires different routines and,

thus, making the changes in connectivity transparent to the user becomes an attractive

feature for users.

The user should be able to ask for services, provided by many devices (e.g. print-

ers), or to simply utilize software services, such as file, audio, or video access. A

robust and self-configuring wireless network is essential to enable computational de-

vices or users to communicate with each other both autonomously and in response to

a user’s request. “Ad hoc networking” enables wireless devices to establish commu-

nication with each other, anytime and anywhere, even if there is no central infrastruc-

ture to provide network connectivity. Ad hoc networks are characterized by dynamic

links between nearby nodes, and thus the network structure may change based on the

node’s mobility and/or node failure. Since devices should adapt dynamically to these

changes, they should be smart enough that the user only notices changes in communi-

cation speed and delay (for example, by buffering data before a hand over to a slower

network or by routing packets via another network).

Furthermore, a user should be able to discover an instance of a service which de-

pends on the user’s location. This enables new location-based applications, based on

service discovery and local peer-to-peer communication, to be performed more re-

liably and allows context-sensitive computing to create and exploit a user profile or

environment profile by extracting knowledge form a user’s context and prior actions.

The user or device only has to ask for the service needed and neednot know how the

service will be delivered; furthermore, since the user might not have complete knowl-

edge of the network topology or the location of the desired resource, this discovery

should be performed automatically (i.e., with minimal or no interaction with the user).

Making devices and nodes in networks context aware is a first step toward solving

the above problems. By gathering and propagating context information, decisions

can be made so that networks and hosts dynamically adapt to the changing network

environment in support of user needs.

In order to enable this context information sharing, the operations of sensing, stor-

ing, exchanging, and analyzing context information must be efficient. This can be

useful to provide better user interfaces and user interactions and for selecting optimal

end-to-end delivery paths. Much context information can be made available to mobile

devices, but probably little of it will be of interest at a given point in time. Different

3

elements of context will be needed in different situations. Selection of what context

information to share withwhom andwhen, becomes an important part of any solution.

Information must be exchanged between hosts, and propagated through the net-

work (and perhaps between networks) in order for hosts to act on and react to this

information. At the same time, exchanging this information must leave resources for

other communication, and hence must not consume too much bandwidth. Context in-

formation must also, when exchanged between terminals, be represented such that it

can be understood by all relevant parties. A common agreement of how to represent

and request context information is needed.

Once a way of exchanging context information has been established, applications

that act upon this “knowledge” can be developed. This information will be used by de-

vices to make intelligent decisions regarding routing of user traffic and service delivery

at the end points and at intermediate proxies.

In order to automatically adapt to the network’s topology and to exploit context

“knowledge”, distributed provisioning of services seems to be a better solution for de-

livering services (i.e., peer-to-peer model), rather than having a central node in the

network delivering services. This distributed solution reduces the risk of decreased

performance of the system, due to failure of a single node. In such a (distributed)

scenario, services are dynamically provided to wireless devices. A peer discovery pro-

tocol dynamically discovers peers when the user comes into a new area, in order to

provide peer-to-peer delivery for applications preferring local delivery. This is essen-

tial, because in ad hoc networks static configuration of devices is unusable due to the

dynamically changing topology.

1.3 Problem specification

The scenario described above introduces a new area with interesting opportunities for

devices, network operators, and users. The users will play an important role in this;

since they can offer services to other entities, both the services and entities need not

be coupled to a network operator. Thus, users can cooperate with each other in such

a network, this is part of the evolution to a user-centric networking model [32, 31].

Network operators will still play an important role, since in some settings there is

a need for a network infrastructure. Furthermore, the users should be able to roam

4

among different network topologies, hence there is a need for both user and device

mobility. Devices need to achieve a higher degree of autonomy and utilize intelligence

for taking decisions, in order to both meet the user’s needs and to provide a simpler

interface to the user.

As centralized systems evolve towards decentralized systems, their resources are

made available and offered in a distributed fashion [39]. The user should be able to

find resources in such a network and to use them without thirdy party negotiation. Dis-

tributed peer-to-peer networks can be a good solution to the problem while delivering

services to users who are able to discover these services. Follow sections provide a

detailed introduction to the problem that are investigated in this thesis.

1.3.1 Towards a Service Discovery Protocol

Technologies to form peer-to-peer networks are already available, but the current de-

centralized methods of service discovery are inadequated in large networks or ad hoc

networks [36]. For example, UPnP [13] is a suite of protocols and system services

for devicediscovery andcontrol in small to medium size IP networks, but it does not

scale well in large networks - due to the service announcement traffic that is generated

when the number of services or clients grows [15]. Jini [27] is based on a directory

service, which is queried when clients need to discover services. UPnP and Jini both

lack efficiency and performance.

Pervasive environments are characterized by services and computational resources

dispersed throughout the environment and are generally highly dynamic, since services

and devices vary constantly. Thus, pervasive environments cannot be relied upon to

have a device permanently present to act as a central server and there is a need for a

dynamic method to discover available services at a given time. For instance in Jini,

the service availability checking is limited to the lookup service in the federation; a

centralized approach cannot have a global view of the available services in the network

as the discovery protocol should be designed to work in wide area network. Moreover,

the number of transmission (number of service updates) should be kept low as possible

to reduce battery power consumption [12].

Ad hoc networks (see further section3.2.2) change dynamically in structure based

on the movement of users. This technology introduces new issues with respect to data

reliability for discovery protocols due to the frequent disconnections of devices. A

5

centralized directory discovery would lack consistency due to these interruptions in the

communication, while an architecture based only on broadcast or multicast messages

requires a large number of messages to keep data consistent [25].

1.3.2 Location and context based services

In order to offer location and context based services, users should be able to package

this information as services [57]. Context information can also be of great interest to

determine the best delivery path for content data according to the network conditions.

Location information is useful in order to provide the user with nearby resources if

available. However, current systems do not offer adequate solutions for these kinds

of applications [15]; location and context based services need support access to data,

such as location or sensor data. Some examples of these services are illustrated in [33].

1.3.3 Naming and localization of users

Discovery protocols rely upon an IP address for routing packets in the network. Using

IP address to contact peers in the network rises the problem of how users learn the cor-

respondent’s IP address i.e., where the user is currently reachable. Thus, localization

of users in ad hoc network, when the network changes dynamically and users change

both their location and IP address (due to user mobility) is difficult. Furthermore, the

ability of users to package services and deliver them to other is useless, if there is no

naming to identify and locate users wherever they move.

The Session Initiation Protocol (SIP) provides a naming scheme and means for

locating users; thus a user can be found independently of their location and current

network device, thus the user is able to move among different networks and it can

always be identified and reachable via their SIP URI. Since the SIP URI contains the

identification of the SIP domain, other users can contact the SIP location server for the

current mapping while the URI is resolvable to a node which is accessible from other.

1.3.4 Mobility and routing

Users can dynamically change their location and, as mentioned above, a single central

service directory could not have consistent information of all the services in the net-

6

work due to the fact that consistency requires constant updates. Central servers should

react to changes in user location (macro mobility) and should track the entity’s pres-

ence, as central servers are the service repositories. SIP addresses the presence issue

by allowing protocol extension for registration and presence.

However, the problem of actually accessing the service has still not been solved

and it is independent of locating the entity or the service which this entity is capable

of providing. Service might include delivering of content data and there are different

strategies to access it, at the application layer or at the network layer. The routing of

the content between end points can be done according to the context information and

type of content by choosing the best interface and next hop.

1.4 Goal of the thesis

The goal of the thesis is to define a method for how to locate mobile SIP users in

reconfigurable networks. The solution may use the SIP Event framework for the design

of strategies for dynamic negotiation between end-points. The method should take

in consideration relocation (movements) of the “corresponding” user when this user

moves to another network (device mobility) and/or adopts another SIP URI (personal

mobility). Furthermore, context meta-data can be used to design strategies effective in

heterogeneous networks.

1.5 Methods

In order to achieve the goal of this master’s thesis, I proposed a discovery process

to determine the location of services in reconfigurable networks, both local and wide

area networks. This approach takes into consideration the possibly rapidly changing

topology of the network and the resulting changes in availability of services. Thus,

the client would be able to directly query its peers in the local area to ask for services,

furthermore it can use the context server that serves a geographical area (the design of

it is addressed in [29]), to determine the SIP URI of the peers in the network .

Although there are many different kinds of wireless networks, here we consider

only WLANs and GPRS (described in sections3.2 and3.3). The proposed method

should operate in both environments without any difference in performance for the

discovery phase; although the user may subsequently detect delays in delivery of the

7

service due to the current network conditions and the difference in maximum link

bandwidth. Once the mobile user has discovered the peers in its new location, it can

request services from them by sending a SIP message carrying a service specification

to one or more of these peers based on context information and network connection.

The design of the discovery process considered the existing discovery protocols

for peer-to-peer networks (described in sections2.2 and2.3), and the use of SIP for

localization and event handling (described in chapter4). Some extensions to SIP for

registration and user presence can also be utilized (these are described in sections5.5.2

and4.7.2).

8

Chapter 2

Peer-to-Peer Technology for Service

Discovery

The goal of a service discovery protocol is to allow users to dynamically find services

in the network. Discovery should be performed in a smart fashion in order to provide

the required service where and when it is needed. There are several service discovery

protocols, each one with different features. Traditional service discovery protocols

and delivery mechanisms have been designed for networks where users do not change

quickly their point of attachment and address. Mobile users in such settings are able to

contact peers in the network through discovery technologies, such as Universal Plug

and Play (UPnP) [13] and Jini [27].

2.1 Peer-to -Peer

The term "Peer-to-Peer" is applied to networks where end users directly share files,

computational power, and other resources. Users interactdirectly with each other to

perform a service or to exchange data. The main purpose for Peer-to-Peer networks

is to directly use resources (including storage capacity, processing power, and knowl-

edge/content) of the peer device, resulting in a distributed environment without any

central control point (section1.3). This scenario suits mobile devices well, since they

can take advantage of this solution by storing less content, as they might have smaller

amounts of storage than fixed stations. In addition, they are able to utilize services else

where the network as needed. Mobile users can have true global mobility while having

access to a wide range of services that other nodes provide.

9

10

Peer-to-Peer technology has already been used for many years, but a client/server

scenario has been preferred when the resources of the server where much greater than

many clients. The client only needed to initiate a connection to a well-known server,

download some data, and disconnect. This approach does not require the client to

have a well-known address or even a permanent address. Furthermore, the increasing

need for security (resulting in the introduction of Firewalls) and the growing demand

for IP addresses (resulting in most networks being behind a NAT) have partitioned the

network and have further limited the use of Peer-to-Peer connections.

However, the users can gain by using Peer-to-Peer technology, as it offers the pos-

sibility to enhance an individual device’s capacity. So, solutions should be found to

enable such peer-to-peer networking despite the impediments, such as Firewalls and

NAT.

Fully utilizing Peer-to-Peer networking produces a completely decentralized net-

work without central control points. This solution has rarely been applied to existing

systems, most of which implement a hybrid solution with a central server, that lists all

services available, the resources, and their locations. There are several approaches to

implementing a Peer-to-Peer network, I will examine several of these below.

Many recent peer-to-peer applications (such as NAPSTER [1]) present a decentral-

ized face even though they use a central server to store bindings between resources and

locations. In a wireless environment, where reconfigurable networks may play an im-

portant role, a decentralized solution would be preferable. Due to the dynamic changes

in users’ locations, a centralized model can suffer from inconsistency of data and from

scaling problems of handling all the updating required to preserve consistence (section

1.3.1).

Peer discovery services differ depending on how one locates other peers and how

the peers interact [51]. I will examine three alternatives below.

2.1.1 Static configuration

Static configuration of the network means that every peer in a Peer-to-Peer application

needs to be aware of other users it will interact with. When a peer enters an existing

environment, it needs to learn the list of the peers currently there. With static config-

uration, each peer must be (pre)configured in order to know the address of all peers,

with which this new peermay want to establish a dialog with. These correspondent

11

peers might be organized in a list and this new peer might need to have presence in-

formation about them. In general, this approach does not scale well in large networks,

and suffers from a difficulty in doing all the updates in dynamic networks about pres-

ence of peers currently available. It is the case of wireless networks, where the users

may move and hence their network location may change; there are many trade-offs

between accuracy and the amount of traffic, (both peak and average volumes of traffic)

due to user location updates in order to keep the knowledge of the presence of peers

consistent. Furthermore, if all peers are not properly preconfigured, the network will

have blind spots for some peers.

However, static configuration assures a certain level of security. By preconfiguring

all peers, the network will be safer from outside attacks, because each peer establishes

dialogs only with the peers which it already knows about and each peer may establish

secure relations (for example, based on key exchange).

2.1.2 Centralized model

In a centralized Peer-to-Peer (or Hybrid Peer-to-Peer) model connections are based on

the use of a central system (Fig.2.1), which directs the traffic between individual end-

points. To maximize scalability and to avoid single points of failure, a small number

of replicated central servers serve a large number of users. For example, these servers

might keep track of the location of shared files stored on the users’ personal devices.

Each time a user comes into the network, their device registers or updates information

about their identity and which services they can provide with the central directory.

To request a service, a user queries the central system, which responses with a list

of the users currently connected to the network offering the requested service. The

user directly contacts one of these peers to establish communication in order to request

content or otherwise utilize the service which they offer without any further support by

the central server. Thus, only the location of the central directory has to be configured

into each peer.

This approach seems to scale well thanks to the presence of a robust central system,

which is constantly updated. However, the centralized server is the single point of

entry, and it can become congested due to the traffic, i.e. it lacks efficiency, flexibility,

and performance to be effective in very large networks. An example of this centralized

model is NAPSTER [1]. It has been configured with centralized management and

12

Figure 2.1: Centralized model

administration, which ensures quality of service, but at the same time, made blocking

the service easy (in this case for legal reasons [9]).

2.1.3 Decentralized model

A decentralized model consists of a collection of peers, which can dynamically move

around the network. There is no (common) central control point, managing or pro-

viding content services for the network, and no single entity knows the structure of

the network or the identity of all peers located in the network (Fig.2.2). In such a

situation, there are several strategies to discovery other peers.

A purely distributed Peer-to-Peer network is built on top of the IP network, and

can be considered as an overlay, or virtual network. Virtual networks are characterized

by establishing virtual paths between users, which are addressed using an id that is

temporarily mapped to the IP address. Virtual paths are used for both discovery and

for transferring content. Furthermore, since no central control point exists, the rout-

ing is done entirely by the peers. Strategies such as flooding should be used to find

peers and learn about their services. Flooding increases the traffic load in the network

exponentially with the number of nodes [47, 49].

13

Figure 2.2: Decentralized model

Gnutella [3] proposed and uses a method to discover services based on collabo-

ration between peers. The starting point is to discover another Gnutella peer in the

network, when the user connects to the network. The protocol specification does not

describe how to do this, but a solution could be to use the Gnutella peers discovered

during the last login or to download a list of potentially connected users from precon-

figured hosts. In such a situation, the peer will notify all its neighbors of its presence.

To obtain services, a peer sends a request to all its neighbors, which try to satisfy

the request; if they can not do so, they forward the request to their neighbors, and so on.

When the service is located, the two peers (requestor and supplier) become neighbors

and they establish a direct channel to exchange content. Thus, the dimension of the

network can increase quickly, therefore a peer can quickly reach another peer even at

the edge of the network. A time-to-live (TTL) field and hops counter are attached to

the search message to prevent the network from being flooded; each user decrements

the TTL and increments the hops counter before passing a request further. When

the counters reaches a predefined value, the message is not forwarded further and the

message is removed from the network.

This model seems to be more robust than the centralized one because it eliminates

the reliance on central servers and the performance of the network does not depend on

the load on one particular node. Furthermore, a single point of failure is avoided; this

14

makes Denial of Service attacks nearly impossible.

Another decentralized model is based on multicast messages [51]. A user sends a

request on a well-known multicast address asking for the service(s) or to notify others

of its presence in the network. In this model the sender does not need to know how

many receivers exist and each user does not need to assist with the discovery, unlike

in Gnutella where users must forward incoming requests if they can’t satisfy them.

However, this technique is limited by the lack of underlying multicast technology and

it often can only be used in broadcast subnets, due to the difficulties in routing multicast

message across subnets (since few ISPs support multicast).

2.2 Universal Plug and Play

Universal Plug and Play (UPnP) [13] is an architecture for pervasive peer-to-peer net-

work connectivity of intelligent devices. It was developed by Microsoft as an extension

to their plug and play peripheral model by adding new features. UPnP defines a set

of rules for joining a network, obtaining an IP address, communicating a device’s ca-

pabilities, and learning about the presence and capabilities of other devices. It has

been designed for home and small business networks to control content transfer and to

provide seamless networking by utilizing the TCP/IP protocol and Web technologies,

specifically: IP, TCP, UDP, HTTP, and XML. UPnP is media and implementation plat-

form independent, thus, devices can be implemented using any programming language

and run on any operative system, offering interoperability while not restricting users

unnecessarily.

2.2.1 UPnP network components

The main components of an UPnP network are: devices, services, and control points.

Here follows a short explanation of each of these components.

2.2.1.1 Devices

UPnP requires all devices to have an IP address to be located and addressed on the

local network. A device can consists of nested devices and services, which, as well as

the device properties, are specified in a XML description hosted by the device. The

15

description contains information about device specifications and a list of all embedded

devices and services, such as vendor-specific information, a list of all services, and a

URL for control and eventing (see sections2.2.3.4and2.2.3.5for further explanation).

2.2.1.2 Services

A service is the smallest unit of control, and it is described through state variables and

actions. As for devices, a service is described in a XML description, standardized by

the UPnP Forum; the description includes all actions that can be performed, a list of

parameters for each action, the service state table, and it is pointed to by a URL within

the service description contained in a device description. The service state table is

always updated when the service executes actions after a request and as service state

changes, thus generating events that can be published to interested subscribers.

2.2.1.3 Control Points

The UPnP Control Point is a control node in a local network that is capable of discover-

ing new UPnP devices and controlling other devices. When discovery is performed, a

control point retrieves device descriptions, device basic configuration parameters, and

services associated with the device. If interested in services, the control point can also

retrieve their service description(s). After learning more about a service, the control

point can invoke actions on the service and it can register itself for eventing. Thus,

when a service state changes, a notification will be sent to the control point.

2.2.2 Protocols used

UPnP introduces several protocols to format the messages according to the different

steps in the UPnP protocol: the Simple Service Discovery Protocol (SSDP) [24] for

services discovery, General Event Notification Architecture (GENA) [28] for eventing,

and Simple Object Access Protocol (SOAP) [18] for control.

SSDP defines how services and devices can be discovered within a local area net-

work. SSDP implements an hybrid approach to the discovery process; it allows

for both announcement messages and discovery messages. SSDP uses HTTP

messages, both multicast (HTTPMU) and unicast. HTTPMU is used to allow

16

control points to discover services by sending search messages (M_SEARCH)

on the reserved local administrative scope multicast address 239.255.255.250.

SSDP services that match the request respond (NOTIFY) using a HTTP uni-

cast message. Similarly, a device can send a multicast message to announce its

presence and its services when entering a new network by issuing a NOTIFY

message, or when it intends to leave the network. Services are identified in a

message by a service URI and a Unique Service Name. The service is also as-

sociated with location information in order to contact it, and with a living time,

which indicates for how long the service is available.

GENA provides the ability to send and receive notifications using HTTP over TCP/IP

and multicast UDP. GENA also defines the concepts of arbiters, subscribers, and

publishers of notifications to enable events. GENA allows users to accept and

keep track of subscriptions and to send notifications when a change in service

state occurs.

SOAP defines how to format and deliver control messages to devices and return re-

sults or errors back to control points.

2.2.3 UPnP protocol overview

UPnP features can be summarized as consisting of five steps, as described in the UPnP

architecture specification, along with a preliminary step for address configuration.

2.2.3.1 Addressing

An important feature of UPnP is the automatic configuration of a device’s IP address,

via AutoIP [53]. This enables a device to auto-configure its IP address. Since each

device must have an IP address to be addressed on the network, UPnP requires all

devices to have a built-in DHCP client to search for the DHCP server that manages

this network. If a server is not present, AutoIP enables a device to auto-configure its IP

address by choosing an address from a range reserved for a local network. Following

one of this methods of address assignment, the device sends an ARP message to check

if the address is already in use.

A host name can be associated with devices to solve problems that may occur in

dynamic networks when a device changes its IP address. This can easily be addressed

17

by using a DNS server, however, small networks might not be served by a DNS server

for name and address mapping. UPnP solves this problem by introducing Multicast

DNS using link-local multicast for queries.

2.2.3.2 Discovery

UPnP discovery allows a device to advertises its presence and its (embedded) services

to the control points via multicast SSDP NOTIFY messages. Similarly, when a con-

trol point is added to the network, it searches for devices and services of interest via

the SSDP M_SEARCH discovery message. The messages exchanged each contain a

device or service type, an identifier, and a pointer to more detailed information.

The search message contains an identification of the device or service type, which

the control point is looking for. The message has a limited Time-to-Live, the default

value is 4, in order to limit network congestion. To be found, all the devices on the

network must respond using unicast messages if the request matches their devices or

services.

2.2.3.3 Description

Once the control point discovers a device, it needs to retrieve more information about

the device’s capabilities in order to communicate and to use the services handled by

the device. As introduced in section2.2.1.1, the device is described in a document

expressed in XML.

2.2.3.4 Control

After the control point has retrieved a description of the device, it is able to send

requests for actions to the device’s various services. To invoke a specific action, the

control point sends a suitable control message to the service control URL, specified in

the device description document. Control messages are expressed in XML using the

Simple Object Access Protocol (SOAP). In response to a control message, the service

returns an action-specific value after completing the request.

18

2.2.3.5 Eventing

As described above, a service is defined by a set of variables that model its state. As

the state can change dynamically a control point may be interested in modifications

to the service state. UPnP eventing describes event subscription and the format of the

event messages. These are expressed in XML and formatted using the General Event

Notification Architecture (GENA). The control point subscribes to receive service in-

formation that is published when variables change. The first event message is sent

when the control point subscribes, which indicates the initial state of the service. In

order to keep information consistent in all subscribed control points, this message is

sent to all subscribers. The subscriptions to a particular event are limited and they can

be renewed or canceled at any time.

2.2.3.6 Presentation

If a device indicates in its description a URL for its presentation, the control point can

control the device and view its status. To get the presentation page the control point

submits a request to the device, which returns the presentation page, written in HTML.

A control point can present this page to a user.

2.3 Jini

The purpose of the Jini architecture [27] is to group users and resources into a single

dynamic distributed system, named a Jini federation. Within this federation, Jini ser-

vices can represent both hardware devices or software components which can be used

in a flexible fashion by human or computational clients. When a client wants to use

a resource, it needs only download the necessary programming in order to communi-

cate with the resource, each object can delivery this software when ask for it. Jini is

designed to make the network more dynamic, so that services can flexibly be added or

deleted.

The Jini system can be segmented in three parts: services, infrastructure, and pro-

gramming model. These three categories, which I will describe in later sections, are

separable and they are not required to be part of the Jini system. However, for complete

functionality, the three parts should be tied together.

19

2.3.1 Jini requirements and components

Jini is completely built on top of Java. The communication between entities is ac-

complished using Java Remote Method Invocation (RMI). This gives to the system a

complete distributed model. Jini requires that the devices in the network have some

memory and some computational power in order to compile and execute the Java code.

Hence, the device should have a Java Virtual Machine (JVM) or use a proxy, which

controls the device and contains processing power. For further reading or documenta-

tion about Java code and RMI see [4, 5].

2.3.2 Services

Jini introduces a new way to consider and use services from the client side, for instance

a service is seen as a Java interface, where all methods that are possible to invoke for

that service are specified. Thus, services can be anything, and they are the entities

that forms the Jini federation. They can dynamically be added or removed from a

federation, they can require other services or they can contribute to a particular task.

Once the device has discovered via the Lookup Service (see section2.3.3.2) the new

service, it uploads the service proxy to the Lookup Service by using the Join Protocol

(see section2.3.3.3).

Therefore, this approach enables clients to use services; hence, both software or

hardware can be accessed in a uniform fashion. This means that a client only needs to

download the service proxy to contact the original service and to invoke its methods

remotely.

2.3.3 Infrastructure

The infrastructure defines the core of Jini. It consists of a security remote system for

the definition of the access of the services, a discovery/join protocol for services to

discover, join, or advertise services provided to others in a federation, and a lookup

service used as a repository for services and to find other services.

2.3.3.1 Remote Method Invocation (RMI) and security

RMI allows communication between services; it enables clients to execute the java

code of the method of the service remotely, where the resource resides, and to upload

20

the result. RMI is a fundamental part of the Jini infrastructure, as it enables move

around the code describing the service functionality, encapsulated as an object.

Jini also defines a mechanism to access an object remotely based on a access con-

trol list. This method gives a certain level of security and its implementation defines

the right to invoke a service object on behalf of the requestor or on behalf of others.

2.3.3.2 Lookup Service

The main component of Jini is the Lookup Service. It can be considered as a directory

service, since it maintains dynamic information about the currently available services

in a Jini federation. For every service that the client wants they must join a federation,

and discover the Lookup Service and must register with it, by using the Discovery and

Join protocols. However, the Lookup service is not a requirement for Jini to work,

even if the functionalities of the system are reduced.

Services are represented as Java objects in the Lookup service. Entries in the

Lookup service can be associated with other objects (hierarchical lookup), that pro-

vide access to the service, and with attributes which define a service according to a

language that people can understand easily. Furthermore, a Lookup Service can con-

tain objects that refer to other directory services.

2.3.3.3 Discovery and Join Protocols

Discovery and Join protocols identify the process of finding a Jini federation and

adding a service. The Discovery protocol is used to find the Lookup Service, to which

to register the service. This protocol is based on multicast or unicast messages depend-

ing on the knowledge and configuration of the client. Here, the different approaches

are listed:

• Multicast Request Protocol is the multicast based discovery protocol. It is used

to find the Lookup Service.

• Multicast Announcement Protocol is used by the Lookup Services when they

want to announce their presence to clients, that may have an interest in the com-

munity.

21

• Unicast Discovery Protocol occurs when the client knows the location of the spe-

cific Lookup Service to establish communications with it. Mainly this protocol

is used when the device wants to contact its manufacturer.

Once the device has discovered the service via the Lookup Service, the new service

downloads a lookup service object, which is then used to communicate with and in-

voke the methods the Lookup Service discovered. Using this method, the client can

upload the service proxy to the Lookup Service to register itself through the Join Pro-

tocol . This protocol uses RMI to load into the Lookup Service the service object,

which contains the Java programming interface for the service and methods that can

be invoked, as well as it can contains descriptive attributes which can be used in a user

interface.

Hence, the client has joined the Jini federation. When a client is interested in a ser-

vice, it queries the Lookup Service, which performs service discovery based on Java

attributes and interface matching. Once the service has been found and the proxy ob-

ject has been downloaded, the client is able to interact with a service only by using the

methods specified by the original service provider of the service. Thus, the developer

of the service handles the way the service and the client communicates, and further-

more, this approach enables clients to know how to use the service, because that use is

defined by the methods.

If a client can not locate any Lookup Service, it uses the same kind of messages,

that the directory service uses to announce its presence, to ask other peers to regis-

ter their services with it. Then, the providers will register with the client, that can

subsequently select the services it needs.

2.3.4 Programming model

The Jini programming model can be seen as a collection of Java interfaces, that are

used in the Jini implementation to work in a distributed environment. These interfaces

define the communication setting to enable the Jini service to communicate with the

Jini infrastructure, and, as cited in the specification, “these interfaces, taken together,

make up the distributed extension of the standard Java programming language model

that constitutes the Jini programming model”1.

1Taken from the Jini Architectural Overview [27].

22

The main interfaces are:

• The leasing interface defines a model to allocate resources based on release time.

• The event and the notification interfaces handle the events that might occur due

to dynamic changes of the network.

• The transaction interface provides coordination between services to provide dis-

tributed computing.

2.3.4.1 Leasing

The leasing interface defines for how long a resource is valid. This kind of mechanism

guarantees a certain level of reliability; in a dynamic network, where disconnections

are frequent, the information about service availability may lack consistency. Leasing

means that a resource is available for a limited time. For instance, the registration

of the service in the Lookup Service is valid for a limited time period. Furthermore,

when a client requests a service, the resource is released for the negotiated time. Thus,

if clients need the service for longer time, the release time should be refreshed before

it expires. If the client leaves the federation, all resources allocated to provide services

are released when the service periods expire.

Jini also allows for lease delegation. This entail a third party negotiating or renew-

ing the lease time on behalf of the service provider. Furthermore, the lease interface

defines in which way the resource should be shared; a lease can be either exclusive or

non-exclusive. The former indicates that the resource is strictly allocated to only one

client, while the latter allows for resource sharing among clients.

2.3.4.2 Events and notification interfaces

The event and notification interface is an extension to Java’s eventing by considering

the distributed case. Jini provides eventing to notify subscribers when a desired change

occurs in the system. For instance, a device can subscribe with a Lookup Service for

eventing about particular services in a federation.

As we have seen for the lease time, Jini offers a delegation mechanism for eventing.

An entity can handle events on behalf of another device accepting subscription for

events of a service. The third party will subscribe for eventing with the service provider

23

and, when a notification occurs, it will send to its subscriber the notification. The

subscriber considers the third party as the originator of the notification.

2.3.4.3 Transaction

The transaction interface is used in Jini to coordinate all distributed operations per-

formed in the system. When computation needs to be done distributively, a mechanism

that ensures reliability and consistence is required.

An operation performed by different services can fail due to a minimal error, that

can occur during the processing time in a service. In this kind of situation, the transac-

tion manager does not consider the case of a partial failure. Thus, a task can succeed

atomically or it can fail completely ; in case of failure all the processes involved in the

task recover to the previous state. This ensures an easier mechanism to recover from

failure than analyzing what was wrong.

The transaction interface consists of two steps. The first is the voting phase where

the transaction manager queries the objects to know if they are ready to change state,

i.e. they have performed all the operations. While during the second phase the trans-

action manager, after having received the confirmation from the objects, sends the

authorization to change their state. Jini does not specify how to handle this control of

the distributed computing, leaving the implementation of the transaction semantics to

the service provider.

24

Chapter 3

Mobile networks

3.1 Introduction

A mobile user should be able to roam between different wireless systems and different

technologies. If a Personal Data Assistant (PDA) is provided with multiple interfaces

active at a particular time, for instance GPRS and WLAN interfaces, then a device can

be connected to both networks and it can switch between them according to parame-

ters, such as the best signal quality or better area coverage.

3.2 Wireless LAN

The IEEE 802.11 standard [26] defines how wireless communication can be provided

to portable, fixed, and moving stations within a local area network. There are sev-

eral extensions to the standard that specify the frequency, coding, media access and

control, and the maximum data rate. The standard defines two modes of operation:

an infrastructure network and the ad hoc network mode. This section describes the

infrastructure mode, while the ad hoc network mode is discussed in section3.2.2.

The infrastructure mode is defined as a set of stations, forming a Basic Service Set

(BSS), controlled by a coordination point, called an Access Point (AP), which connects

the BSS to the backbone Distribution System (DS). Several BSSs, interconnected by a

DS, form the Extended Service Set (ESS); this enables the APs to communicate among

themselves and to forward the traffic enabling movement of stations between different

BSSs (Figure3.1).

25

26

Distribution System (DS)

BSS BSS
AP AP

ESS

Figure 3.1: WLAN - Infrastructure Mode

The last logical entity defined in the standard is the portal, which provides integra-

tion of the wireless LAN with the wired LAN or other wireless LANs, enabling traffic

flow between mobile stations, even those not inside the WLAN. Some installations

integrate the AP and the portal in the same device.

3.2.1 Registration in WLAN

In order to communicate, a mobile station needs to be associated with an AP. The

registration phase is initiated by the device which initiates the scanning process to

detect the presence of an AP. The device can act in two modes:

• Passive scanning is performed when a mobile station listens in promiscuous

mode to the channel. The wireless interface detects the presence of an AP from

the synchronization messages that the AP periodically broadcasts.

• In active scanning mode, a mobile station sends a request in order to find an AP,

then waits for a period of time for the response from the AP.

27

Once the mobile station has discovered the APs in its communication range, it tries to

associate with one access point, preferably the one with highest Signal-to-Noise Ratio

(SNR). The device exchanges authentication information with the AP to be authenti-

cated and registered.

The mobile station can change its point of attachment (i.e., roams between different

BSSs or ESS) if it detects that the signal is weak. If the movement was inside the same

ESS, then the mobile station performs a reassociation with the new AP. This new AP

will inform the other APs on the same Distribution System (DS) of the new association.

A protocol that provides coordination between APs when the user performs a han-

dover is the Inter-Access Point Protocol (IAPP). This protocol supports coordination

between access points of wireless LAN systems of different vendors. In order to pro-

vide support for real time traffic, Ren [41] has proposed an extension to IAPP introduc-

ing the concept of differentiate handover to discriminate the handover procedure based

on resource availability. Her model defines a method to provide and exploit knowledge

of neighboring access points.

3.2.2 Ad hoc network mode

An ad hoc network consists of a self configuring wireless network without any infras-

tructure. As discussed above, the mobile station needs to be associated with an access

point in order to transmit a frame to the public Internet. However, even in the absence

of an AP, the mobile station is able to communicate with other devices in communica-

tion range forming an Independent Basic Service Set (IBSS) (Figure3.2). Within an

IBSS mobile stations can connect to each other, thus organizing an ad hoc network.

Since the packet are not longonly routed via the AP, in order to reach nodes which

arenot directly reachable each node needs to have routing capabilities in order to rely

packets. With such routing the communication is completed distributed, and multihop

techniques enable devices out of range to communicate with each other via one or

more hops between devices that are directly reachable. Without a network layer ad hoc

routing protocol lacks routing capabilities, to provide such features to the network we

can either introduce an ad hoc routing protocol or define an overlayer routing scheme

for relaying packets between hosts at the application layer.

28

IBSS

Figure 3.2: Ad Hoc Network

Ad hoc networks are well suited for environments where there are difficulties plan-

ning or installing an infrastructure mode network. The use of such an ad hoc network

does not scale to a large number of terminals, since the links established between mo-

bile stations to route the traffic are not stable; as the network topology changes, signal

traffic will increase with the number of the nodes within the network [23].

3.3 GPRS network

General Packet Radio Service (GPRS) is a standard for packet delivery on a GSM

network. Some nodes are added to the GSM system in order to provide functionality

to route packet traffic. GPRS does not use circuit switched technology to route data,

but rather packet switched technology; which avoid resources being allocated for the

duration of a call, thus making more efficient use of the radio channel. Because of this,

the user is only charged for the data that he/she transmits on the link, and not for the

reservation of resources as in circuit switched networks.

In order to provide such a service, the GPRS system adds to the GSM system two

nodes: the Gateway GPRS Support Node (GGSN) and the Serving GPRS Support

Node (SGSN). GPRS also requires changes at the Base Station Controller (BSC) (Fig-

ure3.3). The main difference between the two systems for sending data concerns the

use of a frequency channel. GSM ordinarily only uses one of the eight timeslots, in

which the channel is subdivided, to send the data, while GPRS and HSCSD standards

can use several timeslots to send the data, and in GPRS these timeslots can be quickly

29

allocated and deallocated.

This section does not provide any discussion about the GSM network, but it only

gives a general overview of the GPRS system. Details about GSM can be found at

[30].

Figure 3.3: The GPRS Network

3.3.1 Registration in GPRS

The registration of a device within the GPRS network consists of an association with

a Serving GPRS Support Node (SGSN) and exchange of authentication and authoriza-

tion information for gaining access to the network. When a mobile device detects a

GPRS network, it sends a Packet Data Protocol (PDP) request to the Serving GPRS

Support Node (SGSN) in order to instantiate and validate the context information to

be able to communicate with the Gateway GPRS Support Node (GGSN). The SGSN

30

responsible for the mobile device forwards the packets to the GGSN node, which reg-

isters the user’s GPRS context information. The GGSN acts as a Mobile IP Foreign

Agent (FA) managing and setting up all the communication for the user. Furthermore,

the GGSN node associates the mobile station to the right SGSN node and collects

charging information.

Once the mobile station has been granted access to the network, the station is as-

signed to a SGSN. While the device is on the move inside the same GPRS network

(i.e., roaming between cells), it needs to inform the GGSN of each new association.

The new association is done via the new SGSN node, that forwards a PDP context to

update location information and that informs the old SGSN of the new association,

requiring the transfer of the user’s information. However, if the association has not yet

been established, the traffic addressed to the device that reaches the old SGSN node

is forwarded to the new SGSN. The SGSN provides user mobility in addition to au-

thentication and collecting charging information related to the use of GPRS resources.

The GGSN node acts as an external router for all devices registered within a GPRS

network. When a user wishes to send data packets to the public Internet, the packet

is received by the responsible SGSN node which then encapsulates the packet into

another packet and sends in on to the GGSN node. The GGSN node unpacks the data

and routes it to the public Internet.

Thanks to the functionalities provided by the GGSN node, a user within a GPRS

network is reachable by other users located outside the GPRS network. However, since

GPRS providers charge the user for theincoming andoutgoing traffic, full IP connec-

tivity for the user is not necessarily an advantage. Furthermore, saving IP address is

also an important issue to consider for the design of the GPRS network. Thus, most

operators add a Network Address Translator (NAT) in order to limit the number of IP

addresses used and to block unwanted connections destined to the user.

3.4 Mobile IP

Mobile IP [40] is built upon IP and provides network layer mobility to applications

and higher protocols regardless to the network attachment point of the host. Since the

traffic addressed to a host is routed according to the destination IP address, this must

some how correspond to the current location of the host, to do this Mobile IP introduces

31

the use of two IP addresses, a home address and a care-of-address, in order to support

host mobility. The home IP address is allocated logically on the home network of the

mobile, while the care-of-address is a temporary IP address associated with the current

attachment point of the mobile while roaming in foreign networks.

Mobile IP defines two types of mobility agents, the home agent and the foreign

agent, the latter is used by the mobile while it is away from the home network. The

home agent attracts all packets sent to the mobile at its home address and tunnels them

to the care-of-address. The foreign agent keeps track of the mobiles currently visiting

its network and cooperates with the home agent to deliver packets to the mobile. The

mobile station detects the presence of mobility agents because they broadcast adver-

tisements to announce their presence. Because the mobile listens for these advertise-

ments it can learn of the local foreign agent.

When a correspondent node wishes to communicate with the mobile node, it sends

packets to the mobile’s home address. Then, the home agent tunnels the packets and

forwards them to the foreign agent which detunnels the packets before sending them

to the mobile node. This routing scheme is called triangle routing. In such a scenario

the mobile does not lose any packets and the only operation that it has to do is to notify

the home agent of its current care-of-address. However, the delay introduced by the

triangle routing can affect real-time communications and the fact that the packets are

tunneled adds to each packet additional overhead.

In order to reduce delays, a more efficient scheme has been proposed, called the

route optimization. The mobile notifies the correspondent nodes of its current IP ad-

dress. However, this implies that the correspondent host must keep track of the mo-

bile’s care-of-address and home agent, and that the old foreign agent should forward

packets to the new foreign agent.

3.5 Vertical handover

Due to the large overlap of WLAN and GPRS networks, a mechanism is needed to

select the best interface to provide better connectivity and to guarantee reliable com-

munication. While the WLAN network might offer a high throughput over a limited

geographic area, a GPRS network would provide a low bandwidth service over a wide

geographic area (Figure3.4). In this project, we consider that the user is equipped

with a PDA with multiple interfaces, specifically with two interfaces: one for GPRS

32

and one for WLAN. A mechanism providing vertical handover can be a good solution

to this problem of sending data using heterogeneous networks [35, 16].

GPRS network

WLAN

WLAN

Handover

Figure 3.4: Vertical Handover

3.5.1 Handover GPRS to WLAN

The problem of performing a handover between a WLAN and GPRS network, in order

to roam outside the coverage area of a WLAN, is analyzed and addressed in Ervenius

and Tysk’s thesis work [16]. They define two kinds of handover: soft and hard. As

discussed above, a GPRS system covers a large area that might include many WLANs.

They assume that there is always GPRS connectivity, but there are some spots not

covered by any WLAN area. Thus, if a device is using the GPRS interface for trans-

mitting data, the handoff to the WLAN interface in order to have better throughput

can be considered soft, since the connection need not suddenly be interrupted. How-

ever, the handoff from WLAN to GPRS can be both hard and soft. Soft handoff is

performed when a device roams to the GPRS network when it detects that the SNR is

becoming weak, but has not yet lost the WLAN signal. Hard handoff is caused by a

abrupt interruption of the WLAN communication, the user completely loses wireless

connectivitybefore roaming to the GPRS network.

33

As shown in their studies, Mobile IP was a good solution since it does not re-

quire any modifications to the existing WLAN and GPRS protocols. Furthermore, the

handoff introduces a delay for packet transmission when TCP is used for the commu-

nication; the delay is high when the user switch from WLAN to GPRS since the GPRS

network has a Round Trip Time (RTT) lower than a WLAN causing unnecessary re-

transmissions of the data even if it is still on the way to the destination.

34

Chapter 4

Session Initiation Protocol (SIP)

4.1 Introduction

The Session Initiation Protocol [20] is an application layer control protocol, that can

be used to establish sessions between users who are able to move between different

endpoints. SIP provides the necessary signaling for initiating communication and sup-

ports userand device mobility by using SIP servers. These servers can operate in

either proxy or redirect mode. SIP is independent of the lower layer transport pro-

tocol, for instance it can use TCP, SCTP (Stream Control Transmission Protocol), or

UDP as a transport protocol, and it can operate in conjunction with other application

layer protocols, such as the Real Time Protocol (RTP) or Session Description Protocol

(SDP), to build multimedia sessions. The default port for SIP depends on the transport

protocol in use. It is 5060 for UDP, TCP, and SCTP; and 5061 for Transport Layer

Security over TCP (TLS).

SIP does not provide any control of the subsequent data flow between endpoints,

nor does it provide any resource reservation mechanism, because SIP messages are

carried independently of the subsequent session content. SIP only contacts the peer

with which a user would like to establish a session and relies on other protocols for

any subsequent user data exchange. During a session, SIP allows users to modify the

session’s communication parameters and to keep track of all on going sessions.

4.2 Entities

SIP is composed of several types of entities which play different roles:

35

36

• A User Agentsis a logical entity that can act as both a user agent client (UAC)

and user agent server (UAS). The client is able to send invitations for a session to

a peer and acts as a client for the duration of the session. If it receives a request

it assumes the server role.

• A Registrar is a server that receives REGISTER requests and processes those

belonging to the domain it handles, by updating a location database based on the

information carried by the message.

• A SIP Serveris an entity that receives SIP requests. It is able to process these

requests and to send replies. A SIP Server can operate in a redirect or in a proxy

mode. In the former case the server sends back a response with the address of

the server to contact. In the latter it forwards the request to the next SIP Server.

A Proxy server is able to modify messages and acts as a client on behalf of the

requesting user. Thus, it contacts external location servers to determine the target

user’s location. In addition, a Proxy server can operate in a stateful fashion (i.e.

maintaining state information) or in a stateless fashion.

4.3 SIP Messages

4.3.1 Methods

The method is carried in the request and identifies the action that the requestor wants

to invoke on the server. The method also determines the form of the message and

depending on the method there are specific fields which are mandatory in the header.

INVITE, ACK, and CANCEL are methods to set up, acknowledge, or abort ses-

sions respectively. INVITE is the most important method in SIP and is used to establish

dialogs to peers or servers. ACK (acknowledge) is the response to an INVITE request.

CANCEL is only used to cancel a previous INVITE request sent by the client; the

server that receives the CANCEL request immediately stops processing the INVITE

request and sends back a final response. A CANCEL request does not have any effect

if the server has already answered.

The BYE method is used to terminate a session; it terminates the communication

session without requiring any acknowledgment. The OPTION method allows a user

37

agent to query the peer or a server about its capabilities to process messages, for in-

stance to learn what methods and extensions are supported.

The REGISTER request is used to register the user with a registrar. The regis-

tration binds a SIP URI to the correspondent’s current location. A user agent is able

to update and modify bindings stored in the location service by sending a new REG-

ISTER message with a new contact address indicating the new location of the user.

To facilitate extensibility SIP allows the definition of new methods (for the protocol

itself) or definition of extensions to the SIP protocol. These definitions need not be

supported by all SIP User Agents (UAs), hence UAS can use the OPTION method to

check if a given UA supports the desired extension.

4.3.2 Response messages

The SIP response codes are an extension of the HTTP response codes. They can be

provisional or final and they consist of a three digit numeric status code. The first

digit tells the class the code belongs to, and the other two digits define the response

message.

A provisional response, 1XX, is issued by a User Agent Server to notify the sender

that the INVITE has been received and that it is processing the message to call the

invited party. A provisional response may only be sent in response to an INVITE

request.

Final responses are divided into different classes, and they terminate the transac-

tion and may establish a dialog or indicate a failure. The 2XX response indicates a

successful dialog establishment and it requires an acknowledgment. The 3XX redi-

rects SIP requests and gives information about the user’s new location, which can be

permanent or temporary with an associated expiration timer. The 4XX indicates fail-

ure, for example the request can be malformed or the callee can be busy or the caller is

not authorized to perform the requested method. The response code 5XX is only sent

in case of server error; the client can retry the server later. The response code 6XX

indicates global failure in the request.

38

4.3.3 Header field

The SIP header has a similar structure to HTTP. It is written in a human readable

format. The header field consists of a field name and a value separated by a colon. SIP

defines header fields and rules to use them in a SIP message according to the method

and type of message, such as response or request. A full description of the header field

and where it is allowed to appear is shown on pages 162 and 163 of [20]. Multiple

header values can be used in one field, but it is recommended to order them to simplify

message parsing. In this section I present a brief description of the most common

header fields.

Accept indicates which formats, i.e., Content-Types, are acceptable in the response.

The default value is “application/sdp”. Two other two Accept header fields spec-

ify the encoding and the language supported, these can be used in the response

for coding files or for a session description.

Allow lists all the supported methods (by the generator of the request). If no Allow

header is present, no specific information is given. However, if a user wish to

specify all supported methods, an Allow header field is present in an INVITE

request.

Call-ID field uniquely identifies a particular invitation or registration of a client. It is

always copied in the response to a particular request and it must be a globally

unique identifier.

Contact provides a URI where the user would like to be contacted. In case of a REG-

ISTER request, the Contact URI is associated with a preference value among the

given locations, named "q", and the expiration timer for this registration is spec-

ified. The same parameters can be used in a 3XX response, when an invitation

is redirected.

Content-Disposition indicates how the message body should be interpreted. There

are several types of Content-Disposition. The default value for application/sdp

is "session", which specifies that the body describes a session. Otherwise, the

default value for other kinds of Content-Type is "render", that indicates that

the body should be displayed to the client. The type "icon" indicates that the

39

body contains an image which could be used as an icon of the caller or callee

(depending on who sent it).

Content-Encoding indicates the format chosen to code the body and which decod-

ing should be applied to display the body without losing information. Several

encryption layers can be present, and they should be listed in the same order as

they were used.

Content-Length is a decimal number, which indicates the size of the message body

in octets. If no message is included, the field value must be zero.

Content-Type indicates the media-type of the message

CSeq Command Sequenceorders transactions and distinguishes new requests from

request retransmissions. It consists of a decimal sequence number and the re-

quest method for a request inside a dialog, otherwise it is expressed as a random

number.

Expires specifies how long the message content is valid. The meaning of this field

depends on the method used. Expires for a registration method indicates the

time after which the registration is no longer valid. An Expires header field can

be added to an INVITE request to limit the validity of an invitation or for a 302,

"Moved Temporarily" response, to indicate for how long the Contact header field

is valid.

From indicates the initiator of a request. This must contain a SIP URI and could also

include a display name. If the user wish to apply processing rules to a request,

the From header should not contain an IP addresses. The URI can be different

from the Contact URL, if the initiator prefers to establish a dialog via another

location. The From header field must contain a tag parameter, this is appended

to the field value and identifies a dialog.

In-Reply-To mentions the Call-IDs that this message referred to.

Priority determines the urgency to display a message to the user. It is not used to re-

serve resources on the path to deliver the message or to indicate priority in router

40

forwarding. There are four possible values, " urgent", "non-urgent", "normal",

and "emergency". The default is "normal".

Require indicates the options that the client expects the server to support in order to

process the request. The require field includes a list of option tags and defines

SIP Extensions, which must be supported to understand the request.

Retry After indicates the number of seconds that a requestor should wait before at-

tempting the request again. In general this is used in the event of a server error

or when the called party is busy.

Supported enumerates all the extensions supported by the sender of the message.

This header field differs from the Require field, because it does not require that

the destination supports an extension to understand the current message.

To specifies the logical recipient of the request. The To header field may contain an

IP address (as for the From header), which can identify a user or a resource. It

is associated with tag parameters appended by the callee to distinguish sessions

in case of a forking request.

Via header field indicates the path followed by the request to reach the recipient, and

the reverse of this path should be followed by responses. For example, this may

be necessary when traversing a firewall or a NAT. Via contains the transport pro-

tocol, used to send messages, the host name or network address that processes

the message, and can also contain the port to which it prefers to receive a re-

sponse. A "branch" parameter can be appended by the proxies, this used it to

detect loops (how every this is no longer the preferred method for loop detec-

tion).

4.4 SIP Registration

SIP provides a registration mechanism. A user needs to register their SIP Universal

Resource Identifier (URI) and current location in order to be reachable via this URI.

SIP defines a particular type of SIP Server, known as registrar, that is able to accept

41

incoming REGISTER requests and processes them in order to update a location service

database.

Bindings between a SIP URI, known as address-of-record, and contact address are

maintained in the location service responsible for that particular domain. In such a

scenario, a SIP user is reachable by looking in the location service database, and the

SIP server, that accepts requests for that domain, redirects or proxies invitations to the

new location.

A REGISTER request can add or modify the bindings in the location service

database. Registration can be done by a third party, that acts on behalf of the address-

of-record user. The registration doesnot establish a dialog between the SIP User Agent

and the registrar, but each registration is identified by a Call-ID that should be the same

for all registrations from a given User Agent.

4.4.1 Registration

A SIP User Agent includes in the REGISTER request the Contact header, which in-

dicates the new location. The request can contain more than one Contact value and

parameters for each value. The "q" parameter indicates the preference for the Contact

header value, and the "expires" parameter determines the time the binding is valid. If

there is no such parameter, but the request contains a Expires header field, then this

value is the requested expiration for all bindings.

REGISTER sip:wireless.kth.se SIP/2.0
Via: SIP/2.0/UDP proxy.wireless.kth.se:5060
From: sip:roberto@student.wireless.kth.se; tag=d4728b4350c95f7e
To: sip:roberto@student.wireless.kth.se
Call-ID: 31d1edd7ac49d1ae@student.wireless.kth.se
CSeq: 2 REGISTER
Date: Fri, 20 Sep 2002 14:25:37 GMT
Contact: <sip:roberto@student.wireless.kth.se:5060>; q=0.8
Contact: <mailto:roberto@wireless.kth.se>
Contact: <sip:roberto@lappis.home.com>; expires=3600
Expires: 7200
Content-Length: 0

In the example above a message is sent by "sip:roberto@student.wireless.kth.se"

to the registrar "sip:wireless.kth.se" via the Proxy Server "proxy.wireless.kth.se". The

42

registrar is identified by the domain part and receives a REGISTER request to cre-

ate bindings with the Contact header values for "roberto". The expiration time for

"sip:roberto@lappis.home.com" is defined by the "expires" parameter, while the Con-

tact "sip:roberto@student.wireless.kth.se:5060" is valid for the duration of the Expires

header value 7200 (in seconds).

The registrar first inspects the URI to determine if it is responsible for the address-

of-record of the specified domain, and if so processes the message. If the registration

succeeds, the registrar returns a 200 response message which contains all current bind-

ings and their status.

SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.wireless.kth.se:5060
From: sip:roberto@student.wireless.kth.se; tag=d4728b4350c95f7e
To: sip:roberto@student.wireless.kth.se; tag=d4728b4350c95f7e
Call-ID: 31d1edd7ac49d1ae@student.wireless.kth.se
CSeq: 2 REGISTER
Date: Fri, 20 Sep 2002 14:25:37 GMT
Contact: <sip:roberto@student.wireless.kth.se:5060>; q=0.8;expires=7200
Contact: <mailto:roberto@wireless.kth.se>;expires=7200
Contact: <sip:roberto@lappis.home.com>; expires=3600
Content-Length: 0

4.4.2 Update registration

Bindings expire if they are not refreshed. A client can update bindings by using the

same message, as it used to register (shown above). Properly setting the Contact values

and the expiration timers, it can also modify locations.

4.4.2.1 Delete locations

To trigger the immediate expiration of a location, a client specifies an expiration timer

of "0" for the Contact address, that it would like deleted. SIP also provides a mech-

anism to delete all the bindings for an address-of-record without knowing their exact

value; in this case the client must set the Contact value to "*" and the Expires header

to "0". An example of the first method is shown below.

43

REGISTER sip:wireless.kth.se
SIP/2.0 Via: SIP/2.0/UDP proxy.wireless.kth.se:5060
From: sip:roberto@student.wireless.kth.se; tag=d4728b4350c95f7e
To: sip:roberto@student.wireless.kth.se
Call-ID: 31d1edd7ac49d1ae@student.wireless.kth.se
CSeq: 3 REGISTER
Contact: <sip:roberto@lappis.home.com>; expires=0
Content-Length: 0

4.4.2.2 Refreshing locations

A client might refresh bindings before they expire or it might add a new one. It sends

a REGISTER request for each binding, that it would like to refresh or to add. The

registrar’s response is a complete list of bindings and their status for each request.

REGISTER sip:wireless.kth.se
SIP/2.0 Via: SIP/2.0/UDP proxy.wireless.kth.se:5060
From: sip:roberto@student.wireless.kth.se; tag=d4728b4350c95f7e
To: sip:roberto@student.wireless.kth.se
Call-ID: 31d1edd7ac49d1ae@student.wireless.kth.se
CSeq: 4 REGISTER
Date: Fri, 20 Sep 2002 16:15:20 GMT
Contact: <sip:roberto@student.wireless.kth.se:5060>; q=0.8
Contact: <sip:roberto@barletta.home.com>; expires=3600 Expires: 7200
Content-Length: 0

Response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.wireless.kth.se:5060
From: sip:roberto@student.wireless.kth.se; tag=d4728b4350c95f7e
To: sip:roberto@student.wireless.kth.se; tag=d4728b4350c95f7e
Call-ID: 31d1edd7ac49d1ae@student.wireless.kth.se
CSeq: 4 REGISTER
Date: Fri, 20 Sep 2002 16:15:20 GMT
Contact: <sip:roberto@student.wireless.kth.se:5060>; q=0.8;expires=7200
Contact: <mailto:roberto@wireless.kth.se>;expires=617
Contact: <sip:roberto@barletta.home.com>; expires=3600
Content-Length: 0

44

4.4.2.3 Discovery of a registrar

SIP provides different methods to discover the registrar, leaving the choice upto the

implementor. The simplest way to contact the registrar is to manually configure the

user agent with the SIP registrar’s address; this is suitable for a static scenario, but

is probably not be acceptable in a dynamic environment. The registrar can be also

contacted via an IPv4 multicast address. In this case a client sends the registration

request to the well-known multicast address "sip.mcast.net" (224.0.1.75). Note that

the SIP user agent can learn the location of other users by listening to this multicast

address. However, this multicast solution only works if the link supports multicast.

Unfortunately, privacy problems can occur due to this multicast if a user does not want

his, her, or its location to be public, since end-to-end encryption is not applicable to

the registration request. The final possibility is to contact the SIP registrar by using the

host part of the address-of-record as the address of the request.

4.5 Dialog and Session

SIP defines two approaches to exchanging messages, inside or outside a dialog. A

dialog represents a SIP relation between two peers that persists for some time. It is

specified by a dialog ID, which is defined by the Call-ID and the tag parameter in the

From and To header fields. For instance, a dialog is established through the generation

of non-failure responses to an INVITE request, such as 2XX or a provisional response.

Thus, registration is considered a message exchangeoutsidea dialog.

A user agent can open different sessions to negotiate parameters or can exchange

meta-data in the same dialog, these sessions are distinguished by the CSeq header field.

4.5.1 Dialog

A dialog is created whenever the initiator receives a non-failure response. A given

dialog is identified by each involved peer with a dialog ID, which is associated with all

responses and requests with a given tag parameter in the To header field. Depending

on the role played in the communication, the user agent sets the values in the dialog

ID. Thus, this value need not be the same at each peer involved in the dialog. The

dialog ID consists of the Call-ID header value, and a remote and local tag. The User

45

Agent Client sets the remote tag to the tag parameter of the To header field and the

local tag to the one appended to the From header field of the request message. While

the User Agent Server sets the remote and local tag in reverse order.

Once a dialog has been established, user agents can initiate sessions. The user

agent that sends a request assumes the client role in the transaction. The client sets

the parameter in the SIP request based on the dialog ID. The tag parameter of the

From header is set to the local tag and the tag of the To field to the remote tag. The

CSeq number is incremented for each transaction and it is set locally. Thus the local

sequence number would be different for requests initiated by different user agents. For

a CANCEL or an ACK method, the CSeq is the same as the corresponding request

which they cancel or acknowledge.

In the same call more than one dialog can be generated. Each dialog is distin-

guished by the dialog ID. This scenario frequently happens when an INVITE request

is processed by an intermediate server which acts as proxy. By forking the request, the

proxy server generates multiple INVITE requests for the same call through different

paths. A dialog can be modified by sending the target a refresh request, which modifies

the dialog parameters.

The dialog is terminated by sending a BYE method. SIP allows client, server, or

both to send BYE messages. Receipt of the BYE method will close all open sessions

within a dialog and terminate the dialog itself.

4.5.2 Session

A session is established when a 2XX response is generated in response to an INVITE

request. The final response is always acknowledged with an ACK which can be gener-

ated in several ways according to the type of response. Optional fields can be added to

the INVITE request, such as an Expires header to indicate the validity of the invitation,

a Subject can be specified for the invitation, and a message body can follow.

The message body may contain a session description, which is identified in the

Content-Disposition field. SIP uses an offer/answer model [44] via the Session De-

scription Protocol (SDP) to describe sessions. This model specifies the rules to place

offers and answers in a transaction.

Once a session is established, peers can modify the existing session, by sending a

new INVITE request, known as RE-INVITE, within the same dialog. A full descrip-

46

tion of the session should be sent in a RE-INVITE request in order to recover from

failures in the preceding session description.

A session is terminated by sending a BYE method for a particular session inside a

dialog, or by a BYE method for a dialog. In the latter case all open sessions will be

terminated.

4.5.3 SIP message transaction

This section presents an example of SIP messages for a transaction between two users,

<sip:theo@ericsson.se> and <sip:roberto@wireless.kth.se>. For clarity the message

body carrying the SDP message is omitted.

INVITE sip:theo@ericsson.se SIP/2.0
Via: SIP/2.0/UDP wireless.kth.se:5060
From: sip:roberto@wireless.kth.se:5060; tag=adc715ad24f094db
To: sip:theo@ericsson.se
Call-ID: 2d32dd7b7dbe43bb@wireless.kth.se
CSeq: 234 INVITE
Date: Thu, 03 Oct 2002 15:07:08 GMT
Subject: hello
Contact: <sip:roberto@student.wireless.kth.se:5060>; q=1.0
Supported: 100rel
Content-Type: application/sdp
Content-Length: 203

Roberto has invited Theo to an Internet call. The dialog and the session are not yet

established, Theo has not yet answered.

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP wireless.kth.se:5060
From: sip:roberto@wireless.kth.se:5060; tag=adc715ad24f094db
To: sip:theo@ericsson.se
Call-ID: 2d32dd7b7dbe43bb@wireless.kth.se
CSeq: 234 INVITE
Date: Thu, 03 Oct 2002 15:07:09 GMT
Content-Length: 0

Theo’s User Agent has received the call and acknowledges Roberto’s INVITE by send-

ing a provisional response, Theo’s device is ringing. The dialog and the session will

be established when Theo accepts the call.

47

SIP/2.0 200 OK
Via: SIP/2.0/UDP wireless.kth.se:5060
From: sip:roberto@wireless.kth.se:5060; tag=adc715ad24f094db
To: sip:theo@ericsson.se; tag=42c3bd0ff1868ac
Call-ID: 2d32dd7b7dbe43bb@wireless.kth.se
CSeq: 234 INVITE
Date: Thu, 03 Oct 2002 15:07:22 GMT
Contact: <sip:theo@research.ericsson.se.:5060>; q=1.0
Content-Type: application/sdp
Content-Length: 203

Theo accepts the call and sends a final response to Roberto. The dialog is established,

and the dialog ID can be set by Theo’s User Agent and Roberto’s User Agent. Theo’s

dialog ID is {Call-ID:2d32dd7b7dbe43bb@wireless.kth.se; local tag=42c3bd0ff1868ac;

remote tag=adc715ad24f094db}. Roberto’s dialog ID is

{Call-ID:2d32dd7b7dbe43bb@wireless.kth.se; local tag=adc715ad24f094db; remote

tag=42c3bd0ff1868ac}.

When Theo hangs up, this generates a BYE request. In this case is up to Theo to

set the CSeq number in the BYE message, while the From and To fields are swapped.

BYE sip:roberto@wireless.kth.se:5060 SIP/2.0
Via: SIP/2.0/UDP ericsson.se
From: sip:theo@ericsson.se; tag=42c3bd0ff1868ac
To: sip:roberto@wireless.kth.se:5060; tag=adc715ad24f094db
Call-ID: 2d32dd7b7dbe43bb@wireless.kth.se
CSeq: 25 BYE
Date: Thu, 03 Oct 2002 15:07:56 GMT
Content-Length: 0

Roberto sends a final response.

SIP/2.0 200 OK
Via: SIP/2.0/UDP ericsson.se
From: sip:theo@ericsson.se; tag=42c3bd0ff1868ac
To: sip:roberto@wireless.kth.se:5060; tag=adc715ad24f094db
Call-ID: 2d32dd7b7dbe43bb@wireless.kth.se
CSeq: 25 BYE
Date: Thu, 03 Oct 2002 15:07:57 GMT
Content-Length: 0

48

4.6 Locating SIP Servers

SIP is a protocol used for initiating communication between two peers. In order to

establish a dialog, the calling party needs to forward the call to the right domain. To

do so, the user agent contacts a proxy server in its home domain, which will forward

the request to a proxy server of the callee’s domain. More than one intermediate server,

acting as a proxy server, may process the message before it reaches the callee.

A user agent can address SIP messages using an IP address or the URI of the

callee. In the latter case the user agent client first delivers SIP messages to a proxy

server (called the “out-bound proxy”) in its own domain. By querying a DNS server,

the client learns the IP address of the SIP Server to which the call should be sent.

In the same domain one can have several SIP out-bound proxies, that can accept calls;

hence, the user agent client determines the right one by checking the DNS SRV Record,

which lists the available servers for a service ordered by weight. A similar process is

performed by all the intermediate SIP servers until the call is forwarded to a proxy

server in the callee domain (called an “in-bound proxy”). (Fig.4.1).

A SIP entity performs a DNS query whenever it contacts another entity located by

SIP URI. This method is fully described in [45].

SIP Server
sip1.home.com

SIP Server
sip2.home.com

INVITE

Caller
roberto@home.com

INVITE

INVITE

SIP Server
sip.receive.com

Callee
marco@receive.com

Domain receive.comDomain home.com

out-bound
proxy

in-bound
proxy

Figure 4.1: Locating SIP Servers

Another method to locate a SIP proxy is based on the use of DHCP, using the

DHCP standard definition for SIP Servers [50]. The standard defines a set of options

49

to locate a SIP server when the user is in a foreign domain and needs to locate an

outbound proxy to rely the messages. DHCP configuration provides the client a list of

name servers and the client needs to follow the same pattern defined above for locating

one or more SIP servers in the peer’s home network using the DNS SRV.

4.7 Extension

SIP is designed to be extensible. Additional methods and header fields can be defined

by SIP Extensions. The SIP standard [20] defines user agents and proxies behaviour if

they don’t support the extension in use. A user agent simply ignores the parameters,

that it does not understand, unless they are indicated in the Require header field. A

proxy should not refuse to forward a message formed by an extension. If a proxy needs

particular features to handle the message, these should be specified in the extension

definition.

SIP specifies a way to let an user agent become aware of the capabilities of a peer.

The user agent can use the OPTION method to discover all the extensions understood

by a particular user agent, which are described in the Supported header field in the

response. This header lists all tags supported, as defined in the SIP RFC [20].

4.7.1 Specific Event notification

The Event notification extension [42] provides additional capabilities to SIP entities,

which can request notification of a particular event. The event can be quite general

and defined in several packages. An event package is a document which specify the

event extension and defines the syntax and the semantics of the event information that

should be exchanged between a notifier and a subscriber. Each package is identified

by a name, this is specified in a header “Event” field that can be associated with a “id”

field to identify subscriptions within a dialog.

This extension defines two method, SUBSCRIBE and NOTIFY, in order to ask

for notification and to obtain notification when the state change occurs respectively.

Furthermore, user agents or proxy servers can act as State Agents, so that they can

accept subscriptions for events and operate on behalf of the resource.

50

4.7.1.1 SUBSCRIBE

The SUBSCRIBE method is used to request notification of events, and to establish a

subscription. The duration of the subscription is indicated by the value of the Expires

header or by a default value defined in the package. A subscription is always associated

with a dialog, that is specified by the dialog ID, to a “event package” name and it can

be identified with a “id” parameter if there are multiple subscription in the same dialog.

This is confirmed with a 2XX response which indicates the actual expires time, that

can not be longer than specified in the request. A subscription should be periodically

refreshed by sending another SUBSCRIBE request pointing to the same dialog with

the same values for the “Event” header and “id” parameter. If the subscriber wants

to unsubscribe before the timer expires, it sends a SUBSCRIBE request with Expires

value of zero. No BYE message needs be sent to close the dialog as it will occur when

the subscription expires and when the notifier has no more any state associated with

the subscription.

4.7.1.2 NOTIFY

When a subscription is accepted, the notifier sends a NOTIFY request, which contains

the event package name, an identification of the subscription (if it is present) and an

optional body, that can contain the state of the subscribed resource. The event package

definition defines when a notification should be sent and the state information when an

event occurs; a new request subscription causes a immediate notification with complete

state information of the resource, while the next notification can contain state deltas

(i.e., only changes in state) according to the package definition.

4.7.1.3 Event

An user agent can subscribe for events, which are identified by the Request-URI, the

event-type, and an optional message body. The “Event” header identifies the event

package registered with the IANA, to which the user agent should refer for the seman-

tics of the event. The Request-URI contains information to identify the location of the

resource.

As noted above, the event package defines the state that can be associated with

an event. The Event notification extension also introduces the concept of an event-

51

template package, which defines the semantics that can be applied to other packages.

4.7.2 Extension for Presence

The event package Presence [21] defines the use of the Session Initiation Protocol

for providing information about changes in the communication state of an user. The

base SIP specification already provides registration and naming of users, and it also

defines strategies to route calls to a user’s location. The Presence package has not yet

been standardized, but it makes use of the SUBSCRIBE and NOTIFY methods already

defined in the Event framework [42]. The "Event" header is set to "presence".

An user agent interested in the presence information of a particular user (called

a “presentity”) makes a SUBSCRIBE request to a presence agent, that processes the

request as defined in the event framework specification. The presence agent is a user

agent able to handle presence subscriptions and has presence knowledge of a presen-

tity. Thus, the presence agent can be co-located with the presentity (called an edge

presence server), or with the registrar responsible for the presentity (called a presence

server), or in any SIP server. In the latter case the server must learn the presence state

of the presentity by subscribing with other entities.

The SUBSCRIBE message establishes a dialog between the presence agent and

the initiator of the request. It determines the duration for the subscription via the

Expires header field; if it is not present, then the package defines a default value of

3600 seconds. As described above, each SUBSCRIBE message triggers a notification,

which are sent periodically. The period is defined in the event package. The package

defines a lower limit of 5 seconds for the period in order to avoid network congestion.

A NOTIFY message is also issued when the state changes.

The package defines rules for a user agent to apply filters to subscription requests.

The description is placed in the body of the SUBSCRIBE request and it influences the

behaviour of the presence agent. Presence information is carried in the body of NO-

TIFY messages and the default content type is "application/cpim-pidf+xml". Presence

information can be described by XML, which must be understood by all user agents

that wish to utilize the “presence” package.

52

4.7.2.1 Presencelist Extension

Other packages define similar strategies for presence information. The Presencelist

package [43] introduces the use of a list of presentity, which reduces the number of

subscriptions. A user agent creates the list and represents it by a SIP URI, and the UA

only subscribes to presence information of the presence list, instead of subscribing to

each presentity in the list. The specification, which is not yet an RFC, does not explain

the creation and maintenance of these lists.

4.7.3 Extension for Instant Messaging

Instant Messaging [22] defines the rules for the transfer of messages between SIP

users. SIP already provides support for session based communication and events, such

as presence of users, but the SIP specification [20] does not provide any mechanism for

instant messaging. The Instant Message extension proposes a new method MESSAGE;

MESSAGE requests carry the message content in the body in MIME type, text/plain or

message/cpim. The use of such instant message requests should be considered outside

a dialog and each message is stand alone. However, it is possible to send messages

inside a dialog preventing the separation of the signaling end point and the instant

message end point.

Since [22] defines the use of an instant message inbox for a SIP user, im:user@domain,

messages might be stored and acknowledged with a 202 (accepted) response, even

when the message has not been delivered to the user. A 200 response indicates that the

user has received the message, but it might not be displayed to the user. The Expires

header field defines the bounded validity of the message; a Date header field might

specify the starting validity time for the message. A limit of 1300 bytes to the size

of the body is proposed by the specification to avoid congestion and to avoid instant

messaging traffic interfering with call signaling traffic. However, it is possible to send

larger payloads when the message is part of a media session.

Chapter 5

SIP in Mobile Networks

5.1 Introduction

This chapter will present the handoff from one network to another at the application

layer, when Session Initiation Protocol (SIP) based mobility can take care of the move-

ment between heterogeneous networks.

In a GPRS (General Packet Radio Service) network, mobile devices are allocated

and addressed at the Network layer. In order to provide subscribers localization using

a Session Initiation Protocol (SIP) Universal Resource Identifier (URI), new function-

ality and tasks should be added to the Gateway GPRS Support Node (GGSN) or to the

GPRS network. As described in section3.3, the GGSN already acts as router for the

subscribers’ traffic, and allocates public or private IP addresses to these users when

they register with the GGSN of the GPRS network. In the latter case (private IP ad-

dresses), either the GGSN should act also as a Network Address Translator (NAT), or

it should be present another that serves as a NAT for the GPRS network. This is neces-

sary in order to route packets to and from the public Internet and to enable subscribers

to be reachable from users outside the GPRS network.

5.2 SIP’s mobility support

As described in section3.4, Mobile IP provides mobility for hosts when they are away

from their home network. In this section an application layer mobility solution is de-

scribed that uses the mobility features provided by the Session Initiation Protocol (SIP)

[20]. Handover handled at the application level could give more flexibility to operate

53

54

in heterogeneous network when the user could be moving between different types of

access networks, that might be managed by different Internet Service Providers (ISPs).

Application layer mobility might improve performances for real-time traffic, as the ap-

plication is aware of the mobility and might use knowledge about the traffic to handle

mobility among heterogeneous networks.

The solution is based on the SIP registration mechanism which establishes a bind-

ing between the host IP address and the user’s URI [10, 48]. However, SIP based

mobility is less suitable for TCP applications, as these applications need to maintain

the TCP connection alive, but the socket is specified by theIP addressesof the in-

volved parties and theports in use. Thus, traditional mobile IP with triangular routing

may be more suitable for TCP based data delivery as the packets are routed via the

home address hence there is no observable change in IP address or port number.

Supporting mobility using SIP raises new issues, since the application layer should

be aware of new networks (i.e., movement detection) and needs to know the address

of the current (active) interface. The follows sections present some solutions which

provide mobility for terminals, users, and sessions.

5.2.1 Terminal mobility

Schulzrinne and Wedlund [48, 55] proposed several solution to support terminal mo-

bility when the mobile host is invited to a call. They described two mobility scenarios:

pre-call mobility and mid-call mobility.

In the pre-call mobility case, the user moves before receiving or making a call. It

needs to register its new location with the home registrar in order to receive the call

to the new IP address. However, the registration had not been completed when the

user received a call, thus the INVITE request will be routed to the user’s most recent

location. To solve this problem, Schulzrinne and Wedlund define the use of a scoped IP

multicast address to route the call to the user; the proxy of the most recent registration

sends a multicast message and if it there is no answer to the invitation within a short

time interval, the proxy reports a failure to the caller. In [48], this solution assumes

that the SIP proxies and location servers are organized in a hierarchical structure to

reduce the traffic overhead and to support mobility of the user among a subset of SIP

proxy.

55

In case of mid-call mobility, the user sends to the correspondent host a new IN-

VITE request that contains an updated session description with their new IP address.

This end-to-end renegotiation can cause same delay as the new INVITE request must

reach the correspondent node before there can be a new media path. A micromobility

approach could be used to reduce the time of the renegotiation; if the correspondent

node were to send data to a proxy that handles the host mobility, the mobile host could

notify this proxy that it has moved to another location, and the proxy can forward the

data to the new location. This solution assumes the new location is close (in a network

sense) to the old location and the mobile host updates their location to the proxy that

is responsible for host mobility. However, if this solution is not supported, the renego-

tiation will be further delayed since the new INVITE needs to reach the correspondent

node.

Another solution to support handover uses on the conferencing feature of SIP [10].

Since SIP supports multi party sessions, the communication between two users are

handled as a two party conference. If a mobile user wishes to contact a correspondent

party, the mobile user sends an invitation to the other party specifying the SIP URI

of a Multi-point Control Unit (MCU) that provides the capability for participating in

multipoint conference. Both users need to join the conference, and, when the mobile

user changes its location, it sends an INVITE request to the conference address from

the new location. This solution benefits from the fact that no rerouting needs to be

performed by the correspondent node, but it is at the price of wasting resources for the

two connections to the MCU.

5.2.2 Personal mobility

Using the REGISTER method, a user may register more than one location for its SIP

URI, thus causing the invitation to be routed to different terminals or applications, if

the latter are running on the same host and identified by different SIP URIs. Personal

mobility is the ability for a user to be reachable under the same identifier while using

different terminals. In this scenario the user might login into different terminals at the

same time, but be reachable at the current location of any of these terminals, since, by

using SIP’s forking proxy, the invitation can be forked to all the different locations.

56

5.2.3 Session mobility

SIP feature enables session mobility when the user wish to change terminal while

maintaining a media session. A user might have access to different terminals with

different functionalities and intends to use them according to the kind of call.

The session is described in the body of the SIP message and it is associated within

a dialog. SIP enables third party control, i.e., an intermediate node initiates and nego-

tiates the session between two users at the SIP level; thus, a third party control allows

a user to initiate a session and to redirect to different terminals or to split into different

components the same session according to the media type. This solution enables a

user to participate to a session and at the same to use several hardware components;

however, the third party must be contacted to terminate or to change the session.

Furthermore, SIP enables renegotiation of an ongoing session by sending a RE

INVITE request introducing the new session parameters or indicating the “Contact”

header to specify another location where the user would like to be contacted. In this

case, the session will be completely redirected to the location.

5.2.4 Hierarchical registration

In order to support micro mobility of users when they move in a foreign domain, a hier-

archical structure for registration is proposed in [48]. SIP registrars are organized in a

hierarchical structure considering the home registrar at the top of this structure. When

the user changes location, it updates the registration with the home registrarthrough

the SIP server in the foreign domain, called outbound proxy, in order to redirect the

invitation to the new location within this domain. This updating can be frequent (de-

pending on the user’s movement) and it might need to traverse several hops before

reaching the home registrar hence introducing some delay in the registration.

Since the user registers their new location with their home registrarthrough the

outbound proxy, which is local proxy in the foreign domain, then if the local proxy

and the local registrar are on the same host, then the client might locate them using

DHCP for SIP Server [50], as described in section4.6. The outbound proxy, while

processing the first registration request (1 in fig. 5.1), changes the contact header

value inserting a SIP URI corresponding to the foreign domain before forwarding the

message to the user home registrar (2 in fig. 5.1). Thus, a temporary SIP URI for

the foreign domain is created in order to identify incoming requests for this user. For

57

instance, SIP URI “sip:roberto@home.se” might generate a SIP URI in the foreign do-

main “sip:roberto%home.se@foreign.se” (Fig.5.1). Now, all invitations for the user

are directed by the home registrar to the outbound proxy, then forwards them to the

user. When the user changes IP addresswithin the foreign domain (3 in fig. 5.1), it

sends an update to the home registrar via the outbound proxy (4 in fig. 5.1), however,

this is not forwarded to the home registrar since all invitations will be sent to the lo-

cal outbound proxy, it simply notes the new user location for locally forwarding these

invitations. This solution reduces the number of registration updates at the home reg-

istrar and it can be further extended with a hierarchical structure of outbound proxies

deep as desired.

SIP Registrar

SIP Proxy SIP Proxy

SIP Registrar

REGISTER sip:home.se
From:	 roberto@home.se
Contact:	192.168.13.2

REGISTER sip:home.se
From: roberto@home.se
Contact:	roberto%home.se@foreign.se

REGISTER sip:home.se
From: roberto@home.se
Contact:	192.168.37.256

1

4

2
3

Figure 5.1: Hierarchical Registration in a foreign domain

5.3 Architectural alternatives using SIP for mobility

This section discusses some of the architectural designs for heterogeneous networks

where SIP is used for application layer mobility, mainly for a Local Area Network

(LAN) and a Wide Area Network (WAN), when the mobile user has ongoing sessions

with a correspondent host and uses SIP for signaling and control of multimedia ses-

sions [19].

In [19] different scenarios are analyzed; the session is redirected to the active in-

terface when the mobile terminal is moving in a subnet within Local Area Networks.

However, if the mobile terminal switches interfaces for sending traffic, it needs to redi-

rect the call on the active interface with a new invitation. Furthermore, if the interface

58

used for communication is completely unable to communicate, then the multimedia

session is interrupted.

For Wide Area Access, [19] proposes a model where the device is connected to two

different networks. It is shown that if the device applies different routines to access the

network, it will take different amounts of time to establish the communication. The

user might use both interfaces and then choose the one to continue to communicate

with a correspondent node based on internal policies. When changing locations, the

mobile node might need to reconfigure both interfaces. During an ongoing commu-

nication session it needs to take account of the IP address of the interface currently

chosen for communication, as it needs to specify this as the contact address in the RE

INVITE request.

The use of SIP for handling mobility of sessions in heterogeneous network raises

some new issues, that need to be considered while designing a solution. Since, the

device might have multiple interfaces active that can each be associated with one SIP

URI; when a user moves, it needs to consider which is the active interface and not

immediately update the location of other addresses. Furthermore, the use of private

address used within a LAN behind a NAT should be taken into account.

5.4 SIP and NAT

As discussed above, several operators use a Network Address Translator (NAT) to pro-

tect their networks from unwanted connections. Since the Session Initiation Protocol

(SIP) is used for signaling and for communication between users, this section investi-

gates some of the solutions proposed to avoid service blocking when the users use SIP

for controlling and establishing sessions.

NAT does not support an end-to-end communication since it rewrites the IP address

and the port number of IP packets, causing packets from many host to come from

the same IP address to correspondent nodes on the public Internet. Furthermore, for

security reasons some NATs allow communication with users behind a NATonly if

these users have already sent a packet to the correspondent node, thus limiting the

communication between users in different private networks.

If the users involved in the communication are located inside a single private net-

work, the session is established as usual and the two users are able to communicate.

59

A user located behind a NAT that initiates a session with others located in the public

Internet, is also able to establish the session and to traverse the NAT. However, other

protocols used in conjunction with SIP will not be able to traverse the NAT. For exam-

ple, the Session Description Protocol (SDP) used by SIP to negotiate the parameters

for establishing the communication between entities specifies as the IP address for the

end-point a private address, which is not a routable address in the public Internet: thus

the media session can not be set up. Furthermore, users located behind a NAT are not

reachable by others, as SIP servers will map the SIP URL to the private IP address.

This problem is addressed in more details in Thernelius’s Master Thesis [52]. Th-

ernelius proposed and designed an Application Level Gateway (ALG), which directly

manipulates the fields in the SDP body of SIP messages, thus allowing communication

from a correspondent node to the subscriber to traverse networks behind firewalls and

NATs, while using SIP as a signaling protocol.

Another solution adds a SIP Proxy Server which provides local SIP registration for

the users inside the private IP address space by using an extension to the SIP protocol,

as described below.

“When used with UDP, responses to requests are returned to the source

address the request came from, but from the port written into the topmost

Via header of the request. This behavior is not desirable in many cases,

most notably, when the client is behind a NAT. This extension defines

a new parameter for the Via header, called rport, that allows a client to

request that the server send the response back to the source IP address and

port where the request came from.” [56]

5.5 Proposed design for SIP enabled networks

This section discusses a proposed design for SIP enabled networking in heterogeneous

networks, such as WLANs and GPRS networks, despite the existence of a NAT which

limits the inter-network communication. In order to provide a handle for the user at the

application layer using SIP naming, some existing solution are analyzed and extended

in our proposed network. Since the GPRS network can be behind a NAT prevents

mobile users from being directly reached by user on another network, I propose to

have an external SIP server, acting as an outbound proxy, outside the GPRS network

60

and the NAT, with a globally routable IP address to enable communication with the rest

of the Internet. This SIP server acts as a SIP proxy for the GPRS subscribers. These

subscribers need to be registered with a location server co-located with the SIP proxy

in order to record and know their current location. Furthermore, these subscribers need

to maintain an open connection with the SIP proxy in order to traverse the NAT (Fig.

5.2).

GGSN

SIP Proxy

NAT

Internet

GPRS network

actual connection
logical connection

Figure 5.2: SIP proxy for connectivity through NAT for GPRS network

Söderstrom [49] demonstrated in his report that it is possible to guarantee com-

munication through a NAT at the application layer even for virtual private networks.

Using SIP for signaling and services is similar to building a virtual private network

with an independent addressing scheme and some functions to map the temporary IP

address to/from a SIP URI. As he pointed out in his report, we need constant connec-

tivity between the GPRS subscribers and the SIP proxy outside the GPRS network,

since some NATs do not allow communication unless anoutgoingpacket has already

been sent to the outside address by the internal user. Following this outgoing packet,

these users are able to be contacted and receive data using SIP, by specifying in the

Record Route field of the SIP message the IP address of the SIP proxy. The solution

takes advantage of having a constant connection through a GGSN node which makes

61

the internal nodes reachable despite the network designs of some GPRS operators.

However, the SIP proxy needs to have open connections with all the GPRS sub-

scribers that use SIP for signaling. This might not be a good solution since the users

have to pay to keep the connection alive by polling the channel (even if the monthly

cost for this extra traffic is low [49]). A typical GPRS network can provide services to

a huge number of users (200 000 - 400 000), simultaneously attached and served by

the a GGSN node. Maintaining open connections with the SIP proxy causes an overall

increase in the traffic average and consumes battery power for the mobile terminals.

GGSN

SIP Proxy

NAT

Internet

GPRS network

this connection is initiated by
the internal proxy and is always up

Figure 5.3: GPRS network enabled for constant SIP connectivity using SIP proxies

In order to reduce the number of connections that must be maintained through the

NAT, an internal SIP server can be located behind the GGSN. This SIP server can

be directly contacted by all GPRS subscribers, since it has a private IP address and

internal connections can always be established behind a NAT. Furthermore, a registrar

and a location server might be collocated with this SIP server to accept the SIP URI

registrations for internal users and to keep tracks of their temporary location. However,

an external SIP proxy needs to be present as it guarantees the communication with

entities in foreign networks. This solution takes advantage of the fact that the internal

62

users do not need to maintain connection with the external SIP proxy, and that the

number of connections to be maintained is limited to the one between the two SIP

proxies (Fig.5.3).

A similar approach can be used for a WLAN network behind a NAT in order to

guarantee communication between users in heterogeneous networks with different

topologies (Fig.5.4). The users are able to communicate at the SIP level thanks to

the SIP Proxy between the two NATs, as shown in figure5.4. Furthermore, several

SIP proxies might be used to serve the same network using a hierarchical structure,

discussed further in section5.5.2.

SIP Proxy GGSN

SIP Proxy

NAT
GPRS network

WLAN network

Internet

NATSIP Proxy

Figure 5.4: GPRS and WLAN networks for SIP communication

5.5.1 SIP URIs association in foreign and home domain

This section considers the registration process with the GGSN of a GPRS network

behind a NAT, since registrations in foreign domain, for instance while roaming be-

tween WLANs must be considered. The SIP Server inside the GPRS network accepts

REGISTER messages from SIP users within the GPRS domain and updates a location

database, located at the Location Server, with the user’s contact information specified

in the request. Furthermore, this SIP Server also acts as SIP proxy because of the use

of private addresses inside the GPRS network.

After the association with the GGSN node we have GPRS connectivity, hence the

63

device’s interface has been provided with a private IP address. The IP address deter-

mines the temporary location of the user and it is used for SIP registration of a new

SIP URI, which might be “sip:user@phone_number.GPRS-domain” using the phone

number as identifier for the terminal. The SIP Registrar, co-located with the inter-

nal SIP Server, updates or creates a new binding (Fig.5.5). The user might already

have a personal SIP URI, that does not identify the device, which is assigned by their

(home) SIP provider. Thus, the user needs to inform their (home) SIP registrar of their

temporary location in order to redirect calls to their new location.

Registrar

SIP Proxy

REGISTER sip:GPRS.se

200 OK

From:roberto@01234567.GPRS.se

GPRS domain

Figure 5.5: SIP registration within a GPRS domain

A user is now reachable inside the GPRS network and via the SIP proxies, see fig-

ure5.3, from external users. The SIP external proxy redirects all calls addressed to SIP

URIs of the GPRS domain to the internal proxy. Having global connectivity, i.e., the

possibility to contact other SIP users outside the GPRS network and to receive mes-

sages, the user contacts their home SIP domain to register their new Contact address

with their SIP home Registrar. This Registrar might be co-located with a SIP Server

that can act as proxy or as a redirect server for invitations (Fig.5.6).

64

SIP Registrar

SIP Proxy SIP Proxy

SIP Registrar

REGISTER sip:home.se
From:	 roberto@home.se
Contact:	192.168.13.2

REGISTER sip:home.se
From: roberto@home.se
Contact:	roberto%home.se@foreign.se

REGISTER sip:home.se
From: roberto@home.se
Contact:	192.168.37.256

1

4

2
3

Figure 5.6: SIP registration within the home domain

Because GPRS operators have roaming agreements to guarantee the service while

their user travels in another country, when a user is roaming in a foreign domain, the

user needs only to send an update registration to their own GPRS Registrar or to the

their home SIP Registrar. The updating might be seen as a registration within a home

SIP domain, as illustrated in figure5.6. This scheme is normally based on mobile IP

to redirect the GPRS traffic and at the application level it is as if the SIP user did not

move; however, a registration update enables user to use SIP for redirecting the call to

the current location at the application level.

During the SIP registration, the user needs to discover a SIP registrar in the current

domain. The possible discovery solutions, defined in the SIP standard [20], were de-

scribed in section4.4.2.3. However, the technology infrastructure might limit the use

of a multicast scoped messages to locate the registrar, hence a DHCP configuration

of the mobile device might be a better solution. In the latter case, the client issues a

DHCP message using the SIP option defined in [50], and receives the host name of the

outbound SIP proxy.

The client reaches this SIP registrar possibly via intermediate SIP proxies, each

resolved via DNS lookup (see section4.6). In order to route the registrar’s response

back to the user to complete the registration, the intermediate proxies inserted their

own SIP URIs in the Record-Route header field before forwarding the register request.

A solution to provide mobility and other functionalities in the home and foreign

65

network using IPv6 is designed for the third generation cellular networks by 3GPP.

This requires the use of multiple outbound proxies for controlling the access to the

GPRS subscribers. SIP registration and SIP call control are defined in the specification,

more details can be found in [2].

5.5.2 Hierarchical registration in SIP

A hierarchical structure for SIP registration in a heterogeneous network might reduce

the need to send global bindings updates across the network in order to inform the

home network or the correspondent node about a node’s movements, thus reducing the

mobility signaling load. The solution, introduced in section5.2.4, utilizes a hierarchi-

cal structure for SIP Servers in order to reduce the updates while moving in a foreign

domain. A hierarchical structure for binding updates might reduce the number of re-

transmissions, since the retransmissions also occurs between levels in the hierarchy

not end-to-end. Furthermore, the probability of packet loss increases as the number

of intermediate hops increases [14] and these packets are going via the fixed network

where the probability of loss should be very low.

This section proposes an extension to the hierarchical structure for SIP registration

in order to be effective in heterogeneous networks. I have already introduced in pre-

vious sections an outbound proxy and a local SIP registrar for the GPRS subscribers.

Furthermore, the GPRS network needs to provide a SIP location service database for

SIP users, called here a Location Service GPRS (LSG), which handles the location

of this GPRS network’s subscribers. As described above, the GPRS network should

have a SIP outbound proxy, outside the network, which guarantees constant connec-

tivity. At this proxy another location service database, called a Location Service Area

(LSA), might be collocated in order to store SIP users’ location data for a wide area.

The LSA is able to locate users belonging to different networks, potentially each with

different technologies (see Fig.5.7). For our purposes, I will only describe the LSA

for WLAN and GPRS, since the Personal Data Assistant used for the project has only

two interfaces, specifically GPRS and WLAN interfaces.

66

SRG

SIP Proxy

GPRS domain

SRW

WLAN domain

SIP Proxy

LSG
LSA

Figure 5.7: Hierarchical structure of SIP Servers for heterogeneous networks

The LSA is located at specific host which is running a SIP Server, responsible

for allocating bindings for both the GPRS and the WLAN network domains. I would

suggest co-locating these on the same host as a SIP UA Server and Registrar; the

domain part of the Request-URI of SIP messages are inspected to see if it can provide

registration or updates for users in this domain, when a request is received.

The way to contact this SIP UA Server and Registrar differs depending on the net-

work the subscriber is attached to. A hierarchical structure for two level management

mobility uses one SIP Registrar (SRG), for GPRS network, and another SIP Registrar

for wider area (SRW) for notifications from the GPRS Registrar and for subscriptions

outside the GPRS network. DHCP informs users of the SIP Server proxy, which acts

as proxy for registration within the domain or the area.

As described above, in GPRS the subscriber sends a SIP register request to the SIP

Registrar for Wide area (SRW), which is contacted via the Service Registrar GPRS

(SRG) with a notification of the subscribers’ status and their actual location, as was

described in section5.2.4(Fig. 5.8). Furthermore, the SIP UA does not need to be

67

pre-configured, nor does it have any problem determining the domain which it learns

via DNS reverse lookup.

SRG

SIP Proxy

GPRS domain

SRW

WLAN domain

SIP Proxy

LSG
LSA

REGISTER sip:GPRS.se
From: roberto@01234567.GPRS.se

REGISTER sip:GPRS.se
From: roberto@GPRS.se

Figure 5.8: Hierarchical Registration for heterogeneous networks

In the WLAN users might also send a multicast packet to the well-known "all

the SIP servers" (224.0.1.75) address to discover the SIP Registrar. They will get the

acknowledgment of the registration from the SRW, if it is responsible for that WLAN,

or from another SIP Registrar.

5.5.2.1 A hierarchical presence structure

The SIP UA sends the SRG its SIP URI and the Contacts indicating where it prefers to

receive the call, with related expiration timers. When the registration is received, a new

record is added to the database at the LSG; the cell identifier, extracted from the mes-

sages of the Base Station Controller (BSC), might also be stored in the location service

database to provide information of the physical position of subscribers. The field could

also be directly updated by the user, by extending the SIP REGISTER method. The

user knows the cell which they are attached to, thanks to broadcast messages sent by

the base station that contain the unique cell identifier (C_ID).

The Location Service GPRS (LSG) database looks like:

68

SIP URI Contact Cell ID Expire

roberto@GPRS.netroberto@01234567.GPRS.net 12 7200
roberto@31241341.GPRS.net 3 3600

pietro@GPRS.net pietro@32412412.GPRS.net 5 3600
marco@GPRS.net marco@43212342.GPRS.net 1 3600

The SRW database has a similar structure. WLAN subscribers send their SIP URIs

and their Contacts, if any, with the expiration timer in the REGISTER method and the

BSSID, based on the position of the Access Point . GPRS subscribers are registered

with the SRW via the outbound SIP Server located inside the GPRS network. This

server acts on behalf of the users for a hierarchical registration. The SRW might also

act as a Presence Agent for GPRS users, by accepting SUBSCRIPTION for presenti-

ties and sending notifications of status changes [21].

It might be interesting to extend the Extension for Presence package in order to

allow a Presence Agent to give the status of a user located in a cell, without knowing

their SIP URIs. If one is interested in the users within a particular cell you could learn

each of these users’ URLs by querying the Presence Agent, using the cell ID.

The SIP Server co-located with a location service might already act as a Presence

Server. By extending the Presence package, this Presence Server could accept sub-

scriptions for cell presence or redirect the subscriptions to the GPRS Presence Agent,

or might act as a proxy in order to send notifications. These features could also be

extended to be used in WLANs; in such a network, the WLAN Base Service Station

Identification (BSSID) is stored in the database, to provide the same types of service

as described above. The SIP Server co-located with the LSA acts as a Presence Agent,

accepting subscriptions, or as a Presence Server if there is a hierarchical structure of

Presence Agents serving the WLAN coverage areas.

The reason for using a hierarchical structure for location services is to integrate the

WLANs and GPRS networks for service discovery. A user would prefer to discover

and use services via the cheapest and fastest connection, hence obtaining them from

the closest peer using the interface it prefers.

Furthermore, a geographical identification of the users might be useful while users

are interested in context information of a particular area or in peers at a specific loca-

tion.

Chapter 6

The Service Peer Discovery Protocol

6.1 Introduction

This chapter introduces the proposed service discovery protocol and the decisions

made in order to address requirements and issues of such a design. The solution is

examined in relation to the existing technologies described above in chapter2.

The purpose of a service discovery protocol is to allow users to discover services,

that are handled by other peers in the network. In this chapter we analyze the issues

concerning the design of the proposed Service Peer Discovery Protocol (SPDP), the

considerations that we have done to restrict the problem and the designed protocol.

The Service Peer Discovery Protocol (SPDP) needs to be effective in heteroge-

neous networks and to provide users with a simple mechanism to discover services in

the network. It uses SIP to carry messages and to contact other peers to ask for ser-

vices; it uses other protocols to retrieve services, depending on the their nature. For

instance, a user can connect to the peer using the Context Data eXchange Protocol

(CDXP) [57, 29] to exchange context data or use FTP to exchange files.

SPDP might use a context server to know which users, among those connected to

the network, can handle the required service. Every user in the network must register

with the context server, giving their (GPS) position, their SIP URI, the wireless net-

works to which they are currently attached (WLAN or GPRS), an expire timer for this

registration, and the kind of services this node can offer. The (GPS) position is used

to determine the location of the user; the SIP URI is used by SIP to locate the user, in

order for others to contact the user using SIP; the information about the user’s wireless

69

70

network is used to allow actions based on the available interface(s), for example, pre-

ferring a WLAN if available to deliver and retrieve large amounts of data. Finally, the

expire timer is used to indicate the duration of the registration. The kind of service is

the first discriminator for discovering services.

6.2 Issues and requirements

A user can have network access via several wireless networks, by using different inter-

faces of their PDA. In this work, we consider a device with two interfaces: a WLAN

and a GPRS interface. It can simultaneously be attached to both networks, thus it can

have two different IP addresses. A user should register with a context server, known by

preconfiguration of the device and located as described in section6.5.4.2. The context

server keeps track of the relevant user information as well as additional environmental

and spatial information.

The shared resources, present in the network, are packaged as services and can be

offered by devices; the devices and the services can accept actions or perform actions

on other services. These resources should be located and discovered using the service

discovery protocol. Furthermore, the device might roam among different networks,

changing its IP address (device mobility) or users can change their logical identities

(SIP URIs) independently of which devices they are using (personal mobility).

For a service discovery protocol it is important that the service information is up-

dated to assure consistency of data. As we are utilizing one or more wireless networks,

services may be available for only a small amount of time due to node mobility or per-

sonal mobility; furthermore, as the number of providers increases and as the available

services increase, the number of resources changes dynamically.

In order to support these requirements, the communication should be peer-to-peer

and any negotiation occurs entirely between end-points. Thus, the discovery protocols,

introduced in chapter2, are not well suited for this kind of communication. A central

server for locating information or for negotiation may not be able to follow all changes

(section1.3).

UPnP, based on SSDP for service discovery (section2.2.3.2), specifies that dis-

covery can be done even if there is no central server in the network. SSDP uses

multicast messages for service discovery. Although this approach can work well in

71

a small network, it does not scale well in a large wireless network, as multicast mes-

sages consumes bandwidth and all users will receive the packet therefore consuming

battery power for receiving and processing each of these messages, even if they are

not relevant. For instance, SSDP uses multicast messages for announcing the presence

of a service, for discovery, and for renewing presence messages; thus, as the num-

ber of users in each network increases, that network can be flooded just by signaling

messages.

In addition, we need to consider the mobility of devices, users, and services when

designing the protocol. While on the move, the protocol should provide a way to locate

resource(s) and to adapt the current session(s) to this movement. UPnP uses the DNS

system to locate the resources, but this solution does not assure that the protocol scales

well when the number of mobile users increases. Furthermore, the protocol should also

be effective in a private network where the provider uses a private set of addresses, as

in many GPRS networks. Thus, a solution is to use an addressing schema that is also

effective in a virtual private network, see [49] for further details. For the protocol

designed we have chosen SIP to provide naming and localization of users.

6.2.1 SIP and service discovery

This section provides the reasons for our choice of using SIP to carry discovery pack-

ets. SIP provides functions that are advantageous for the design of the discovery proto-

col for network devices with limited computational power. A similar approach is well

illustrated in [46] for instant messaging and presence.

Scalability SIP scales well both in local and wide area networks thanks to the rout-

ing capabilities of the intermediate nodes in the network. Proxies can operate

both in stateful or stateless mode which offer an high degree of flexibility of the

routing strategies. Stateless proxies are faster than stateful, but they don’t keep

state. SIP uses a routing scheme for traversing the intermediate nodes from the

source to the destination, see the Via Header field described in section4.3.3.

It does not use multicast or broadcast for message delivery. Furthermore, SIP

provides the capability to specify the route that packets will follow when a di-

alog is established (Record-route header field), hence, a intermediate node can

decide to insert its address in the route set or re-write it according to context

72

information. The intermediate nodes can operate successfully both in stateful or

stateless mode.

Simplicity and Flexibility SIP provides attributes that allow extensions to the proto-

col. It is a really simple text based protocol, and it includes a scheme for exten-

sions. Even if an intermediate node does not understand the extension headers in

the packet, it must forward the packet to the next hop. Hence, not all the nodes

need to support extensions, therefore extensions can be dynamically added (see

section4.7).

Addressing and Registration SIP has its own addressing and location schemas. Users

are identified by their SIP URI, and register current location with the registrar.

A user does not need to know the exactly location of another user because a SIP

proxy will route the packets to the destination based on the other user’s SIP URI.

Personal Mobility Since SIP provides registration of the user’s location, the protocol

supports personal mobility (see section5.2.2). Thus, an user is not associated

with a device, and their ability to register their location is independent of which

terminal they use to access the network (although the device’s address is also

generally registered).

Security SIP defines authentication and encryption schemas for end-to-end commu-

nication. This is an important feature that we need not consider further in our

design since it is already addressed by SIP. A strong authentication schema with

certificate based authentication can be used to guarantee high security, which is

useful since the discovery protocol is used for discovery services and also for

giving access to the device’s capabilities.

Transport Independence SIP does not specify a transport protocol for sending mes-

sages. It can use different protocols, such as TCP or UDP, to encapsulate mes-

sages. Hence, messages can traverse heterogeneous networks without any de-

pendence on the underlying network technology.

Event Notification SIP defines in its event framework [42] both subscription and no-

tification schemas. Thus, the proposed discovery protocol needs only to extend

73

the event package for the discovery of services. For further details about the

discovery extension see section6.5.1.

Forking SIP enables request to be forked to different destinations registered with the

same SIP URI. Thus, devices, such as a printer or sensor, can be addressed with

the same URI if they provide the same service. So the same resource can be

queried using only one message since all the destinations should reply to the

request even if only one 200 response is reported to the client.

6.2.2 Ad Hoc network and service discovery

This section provides an overview of issues that can arise while designing a service

discovery protocol for an ad hoc network. There is a substantial difference between

a fixed wired network and ad hoc wireless network, hence the protocol for an ad hoc

network should deal with movement and user relocation, resulting in dynamic changes

in communication. Devices should be able to communicate directly with other devices

within their transmission range. Having little or no networking infrastructure places

new limits on the location of a central server for service discovery.

A hybrid approach with some infrastructure, that facilitates communication inside

a cell and may even connect to network nodes outside the cell, can be used to provide

devices with increased connectivity. One idea is to co-locate the server with the base

station as a solution to this problem. However, if the base station is overloaded due to

discovery messages, this can cause decreased throughput because all the cell’s traffic

is routed via the base station, which become the single point of failure and potentially

the bottleneck.

Although other approaches can be used, such as broadcasting. Usingonly broad-

cast messages increases the traffic load in the network, but does not offer good discov-

ery capabilities because the discovery is limited to the cell if the nodes do not forward

broadcast messages. Furthermore, due to disconnections, or because device might be

out of range, the user might miss updates, and the consistency of data is limited by the

frequency of the broadcast messages [25].

For the design of the proposed discovery protocol, multicast messages are used

for discovery of resources in a small area. Multicast messages might be defined in

such a way that it could be possible to set the number of hops the message will be

74

forwarded by intermediate nodes. The clients can set the time-to-live (TTL) according

to their context information. Thus, although the message can cross different subnets,

where the network infrastructure is capable of accepting such messages but its scope

is limited by the TTL. By using multicast a user can query several users with only one

message, this is especially useful when it can exploit the broadcast properties of some

wireless networks.

6.3 Representing services

A user should be provided with some basic knowledge in order to communicate with

others in the network who require services. A way of identifying services and entities

that are available in the network must be defined a priori. Users should be able to

point to services in a uniform way while searching, since this would be an obstacle

for large scale applications where users identify services in different ways. Thus, the

information for representing services and entities should be formatted in a common

language that it can be understood by all involved parties. The services and entities

should be identified with a unique identifier to facilitate the search.

We propose the use of the eXtensible Markup Language (XML) to describe ser-

vices, context information, entities, and their capabilities, and a model for their naming

and identification. This document provides a description of service information, while

context information and its exchange are further discussed in [57].

6.3.1 Taxonomy trees

The model that we propose to identify services, entities, and context information is

via taxonomy trees. We have designed three trees, one for each root node in order to

differentiate the different information. The exchange and management of the taxon-

omy trees is not covered by this thesis as we assume that the users already have these

functionalities.

All information is stored in the tree, thus the lower levels of the tree are more

specialized. The leaves of the tree specify the services, while the intermediate nodes

can be considered as a service group. In figures6.1and6.2we show two examples of

taxonomy trees, for services and entities respectively. Each node is identified by the

75

Root

Real Time

Data

Audio/Video

Games

VoIP

Web Camera

Streaming

Data
Audio/Video

Games Music

Others

Distribution

Printing
Playing

MusicData Image

Figure 6.1: Service Taxonomy Tree

path to reach it from the root node. For instance, according to the figure6.1the service

“Printing” is identified by the path “Root/Others/Printing”.

Services are described in documents formatted in XML, which specifies the ser-

vice parameters and actions that can be performed on the service. Each service can

have any number of properties associated with it. This document does not provide a

specification of which properties are mandatory for any single service, but we propose

to refer to service description in theKonark Discovery Protocol[54] or to theUPnP

[13] specification. Furthermore, using XML for describing the nodes of the tree gives

the node easy extensibility of its capabilities.

6.4 Overview of the architecture framework

Assuming the presence of a mechanism for locating users in the network and protocols

that offers mobility to users, we need to locate the discovery protocol in the TCP/IP

protocol stack. Figure6.3shows the underlying protocols.

At the link layer we suppose that the device has wireless connectivity, for instance

GPRS or WLAN connections; the information gathered at the link layer can be useful

76

Root

Virtual Object

Access Point

Printer
Display

GPRS
WLAN

People

SIP UA

Messenger Id

Physical Device

IrDA

Figure 6.2: Entities Taxonomy Tree

Wireless Link Layer

Mobile IP IP

TCP,UDP

SIP-SPDP

Figure 6.3: Protocol Stack Overview

to understand network availability in order to modify the behaviour of the upper layer

protocol(s).

The network layer is characterized by the use of the Internet Protocol (IP), since we

suppose that the device is provided with an IP address for communication with other

hosts. Since we are working with wireless networks, the mobile device might need to

move to different networks while maintaining the ongoing communication, thus, we

propose to use Mobile-IP.

At the transport layer, we don’t specify any mandatory protocol, since the discov-

ery protocol relies upon SIP for communications.

77

At the application level, we utilize the Session Initiation Protocol (SIP) to handle

sessions between entities. The proposed Service Peer Discovery Protocol (SPDP) is

considered as extension to SIP according to the SIP event framework specification

[42]. Thus, we co-locate a SPDP User Agent with a SIP UA, capable of handling SIP

sessions and redirecting service discovery event to the SPDP UA (Figure6.4).

SIP UA

SPDP UA

SIP session

SPDP UA

SIP UA

Figure 6.4: User Agent

6.5 Service Peer Discovery Protocol

The Service Peer Discovery Protocol (SPDP) is designed to discover services and to

offer a model for negotiating services between end-points without requiring third party

negotiation. SPDP is defined as extension of the SIP event framework [42], thus, its

messages are carried in SIP packets and it inherits all the request routing and security

features of SIP, as well as using SIP for naming and localization of users. As described

in sections4.7and6.5.1, the SIP event notification defines two method, SUBSCRIBE

and NOTIFY, to handle eventing. All the messages are expressed in XML, and the

entities and services are organized in taxonomy trees, as introduced in section6.3.1, to

offer easy and unique identification of the resources.

The SPDP differs from the discovery protocols (UPnP and Jini) described in chap-

ter 2, as it does not require any central server to assist in the negotiation between end

points (it is done directly between end-points after the service is located) nor to pro-

vide mapping between service and entities. Furthermore, the protocol is designed to

perform discovery in wide networks and in heterogeneous networks, such as the com-

bination of GPRS and WLAN, using the services provided by Context Servers. The

design of the Context Server and its (network) location are addressed in [29].

78

6.5.1 SIP extension for service discovery

The Service Peer Discovery Protocol implements an extension to the SIP protocol

[20] in order to provide capabilities to SIP User Agents to discover services in the

network. The event package used for this purpose is called “Service Discovery”. My

proposed package defines that the “Event” header of the SIP message should be set to

“sdpEvent” and the “Content Type” should be set to “application/sxdp-xml”.

A user agent interested in a particular service issues a SUBSCRIBE request ad-

dressed to a multicast channel or to a specific user. The request is processed by the

peer, which replies with a NOTIFY message.

6.5.1.1 SUBSCRIBE

The SUBSCRIBE message is used to establish a dialog between peers. The duration

of the subscription is indicated by the value of the “Expires” header. A subscription

is always associated with a dialog, that is specified by the dialog ID, and by the event

package name. This is confirmed with a 2XX SIP response message which indicates

the expires time for the subscription. If the subscribers want to unsubscribe before the

timer expires, they send a SUBSCRIBE request with “Expires” value of zero.

The package “Service Discovery” defines a default value of “0” seconds for sub-

scription for service discovery. In this case, each subscription triggers a notification,

which closes the dialog. The validity time of a subscription for service discovery is

limited to “0” seconds as the discovery message is issued to determine the availability

of resources and their presence in the network. A longer expire timer will cause the

client to be subscribed for a service with the providers. The SUBSCRIBE message de-

fined in the package is similar to MESSAGE request defined in the Instant Messaging

extension specified in [22], however, a SUBSCRIBE message requires the server to

send back a notification; the notification guarantees that the server has processed the

message since a 200 response only acknowledges the message received.

During the discovery phase the subscription must be set to the default value and

the message body formatted in XML must contain the rules for the server. After dis-

covering a service, the client might be interested in changes of user or service status,

thus, the “Expires” timer can be negotiated between the client and the server.

79

6.5.1.2 NOTIFY

When a subscription is received, the notifier sends a NOTIFY response, which con-

tains the event package name and dialog ID, an identification of the subscription (if it

is present), and a body. The body contains the information requested in the subscrip-

tion and, based on this, the client can act (after updating its internal knowledge). If

the client subscribes for eventing, the “Service Discovery” defines a lower limit of 5

seconds between two following notifications to avoid network congestion, as proposed

for the Presence package (section4.7.2).

6.5.2 Entities

The SPDP system consists of user agents, that can join or persist in the network and in-

teract each other, and a Context Server, that keeps context information. The user agent

client is able to query other peers in the network for services by peer-to-peer messages.

The user agent server is responsible for handling requests for service, checking if the

service is available, acting as a proxy, and for delivering the service. The proxy accepts

requests and performs discovery on behalf of the client.

In this setting a file server has a user agent, which offers a storage service for

contents. It is this user agent, whose functions help users to access the file server’s

contents while dealing with bad connections, limited local memory, and limited battery

power.

6.5.2.1 User Agent

User Agents are logical entities that can act as both a user agent client (UAC) and user

agent server (UAS). The user agent is identified by a SIP URI and should be able to

move around the network(s) as nodes are relocated. It consists of a SIP User Agent

which handles the communication with other entities at the application level; it should

also be able to send and receive events and to keep track of subscriptions.

The user agent uses an embedded discovery application to provide services via

queries and responses which are formatted in XML. This user agent can query other

agents to retrieve information about their services and it should be able to respond to

such requests from other agents. This enables devices to store information and pro-

vides a method to access this information. The XML document for an agent describes

80

the agent’s properties, such as network identification, actions, and embedded services.

The agent is located by the SIP URI which it registered with the Context Server for

the current domain. As examples of services we will examine both a file server and

Context Server in the following sections.

6.5.2.2 File server service

A file server service can be offered by an entity in the network; this section explains

advantages and disadvantages of the Service Peer Discovery Protocol in conjunction

with such a service. The device acting as a file server needs to support specific func-

tions in order to support requests to store and retrieve content, such as video or music

files.

Having a device in the network with such functionality enables more content to

be available. A small device can save cost and/or battery power by waiting to fetch a

faster and/or cheaper connection than the one used to perform the discovery of the file

server. The main purpose of a file server is to extend the effective storage capacity of

devices which can access it.

The file server is located by its SIP URI and it can be used during service de-

livery as intermediate node. The client or the server might choose to forward the

content to the file server using the latter as a temporary repository. Figure6.5 shows

a possible scenario: a client “sip:user@domain.se” discovers a service handled by

“sip:provider@wireless.se” (1 in fig. 6.5), the server delivers the content to the file

server “sip:file_server@wlan.se” (2 in fig. 6.5); “sip:user@domain.se” moves to an-

other location (3 in fig. 6.5) and retrieves the content from the file server (4 in fig.

6.5). This solution considers the case of disconnection during the communication be-

tween two peers and offers an alternative means for content delivery. Furthermore,

an intermediate file server can be used to determine policies for routing when there

are multiple receivers; a similar solution is already designed for Elvin content based

messaging services [8].

6.5.2.3 Context Server

The use of the Context Server is proposed in order to keep context information in

a network. Several Context Server might serve the same network and the need to

81

sip:file_server@wlan.se (delivery)

(discovery)

(movement)

sip:user@domain.se

sip:provider@wireless.se

1

2

3

4

Figure 6.5: File server: delivery scenario

cooperate in order to ensure data consistency. The design of a Context Server and of

the services that it offers are discussed in detail in [29].

The Context Server enables context information to be available to users in the

network; the Context Server collects and maintain “knowledge” about the network,

services, and position of users. It becomes aware of users, since users register their

presence where they discover a Context Server in an area.

Using the Context Server with the SPDP protocol enables user to be aware of the

location of peers that can provide a required service. Additionally, users can learn

about neighbouring networks with good support for a service, thus they may decide to

pro-actively perform a handover (this is further described in section6.6).

6.5.3 Messages

The messages are carried in the body of SIP messages and they are formatted in XML.

The Content Type of the SIP message is“application/sxdp-xml”. The SPDP protocol

defines the messages in the SIP event notification framework, as described in section

6.5.1, and defines three methods to handle service discovery messages. The protocol

82

does not provide message acknowledgment, because this is already done at the SIP

level.

6.5.3.1 Methods

The method is carried in the request and specifies the action that the client wants to

invoke on the server. The methods, we are concerned with, specify actions that con-

cern the discovery protocol, seen as an application behind the SIP User Agent. Thus,

the methods are related to those of the SIP package “service discovery”, i.e., SUB-

SCRIBE and NOTIFY, and are defined for the application that handles the discovery

messages. Three methods were defined: DISCOVERY, ACCEPT, and DENY; these

methods initiate and exchange service information and can terminate the discovery

process.

DISCOVERY is used to initiate the discovery process and to query a server or an

entity for its capabilities or for its data. The method defines messages for re-

questing information about both services and peers, as specified in the header of

the message. The message can be sent on a multicast channel, unicast to another

peer in the network, or unicast to the (file or context) server. The client can in-

clude a list of conditions that the server checks in order to map the request to the

right service. The discovery packet includes a ReplyTo field, this is used if the

client performs the discovery on behalf of another entity. DISCOVERY is only

sent by clients and is acknowledged with an ACCEPT or DENY packet.

ACCEPT is sent as response to a DISCOVERY message if the server supports the

client’s request as specified in the DISCOVERY packet. The query packet in-

cludes a list of services or peers, depending on the kind of the request. The

ACCEPT message is carried in a notification (i.e., a NOTIFY) and it closes the

discovery session.

DENY is issued as the response to a DISCOVERY message if the server can not sat-

isfy the request. A reason can be specified in the packet as a three digit numeric

status code, see table6.1. The DENY is also carried in a NOTIFY.

83

Table 6.1: DENY code responses

400 The request is malformed, the server is not able to understand it
404 The service is not found or the server does not have any knowledge of peers

The request cannot be satisfied.
406 The conditions do not match the properties of the available service
480 The server can not satisfy the request. The service is temporarily unavailable
486 The server does not accept other request. The application is busy

6.5.3.2 Header fields

The SPDP header consists of a field name, the corresponding value, and attributes.

This section explains these headers, which are used in the message according to the

methods and the discovery path of the taxonomy tree (see section6.3.1).

Sender indicates the initiator of a discovery request. This must contain a SIP URI and

an optional IP address; the protocol supports both IPv4 and IPv6 address. The

Sender header contains the IP address to provide some knowledge of the user’s

location.

Method indicates the type of message. The method also defines which fields are

optional or mandatory in a packet.

ServiceID indicates the service path (i.e., the specific service) that the client would

like to discover. The service is identified by a path in the service taxonomy tree,

see section6.3.1. The ServiceID and the PeerID are mutual exclusive.

PeerID indicates the entity path, according to the taxonomy entity tree (Figure6.2),

that the client wishes to discover. The path is defined with respect to the entity

taxonomy tree, see section6.3.1.

ExpireTime specifies how long the message content is valid. This header field is

optional for ACCEPT messages, but it must be used in DISCOVERY messages.

The protocol does not use any timing scheme for messages as this is already

provided by the underlying SIP protocol. ExpireTime can be useful in ACCEPT

message to indicate how long the peer can offer all the services indicated in the

content.

84

ReplyTo specifies the SIP URI and address of another entity, if this SIP User Agent

can not provide, but knows of another User Agent who can provide the service.

The field contains a priority attribute.

ConditionList is an optional field for DISCOVERY message, it indicates the param-

eters that the service or the entity should match. It enables a selection process

within the server.

6.5.3.3 Body

The body of the SPDP message is only used in ACCEPT messages and it describes the

services or peers found. Below is a description of the body content according to the

discovery path of the taxonomy tree:

• Service discovery. The body lists the services found. They are defined by the

ServiceID, name, source, and optionally expiresTime. The ServiceID describes

the path to the service within the taxonomy tree. The name is the human name

for the service, for example the name of a printer. The source field indicates

the provider of the service and the expiresTime indicates when the service is

available.

• Peer discovery. The peers found in the network are identified by an Identity

field, their SIP URIs, and their IP address. The body also lists for each peer

the networks to which they are connected and the cellId of the network, if it is

available and relevant. The expires field indicates how long the peer is expected

to be registered at this location with this particular SIP URI, consistent with

the registration procedure. Additionally, the services field consists of a list of

services that the peer can provide; the service is identified by the path to it in the

service taxonomy tree.

6.5.4 Session Discovery

The Service Peer Discovery Protocol enables agents to establish dialogs in order to

ask other devices to perform operations. Its messaging consists of sending a message

with the command embedded in the body and of an acknowledgment for each message.

Thus, communication is a simple two way exchange i.e., a transaction. For the purpose

85

of SPDP, the operations are specified in the body of SIP messages, while routing and

acknowledgment are based on SIP. The flow chart in Fig.6.6 shows the operations,

that the User Agent does, for the discovery protocol.

6.5.4.1 State Diagram

The flow chart shown in Fig.6.6 describes how the user uses the service discovery

protocol and defines the exchange of messages between a client and a server. The User

needs to have a SIP UA running to have connectivity at the SIP level, and he/she needs

to register with the location server to be reachable. As described in section6.4, the

SIP UA is extended by the SPDP UA, which handles discovery messages. The next

step consists of registration with the Context Server (sec.6.5.2.3), which is located as

described in the next section. Thus, the user can be directly contacted by other peers

via multicast messages or via the context server.

WAIT FOR EVENT

SUBSCRIBE FOR EVENT RECEIVE SUBSCRIPTION

SEND RESPONSE

PARSE MESSAGE

DISCOVERY REQUEST

RECEIVE

UPDATE INTERNAL VIEW

PARSE RESPONSE

RECEIVE RESPONSE

DISCOVERY REQUEST

SEND

RECEIVE ACK

SEND ACK

UPDATE INTERNAL VIEW

PARSE NOTIFICATION

RECEIVE NOTIFICATION

RECEIVE ACK

Subscription for Receive subscription

Subscription expires

Subscription expires

Renew subscription

serice/peer

peers/services
Discovery

for service

Receive discovery
peers/services

request

Unsubscribe

INITIATE SIP USER AGENT

CONNECTED TO A CONTEXT SERVER

SEND ACK

SEND NOTIFICATION

Figure 6.6: SPDP UA Flow chart

86

6.5.4.2 Locating a Context Server

A user needs to register its services and its location with a context server. More than

one context server can be present in the network, thus, the user should locate the con-

text server responsible for their current domain. Furthermore, there is the need for a

mechanism to locate the context server that is best able to handle user requests in order

to do load balancing of traffic among context servers. The problem can be solved by

using SIP naming and localization for SIP server, as earlier described in section4.6,

which is based on the capabilities of the DNS to resolve the request to the right server.

Scalability and high availability are important, this can be provided using clustering

techniques. The context servers of a certain domain can be set up in a cluster and using

DNS SRV [17] they are ordered based on prioritization and weight to achieve load

balancing. The SRV record for a domain can be configured so that there is a preferred

server specified with a low-numbered priority value and backup elements with higher

priority value and ordered by weight. The appropriate server is selected choosing the

one with the lowest priority, and, if there is more than one with the same value, the

server with greatest weight is contacted.

For instance, a user “sip:roberto@wireless.com” tries to contact the context server

responsible for “wireless.com” domain. The user determines their current domain via

DHCP. Thus, SPDP tries to open a SIP session with the context server, “sip:context-

server.wireless.com”. The session will be routed by SIP servers to the context server

resolved through DNS lookup. The solution requires global connectivity of the context

servers of the area.

6.5.4.3 Discovery

The SPDP protocol provides two discovery mechanisms according to the network the

client is attached to and to the reason for the discovery (i.e. service request or peer

request). The protocol can be used both in small networks and in wide area networks

and depending on the current context the user agent can decide to perform the discov-

ery in a given way. In the introduction, we stated that the device may be connected to

multiple and different kinds of networks, thus, the discovery should consider the lim-

itations and the features of each type of network; for instance GPRS networks do not

support multicast packets since multicast messages would require the GGSN node to

87

handle the group membership and could cause large amounts of traffic since the GGSN

needs to make and sends a point-to-point copy of the multicast message to each mo-

bile terminal. Furthermore, the protocol should be able to scale across a wide area and

to traverse multiple hops, thus, the protocol cannot rely upon multicast and broadcast

messages to reach the required destination.

Local area. Discovery in a local area is done according to which network the client

is attached. We suppose for the local area case that the client is connected to a

WLAN network, which may be faster and cheaper than a GPRS network. The

client may decide to contact another peer via unicast (if this peer is already

known) or to send out a discovery message on a well known multicast address

for the relevant scope. Every server who receives the request parses the request

and sends a response to the originator of the request. Thus, by multicasting

a message the client can query other peers about services without knowing a

priori of their existence or address. The advantage of the multicast request is

that the client only sends one message, but queries several peers at the same

time. However, the client needs to be able to handle all the acknowledgments

and responses for this packet.

Wide area. As noted earlier, discovery cannot be done using multicast in a wide area

network; both because the packet may cross different networks and due to lim-

itations of the underlaying network technology. In such a scenario, the client

needs a way to know the peer’s address. To achieve this goal, the user queries a

Context Server, located as described in section6.5.4.2, to get the URIs of peers

thatcan offer the service the client is looking for. Although this solution seems

to rely upon a central server for discovering services, it does not require the Con-

text Server to subsequently be part of the service (transaction), which is handled

directly by the the peers. This is because the client directly contacts the other

peer(s) through a unicast message to use services.

Service. The client performs first an internal search to see if already can provide the

service or if it already knows another peer(s) who can provide the service re-

quired. However, if the service is not present and there is no known peers who

can provide it, then the agent will perform a peer discovery based on the client’s

current connectivity in order to learn of peers that might provide the required

88

service, or the client will multicast a discovery message on the local network.

If the client has information of providers of the specific service, it can utilize

the service by directly contacting the peer. In the example (shown in fig.6.7)

the client ask for a printing service. Once the service is discovered, the client

downloads a printing service description formatted in XML, which defines the

service’s properties and the actions that clients can perform on it.

<sxdp>
aaaa<sender>
aaaaaaaa<entityID>sip:roberto@wireless.kth.se</entityID>
aaaaaaaa<entityaddress entitytype=”IPv4”>192.168.15.34
aaaa</sender>
aaaa<method>
aaaaaaaa<name>DISCOVERY</name>
aaaa</method>
aaaa<serviceID>
aaaaaaaa<path>Root/Others/Printing</path>
aaaa</serviceID>
aaaa<expireTime>3600</expireTime>
aaaa<replyTo priority=”3”>
aaaaaaaa<entityID>sip:roberto@wireless.kth.se</entityID>
aaaaaaaa<entityaddress entitytype="IPv4">192.168.15.34
aaaa</replyTo>
aaaa<conditionList>
aaaaaaaa<condition>
aaaaaaaaaaaa<name>paper</name>
aaaaaaaaaaaa<value>A4</value>
aaaaaaaa</condition>
aaaaaaaa<condition>
aaaaaaaaaaaa<name>quality</name>
aaaaaaaaaaaa<value>600dpi</value>
aaaaaaaa</condition>
aaaa</conditionList>
</sxdp>

Figure 6.7: Service Discovery Message

Peer. A peer discovery occurs when the client does not know of other peers in the net-

work that have the service(s) required. This peer discovery is done by querying

both the Context Server or other peers based on the parameters that the client

89

specifies in the message, such as network connection, cell Id, or services em-

bedded. The list of peers is inserted in the message body of the SPDP response,

and it is formatted in XML. This method can also be used to query a peer about

its capabilities if its SIP URI is already known.

6.5.4.4 Eventing

Once a client has discovered a service or peer, it may be interested in changes of the

service status or of changes in a peer’s properties. The SPDP protocol proposes an

eventing schema based on the SIP event framework [42].

Subscription. The client subscribes for a specific service or peer URI by sending a

SUBSCRIBE message to the peer that handles the service or to the interested

peer. The service identification or the peer properties, identified by a path ac-

cording to the taxonomy trees (section6.3.1), are specified in the body of the

SUBSCRIBE message. The subscription is time limited and the expires time is

expressed in the Expires field of the SIP message header; the time is negotiated

between the two entities and it can not be longer than indicated in the request

message. Each SUBSCRIBE message is acknowledge by a SIP ACK message.

Notification. When a peer receives a subscription request, it acknowledge the mes-

sage and it sends a NOTIFY message, that contains in its body the current state

of the subscribed services or of its capabilities according to the subscription rea-

son; each message is acknowledged. If the status changes, the notifier issues a

NOTIFY message to the subscriber(s) indicating only the changes.

6.6 SPDP for smart handover

This section provides a description of a proposal to use the SPDP protocol to help mo-

bile users learn of the neighboring network using the information kept by the context

server, in order to negotiate services with neighbouring network entitiesbeforechang-

ing their point of attachment. This could include locating mobility agents as proposed

in Jiang Wu’s licentiate thesis [58]. As described above, the SPDP protocol enables

SIP entities to communicate and to query other entities for their capabilities. Because

the context server provides an overview of the networks in the area it can offer to users

90

specific context information about neighboring services in addition to the services in

thecurrent cell. Furthermore, users might be attached to several networks with dif-

ferent media access technologies and services thus they may contact context servers in

each of these networks.

Following this step, SIP might be used to contact and to establish a session with

the access points in a network, since their presence is part of context information kept

by the context server (which we assume has complete knowledge of the area). Based

on this information that we received from the context server and further information

from the APs, the user agent can take decision about roaming and changing its point of

attachment. Furthermore, the user may decide to use different interfaces, for example

switching to a GPRS connection. Since we suppose that the network area is always

covered by GPRS signaling, a user might redirect their traffic to the GPRS interface,

while waiting for WLAN connectivity.

Thus, we needed a smart approach to notify the correspondent nodes of the new

location of the user, and hence utilize the best interface to which to redirect the session.

Some mechanisms to redirect SIP sessions and to handle SIP mobility of the terminal

and user have already been introduced in section5.2; for instance, the session might

be redirected to a conferencing address that the users involved in the session join, or a

RE INVITE message might be issued. The session is subsequently directed to the new

location.

Utilizing more than one interface might be of interest while the user needs to

change their point of attachment from one interface to another. Registering multiple

addresses with a registrar enables reachability at both locations. Thus, the user might

negotiate for their new IP address before performing a handover. This is especially

useful if it can predict its movement and therefore could contact with the new access

point while on the move.

The SPDP protocol might be used to discover network entities in a local or wide

area, since it is possible to associate the access point with a SIP entity which might

provide connectivity as a service. This scenario would enable the user to contact the

access point and to negotiate its association with the access point before moving, thus

exploiting the possibility of anticipating the handover for ongoing sessions and redi-

recting them to the new location. The SIP handover is performed at the application

layer, but, as explained in section5.2, it might be preferable to have Mobile IP to

handle handover rather than requiring TCP connections to be re-established.

91

6.6.1 Redirection for content delivery

The SPDP protocol enables users to negotiate the delivery of content during the dis-

covery session. The ReplyTo header field indicates the user’s preferences for the des-

tination hosts. This feature when used in conjunction with the file server service might

offer new possibilities to users in order to better used the network, since the user might

discover at need and retrieve the content using the interface that might offer better

performances in terms of QoS.

DISCOVER
Sender: sip:a@GPRS.se
Reply-to: sip:a@WLAN.se

sip:a@WLAN.se
(delivery)

sip:a@GPRS.se

Figure 6.8: Redirection of content delivery to different interface

The user indicates the SIP URI of a file server, that it has already discovered, and

its preference for delivering or receiving content in the discovery request. The service

provider should accept the request by replying to the host identified in the ReplyTo

field. In such a scenario, a user might discover services using one interface, while

redirecting the content (delivery) to another of its interfaces while is configured to use

a network offering higher throughput (Fig.6.8). Furthermore, the user might be on

the move and, using the redirection feature, it might communicate the new delivery

location.

92

Chapter 7

Analysis of the Service Peer Discovery

Protocol

7.1 Introduction

The Service Peer Discovery Protocol (SPDP) introduced in the previous chapter ad-

dresses an area with interesting opportunities for mobile users while they are on the

move. The SPDP protocol enables users to discover services or available resources

in their current area. The behaviour of the protocol depends of the available network

interfaces having the ability to use different kinds of discovery mechanisms in order

to be effective in a local or wide area. The following sections analyze the use of the

SPDP protocol in wireless networks, both cellular wide area networks and WLANs,

and examines how the functionalities of the protocol interact with the existing services

that the network already provides.

7.2 Cellular networks and services

Cellular networks are an interesting market area for developing applications and ser-

vices for mobile users because of their extremely large user population. In such net-

works, new applications need to be aware of the existing traffic in order to avoid neg-

atively impacting it. Traditional cellular networks were designed to be used for voice

traffic and the resources were allocated to a user for the entire duration of a call (circuit

switched). New applications and services have been proposed to users beyond tradi-

tional voice traffic; for instance, the Wireless Application Protocol (WAP) [7] provides

93

94

an integration of Internet services into the cellular network. However, these Internet

services (i.e., web browsing and so on) are under control of the operator, since users

can only access Internet services through WAP gateways. Additionally, WAP does

not suit well delivery of large quantities of content and was developed primarily to

integrate simple data services with the GSM network.

The development of the GPRS network offers attractive new solutions to users,

since the data traffic is packet switched and the user can interact directly with Internet

services. This enables new applications to be built in order to meet user and application

requirements; resources are used in better way and bandwidth can be allocated as

needed, while ensuring that data traffic does not interfere with the circuit-switched

voice traffic.

[38, 37] propose to use VoIP in order to deliver voice traffic and to provide inter-

active multimedia applications over wireless access networks. These papers consider

the fact that these services require a lot of bandwidth and special policies to assure a

certain level of QoS. Furthermore, the communication should be handled end-to-end

in order to provide these services on top of IP over the wireless link access. [37] pro-

poses replacing the current Base Station Controller with a router with a radio interface

in order to reduce the latency that is due to the transcoding in the base station controller

since the air link propagation and the transmission over the IP network was negligible

when the voice and data traffic (web content) is transferred between a phone attached

to a cellular network and a user using a VoIP/SIP client.

[38] proposes a model for Internet content and for related applications in order to

maximize the number of users considering that multimedia applications have special

requirements in terms of latency, robustness, and speech quality. An agent model with

some intelligence in the user’s device, the network, and the base station has been pro-

posed in order to enable very efficient use of the resources by utilizing smart delivery

of content. Agents might behave intelligently on a local level or in concert negotiating

their communication and their resource requirements, thus adapting the communica-

tions or simply adapting the codec to available network resources, remaining battery

capacity, and/or memory storage both in a local context and/or in a non-local context.

Furthermore, the use of VoIP increases the voice traffic per cell (sector); using VoIP

traffic over wireless link the voice can be delivered via at almost 1.2 kbps [37], giv-

ing the possibility to establish upto 26 simultaneous (sessions) calls during the peak

hour in a macro cell. This increases the efficiency of the network and as well it in-

95

creases the interest in enabling services on cellular networks (i.e., GPRS). Since the

bandwidth required for VoIP traffic is so low, a user is able to download content while

communicating with others at the same time.

7.3 WLANs and services

WLAN networks offer services at high throughput and the available technology as-

sures high bandwidth capable of providing multimedia applications over wireless ac-

cess networks. In a typical scenario, we can consider WLANs being used in hot spots

where users might access services without having any significant limitations on band-

width; thus mobile users roaming between cellular networks and wireless network can

determine the appropriate network link to use for the required traffic, for instance using

an agent to make optimal decisions based on context information.

If we consider wireless reconfigurable networks where the mobile users are on the

move and should deal with dynamic changes of network resources, an overlay network

built using SIP can provide end-points with connectivity (unless the device is out of

range or inactive). A negotiation model with SIP entities can be used to adapt to

the new environment. For example, a mobile device faced with unpredicted network

outage should be able to switch to a different network redirecting the ongoing sessions

transparent to other applications that use SIP for signaling. SIP can also handle some

variations in link properties by changing communication parameters according to the

current link conditions.

7.4 Integration of SPDP with current services

In cellular networks, where the voice traffic takes a large part of the available band-

width, the SPDP protocol should avoid blocking voice traffic. Thus, the message

exchange should not consume so much resources as to cause a degradation of this

primary service. However, some studies done in the cellular networks (described in

section7.2) have shown that it is possible to move voice traffic from the traditional

circuit switched network to a packet switched solution or IP-network. This solution

offers the possibility of smarter use of the resources by using VoIP for carrying voice

and SIP for signaling. In this approach resources are not allocated and reserved for

phone calls, since the communication is completed carried in voice packets and data

96

may be delivered as background traffic (the key is the low bandwidth required by the

voice traffic versus the link throughput). Furthermore, users will be charged only for

the packets and not for the time resources are allocated (as they would be in a circuit

switched system).

This solution could be combined with the service discovery protocol, since then

discovery messages would not influence the voice traffic. There is a potential problem

that when a SIP infrastructure is shared between call signaling and service discovery,

that the discovery traffic will interfere with call signaling traffic. A solution that dif-

ferentiates the traffic (i.e., DiffServ) could offer a better performance without causing

involuntary blocking of the voice traffic. SPDP requests differ from other sorts of SIP

requests in that they carry media, in the form of XML instructions, as payload. Con-

ventional SIP payloads carry signaling information about media, but not media itself.

If we consider the SPDP protocol for discovery in local area networks (i.e., WLANs),

the messaging between users does not require very much bandwidth as compare to

the current WLAN link throughputs. A typical discovery message is around 1150

bytes, while the length of a notification depends on the number of services the request

matches. Thus, if the device and the protocol were managed by an intelligent agent,

the number of services in the response might be limited based on the local and external

context information.

In a cellular network, the SPDP protocol requires that the communication should

be handled between end-points or with the context server, since strategies similar to

multicast will produce a considerable number of responses messages which is not de-

sirable in a GPRS network. Thus, we only consider unicast traffic for discovering

services or a peer’s location. Considering a typical GPRS network, the maximum

bandwidth is around 40Kbit/s per user, thus, a GGSN node, which support through-

puts between 150-250 Mbit/s, enables a peak usage of about 5000 users who might

be served by a single SIP proxy server if all the traffic is handled by SIP and even if

all traffic is directed outside the GPRS network. Additionally, users subscribe with a

GPRS operator, since there are in general few operators in each country, thus most of

the traffic is routed within a single operator’s GPRS network, unless the user is roam-

ing. Furthermore, since this operator owns the GPRS network, this network can be

designed with a hierarchical structure of SIP proxies to provide better performance for

the subscribers without creating bottlenecks in any individual SIP server.

To enhance the functionalities provided by the SPDP protocol, we propose to inte-

97

grate the network and the devices via an intelligent agent, capable of making decisions

based on context information. This model, already proposed in [38] to maximize the

number of user and to use the resources in an efficient way, can enable SPDP clients to

discover services while taking into consideration the local condition of the client and

the service provider by adapting the agent’s decision-making.

The SPDP protocol uses the Context Server [29] for locating peers, however, the

Context Server can also provide information to user for adapting mobile application.

This approach might be very effective in a wide area wireless network (for instance,

GPRS), since information about wireless channel conditions and resource management

might increase the performance for mobile applications [34]. Variation in the available

bandwidth, both peak, minimum, and maximum, latency and location of the context

information can be used to select the approach used by the SPDP protocol while dis-

covering services; for instance, if the device has multiple-interfaces, “knowledge” of

the environmental conditions can influence the choice of the wireless link used for ser-

vice discovery and content delivery. Most of these issues are also applicable to WLAN

or ad hoc networks, thus providing a discovery algorithm that adapts automatically

to network conditions. In case of an ad hoc network, a routing algorithm is needed

to route the packets between users, which routing algorithm to use could be selected

adaptively.

Furthermore, the Context Server (described in section6.5.2.3) collects information

about networks, such as neighbouring networks, along with other context information,

sensor data, etc.. This information is stored in a database, hence an estimation of the

channel conditions can be computed and can be shared with users that subscribe to

this context information (using a protocol, such as the Context Data eXchange Pro-

tocol proposed in [29, 57]). Using this context information the SPDP protocol might

decide to offer enhanced services; hence the handover time might be reduced (i.e., us-

ing similar strategies described in section6.6) or the communication can be adapted

by moving the content delivery to a file server service (as described in section6.5.2.2).

7.4.1 Robustness of the SPDP protocol

The great benefit of the SPDP protocol is that it does not have a single point of fail-

ure. As we discussed earlier, SPDP uses different strategies to discover services and

98

adapts the algorithm to the wireless interface in use and to the current discovery area.

It is important that the packets arrive at their destination; SPDP messages are reliable,

since reliability is provided at the SIP level, even if UDP is used as transport proto-

col. Additionally, the SPDP protocol can function effectively in an ad hoc network.

When devices are close enough to communicate directly, a single SPDP user agent

would be able to accept messages for discovering peers in the network and the SPDP

protocol might be extended to provide relaying of SPDP messages by adding routing

capabilities.

Although the Context Server has complete information about the network, a given

device could offer additional local detailed context information that is of interest to

users in the same area by sharing services such as sensor information, a device’s em-

bedded capabilities or hardware, etc.. For instance, a user might detect the presence of

a camera or speakers (for listening to music or news) when entering a new area, thus

they might redirect media to such devices or use these device(s) to build other services.

7.4.2 Delay

This section considers the delay in cellular networks, since this delay may be sig-

nificant. Delay in cellular systems comes from several sources. Competition at the

base station, between packet switched data and circuit switched voice traffic when

the wireless channel has limited resources causes delay in packet data transmission.

Furthermore, the traffic coming from the public Internet is routed by the GGSN to the

relevant SGSN node that is managing the mobile device in a specific area, SGSN nodes

may be loaded by different amounts of traffic. Thus, the Round Trip Time (RTT) may

vary. Delay also occurs due to the error correction done to increase the radio channel

performance, this introduces varying delay for the wireless channel (as the number of

retransmission will not be constant).

An IP packet is generally fragmented into PDUs for transmission, if a PDU is lost,

this requires retransmission of the packet. One must find a good compromise between

larger packets which suffer from the need to retransmit all the fragment even when all

but one are successfully received and small packets, which introduce extra overhead for

their headers. Considering SIP packets, taking into account retransmissions, and the

number of messages that are required in some flows, call setup and feature invocation

99

can be adversely affected. To reduce this problem compression of SIP request and

responses can be used [11].

7.4.3 Latency

Latency is important when we consider real time application. For a message exchange

protocol, such as SPDP, latency is not critical as long as the content is going to be

received within a bounded time. The SIP protocol defines the use of timers to estimate

when the packet should be retransmitted and the transaction timeouts, if it does not re-

ceive response. While using unreliable transport protocols a request is retransmitted at

an interval that starts at almost an estimation of the Round Trip Time (SIP defines a de-

fault value of 500ms for the RTT) and doubles after every retransmission; a transaction

timeouts after 7 retransmission of the packet. However, the timer of the retransmission

can be chosen larger if it is known in advance that the RTT is larger (such as on high

latency access networks, as cellular networks). Latency may be due to network delays

in transmission of the packet and to the application processing time. Thus, a com-

pression mechanism for SIP messages should be used despite a compressed message

requiring more processing power it requires less transmission time across the wireless

link.

7.5 Different technologies for realizing the SPDP

7.5.1 Using Instant Messaging

An alternative for sending the discovery messages could have been to use the MES-

SAGE method defined in [22] for carrying discovery request and responses. This so-

lution preserves the end-points role to establish a dialog, thus messages might be sent

over different paths from the source to the destination. The MESSAGE extension

(described in section4.7.3) defines rules for processing instant messages; a message

might be received by the server, but not processed by the application resulting in lower

reliability for the service discovery protocol. Regarding this, the event framework[42]

(i.e., the subscription and notification) ensures that the server must respond to the

client request in any case, since a subscription triggers at least a notification when it is

accepted.

100

An Instant Messaging model for discovery services has been proposed and de-

signed in [46] for a home network. The authors of the paper prosed a modification to

the MESSAGE method, defining a new method called DO, capable of handling dis-

covery messages. When used in small networks the message can send commands to

application and devices already discovered in order to trigger actions. This proposal

can be used when the user wants to control a device once it is discovered, however,

this does not assure complete control of the device and a transaction model can not be

established, since instant messaging does not set up a dialog and most of the messages

can be exchanged outside an existing dialog. Thus, redirection of the communication

or simply the modification of the parameters previously negotiated cannot be done,

hence limiting user control.

Using instant messaging for a discovery request in the SPDP protocol could have

reduced the burden at the client to respond to a multicast discovery request. However,

this model needs modifications to the MESSAGE method to provide a transaction

model to negotiate parameters and it needs to work to combine it with the Presence in

order to provide enhanced services, for instance the service provider can notify others

when the state of a service changes.

7.5.2 Interoperability with other discovery protocols

The SPDP enables communication with devices in both the local and wide area. How-

ever, it is important that the SPDP protocol can integrate with existing discovery pro-

tocols. For instance, UPnP is widely used in local areas, thus it would be important to

have a gateway between the different protocols already in use in order to facilitate the

use of the SPDP protocol. Considering a home network, where all devices are UPnP

enabled and where a user wishes to control these devices while traveling. A gateway

for the entire area might provide the necessary translation between SPDP and UPnP, or

since the SPDP protocol is XML based protocol the SIP UA associated with the home

device can translate the commands to the specific protocol in use locally.

7.5.3 Using IPv6 instead of IPv4

IPv6 is not yet widely used and it is not clear when the transition between IPv4 and

IPv6 will occur. However, thetransition is occuring, therefore it is important to con-

sider the effect of IPv6 on the SPDP protocol and the drawbacks and/or advantages

101

of using IPv6 services. The SPDP protocol is not affected by changing the address

scheme, since the header field also supports IPv6 address. However, the issue of the

modification of the service, based on a new addressing schema, and how the GPRS

network will be integrated with SIP services is already being addressed by the third

generation of cellular network. 3GPP defined the use of multiple SIP servers to offer

services to the network; voice traffic is completed handled using SIP invitation and

session mode.

The improvements by using IPv6 are mainly due to the use of the anycast message,

that might simplify the discovery phase. Anycast message introduces an important

feature to the discovery protocol since the client issuing an anycast message can query

several users and obtain the response from the closest user that can handle the request.

This solution reduces the number of message required to discover services in the net-

work; however, the closest user is not necessarily close geographically but rather is

close in the sense of network reachability. Thus, strategies used by the SPDP protocol

for wide area discovery are still of interest when the client needs to discover a resource

in a particular location. Furthermore, the “knowledge” collected by the context server

and the decision made in the user agent remain important since context information

needs to be considered to address user and network requirements in term of QoS, re-

maining battery power of the device, and cost of the service.

The wide availability of IPv6 addresses will cause the network architecture to be

simpler than proposed in chapter5. There will be no need to use a Network Address

Translator (NAT) to save IP addresses enabling the SIP user to be reachable directly.

However, some operators of cellular networks still need to implement some protection

from unwanted connections for their subscribers. A firewall could be used at this

purpose. Thus, an operator could determine the policies to control both connections

and traffic flows. Furthermore, recent firewall implementations use packet filtering and

stateful inspection and are capable of handling SIP protocol messages.

102

Chapter 8

Conclusions and future work

This chapter gives conclusions that I have drawn at the end of this thesis. Furthermore

it provides some guidelines for what can be done to further complete and enhance what

has been described throughout this report.

8.1 Conclusions

In this thesis we have analyzed the state of the current service discovery technologies

and how the Session Initiation Protocol (SIP) works with different wireless networks,

and we have designed the Service Peer Discovery Protocol (SPDP) which follows the

SIP event framework specification.

The first three chapters of this report provided a technical overview of the different

technologies used and considered during the design of the service discovery protocol;

the primary emphasis has been on SIP. These chapters also described the existing ser-

vice architectures, specifically Jini and UPnP, in order to provide sufficient background

concerning these protocols so that the reader can understand how we have addressed

the limitations of these protocols.

The fourth chapter presented an overview of the issues of having a SIP overlay net-

work upon a wireless infrastructure, and this chapter described a network scenario that

enables mobile end-points to communication despite the existence of NAT or firewall

which limit the inter-network communication.

From the fifth chapter forward, the thesis presented the proposed Service Peer Dis-

covery Protocol (SPDP) used to determine the location of services in reconfigurable

103

104

networks, both local and wide area networks. The protocol removes the limitations of

UPnP regarding scalability and further enables the discovery of services by consider-

ing context information and not requiring a priori “knowledge” of other entities. The

SPDP protocol can take advantage of the presence of a Context Server which may sup-

port users in the discovery of peers in wide area networks. An analysis of the SPDP

protocol was presented in chapter7; during this analysis, the main emphasis has been

on cellular networks since these networks generally have more limited bandwidth than

WLAN and the SPDP protocol should avoid blocking voice traffic.

In my thesis work I have designed a protocol which enables entities to communi-

cate and to discover services and resources. This SPDP protocol provides a mean to

assist users in service discovery, this can be particularly effective when used for dis-

covery “connectivity services”. Knowledge of potentially better connectivity can facil-

itate mobile users pro-actively changing their point of attachment and pre-negotiating

of parameters (including Authentication and Authorization) can decrease the delay in

the user receiving service via this new connection.

The SPDP protocol takes advantage of resources located in both local and wide

area networks and scales well across these networks. Furthermore, the proposed pro-

tocol is built upon a SIP overlay network, thus services need not be coupled with a

specific (access) network operator.

8.2 Future Works

The following sections introduce some areas of interest for continuing the work of

this thesis, both for improvements in the proposed Service Peer Discovery Protocol

(SPDP) and introduction of new network services that are possible to discover via the

protocol.

8.2.1 Security

The SPDP protocol has already some security features defined in the SIP standard

[20], which enables end-to-end secure communication between entities. However, a

stronger authentication mechanism can establish trust between parties, for instance

having a Certificate Authority (CA) that issues certificates (following the X.509 direc-

tory framework). This enforces and enhances SIP security and enables the authentica-

105

tion of the hosts involved. A CA may be needed, since each mobile device provides

personal information and the device may wish to allow others to access to this infor-

mation. Thus, it is important to determine what information the user shares with whom

and when they wish to share it.

Additionally, a certificate framework might limit attacks against the system from

inside. It is important to test the security of the SPDP protocol and to implement an

appropriate mechanism for protection against malicious intent that could potentially

corrupt the internal “knowledge” of the user causing the user to use the wrong strategy

while attempting to discover services.

8.2.2 Intelligent Agent

An intelligent agent is needed to analyze the internal “knowledge” and to determine

the right action according to context information. Intelligence in the device and in

the network might save resources and might determine the best use of the available

bandwidth and power battery of the device. Such an intelligent agent could improve

the performance of the SPDP protocol during the discovery phase by making decisions

as described in section7.4.

8.2.3 Improvements to SPDP

Enhancements can be made to the design of the SPDP protocol in order to support re-

laying discovery packets, thus helping other agents to discover services and resources.

Relaying these messages enables the protocol to work in ad hoc networks as well,

since devices would be able to route SPDP packets, thus services could be discov-

ered by devices who are out of range of direct communication (i.e., that are one or

more hops away). Additionally, users of different networks could communicate via

an intermediate device with multiple interfaces, but forming an local ad hoc network

using one interface while connected to a another network using another interface, this

intermediate device can then relay SPDP packets between the two networks.

8.2.4 Testing the SPDP protocol using different scenarios

The implementation of the SPDP protocol has not (yet) been tested, thus no results

are available. Therefore, creating a usage scenario is necessary to evaluate the SPDP

106

protocol and to determine how the protocol behaves under different workloads of the

network and end-points. For instance, a quantitative measurement of the average dis-

covery time, how the protocol accepts delays in packet delivery, and how the SPDP

agent contributes to the latency of the SPDP packets. Furthermore, the test could

show the optimal configuration of the resources and the network components, and the

necessary dimensioning of these entities, the optimal lease time of a service, and the

maximum number of users that can access the same service simultaneously.

Bibliography

[1] Napster protocol specification. http://opennap.sourceforge.net/napster.txt, March

2001.

[2] http://www.3gpp.org/, Accessed April 2003.

[3] Gnutella Protocol Specification v0.4. http://www9.limewire.com/developer/

gnutella_protocol_v0.4.pdf, Accessed February 2003.

[4] http://java.sun.com/, Accessed February 2003.

[5] http://java.sun.com/products/jdk/rmi/, Accessed February 2003.

[6] http://java.sun.com/xml/jaxb, Accessed February 2003.

[7] http://www.wapforum.org/, Accessed May 2003.

[8] P. Sutton, R. Arkins, and B. Segall. Supporting Disconnectedness - Transparent

Information Delivery for Mobile and Invisible Computing. InProceedings of

IEEE International Symposium on Cluster Computing and the Grid CCGrid’01,

pages 277–285, Brisbane, Australia, May 2001. IEEE CS Press, Los Alamitos,

Calif.

[9] J. Atkins. Copyright Infringement on the World Wide Web, With the

Napster debate as a case study. http://www.eecs.umich.edu/˜aprakash/

585/html/copyright.pdf, Accessed February 2003.

[10] M. Moh, G. Berquin, and Y. Chen. Mobile IP Telephony: Mobility Support of

SIP. In 8th International Conference on Computer Communications and Net-

works, pages 554–561, Boston, Massachusetts, 11-13 October 1999.

[11] G. Camarillo. Compressing the Session Initiation Protocol SIP. RFC 3486, IETF,

February 2003.

107

108

[12] C. Campo. Service Discovery in Pervasive Multi-Agent Systems. InWorkshop on

Ubiquitous Agents on embedded, wearable, and mobile devices, Bologna, Italy,

16 July 2002.

[13] Microsoft Corporation. Universal Plug and Play Device Architecture.

http://www.upnp.org, June 2000.

[14] A. Misra, S. Das, and A. McAuley. Hierarchical Mobility Management for VoIP

Traffic. In Proceedings of IEEE MILCOM, FairFax, USA, October 2001.

[15] A. Friday, N. Davies, and E. Catterall. Supporting Service Discovery, Querying

and Interaction in Ubiquitous Computing Environments. InProceedings of the

Second ACM International Workshop on Data Engineering for Wireless and Mo-

bile Access, pages 7–13, Santa Barbara, California, USA, 20 May 2001. ACM.

[16] J. Ervenius and F. Tysk. Dual-mode Capacity in a WLAN-equipped PC for

Roaming and Mobility between WLANs and GPRS Networks. Master’s the-

sis, Royal Institute of Technology KTH, Department of Microelectronics and

Information Technology, February 2001.

[17] A. Gulbrandsen, et al. A DNS RR for specifying the location of services (DNS

SRV). RFC 2782, IETF, February 2000.

[18] D. Box, et al. Simple Object Access Protocol SOAP 1.1. Draft, W3C,

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, May 2000.

[19] H.Schulzrinne, A. Dutta, O. Altintas, et al. Multimedia SIP sessions in a Mobile

Heterogeneous Access Environment. InProceedings of International Conference

on Third Generation Wireless and Beyond - 3Gwireless’2002, San Francisco,

USA, 28-31 May 2002.

[20] J. Rosenberg, et al. SIP: Session Initiation Protocol. RFC 3261, IETF, June 2002.

[21] J. Rosenberg, et al. A Presence Event Package for the Session Initiation Protocol

SIP. Draft draft-ietf-simple-presence-10.txt, IETF, January 2003.

[22] J. Rosenberg, H. Shulzrinne, et al. Session Initiation Protocol SIP Extension for

Instant Messaging. RFC 3428, IETF, December 2002.

109

[23] R. Schollmeier, I. Gruber, and M. Finkenzeller. Routing in Mobile Ad Hoc and

Peer-to-Peer Networks. A Comparison. InNetworking 2002, International Work-

shop on Peer-to-Peer Computing, Pisa, Italy, 19-24 May 2002.

[24] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright. Simple Service Discovery

Protocol/1.0. Draft draft-cai-ssdp-v1-03.txt, IETF, October 1999.

[25] R. Handorean and G. Roman. Service Provision in Ad Hoc Networks. InCoor-

dination Models and Languages, pages 207–219. Springer, 8-11 April 2002.

[26] IEEE 802.11.Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications, 1999 Edition.

[27] Sun Microsystems Inc. Jini Technology Architectural Overview. Technical White

Paper, http://wwws.sun.com./software/jini/whitepapers/architecture.pdf, 1999.

[28] S. Aggarwal, J. Cohen and Y. Goland. General Event Notification Architecture

Base: Client to Arbiter. Draft, http://www.upnp.org/download/draft-cohen-gena-

client-01.txt, September 2000.

[29] A. Jarrar. Context Server Support for Opportunistic and Adaptive Mobile Com-

munication. Master’s thesis, Royal Institute of Technology KTH, Department of

Microelectronics and Information Technology, To appear.

[30] P. Jarske. The GSM System, Principles of Digital Mobile Communication Sys-

tems. Technical report, Techical University Tampere, Finland, 2001.

[31] T. Kanter. Adaptive Personal Mobile Communication, Service Architecture and

Protocols. Doctoral Dissertation, Royal Institute of Technology KTH, Depart-

ment of Microelectronics and Information Technology, November 2001.

[32] T. Kanter. Going Wireless, Enabling an Adaptive and Extensible Environment.

Journal of Mobile Networks and Applications MONET, vol. 8(1):37–50, 2003.

[33] P. J. Kühn. Location and Context Based Services. InIFIP WG6.7 Workshop

and EUNICE Summer School on Adaptable Networks and Teleservices, pages

195–200, Trondheim, Norway, 2-4 September 2002.

[34] Byoung-Jo J Kim. A Network Service Providing Wireless Channel Information

for Adaptive Mobile Applications: Part I: Proposal. InIEEE International Con-

ference on Communications (ICC), Helsinki, Finland, June 2001.

110

[35] G. Mola. Interaction of Vertical Handoffs with 802.11 wireless LANs: Hand-

off Policy. Master’s thesis, Royal Institute of Technology KTH, Department of

Microelectronics and Information Technology, To appear.

[36] ALPINE Network. Decentralized Resource Discovery in Large Peer Based Net-

works. http://cubicmetercrystal.com/alpine/discovery.html, accessed February

2003.

[37] T. Kanter, C. Olrog, and G. Maguire Jr. VoIP over Wireless for Mobile Multime-

dia Applications. InProceedings of the Personal Computing and Communication

PCC, pages 141–144, November 1999.

[38] T. Kanter, P. Lindtorp, C. Olrog, and G. Maguire Jr. Smart Delivery of Multime-

dia Content for Wireless Applications. InProceedings of the 2nd International

Workshop on Mobile and Wireless Communication Networks MWCN2000, pages

70–81, Paris, France, May 2000.

[39] A. Oram. Peer-to-Peer for Academia. www.openp2p.com/pub/

a/p2p/2001/10/29/oram_speech.html, 29 October 2001.

[40] C. Perkins. IP Mobility Support for IPv4. RFC 3344, IETF, August 2002.

[41] Anne H. Ren. A Smart Network and Terminal Framework for Supporting

Context-aware Mobile Internet and Personal Communications. Licentiate The-

sis, Royal Institute of Technology KTH, Department of Microelectronics and

Information Technology, October 2002.

[42] A. B. Roach. Session Initiation Protocol SIP-Specific Event Notification. RFC

3265, IETF, June 2002.

[43] J. Rosenberg and B. Campbell. A SIP Event Package for List Presence. Draft

draft-ietf-simple-presencelist-package-00.txt, IETF, June 2002.

[44] J. Rosenberg and H. Shulzrinne. An Offer/Answer Model with the Session De-

scription Protocol SDP. RFC 3264, IETF, June 2002.

[45] J. Rosenberg and H. Shulzrinne. Session Initiation Protocol SIP: Locating SIP

Servers. RFC 3263, IETF, June 2002.

111

[46] A. Roychowdhury and S. Moyer. Instant Messaging and Presence for Network

Appliances using SIP. InProceedings of Internet Telephony Workshop 2001, 2-3

April 2001.

[47] R. Schollmeier. A Definition of Peer-to-Peer Networking towards a Delimitation

Against Classical Client-Server Concepts. InProceedings of the 7th EUNICE

Open European Summer School (EUNICE’01) and the IFIP Workshop on IP

and ATM Traffic Management (WATM’01), Paris, France, 3-5 September 2001.

[48] H. Schulzrinne and E. Wedlund. Application-Layer Mobility using SIP.Mobile

Computing and Communications Review MC2R, vol. 4(3):47–57, July 2000.

[49] G. Söderström. Virtual Networks in the Cellular Domain. Master’s thesis, Royal

Institute of Technology KTH, Department of Microelectronics and Information

Technology, February 2003.

[50] H. Shulzrinne. Dynamic Host Configuration Protocol (DHCP-forIPv4) Option

for Session Initiation Protocol SIP Servers. RFC 3361, IETF, August 2002.

[51] T. E. Sundsted. The Practice of peer-to-peer computing: Discovery. http://www-

106.ibm.com/developerworks/java/library/j-p2pdisc/, November 2001.

[52] F. Thernelius. SIP, NAT and Firewalls. Master’s thesis, Royal Institute of Tech-

nology KTH, Department of Teleinformatics, May 2000.

[53] R. Troll. Automatically Choosing an IP Address in an Ad-Hoc IPv4 Network.

Draft draft-ietf-dhc-ipv4-autoconfig-05.txt, IETF, March 2000.

[54] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - A Service Discovery and De-

livery Protocol for Ad-hoc Networks. InProceedings of the Third IEEE Confer-

ence on Wireless Communication Networks WCNC, New Orleans, March 2003.

[55] E. Wedlund and H. Schulzrinne. Mobility Support Using SIP. InProceeding of

Second ACM/IEEE International Conference on Wireless and Mobile Multimedia

WoWMoM99, Seattle Washington, USA, August 1999.

[56] J. Rosenberg, J. Weinberger, and H. Schulzrinne. An Extension to the Session

Initiation Protocol SIP for Symmetric Response Routing. Draft draft-ietf-sip-nat-

02.txt, IETF, July 2002.

112

[57] A. Wennlund. Context-aware Wearable Device for Reconfigurable Application

Network. Master’s thesis, Royal Institute of Technology KTH, Department of

Microelectronics and Information Technology, March 2003.

[58] Jiang Wu. A Mobility Support Agent Architecture for Seamless IP Handover.

Licentiate Thesis, Royal Institute of Technology KTH, Department of Teleinfor-

matics, June 2000.

Appendix A

Implementation of the Service Peer

Discovery Protocol

A.1 Introduction

The Service Peer Discovery Protocol (SPDP) (defined in section6.5) has been de-

signed to extend the Session Initiation Protocol (SIP) [20] for supporting service dis-

covery both in the local area and wide area. The implementation of the discovery

protocol is based on an application that handles discovery messages. This application

implements the functionality discussed earlier in this report, such as discovery of a

service and/or of a peer.

Since the SPDP protocol is based on the event framework, defined in [42], the

SPDP application is implemented according to this specification; hence SPDP mes-

sages are inserted in the body of a SUBSCRIBE or NOTIFY message defined for

SPDP events. As introduced in chapter6, SIP already provides functions to establish

communication between entities and to handle the current sessions, thus, my imple-

mentation of the service discovery protocol does not need handle other SIP messages

or the establishment of SIP session since these functions were already available in the

SIP User Agent implementation used to build our application.

A.2 Available software

The implementation and the choice of the programming language was dictated by

the available software, provided by Ericsson. Since a SIP User Agent was already

113

114

available at the start of the project, it has been extended to provide the functionality of

the proposed SPDP protocol.

The SIP UA was written in Java and implements the presence package and the

instant messaging as defined in the SIP specification [20]. The available UA also

provided the possibility to establish sessions (calls) with other entities (identified by

SIP URIs) using the Session Description Protocol (SDP). Additionally, the UA imple-

mented the presence package for presentity subscription; this implementation follows

the event framework specification, thus the package has been developed based on a

subscription and notification model. Finally, the available software enables a SIP user

to send and to receive instant messages, using the MESSAGE method and the body of

SIP messages of type “text/plain”.

When started the SIP UA initiates a graphical tool, providing a simple interface

to the SIP UA and enables interaction by the user. Furthermore, the tool offers the

possibility to debug the SIP messages, both those received and sent. Following the SIP

specification, the SIP UA listens for SIP messages on port 5060; however, it is possible

to change the setup of the SIP UA modifying the listening port. The use of a port other

than 5060 enables multiple SIP UAs to run on the same host. When a message is

received, it is parsed to check if the message is well structured and the header fields

are inspected in order to determine the type of message, the sender of the message,

and if it already belongs to an existing session. Each message received triggers an

acknowledgment, and the code of the response message specifies if the message has

been accepted and if the server could process it.

A benefit of using Ericsson’s SIP UA as the basis for my SPDP implementation

was the availability of a subscription and notification framework that could be modified

according to the specification of the SPDP protocol. Furthermore, the SIP UA provides

client/server functionality and a means for handling call transactions that has been used

to keep track of the current subscriptions.

A.3 Description of the implementation

The SPDP protocol has been implemented as an application written in Java [4]. This

application is started by the SIP UA and is called upon by the SIP UA when the SIP

UA receives SIP messages with “application/sxdp” as value of the “Content Type”

115

header. The SPDP application is also invoked when the user wishes to discover a

service, passing to the application the file describing the service.

The body of the SPDP message (formatted in XML) is sent to the application,

the application parses the content using JAXB [6], a tool for mapping between XML

documents and Java objects. Then, Java objects are produced from the header field

and the body of the SPDP protocol.

The SPDP application uses the SIP UA model to keep track of the session es-

tablished with other entities, in order to send responses and acknowledgments of the

received messages. The SIP UA sends an acknowledgment for each incoming message

(if the SIP header fields are well structured) but does not check the body. The SPDP

message is checked while processing the message in the application that implements

the SPDP protocol.

The functions implemented by the application depend on if a service discovery

message is received or issued. In the former case, the application determines the avail-

ability of the service by matching the requested service with the services that this SIP

user can provide. Then, a SPDP response message is formed and is encapsulated in a

SIP NOTIFY message. When a user wishes to discover a service, a SPDP DISCOV-

ERY request is created and is encapsulated in a SIP SUBSCRIBE request. Thus, a

session (call) is created in order to keep track of the subscription.

The information about services and the known peers are stored locally in XML

documents, that can only be accessed by the SPDP application. A singleton pattern is

implemented in order to control access to the documents enabling only one thread to

access the files.

A.3.1 Testing the implementation

No prototype has been built to test the SPDP protocol. This is due to difficulties to set

up a test environment and to define a scenario to verify the behaviour of the protocol.

The functionalities of the protocol and of the discovery time depend on the services

available in the network and on the users that currently support the protocol extension

to SIP.

The prototype for testing the application requires WLAN networks and at least one

cellular network (i.e., GPRS). These networks should cover a wide area in order to

116

check the behaviour of the protocol when working in networks with different through-

put and load, and to valuate the strategies that are available to the user. Additionally,

the network scenario shown in figure5.3 requires modification of the operator’s net-

work since a SIP outbound proxy should be present inside the GPRS network or in

proximity of a NAT, thus this entails a control of the test network. A prototype was not

built due to the limited possibility to create a real scenario and the limited amount of

time for setting up such a scenario.

However, the application was implemented to check if the client and the server

were able to process the messages and if the operation within the client or the server

are done correctly. This test consists of an exchange of discovery requests for services

that are stored locally in the server. SPDP messages, both requests and responses, were

handled correctly by the server and the client.

	Acknowledgments
	List of figures
	Acronyms
	Introduction
	Overview
	Introduction to the problem area
	Problem specification
	Towards a Service Discovery Protocol
	Location and context based services
	Naming and localization of users
	Mobility and routing

	Goal of the thesis
	Methods

	Peer-to-Peer Technology for Service Discovery
	Peer-to -Peer
	Static configuration
	Centralized model
	Decentralized model

	Universal Plug and Play
	UPnP network components
	Devices
	Services
	Control Points

	Protocols used
	UPnP protocol overview
	Addressing
	Discovery
	Description
	Control
	Eventing
	Presentation

	Jini
	Jini requirements and components
	Services
	Infrastructure
	Remote Method Invocation (RMI) and security
	Lookup Service
	Discovery and Join Protocols

	Programming model
	Leasing
	Events and notification interfaces
	Transaction

	Mobile networks
	Introduction
	Wireless LAN
	Registration in WLAN
	Ad hoc network mode

	GPRS network
	Registration in GPRS

	Mobile IP
	Vertical handover
	Handover GPRS to WLAN

	Session Initiation Protocol (SIP)
	Introduction
	Entities
	SIP Messages
	Methods
	Response messages
	Header field

	SIP Registration
	Registration
	Update registration
	Delete locations
	Refreshing locations
	Discovery of a registrar

	Dialog and Session
	Dialog
	Session
	SIP message transaction

	Locating SIP Servers
	Extension
	Specific Event notification
	SUBSCRIBE
	NOTIFY
	Event

	Extension for Presence
	Presencelist Extension

	Extension for Instant Messaging

	SIP in Mobile Networks
	Introduction
	SIP's mobility support
	Terminal mobility
	Personal mobility
	Session mobility
	Hierarchical registration

	Architectural alternatives using SIP for mobility
	SIP and NAT
	Proposed design for SIP enabled networks
	SIP URIs association in foreign and home domain
	Hierarchical registration in SIP
	A hierarchical presence structure

	The Service Peer Discovery Protocol
	Introduction
	Issues and requirements
	SIP and service discovery
	Ad Hoc network and service discovery

	Representing services
	Taxonomy trees

	Overview of the architecture framework
	Service Peer Discovery Protocol
	SIP extension for service discovery
	SUBSCRIBE
	NOTIFY

	Entities
	User Agent
	File server service
	Context Server

	Messages
	Methods
	Header fields
	Body

	Session Discovery
	State Diagram
	Locating a Context Server
	Discovery
	Eventing

	SPDP for smart handover
	Redirection for content delivery

	Analysis of the Service Peer Discovery Protocol
	Introduction
	Cellular networks and services
	WLANs and services
	Integration of SPDP with current services
	Robustness of the SPDP protocol
	Delay
	Latency

	Different technologies for realizing the SPDP
	Using Instant Messaging
	Interoperability with other discovery protocols
	Using IPv6 instead of IPv4

	Conclusions and future work
	Conclusions
	Future Works
	Security
	Intelligent Agent
	Improvements to SPDP
	Testing the SPDP protocol using different scenarios

	Bibliography
	Implementation of the Service Peer Discovery Protocol
	Introduction
	Available software
	Description of the implementation
	Testing the implementation

