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Problem overview

• We assign colours to nodes of a graph
• Nodes of the same colour interfere with each other
◦ Interference is function of distance
◦ In general case f (a, b)→ R+

• A certain amount of interference can be tolerated at each node
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Motivation
• Problem introduced by Alcatel Space (now Thales Alenia Space)
◦ Design of satellite antennas for multi-spot MFTDMA satellites
◦ High bandwidth requirements for next-generation wireless
◦ Spatial frequency reuse needed

• Initial work by joint team of Mascotte, FT and University of
Tsukuba
◦ Mathematical abstraction over physical and geographical aspects
◦ Formulation on a grid, introduction of γ – mitigation factor
◦ Relation to graph coloring
◦ Linear programming solution

• Recent work by Mascotte, Université de Genève and Universidade
Federal do Ceará
◦ Focused on list coloring version of the problem
◦ Proposed approximate results on grid subgraphs

• More abstract version this work focuses on can be applied to any
cellular radio network design
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Weighted Improper Colouring

Given an edge-weighted graph G = (V ,E ,w), w : E → R+, and a
threshold t ∈ R+, we say that c is a weighted t-improper k-colouring
of G if c is a k-colouring of the vertices of G in such a way that, for
each vertex u ∈ V , the following constraint is satisfied:∑

{v∈N(u)|c(v)=c(u)}

w(u, v) ≤ t.

Given a threshold t ∈ R+, the minimum integer k such that the graph
G admits a weighted t-improper k-colouring is the weighted
t-improper chromatic number of G , denoted by χw

t (G ).
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Threshold Improper colouring

A dual of Weighted Improper Colouring which is, for a given
edge-weighted graph G = (V ,E ,w) and a positive integer k , to
determine the minimum real t such that G admits a weighted
t-improper k-colouring that is called minimum k-threshold of G ,
denoted by ωw

k (G ).
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Simple distance function

We consider a simple interference function:

f (d) =


1, if d = 1
1
2 , if d = 2
0, otherwise

In other words: given a graph G = (V ,E ) and its
square G 2 = (V ,E 2), we study from now on the
function w : E → {1, 0.5} such that w(e) = 0.5
if, and only if, e ∈ E 2\E .

a
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Grids 1

Infinite square grid
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Grids 2

Infinite “hex” (3-regular)
grid

Infinite “triangle”
(6-regular) grid
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Delaunay graph

Effect of Delaunay tesselation for a set of random points.
Dual of Voronoi diagram.
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Upper bound for Weighted Improper Colouring

Theorem
Given an edge-weighted graph G = (V ,E ,w), w : E → R+, and a
threshold t ∈ R+, then the following inequality holds, for any real
ε > 0:

χw
t (G ) ≤

⌈
∆w (G ) + ε

t + gcd(w)

⌉
.

Where:
• ∆w (G ) = maxu∈V dw (u)

• dw (u) =
∑

v∈N(u) w(u, v)
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Upper bound for Threshold Improper Colouring

Theorem
Let G = (V ,E ,w), w : E → R+, be an edge-weighted graph and k
be a positive integer. Then:

ωw
k (G ) ≤ max

v∈V
w(E k−1

min (v))

Where:
• w(E k−1

min (v)) =
∑

e∈Ek−1
min (v)

w(e)

• E k−1
min (v) be the set of d(v)− (k − 1) least weighted edges incident

to v
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Paths and trees

Theorem
Let P = (V ,E ) be an infinite path. Then,

χw
t (P2) =


1, if 3 ≤ t;

2, if 1 ≤ t < 3;

3, if 0 ≤ t < 1.

Theorem
Let T = (V ,E ) be a tree. Then,
d∆(T )−btc

2t+1 e+ 1 ≤ χw
t (T 2) ≤ d∆(T )−1

2t+1 e+ 2.
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Hexagonal grid

If G is an infinite hexagonal grid,
then

χw
t (G 2) =


4, if 0 ≤ t < 1;

3, if 1 ≤ t < 2;

2, if 2 ≤ t < 6;

1, if 6 ≤ t.
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Square grid

If G is an infinite square grid, then

χw
t (G 2) =



5, if 0 ≤ t < 0.5;

4, if 0.5 ≤ t < 1;

3, if 1 ≤ t < 3;

2, if 3 ≤ t < 8;

1, if 8 ≤ t.
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6-regular grid

Theorem
If G is an infinite triangular grid, then

χw
t (G 2) =



≤ 7, if t = 0;

≤ 6, if t = 0.5;

≤ 5, if t = 1;

≤ 4, if 1.5 ≤ t < 3;

≤ 3, if 3 ≤ t < 5;

≤ 2, if 5 ≤ t < 12;

1, if 12 ≤ t.
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Levelling heuristic

• Greedy heuristic for Threshold Improper Colouring
• Performs local decisions to minimize immediate interference
• Enhancement: we set up an interference target tt , bail if it’s not
possible to colour a vertex without raising interference over the
target in any other vertex

• Outer loop:
◦ Initially we set tt =∞
◦ Repeat until time runs out or happy with the interference
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Levelling heuristic — inner pseudocode
Iv ,c ←− 0 for v ∈ V , c ∈ {0, 1, . . . , k} ; I ′v ←− 0 for v ∈ V1

T ←− V ; possible ←− true2

while T 6= ∅ ∧ possible do3

T ′ ←− {x ∈ T : I ′x = max I ′} ; v ←− random from T ′4

C ←− (1, 2, . . . , k) sorted to give Iv ,i ≤ Iv ,i+15

foreach c ∈ C do6

if v can be coloured c then7

foreach w ∈ N(v) do8

Iw ,c ←− Iw ,c + f (v ,w)9

I ′w ←− Iw + f (v ,w)10

colour v with colour c ; break11

if n was coloured then T ←− T \ v else possible ←− false12

if possible then tt ←− max I − ε13
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Branch and bound

• Inspired by levelling heuristic
• Colours vertices in same order
• Considers colours in same order
• Optimal solution in finite time
• Pretty naive implementation find near-optimal solutions fast
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Linear program for Weighted Improper Colouring

Weighted Improper Colouring solved by integer program:

min
∑

p c
p

subject to:∑
j 6=i w(i , j)xjp ≤ t + M(1− xip) (∀i ∈ V ,∀p ∈ {1, . . . , l})

cp ≥ xip (∀i ∈ V ,∀p ∈ {1, . . . , l})∑
p xip = 1 (∀i ∈ V )

xip ∈ {0, 1} (∀i ∈ V ,∀p ∈ {1, . . . , l})
cp ∈ {0, 1} (∀p ∈ {1, . . . , l})

where M is a large integer
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Performance comparison 1
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Delaunay graph, n=2000 vertices, k=5 colors

Branch & Bound
Heuristic
CPLEX

Both specific algorithms deliver results in few seconds
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Performance comparison 2
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Delaunay graph, n=2000 vertices, k=2 colors

Branch & Bound
Heuristic
CPLEX

In hard cases, a good branch-and-cut implementation achieves better
results
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Performance comparison 3
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Delaunay graph, k=2 colors, l=60 sec
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Both specific algorithms scale better with growing graphs
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Performance comparison 4
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Making the problem easier increases number of constraints for integer
program
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Performance comparison 5
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In case of denser graphs, integer programming becomes pretty useless
26 / 26


	Introduction
	Problem overview
	Motivation

	Formulation
	Problems
	eserved @d = *3emGraphs

	Theoretical results
	General Bounds
	Optimal solutions

	Algorithms
	Levelling heuristic
	Branch and bound
	Linear programming models
	Performance comparison


