Performance Analysis of P2P Storage Systems Data Lifetime Under Constrained Bandwidth and Multiple Failures

Remigiusz Modrzejewski

September 18, 2011 MASCOTTE Project

I3S(CNRS/UNS)-INRIA, PACA

Research report

This presentation is based on research report:

Frédéric GIROIRE, Sandeep Kumar GUPTA, Remigiusz Modrzejewski, Julian Monteiro, Stéphane PERENNES Analysis of the Repair Time in Distributed Storage Systems INRIA Rapport de recherche RR-7538, 2011

Motivation System mechanics Related work

Factor of efficiency Deer imbalance

Peer imbalance Formulation Verification

Markov queue Reason Formulation Implications

Motivation

- Indefinite backup
 - negligible read rate
 - high reliability: 10^{-5} loss probability/100GB $\sim 10^{-12}$ loss probability/5MB
- Cheap and scalable
 - highly distributed
 - unreliable hardware
 - uses consumer connections
- Better model
 - To be sure how design parameters shape reliability
 - Remove unasserted assumptions
 - Look into often omitted detail
 - Relate everything to costs and probability of failure
 - Thoroughly validated

Motivation

- Indefinite backup
 - negligible read rate
 - high reliability: 10^{-5} loss probability/100GB $\sim 10^{-12}$ loss probability/5MB
- Cheap and scalable
 - highly distributed
 - unreliable hardware
 - uses consumer connections
- Better model
 - To be sure how design parameters shape reliability
 - Remove unasserted assumptions
 - Look into often omitted detail
 - Relate everything to costs and probability of failure
 - Thoroughly validated

Motivation

- Indefinite backup
 - negligible read rate
 - high reliability: 10^{-5} loss probability/100GB $\sim 10^{-12}$ loss probability/5MB
- Cheap and scalable
 - highly distributed
 - unreliable hardware
 - uses consumer connections
- Better model
 - To be sure how design parameters shape reliability
 - Remove unasserted assumptions
 - Look into often omitted detail
 - Relate everything to costs and probability of failure
 - Thoroughly validated

Case study

- Users have 1Mbps connections, but allocate 128kbps to repairs
- Users allocate 300GB disk space, insert 100GB data
- Expected lifetime = 1 year, neighbourhood size = 100 peers
- Repair time of 1 disk = 17 hours (= $100 \cdot 8 \cdot 10^{6} \text{kb}/(100 \cdot 128 \text{kbps})$)
- Probability of data loss per year (PDLPY) of 10⁻⁸
- By our model, repair time = 9 days, PDLPY = 0.2

Case study

- Users have 1Mbps connections, but allocate 128kbps to repairs
- Users allocate 300GB disk space, insert 100GB data
- Expected lifetime = 1 year, neighbourhood size = 100 peers
- Repair time of 1 disk = 17 hours (= $100 \cdot 8 \cdot 10^{6} \text{kb}/(100 \cdot 128 \text{kbps})$)
- Probability of data loss per year (PDLPY) of 10⁻⁸
- By our model, repair time = 9 days, PDLPY = 0.2

System mechanics

Related work

Some of the similar works:

- Analysis of Failure Correlation Impact on Peer-to-Peer Storage Systems by Dalle et al. looks into whole disk failures, but assumes exponential reconstruction time; 2009
- Simulation analysis of download and recovery processes in P2P storage systems by Dandoush et al. find download/recovery time hypo-exponential, but looks only at single fragment level; 2009
- Availability in Globally Distributed Storage Systems by Ford et al. bases on a large body of data tracing Google storage systems; 2010

Peer imbalance

Reasons:

- New disks are empty, fill up gradually
 - disk load / age truncated geometric distribution
- Workload depends on disk load
- Repairs typically need fragments from full disks

Effect:

- Repair time given by wait time for full disks
- Young disks unutilized ⇒ wasted bandwidth

Peer imbalance

Reasons:

- New disks are empty, fill up gradually
 - disk load / age truncated geometric distribution
- Workload depends on disk load
- Repairs typically need fragments from full disks

Effect:

- Repair time given by wait time for full disks
- Young disks unutilized ⇒ wasted bandwidth

Introduction

Simulations/Experiments

Disk load imbalance at global 33% (x = 3)

Disk load imbalance at global 66% (x = 3/2)

Performance Analysis of P2P Storage Systems

Disk load imbalance — comparison

Factor of efficiency

Let:

- x be the disk overcapacity average capacity / average usage
- ρ be the factor of efficiency total throughput / total bandwidth

We found out that:

$$\rho \approx \frac{1}{x}$$

Performance Analysis of P2P Storage Systems

Verification

x	1.1	1.5	2.0	3.0
φ_{sim}	0.83	0.39	0.18	0.04
φ model	0.83	0.42	0.20	0.06
φχ	0.91	0.63	0.4	0.18
P _{full}	$1 - 10^{-14}$	$1 - 10^{-5}$	0.999	0.92
ρ_{sim}	0.83	0.63	0.48	0.40
ρ_{model}	0.91	0.67	0.5	0.33
T _{sim}	1.07	2.69	8.55	21.76
T _{model}	1.00	2.61	17.81	54.61

Where: φ - fraction of full disks in network; P_{full} - probability of a block to have \geq 1 fragment on a full disk; T - reconstruction time; n = 14 - # fragments for each block

13 / 25

Verification

x	1.1	1.5	2.0	3.0
φ_{sim}	0.83	0.39	0.18	0.04
φ_{model}	0.83	0.42	0.20	0.06
φχ	0.91	0.63	0.4	0.18
P _{full}	$1 - 10^{-14}$	$1 - 10^{-5}$	0.999	0.92
ρ_{sim}	0.83	0.63	0.48	0.40
ρ_{model}	0.91	0.67	0.5	0.33
T _{sim}	1.07	2.69	8.55	21.76
T _{model}	1.00	2.61	17.81	54.61

Even when full disks are rare, most blocks have a fragment on them

Verification

x	1.1	1.5	2.0	3.0
φ_{sim}	0.83	0.39	0.18	0.04
φ model	0.83	0.42	0.20	0.06
φx	0.91	0.63	0.4	0.18
P _{full}	$1 - 10^{-14}$	$1 - 10^{-5}$	0.999	0.92
ρ_{sim}	0.83	0.63	0.48	0.40
ρ_{model}	0.91	0.67	0.5	0.33
T _{sim}	1.07	2.69	8.55	21.76
T _{model}	1.00	2.61	17.81	54.61

Model closely matches simulations

Verification

x	1.1	1.5	2.0	3.0
φ_{sim}	0.83	0.39	0.18	0.04
φ model	0.83	0.42	0.20	0.06
φχ	0.91	0.63	0.4	0.18
P _{full}	$1 - 10^{-14}$	$1 - 10^{-5}$	0.999	0.92
ρ_{sim}	0.83	0.63	0.48	0.40
ρ_{model}	0.91	0.67	0.5	0.33
T _{sim}	1.07	2.69	8.55	21.76
T _{model}	1.00	2.61	17.81	54.61

x has high impact on reconstruction time

Verification

x	1.1	1.5	2.0	3.0
φ_{sim}	0.83	0.39	0.18	0.04
φ_{model}	0.83	0.42	0.20	0.06
φχ	0.91	0.63	0.4	0.18
P _{full}	$1 - 10^{-14}$	$1 - 10^{-5}$	0.999	0.92
ρ_{sim}	0.83	0.63	0.48	0.40
ρ_{model}	0.91	0.67	0.5	0.33
T _{sim}	1.07	2.69	8.55	21.76
T _{model}	1.00	2.61	17.81	54.61

Model would need extension for big *x*, but this represents inefficient resource usage

Performance Analysis of P2P Storage Systems

Why a queueing model?

- Target system has many peers
- We want to know what happens in years of work
- Simulations would consume prohibitive amounts of time
 - some operations done on each block in each time step
 - 100'000 peers
 - 100GB per peer / 5MB blocks = 20'000 blocks per peer
 - 10 years with 1 hour resolution
 - over 5 years of simulation assuming 10⁶ operations / second

Introduction

Factor of efficiency

(Markov queue

Simulations/Experiments

Markovian queuing model

- Global queue of all blocks needing repair
- $M^{\beta}/D/1$, β is the batch size function
- States number of fragments in queue
- Transitions reconstructions or failings
- 2 batch sizes full disk; expected value of non-full disk

What does it give?

- Waiting time given directly by stationary state of the queue
- Same goes for bandwidth usage
- Expected data loss computed using stationary state
- Stationary state computed semi-analytically or numerically
- Implementation in **R** converges in <2s

Simulations/Experiments

- Markovian queuing model implemented in R
- Custom simulator implemented in Java
- Experiments based on UbiStorage system deployed on Grid5000

Performance Analysis of P2P Storage Systems

Reconstruction time: model vs simulation

Distribution of the Reconstruction Time

Reconstruction Time (cycles)

Not always exponential

Lost data: model vs simulation

Distribution of the Reconstruction Time of Dead Blocks

Reconstruction Time (cycles)

With too much short repairs; almost perfect fit

Lost data: model vs simulation

Distribution of the Reconstruction Time of Dead Blocks

Reconstruction Time (cycles)

For the long tail; smooth fit

Experimentation setup

- An overlay of 50-200 peers built on Grid5000 nodes
- Failures according to traces or a random process
- Acceleration factor of 3–350
 - All times compressed
 - Less data
 - Limited bandwidth
- Same parameters fed into simulator and model

Experimentation results

Reconstruction Time (seconds)

Pretty good fit too

Exponential, average and tail

Sometimes exponential is good enough if fitting tail

,

Exponential, average and tail

Sometimes it is not

- Intuition is not sufficient
- Simplistic methods fit only some scenarios
- Seemingly irrelevant details do matter
- Simple, accurate and validated model was proposed