Weighted Improper Colouring

Remigiusz Jan Andrzej Modrzejewski

MASCOTTE Project I3S(CNRS/UNS)-INRIA

April 13, 2011

1 / 26

This presentation covers work by the authors¹:

- Julio Araujo
- Jean-Claude Bermond
- Frédéric Giroire
- Frédéric Havet
- Dorian Mazauric
- Remigiusz Modrzejewski

Published as INRIA Research report N° 7590 Submitted to International Workshop on Combinatorial Algorithms

¹Alphabetic order

Outline

Introduction

Problem overview Motivation

Formulation Problems Graphs

Theoretical results General Bounds Optimal solutions Algorithms Levelling heuristic Branch and bound Linear programming models Performance comparison

Problem overview

- We assign colours to nodes of a graph
- Nodes of the same colour interfere with each other
 - $\circ~$ Interference is function of distance
 - \circ In general case $f(a,b)
 ightarrow \mathbb{R}_+$
- A certain amount of interference can be tolerated at each node

- Problem introduced by Alcatel Space (now Thales Alenia Space)
 - $\circ~$ Design of satellite antennas for multi-spot MFTDMA satellites
 - $\circ~$ High bandwidth requirements for next-generation wireless
 - $\circ~$ Spatial frequency reuse needed
- Initial work by joint team of Mascotte, FT and University of Tsukuba
 - Mathematical abstraction over physical and geographical aspects
 - $\circ~$ Formulation on a grid, introduction of γ mitigation factor
 - Relation to graph coloring
 - Linear programming solution
- Recent work by Mascotte, Université de Genève and Universidade Federal do Ceará
 - Focused on list coloring version of the problem
 - Proposed approximate results on grid subgraphs
- More abstract version this work focuses on can be applied to any cellular radio network design

- Problem introduced by Alcatel Space (now Thales Alenia Space)
 - $\circ~$ Design of satellite antennas for multi-spot MFTDMA satellites
 - $\circ~$ High bandwidth requirements for next-generation wireless
 - Spatial frequency reuse needed
- Initial work by joint team of Mascotte, FT and University of Tsukuba
 - $\circ~$ Mathematical abstraction over physical and geographical aspects
 - $\circ~$ Formulation on a grid, introduction of γ mitigation factor
 - $\circ~$ Relation to graph coloring
 - $\circ~$ Linear programming solution
- Recent work by Mascotte, Université de Genève and Universidade Federal do Ceará
 - Focused on list coloring version of the problem
 - Proposed approximate results on grid subgraphs
- More abstract version this work focuses on can be applied to any cellular radio network design

- Problem introduced by Alcatel Space (now Thales Alenia Space)
 - $\circ~$ Design of satellite antennas for multi-spot MFTDMA satellites
 - $\circ~$ High bandwidth requirements for next-generation wireless
 - $\circ~$ Spatial frequency reuse needed
- Initial work by joint team of Mascotte, FT and University of Tsukuba
 - $\circ~$ Mathematical abstraction over physical and geographical aspects
 - $\circ~$ Formulation on a grid, introduction of γ mitigation factor
 - $\circ~$ Relation to graph coloring
 - $\circ~$ Linear programming solution
- Recent work by Mascotte, Université de Genève and Universidade Federal do Ceará
 - $\circ\;$ Focused on list coloring version of the problem
 - Proposed approximate results on grid subgraphs
- More abstract version this work focuses on can be applied to any cellular radio network design

- Problem introduced by Alcatel Space (now Thales Alenia Space)
 - $\circ~$ Design of satellite antennas for multi-spot MFTDMA satellites
 - $\circ~$ High bandwidth requirements for next-generation wireless
 - Spatial frequency reuse needed
- Initial work by joint team of Mascotte, FT and University of Tsukuba
 - $\circ~$ Mathematical abstraction over physical and geographical aspects
 - $\circ~$ Formulation on a grid, introduction of γ mitigation factor
 - $\circ~$ Relation to graph coloring
 - $\circ~$ Linear programming solution
- Recent work by Mascotte, Université de Genève and Universidade Federal do Ceará
 - $\circ\;$ Focused on list coloring version of the problem
 - $\circ~$ Proposed approximate results on grid subgraphs
- More abstract version this work focuses on can be applied to any cellular radio network design

Outline

Introduction

Problem overview Motivation

Formulation Problems Graphs

Theoretical results General Bounds Optimal solutions Algorithms Levelling heuristic Branch and bound Linear programming models Performance comparison

Weighted Improper Colouring

Given an edge-weighted graph G = (V, E, w), $w : E \to \mathbb{R}_+$, and a threshold $t \in \mathbb{R}_+$, we say that c is a *weighted t-improper k-colouring* of G if c is a *k*-colouring of the vertices of G in such a way that, for each vertex $u \in V$, the following constraint is satisfied:

$$\sum_{\{v\in N(u)|c(v)=c(u)\}}w(u,v)\leq t.$$

Given a threshold $t \in \mathbb{R}_+$, the minimum integer k such that the graph G admits a weighted t-improper k-colouring is the weighted t-improper chromatic number of G, denoted by $\chi_t^w(G)$.

Threshold Improper colouring

A dual of Weighted Improper Colouring which is, for a given edge-weighted graph G = (V, E, w) and a positive integer k, to determine the minimum real t such that G admits a weighted t-improper k-colouring that is called minimum k-threshold of G, denoted by $\omega_k^w(G)$.

We consider a simple interference function:

$$f(d) = \begin{cases} 1, & \text{if } d = 1 \\ \frac{1}{2}, & \text{if } d = 2 \\ 0, & \text{otherwise} \end{cases}$$

In other words: given a graph G = (V, E) and its square $G^2 = (V, E^2)$, we study from now on the function $w : E \rightarrow \{1, 0.5\}$ such that w(e) = 0.5 if, and only if, $e \in E^2 \setminus E$.

We consider a simple interference function:

$$f(d) = \begin{cases} 1, & \text{if } d = 1 \\ \frac{1}{2}, & \text{if } d = 2 \\ 0, & \text{otherwise} \end{cases}$$

In other words: given a graph G = (V, E) and its square $G^2 = (V, E^2)$, we study from now on the function $w : E \to \{1, 0.5\}$ such that w(e) = 0.5 if, and only if, $e \in E^2 \setminus E$.

We consider a simple interference function:

$$f(d) = \begin{cases} 1, & \text{if } d = 1\\ \frac{1}{2}, & \text{if } d = 2\\ 0, & \text{otherwise} \end{cases}$$

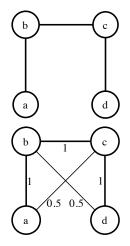
(b)	
a	d

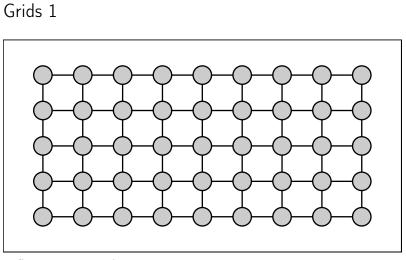
In other words: given a graph G = (V, E) and its square $G^2 = (V, E^2)$, we study from now on the function $w : E \to \{1, 0.5\}$ such that w(e) = 0.5 if, and only if, $e \in E^2 \setminus E$.

We consider a simple interference function:

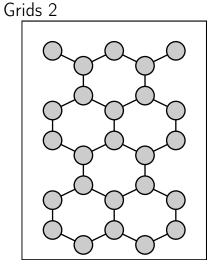
$$f(d) = \begin{cases} 1, & \text{if } d = 1 \\ \frac{1}{2}, & \text{if } d = 2 \\ 0, & \text{otherwise} \end{cases}$$

In other words: given a graph G = (V, E) and its square $G^2 = (V, E^2)$, we study from now on the function $w : E \to \{1, 0.5\}$ such that w(e) = 0.5 if, and only if, $e \in E^2 \setminus E$.

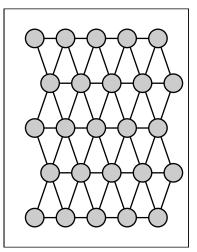




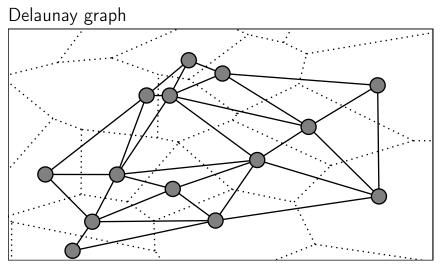
Infinite square grid



Infinite "hex" (3-regular) grid 9 / 26



Infinite "triangle" (6-regular) grid



Effect of Delaunay tesselation for a set of random points. Dual of Voronoi diagram.

10 / 26

Outline

Introduction

Problem overview Motivation

Formulation Problems

Graphs

Theoretical results General Bounds Optimal solutions

Algorithms

Levelling heuristic Branch and bound Linear programming models Performance comparison

Upper bound for Weighted Improper Colouring

Theorem

Given an edge-weighted graph G = (V, E, w), $w : E \to \mathbb{R}_+$, and a threshold $t \in \mathbb{R}_+$, then the following inequality holds, for any real $\varepsilon > 0$:

$$\chi^w_t({\sf G}) \leq \left\lceil rac{\Delta_w({\sf G}) + arepsilon}{t + {\it gcd}(w)}
ight
ceil.$$

Where:

- $\Delta_w(G) = \max_{u \in V} d_w(u)$
- $d_w(u) = \sum_{v \in N(u)} w(u, v)$

Upper bound for Threshold Improper Colouring

Theorem

Let G = (V, E, w), $w : E \to \mathbb{R}_+$, be an edge-weighted graph and k be a positive integer. Then:

$$\omega_k^w(G) \le \max_{v \in V} w(E_{\min}^{k-1}(v))$$

Where:

•
$$w(E_{min}^{k-1}(v)) = \sum_{e \in E_{min}^{k-1}(v)} w(e)$$

• $E_{min}^{k-1}(v)$ be the set of d(v) - (k-1) least weighted edges incident to v

Paths and trees

Theorem Let P = (V, E) be an infinite path. Then,

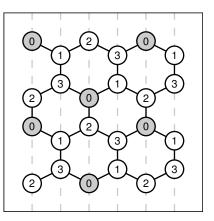
$$\chi_t^w(P^2) = \begin{cases} 1, & \text{if } 3 \le t; \\ 2, & \text{if } 1 \le t < 3; \\ 3, & \text{if } 0 \le t < 1. \end{cases}$$

Theorem Let T = (V, E) be a tree. Then, $\lceil \frac{\Delta(T) - \lfloor t \rfloor}{2t+1} \rceil + 1 \le \chi_t^w(T^2) \le \lceil \frac{\Delta(T) - 1}{2t+1} \rceil + 2.$

Hexagonal grid

If G is an infinite hexagonal grid, then

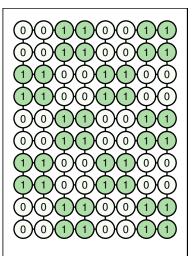
$$\chi_t^w(G^2) = \begin{cases} 4, & \text{if } 0 \le t < 1; \\ 3, & \text{if } 1 \le t < 2; \\ 2, & \text{if } 2 \le t < 6; \\ 1, & \text{if } 6 \le t. \end{cases}$$



Square grid

If G is an infinite square grid, then

$$\chi_t^w(G^2) = \begin{cases} 5, & \text{if } 0 \le t < 0.5; \\ 4, & \text{if } 0.5 \le t < 1; \\ 3, & \text{if } 1 \le t < 3; \\ 2, & \text{if } 3 \le t < 8; \\ 1, & \text{if } 8 \le t. \end{cases}$$



6-regular grid

Theorem If G is an infinite triangular grid, then

$$\chi_t^w(G^2) = \begin{cases} \leq 7, & \text{if } t = 0; \\ \leq 6, & \text{if } t = 0.5; \\ \leq 5, & \text{if } t = 1; \\ \leq 4, & \text{if } 1.5 \leq t < 3; \\ \leq 3, & \text{if } 3 \leq t < 5; \\ \leq 2, & \text{if } 5 \leq t < 12; \\ 1, & \text{if } 12 \leq t. \end{cases}$$

Outline

Introduction

Problem overview Motivation

Formulation Problems Graphs

Theoretical results General Bounds Optimal solutions Algorithms Levelling heuristic Branch and bound Linear programming models Performance comparison

Levelling heuristic

- Greedy heuristic for Threshold Improper Colouring
- Performs local decisions to minimize immediate interference
- Enhancement: we set up an interference target *t_t*, bail if it's not possible to colour a vertex without raising interference over the target in any other vertex
- Outer loop:
 - Initially we set $t_t = \infty$
 - Repeat until time runs out or happy with the interference

Levelling heuristic

- Greedy heuristic for Threshold Improper Colouring
- · Performs local decisions to minimize immediate interference
- Enhancement: we set up an interference target *t_t*, bail if it's not possible to colour a vertex without raising interference over the target in any other vertex
- Outer loop:
 - Initially we set $t_t = \infty$
 - Repeat until time runs out or happy with the interference

Levelling heuristic

- Greedy heuristic for Threshold Improper Colouring
- · Performs local decisions to minimize immediate interference
- Enhancement: we set up an interference target *t_t*, bail if it's not possible to colour a vertex without raising interference over the target in any other vertex
- Outer loop:
 - \circ Initially we set $t_t = \infty$
 - Repeat until time runs out or happy with the interference

Levelling heuristic — inner pseudocode 1 $I_{v,c} \leftarrow 0$ for $v \in V, c \in \{0, 1, \dots, k\}$; $I_{v} \leftarrow 0$ for $v \in V$ 2 $T \leftarrow V$; possible \leftarrow true 3 while $T \neq \emptyset \land possible$ do $T' \leftarrow \{x \in T : I'_x = \max I'\}$; $v \leftarrow random from T'$ 4 5 $C \leftarrow (1, 2, \dots, k)$ sorted to give $I_{v,i} \leq I_{v,i+1}$ foreach $c \in C$ do 6 if v can be coloured c then 7 8 foreach $w \in N(v)$ do $I_{w,c} \longleftarrow I_{w,c} + f(v,w)$ $I_{w} \longleftarrow I_{w} + f(v,w)$ 9 10 colour v with colour c ; break 11 if *n* was coloured then $T \leftarrow T \setminus v$ else possible \leftarrow false 12 13 if possible then $t_t \leftarrow \max I - \varepsilon$

18 / 26

Branch and bound

- Inspired by levelling heuristic
- Colours vertices in same order
- Considers colours in same order
- Optimal solution in finite time
- Pretty naive implementation find near-optimal solutions fast

Linear program for Weighted Improper Colouring

Weighted Improper Colouring solved by integer program:

$$\begin{array}{ll} \min & \sum_{p} c^{p} \\ \text{subject to:} \\ \sum_{j \neq i} w(i,j) x_{jp} \leq t + M(1 - x_{ip}) & (\forall i \in V, \forall p \in \{1, \dots, l\}) \\ c^{p} \geq x_{ip} & (\forall i \in V, \forall p \in \{1, \dots, l\}) \\ \sum_{p} x_{ip} = 1 & (\forall i \in V) \\ x_{ip} \in \{0, 1\} & (\forall i \in V, \forall p \in \{1, \dots, l\}) \\ c^{p} \in \{0, 1\} & (\forall p \in \{1, \dots, l\}) \end{array}$$

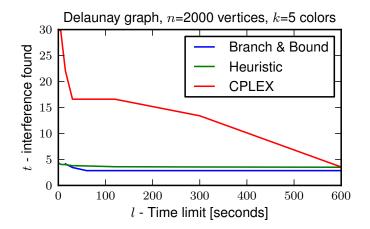
where M is a large integer

Linear program for Threshold Improper Colouring

Threshold Improper Colouring solved by integer program:

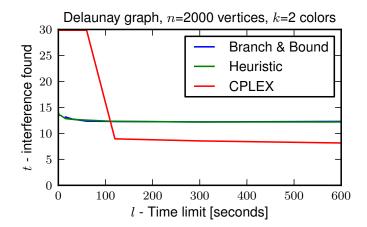
$$\begin{array}{ccc} \min & t \\ \text{subject to:} \\ \sum_{j \neq i} w(i,j) x_{jp} \leq t + M(1 - x_{ip}) & (\forall i \in V, \forall p \in \{1, \dots, k\}) \\ \sum_{p} x_{ip} = 1 & (\forall i \in V) \\ x_{ip} \in \{0,1\} & (\forall i \in V, \forall p \in \{1, \dots, k\}) \end{array}$$

where M is a large integer

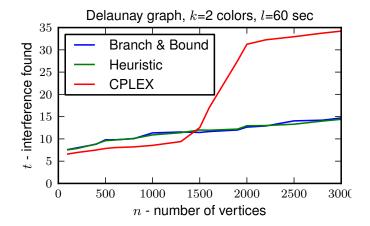


Both specific algorithms deliver results in few seconds

22 / 26

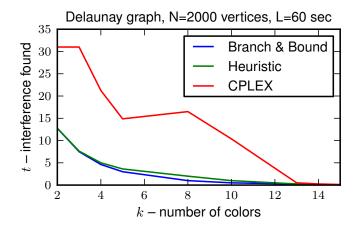


In hard cases, a good branch-and-cut implementation achieves better results $\frac{23}{26}$

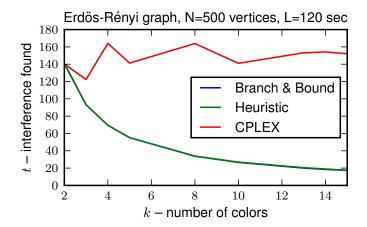


Both specific algorithms scale better with growing graphs

24 / 26



Making the problem easier increases number of constraints for integer $\underset{25}{\text{program}}$



In case of denser graphs, integer programming becomes pretty useless

26 / 26