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Abstract. In this paper, we study a new colouring problem up to our
best knowledge inspired by the imperative of practical networks. In real-
life wireless networks, nodes interfere with one another with various in-
tensities depending on numerous parameters: distance between them,
the geographical topography, obstacles, etc. We model this with a noise
matrix. The interference perceived by a node then is the sum of all the
noise of the nodes emitting on the same frequency. The problem is then
to determine the minimum number of colours (or frequencies) needed
to colour the whole graph so that the interference does not exceed a
given threshold. We provide several general results, such as bounds on
this number of colours (e.g. a Brook’s like theorem). We then study
the practical case of square of infinite grids which corresponds to op-
erators’ network and a noise decreasing with the distance. We provide
the chromatic number of the square, triangular and hexagonal grids for
all possible admissible interference levels. Finally, we model the prob-
lem using linear programming, propose and test a heuristic and an exact
branch&bound algorithms on random cell-like graphs, namely the Pois-
son Voronoi tessellations.

1 Introduction

Given a graph G = (V,E), a k-colouring of G is a function c : V → {1, . . . , k}.
The colouring c is proper if (u, v) ∈ E implies c(u) 6= c(v). The chromatic num-
ber of a given graph G is the minimum integer k such that G admits a proper
k-colouring, denoted by χ(G). The goal of the Vertex Colouring problem is
to determine χ(G), for a given graph G. It is well-known that determining the
chromatic number χ(G) of a given graph G is NP-hard.

A k-colouring c is l-improper if, for every vertex u ∈ V , |{v ∈ N(u) | c(v) =
c(u)}| ≤ l. Given a positive integer l, the l-improper chromatic number of a given
graph G is the minimum integer k such that G has an l-improper k-colouring,
which is denoted by χl(G). For a given graph G and an integer l, the goal of the
Improper Colouring problem is to determine χl(G) [5]. Given a graph G and
an integer l, the problem of computing the l-improper chromatic number χl(G)
is also NP-hard. Indeed in [6], the authors proved that the problem of deciding
if there is a l-improper k-colouring of a given graph G is NP-complete for all
pairs (l, k) of integers with l ≥ 2 and k ≥ 1. In [5], the authors proved the NP-
completeness for particular classes of graphs. For instance, given a graph G with



maximum degree at most 8, the problem of deciding if there is a 1-improper 4-
colouring of G is NP-complete. Given a planar graph G with maximum degree 4,
the problem of deciding if there is a 1-improper 2-colouring of G is NP-complete.
A third NP-complete problem is the problem of deciding if there is a 2-improper
2-colouring of a given planar graph G with maximum degree 6.

In this work we define and study a new, up to our best knowledge, variation
of the improper colouring problem for edge-weighted graphs.

Given an edge-weighted graph G = (V,E,w), w : E → R∗+, and a thresh-
old t ∈ R+, we say that c is a weighted t-improper k-colouring of G if c is a
k-colouring of the vertices of G in such a way that, for each vertex u ∈ V , the
following constraint is satisfied: ∑

{v∈N(u)|c(v)=c(u)}

w(u, v) ≤ t.

Given a threshold t ∈ R∗+, the minimum integer k such that the graph G
admits a weighted t-improper k-colouring is the weighted t-improper chromatic
number of G, denoted by χwt (G). Given an edge-weighted graph G = (V,E,w)
and a threshold t ∈ R∗+, determining χwt (G) is the goal of the Weighted
Improper Colouring problem, that we define. The Weighted Improper
Colouring problem is clearly NP-complete even for the three particular in-
stances described in [5]. Indeed given a graph G, we get the NP-completeness
by choosing ∀e ∈ E, w(e) = 1, and t = l.

On the other hand, we also define the Threshold Improper Colouring
problem which is, for a given edge-weighted graph G = (V,E,w) and a posi-
tive integer k, to determine the minimum real t such that G admits a weighted
t-improper k-colouring that is called minimum k-threshold of G, denoted by
ωwk (G). The Threshold Improper Colouring problem is also NP-complete
even for the previous particular cases by choosing ∀e ∈ E, w(e) = 1. How-
ever, if the graph G has bounded tree-width, then we present a polynomial-time
algorithm to decide if ωwk (G) ≤ t.

Due to lack of space, the proofs of the results are omitted and can be found
in the appendix or in the corresponding research report3.

Related Work. The motivation of these problems is the Frequency Assign-
ment Problem (FAP). FAP has several variations that were already studied
in the literature (see [1] for a survey). In most of these variations, the main
constraint to be satisfied is that if two vertices (mobile phones, antennas, spots,
etc.) are close, then the difference between the frequencies that are assigned to
them must be greater than some function that usually depends on their distance.

There is a strong relationship between most of these variations and the
L(p1, . . . , pd)-labelling. In this problem, the goal is to find a colouring of the
vertices of a given graph G in such a way that the difference between the colours
assigned to vertices at distance i must be at least pi, for every i = 1, . . . , d.

3 The report can be found at the url http://www-sop.inria.fr/members/

Julio-Cesar.Silva_Araujo/wic/



For some other variations, for each non-satisfied interference constraint a
penalty must be paid. In particular, the goal of the Minimum Interference
Assignment Problem (MI-FAP) is to minimise the total penalties that must
be paid, when the number of frequencies to be assigned is given. This prob-
lem can also be studied for only co-channel interferences, in which the penalties
are applied only if the two vertices have the same frequency. Although, MI-FAP
under these constraints does not correspond to Weighted Improper Colour-
ing, because we consider the co-channel interference, i.e. penalties, just between
each vertex and its neighbourhood.

The two closest related works we found in the literature are [11] and [7].
However, they both apply penalties over co-channel interference, but also to the
adjacent channel interference, i.e. when the colours of adjacent vertices differ by
one unit. Moreover, their results are not similar to ours. In [11], they propose an
enumerative algorithm for the problem, while in [7] a Branch-and-Cut method
is proposed and applied over some instances.

Particular Practical Cases. Our initial motivation to look at these problems
was the design of satellite antennas for multi-spot MFTDMA satellites [2]. In
this technology, satellites transmit signals to areas on the ground called spots.
These spots form a grid like structure which is modeled in the reference by an
hexagonal-cell graph. To each spot is assigned a radio channel or colour. Spots are
interfering with one another and a spot can use a colour only if the interference
level does not exceed a given threshold t. The level of interference between
two spots depends on their distance. The authors of [2] introduce a factor of
mitigation γ and the interferences of remote spots are reduced by a factor 1−γ.
When the interference level is too low, the nodes are considered to not interfere
anymore. Considering such types of interference where nodes at distance at most
i affect one another leads to the study of the i-th power of the graph modelling
the network and a case of special interest is the power of grid graphs.

Results. In this work, we study both parameters χwt (G) and ωwk (G). We present
some bounds for general graphs, in particular Theorems 1 and 2. We then study
some particular cases of the edge-weights function w modelling infinite square,
hexagonal and triangular grids. As stated, these grids are often used to model
networks of antennas (see for example [4, 12]). For these graphs, we provide
χwt (G) for all possible values of the threshold t, for a particular w, Theorems 6, 7
and 8. We then propose heuristics to solve the problem for general graphs. We
compare them to an integer program formulation on random cell-like graphs,
namely Voronoi diagrams of random points of the plan, classically used in the
literature to model telecommunication networks [3,8,9]. For properties of Poisson
Voronoi tessellation, see for example [13].



2 General Results

2.1 Bounds

Upper bound for Weighted Improper Colouring Lovász [10] proved a
Brooks’-like theorem for the Improper Colouring problem. Namely, it holds
that χl(G) ≤ d∆(G)+1

l+1 e for a graph G of maximum degree ∆(G).
In what follows, we show that this result nicely extends for Weighted Im-

proper Colouring. Nicely means here that an edge only contributes its weight
to the value of the bound.

Given an edge-weighted graph G = (V,E,w), w : E → R∗+, and u ∈ V ,
let dw(u) =

∑
v∈N(u) w(u, v). Denote by ∆w(G) = maxu∈V dw(u). Given a k-

colouring c : V → {1, . . . , k} of G, we denote diw(u) =
∑
{v∈N(u)|c(v)=i} w(u, v),

for every vertex u ∈ V and color i = 1, . . . , k. Finally, we note gcd(w) the great-
est common divisor of the weights of w. We use here the generalization of the gcd
to non integer numbers (e.g. in R) where a number x is said to divide a number
y if the fraction y/x is an integer. The important property of the gcd(w) we use
here is that it is the smallest possible difference between two interferences, that
is, for two vertices u and v, if diw(u) > djw(v) then diw(u) ≥ djw(v) + gcd(w).

Theorem 1. Given an edge-weighted graph G = (V,E,w), w : E → R∗+, and a
threshold t ∈ R∗+, then the following inequality holds, for any real ε > 0:

χwt (G) ≤ d∆w(G) + ε

t+ gcd(w)
e.

Proof. We say that a k-colouring c of G is well-balanced if c satisfies the following
property:

Property 1. For all vertex v ∈ V , if it is coloured i, then diw(v) ≤ djw(v), for
every j = 1, . . . , k.

First, we prove that for any k ≥ 2, there exists a well-balanced k-colouring
of G. To prove this fact one may just colour G arbitrarily with k colours and
then repeat the following procedure: if there exists a vertex v coloured i and a
colour j such that diw(v) > djw(v), then recolour v with colour j. Observe that
this procedure neither increase (we just move a vertex from one colour to an-
other) nor decrease (a vertex without neighbour on its colour is never moved)
the number of colours with this process. Moreover, the weight of the edges be-
tween vertices coloured i and j has just increased. All the other edges between
colours have not changed. Thus, each time that a vertex is recoloured, the sum
of the weights of the edges between the colours increase by a minimal amount
of gcd(w). Consequently, this procedure finishes and produces a well-balanced
k-colouring of G in finite time (as we know that the sum of the weights cannot
exceed |E|maxe∈E w(e)).

Observe that in any well-balanced k-colouring c of a graph G, the following
holds:

dw(v) =
∑

u∈N(v)

w(u, v) ≥ kdiw(v). (1)



Let k∗ = d∆w(G)+ε
t+gcd(w) e ≥ 2 and c∗ be a well-balanced k∗-colouring. We claim

that c∗ is a weighted t-improper k∗-colouring of G.
By contradiction, suppose that there is a vertex v in G such that c∗(v) = i

and that diw(v) > t. Since c∗ is well-balanced, djw(v) > t, for all j = 1, . . . , k∗.
By the definition of gcd(w), it leads to djw(v) ≥ t+ gcd(w) for all j = 1, . . . , k∗.
Combining this inequality with Inequality (1), we obtain:

∆w(G) ≥ dw(v) ≥ k∗(t+ gcd(w)),

giving
∆w(G) ≥ dw(v) ≥ ∆w(G) + ε,

a contradiction. The result follows. ut

Note that when all weights are one, we obtain the bound for the improper colour-
ing derived in [10]. As a matter of fact, in this case gcd(w) = 1 and ∆w(G) = ∆
is an integer. Thus, there exist two integers a, b such that ∆ = a(t+ 1) + b, with
b ≤ k − 1. For an ε < 1, we have d∆+ε

t+1 e = a + 1 = d∆+1
t+1 e. Note also that the

bound is tight for complete graphs with same weight on each edge.
Open Problem: characterise all graphs for which the bound is tight.

Upper bound for Threshold Improper colouring. Let G = (V,E,w),
w : E → R∗+, be an edge-weighted graph and k be a positive integer. V ′ = {u ∈
V, d(u) ≥ k} represents the set of nodes with degree at least k. G′ = (V ′, E′, w′)
is the graph obtained after removing all nodes of V \ V ′.

Lemma 1. ωwk (G) = ωwk (G′)

For the rest of the section, we only consider edge-weighted graphs with min-
imum degree at least k. For each v ∈ V , let Ek−1

min(v) be the set of d(v)− (k− 1)
least weighted edges incident to v.

Theorem 2. Let G = (V,E,w), w : E → R∗+, be an edge-weighted graph and k
be a positive integer. Then, ωwk (G) ≤ maxv∈V w(Ek−1

min(v)), where w(Ek−1
min(v)) =∑

e∈Ek−1
min(v) w(e).

2.2 Transformation

In this section, we prove that the Threshold Improper Colouring prob-
lem can be transformed into a problem mixing proper and improper colouring.
More precisely, given an edge-weighted graph G = (V,E,w) such that ∀e ∈ E,
w(e) ∈ N∪ {∞}, and a positive integer k, the problem of computing ωwk (G) can
be transformed into the problem of computing ωwk (G∗ = (V ∗, E∗, w∗)) such that
for any e ∈ E∗, w∗(e) ∈ {1,∞}. We describe in Appendix A.1 how to construct
the graph G∗ proving also that the desired property on the weights is always
verified. We prove that the two problems are equivalent, that is



Theorem 3. Let G = (V,E,w) be an edge-weighted graph such that ∀e ∈ E,
w(e) ∈ N ∪ {∞}, and a positive integer k. Let G∗ = (V ∗, E∗, w∗) = Gs+1 be the
edge-weighted graph constructed from G verifying that ∀e ∈ E∗, w∗(e) ∈ {1,∞}.
Then ωwk (G) = ωwk (G∗).

After the transformation, the problem remains to find the minimum l such that
a (non-weighted) l-improper k-colouring of G∗ exists with the constraint that
some subgraphs of G∗ must admit a proper colouring. The equivalence of the
two problems have been proved for integers weights but it is possible to adapt
the transformation taking into consideration rational weights.
Open Problem: For such graphs with only two possible weight values 1 and
∞, we think that for a high density of edges with weight 1, the problem may be
equivalent to the improper colouring problem for the graph after removing the
edges of weight ∞.

3 Squares of Particular Graphs

As mentioned in the introduction, the general problem is motivated by networks
of antennas that resemble grids [2]. In this network, the noise generated by an
antenna undergoes an attenuation with the distance it travels. We model this
specific case with squares of infinite grid. Given a graph G, the square of G,
denoted by G2, is the graph obtained from G by adding all edges (u, v) such
that u and v are at distance 2 in G. We study a particular case of the function
of weights. Given a graph G = (V,E) and its square G2 = (V,E2), we study
from now on the function w∗ : E → {1, 0.5} such that w∗(e) = 0.5 if, and only
if, e ∈ E2\E. We choose this function as an example of signal attenuation.

We show an example of a graph on 4 vertices and its square in Figure 3.
Vertices at distance one have an interference of one and vertices at distance two
have interference of 0.5.

For any t ∈ R+, we provide the weighted t-improper chromatic number of
infinite square grids in Theorem 6, hexagonal grids in Theorem 8, and triangular
grids in Theorem 7. For all values of the threshold t, we provide constructions
using the minimum number of colours, along with proofs of their optimality. For
the triangular grids, the proofs involved too many subcases to be readable be-
cause of the higher degree of this grid. We thus ran the integer program defined
in Section 44. It would be nice to obtain concise combinatorial proofs of these
bounds. As a preliminary we study the cases of infinite paths and trees.

3.1 Infinite paths and trees

In this section, we characterise the weighted t-improper chromatic number of the
square of an infinite path, for all positive real t. Moreover, we present a simple
upper bound for χwt (T 2), for a given tree T .

4 The code can be found at the url http://www-sop.inria.fr/members/

Julio-Cesar.Silva_Araujo/wic/



Fig. 1. A graph and its
square. Solid (dashed)
lines: interference one
(one half).
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Fig. 2. Optimal constructions for the hexagonal grid.

Theorem 4. Let P = (V,E) be an infinite path. Then,

if 0 ≤ t < 1 1 ≤ t < 3 3 ≤ t
χwt (G2)= 3 2 1

Theorem 5. Let T = (V,E) be a tree. Then, d∆(T )−btc
2t+1 e + 1 ≤ χwt (T 2) ≤

d∆(T )−1
2t+1 e+ 2.

3.2 Grids

In this section, we show the optimal values of χwt (G2), whenever G is an infinite
square grid, or triangular grid or a hexagonal one, for all the possible values of
t. We provide examples of optimal constructions in Figure 2, 3 and 4.

Square Grid. The square grid is the graph in which the vertices are all integer
linear combinations ae1 + be2 of the two vectors e1 = (1, 0) and e2 = (0, 1), for
any a, b ∈ Z. Each vertex (a, b) has four neighbours: its left neighbour (a− 1, b),
its right neighbour (a+ 1, b), its top neighbour (a, b+ 1) and its down neighbour
(a, b− 1).

Theorem 6. If G is an infinite square grid, then

if 0 ≤ t < 0.5 0.5 ≤ t < 1 1 ≤ t < 3 3 ≤ t < 8 8 ≤ t
χwt (G2)= 5 4 3 2 1

Triangular Grid. The triangular grid is graph whose vertices are all the integer
linear combinations ae1 + be2 of the two vectors e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ).

Thus we may identify the vertices with 2 the ordered pairs (a, b) of integers.
Each vertex v = (a, b) has six neighbours: its left neighbour (a − 1, b), its right
neighbour (a+1, b), its leftup neighbour (a−1, b+1), its rightup neighbour (a, b+
1), its leftdown neighbour (a, b− 1) and its rightdown neighbour (a+ 1, b− 1).
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(a) Weighted 0-improper 5-colouring of G2,
for square grid G.
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Fig. 3. Constructions for the square grid.
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(b) Weighted 1.5-improper 4-colouring of G2,
for triangular grid G.

Fig. 4. Constructions for the triangular
grid.

Theorem 7. If G is an infinite triangular grid, then

if t = 0 t = 0.5 t = 1 1.5 ≤ t < 3 3 ≤ t < 5 5 ≤ t < 12 12 ≤ t
χwt (G2)= 7 6 5 4 3 2 1

Hexagonal Grid. The hexagonal grid graph is the graph whose vertex set is
the set of pairs of integers (a, b), a, b ∈ Z and each vertex (a, b) has 3 neighbours:
(a, b− 1), (a, b+ 1) and (a− 1, b), if b is even, or (a+ 1, b), otherwise.

Theorem 8. If G is an infinite hexagonal grid, then

if 0 ≤ t < 1 1 ≤ t < 2 2 ≤ t < 6 6 ≤ t
χwt (G2)= 4 3 2 1

4 Algorithms, Integer Programs and Results

In this section we introduce several algorithmic approaches to the problems in-
troduced in this paper. We start with a simple greedy heuristic for Threshold



Improper Colouring. Then we introduce a branch and bound algorithm in-
spired by it. Finally we present linear programing models for both problems
coped with in this paper.
Levelling Heuristic. We developed a simple heuristic aiming at obtaining a
leveled distribution of interference over the nodes. Thus it attempts at solving
the Threshold Improper Colouring problem. The principal idea is to colour
each node to minimise the local interference. This is achieved by tracking poten-
tial interference — the interference induced by already coloured vertices on the
ones yet to colour. Every time a node is selected to be coloured, it is selected
among the nodes with the greatest sum of potential interferences in all colours.
Then colours are considered in increasing order of potential interference. Initially
it was the only decision criterion. Performance is greatly enhanced by supplying
an interference target – tt. Then the local colouring decision is taken with the
additional constraint, that interference in no other node is increased past tt. For
first run tt is set to a very big number and updated to T − ε whenever solution
with interference T is found. The pseudo-code of the heuristic and its detailed
explanation can be found in Appendix C.

As a randomised greedy colouring heuristic, it has to be run multiple times
to achieve good results. Still it is efficient enough to be practical. The local, im-
mutable colouring decision is taken in time O(k). Then, after each such decision,
the interference has to be propagated, which takes time linear to the node degree.
Branch and Bound Algorithm. We also implemented a simple branch and
bound algorithm inspired by the above heuristic. It chooses colours for vertices
in the same order as the heuristic. It also follows the heuristic order for colours
tried. Despite its naive implementation in the Python programming language, it
is capable to produce good colourings in a short time. As a branch and bound
algorithm it is also guaranteed to find the optimal solution in a finite, alas ex-
ponential, time.
Integer Programming Models. It is not difficult to model both problems
Weighted Improper Colouring and Threshold Improper Colouring
by integer programs. The formulations are given in Appendix B. In the follow-
ing, we compare the solutions proposed by CPLEX for these models with the
ones produced by the described Branch-and-Bound algorithm and the Levelling
heuristic.

4.1 Results

Figure 5 shows a performance comparison of algorithms mentioned above. The
comparison is based on Delaunay graph (dual of Voronoi diagram) for a set of
random points. This kind of graph is a natural approximation of a network of
irregular cells. We consider a weighted version of the squared graph, as described
in Section 3.

Figure 5(c) shows how the solutions get optimised over time. Ten random
graphs were generated. Then each program was run with different time limits.
Best interference averaged over the ten graphs is plotted against the time limits.



(a) Example Delaunay graph, dotted lines
delimit corresponding Voronoi diagram
cells
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Fig. 5. Results comparison for Levelling heuristic, branch and bound algorithm and
linear program run with CPLEX.

Similarly, plot 5(e) represents interference when changing numbers of colours
used. Finally Figure 5(d) plots average results for ten graphs for each graph size.

One immediate observation about both the heuristic and branch&bound al-
gorithm is that they deliver fast. Despite their naive implementation in a slow
programming language they tend to find near-optimal results in matter of sec-
onds even for very large graphs. On the other hand, they fail to improve up
to optimal results, especially with a low number of colours allowed. Although
it is easy to envision an implementation faster by orders of magnitude, this



may still give little improvement — once a near-optimal solution is found, the
branch&bound algorithm tends to get stuck.

CPLEX mitigates this problem with its branch&cut algorithm and a very
good implementation. However, it can not take advantage of any specialised
knowledge of the problem, only the basic linear program representation. Thus it
takes much more time to produce first good results. Despite taking advantage
of multi-core processing, it does not scale with increasing graph sizes as well as
our simple algorithms. Furthermore, Figure 5(e) reveals one problem specific to
linear programming. When increasing the number of colours allowed, obtaining
small interferences gets easier. But this introduces additional constraints in the
linear program, thus increasing the complexity for a solver.

To sum up, which solution to choose depends on your needs. If its vital to
obtain optimal results, the graph is small or you can wait a very long time for
a colouring, you should go with linear program. For big graphs or short dead-
lines the other solutions are preferable, but come at a cost of probably slightly
suboptimal interferences.

Above observations are valid only for the very particular case of the simple
interference function and very sparse graphs. The average degree in Delaunay
graph converges to 6. Proposed algorithms also work quite well for denser graphs.
Figure 5(f) plots interferences for different numbers of colors allowed found by
the programs for an Erdös-Rényi graph with n=500 and p=0.1. This gives us
an average degree of 50. Both branch&bound and heuristic programs achieve
acceptable, and nearly identical, results. But the sheer number of constraints
renders the linear program nearly unusable.

5 Conclusion, Open Problems and Future Directions

In this paper, we introduced and studied a new colouring problem, Weighted
Improper colouring. Given a graph G, a weight function w : E → R∗+ and
a threshold value t ∈ R+, the problem is to determine the minimum number of
colours needed to colour G in such a way that, for every vertex u ∈ V ,∑

v∈N(u)|c(v)=c(u)

w(u, v) ≤ t.

This problem is motivated by the design of telecommunication antenna network
in which the interferences between two nodes depends on different factors and
can take various values. For each node, the sum of the interference it receives
should be less than a given threshold value.

We first give general bounds on the chromatic number. We then study the
particular case of square, triangular and hexagonal grids. For these graphs, we
provide their chromatic number for all possible values of t. Finally, we propose
a heuristic and a branch&bound algorithm to find good solutions of the prob-
lem. We compare their results with the one of an integer program on cell-like
networks, Poisson Voronoi tessellations.
Open problems and future directions. A large number of problems remain:



– We plan to determine for which graphs other than complete graphs with a
uniform weight function the Brook’s like bound is tight.

– For the study of the grid graphs, we considered a specific function where
node at distance one interfere by 1 and nodes at distance 2 by 1/2. Other
weight functions should be considered. e.g. 1/d2, where d is the distance
between nodes.

– Other families of graphs could be considered, for example Hypercubes.
– We are working on the study of specific weight functions with only two kinds

of weights 1 and ∞. Note that we proved in Section 2.2 that all instances
of the Threshold Improper Colouring can be reduced to an instance
with only these two weights. The problem then boils down to a combination
of a proper and a classic improper colouring for these graphs. We think that
for a high density of edges with weight 1, the problem may be equivalent to
considering only the improper colouring.
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Fig. 6. Construction of Gi+1 from Gi using edge (u, v) with k = 4. Dashed edges
represent edges with infinite weights.

A Proofs of Section General Results

Proof of Lemma 1:

Proof. ⇐ If there is a weighted t-improper k-colouring of G′, then it is easy to
get a weighted t-improper k-colouring of G choosing, for each node u ∈ V \ V ′,
a colour different than colours of its neighbours. It is always possible because
d(u) ≤ k − 1.
⇒ If there is a weighted t-improper k-colouring of G, then there is a weighted
t-improper k-colouring of G′ choosing ∀ ∈ V ′, cG′(v) = cG(v). ut

Proof of Theorem 2:

Proof. Let Gk−1
min = G[E\{

⋃
v∈V E

k−1
min(v)}]. Observe that the maximum degree

of a vertex in Gk−1
min ≤ k − 1. Consequently, Gk−1

min admits a k-proper colouring c
of its vertices.

Observe that the maximum interference of a vertex v in G when G is coloured
by the colouring c is exactly maxv∈V w(Ek−1

min(v)) and the result follows. ut

A.1 Transformation

In this section, we prove that the Threshold Improper Colouring prob-
lem can be transformed into a problem mixing proper and improper colour-
ing. More precisely, given an edge-weighted graph G = (V,E,w) such that
∀e ∈ E, w(e) ∈ N ∪ {∞}, and a positive integer k, the problem of com-
puting ωwk (G) can be transformed into the problem of computing ωwk (G∗ =
(V ∗, E∗, w∗)) such that for any e ∈ E∗, w∗(e) ∈ {1,∞}. We first describe
how to construct the graph G∗ proving also that the desired property on the
weights is always verified. Then, we prove that the two problems are equiva-
lent.

Let G = (V,E,w) be an edge-weighted graph such that ∀e ∈ E, w(e) ∈ N ∪
{∞}, and let k be a positive integer. We will construct the graphs Gi+1 from Gi,
for i = 0 . . . s with G0 = G. We prove in Lemma 2 that there exists a finite integer
s such that Gs+1 = (V s+1, Es+1, ws+1) verifying that ∀e ∈ Es+1, ws+1(e) ∈



{1,∞}. We set G∗ = Gs+1. Then we prove in Theorem 9 that ωwk (G) = ωw
∗

k (G∗).
We first describe the construction of the graph Gi, 0 ≤ i ≤ s+ 1.

Consider the graph Gi = (V i, Ei, wi), 0 ≤ i ≤ s. Let us define wimax(Gi) =
maxe∈Ei{w(e) | wi(e) 6= ∞}. If ∀e ∈ Ei, wi(e) = ∞, then it is done. If there is
at least one edge e ∈ Ei such that wi(e) 6= ∞ and wimax = 1, then it is done.
Otherwise, there exists (u, v) ∈ Ei such that 2 ≤ wi(u, v) <∞.

Let K1
k−1 and K2

k−1 be two complete graphs such that ∀e ∈ E(K1
k−1) ∪

E(K2
k−1), wi+1(e) =∞. We construct the graph Gi+1 = (V i+1, Ei+1, wi+1) with

V i+1 = V i ∪ V (K1
k−1) ∪ V (K2

k−1) ∪ {u′, v′} and Ei+1 = Ei ∪ F . ∀x ∈ V (K1
k−1),

∀y ∈ {u, u′}, (x, y) ∈ F with wi+1(x, y) = ∞. ∀x ∈ V (K2
k−1), ∀y ∈ {v, v′},

(x, y) ∈ F with wi+1(x, y) =∞. (u, v′) ∈ F with wi+1(u, v′) = 1, and (u′, v) ∈ F
with wi+1(u′, v) = 1. Finally ∀e ∈ V i\{(u, v)}, wi+1(e) = wi(e) and wi+1(u, v) =
wi(u, v)− 1. Figure 6 shows the transformation of edge (u, v) ∈ Ei to get Gi+1

with k = 4.

Lemma 2. There exists a finite integer s such that Gs+1 = (V s+1, Es+1, ws+1)
is such that ∀e ∈ Es+1, ws+1(e) ∈ {1,∞}.

Proof. Given Gi = (V i, Ei, wi), we define the function f as follows: f(Gi) =∑
{(x,y)∈Ei|wi(x,y) 6=∞}(w

i(x, y)−1). We will prove that if f(Gi) > 0, then f(Gi+1) =
f(Gi) − 1. Consider i ≥ 1. We assume that f(Gi) > 0, that is there exists an
edge (ui, vi) ∈ Ei such that wi(ui, vi) ≥ 2. This edge will be used to transform
the graph (Figure 6). We have ∀e ∈ Ei \ {(ui, vi)}, wi+1(e) = wi(e). Further-
more ∀e ∈ Ei+1 \Ei, wi+1(e) ∈ {1,∞}, and so these edges do not contribute to
f(Gi+1). Finally wi+1(u, v) = wi(u, v)− 1, and so we get f(Gi+1) = f(Gi)− 1.
Since f(G0) is a finite integer, there exists a finite integer s such that f(Gs+1) =
0. It means that Gs+1 is such that ∀e ∈ Es+1, ws+1(e) ∈ {1,∞} by definition
of the function f .

ut

Theorem 9. Let G = (V,E,w) be an edge-weighted graph such that ∀e ∈ E,
w(e) ∈ N ∪ {∞}, and a positive integer k. Let G∗ = (V ∗, E∗, w∗) = Gs+1 be the
edge-weighted graph constructed from G verifying that ∀e ∈ E∗, w∗(e) ∈ {1,∞}.
Then ωwk (G) = ωwk (G∗).

Proof. Consider the graphs Gi = (V i, Ei, wi) and Gi+1 = (V i+1, Ei+1, wi+1),
0 ≤ i ≤ s. (u, v) ∈ Ei denotes the edge used to get Gi+1 in the transformation.
We will prove that, ∀i ∈ {0, . . . , s}, ωwk (Gi) = ωwk (Gi+1).
⇒ Suppose that there exists a weighted t-improper k-colouring of Gi. ∀x ∈

V i, cGi(x) denotes the colour of x and dGi(x) =
∑
{y∈N(x)|cGi (y)=cGi (x)} w

i(x, y).
By assumption dGi(x) ≤ t, ∀x ∈ V i. We now assign colours to nodes of Gi+1.
First ∀x ∈ V i, cGi+1(x) = cGi(x) (recall that V i ⊂ V i+1). We assign to the
nodes of K1

k−1, k − 1 different colours, each different than cGi+1(u). Formally
∀x, y ∈ V (K1

k−1), x 6= y, then cGi+1(x) 6= cGi+1(y), cGi+1(x) 6= cGi+1(u),
and cGi+1(y) 6= cGi+1(u). Furthermore, cGi+1(u′) = cGi+1(u). Then we assign
to the nodes of K2

k−1, k − 1 different colours, each different than cGi+1(v).
Formally ∀x, y ∈ V (K2

k−1), x 6= y, then cGi+1(x) 6= cGi+1(y), cGi+1(x) 6=



cGi+1(v), and cGi+1(y) 6= cGi+1(v). Furthermore, cGi+1(v′) = cGi+1(v). By con-
struction, we have dGi+1(u′) ≤ dGi+1(u) and dGi+1(v′) ≤ dGi+1(v). Furthermore
∀x ∈ V (K1

C−1) ∪ V (K2
C−1), dGi+1(x) = 0. Finally dGi+1(u) = diG(u) because

if cGi+1(u) = cGi+1(v), then cGi+1(u) = cGi+1(v′), and the two adjacent edges
have weights wi(u, v)− 1 and 1, respectively (other contributions to this penal-
ity do not change). Similarly dGi+1(v) = diG(v). Thus there exists a weighted
t-improper k-colouring of Gi+1.
⇐ Suppose that there exists a weighted t-improper k-colouring of Gi+1.

∀x ∈ V i+1, cGi+1(x) denotes the colour of x. ∀x ∈ V i+1, we set dGi+1(x) =∑
{y∈N(x)|cGi+1 (y)=cGi+1 (x)} w

i(x, y). By assumption dGi+1(x) ≤ t, ∀x ∈ V i+1.
By construction dGi+1(u′) ≤ dGi+1(u) and ∀x ∈ V (K1

k−1)∪V (K2
k−1), dGi+1(x) =

0 because of the infinite weights at adjacent edges. We now assign to nodes of
Gi the same colours than in Gi+1. Formally, ∀x ∈ V i, ciG(x) = cGi+1(x). By
assumption we get that ∀x ∈ V i \ {u, v}, diG(x) ≤ t. Finally diG(u) = dGi+1(u)
because if edge (u, v) of weight wi(u, v)− 1 participates to dGi+1(u), then edge
(u, v′) participates also to dGi+1(u) (wi+1(u, v′) = 1); then (u, v) participates
to diG(u) with weight wi(u, v) (other contributions do not change). Similarly
diG(v) = dGi+1(v). Thus there exists a weight t-improper k-colouring of G. ut

In the worst case, the number of nodes of G∗ is m(wmax−1)(n+2k) and the
number of edges of G∗ is m+m(wmax − 1)k(k + 1) with n = |V | and m = |E|.
The worst case is when each edge e ∈ E is such that w(e) = wmax even if in
that case we can do a simpler transformation.

In conclusion, this construction permits to transform the Threshold Im-
proper Colouring problem into a problem mixing proper and improper colour-
ing. Indeed the problem remains to find the minimum l such that a (non-
weighted) l-improper k-colouring of G∗ exists with the constraint that some
subgraphs of G∗ must admit a proper colouring. The equivalence of the two
problems have been proved to integers weights but it is possible to adapt the
transformation taking into consideration rational weights.

B Integer Programming Models

It is not difficult to model both problems Weighted Improper Colouring
and Threshold Improper Colouring by integer programming formulations.

Given an edge-graph G = (V,E,w), w : E → R∗+, and a positive real thresh-
old t, we model Weighted Improper Colouring by using two kinds of vari-
ables. Variables xip indicate if vertex i is coloured p and variables cp indicate if
colour p is used, for every 1 ≤ i ≤ n and 1 ≤ p ≤ l, where l is an upper bound
for the number of colours needed in an optimal weighted t-improper colouring
of G. The model follows:



min
∑
p c

p

subject to ∑
j 6=i w(i, j)xjp ≤ t+M(1− xip) (∀i ∈ V,∀p ∈ {1, . . . , l})

cp ≥ xip (∀i ∈ V,∀p ∈ {1, . . . , l})∑
p xip = 1 (∀i ∈ V )

xip ∈ {0, 1} (∀i ∈ V,∀p ∈ {1, . . . , l})
cp ∈ {0, 1} (∀p ∈ {1, . . . , l})

where M is a large integer. For instance, one may choose M ≥
∑

(u,v)∈E w(u, v).
This model corresponds to a simpler case of the one presented in [1], Section 3.5.

For Threshold Improper Colouring, given an edge-weighted graph G =
(V,E,w), w : E → R∗+, and a positive integer k, we do not need the variables
cp to model it, since the maximum number of colours k is fixed. Consequently,
the model we consider is:

min t
subject to ∑

j 6=i w(i, j)xjp ≤ t+M(1− xip) (∀i ∈ V,∀p ∈ {1, . . . , k})∑
p xip = 1 (∀i ∈ V )

xip ∈ {0, 1} (∀i ∈ V,∀p ∈ {1, . . . , k})

C More on the Levelling Heuristic

The pseudo-code of the heuristic we developed in shown in Algorithm 1. Two
important auxiliary arrays are used: I and I ′. Iv,c stores what is the potential
interference for color c in node v. I ′v stores the sum of all potential interferences
in node v. They are initialized to zero in lines 3-6 and are updated whenever a
vertex is coloured in lines 16-18. I ′ is the base for the order in which vertices
are coloured — in lines 10-11 we choose a random vertex v among the ones with
greatest I ′v. Then, in lines 12-13, we try each possible colour c in order given by
non-decreasing values of Iv,c. The condition in line 14 checks if colouring v with
colour c would induce threshold greater than tt in any node. If not, v is coloured
with c, I and I ′ get updated and we exit the loop at line 13.



Algorithm 1: Levelling — randomised greedy heuristic
1 tt ←− ∞
2 foreach try ∈ {0, 1, . . . ,max tries} do
3 foreach v ∈ V do
4 foreach k ∈ {1, 2, . . . , K} do
5 Iv,c ←− 0

6 I ′
v ←− 0

7 T ←− V
8 possible ←− true
9 while T 6= ∅ ∧ possible do

10 T ′ ←− {x ∈ T : I ′
x = max I ′}

11 v ←− random element from T ′

12 C ←− (1, 2, . . . , k) sorted to give Iv,i ≤ Iv,i+1

13 foreach c ∈ C do
14 if v can be coloured c then
15 colour v with colour c
16 foreach w ∈ N(v) do
17 Iw,c ←− Iw,c + f(v, w)
18 I ′

w ←− Iw + f(v, w)

19 break

20 if n was coloured then
21 T ←− T \ v

22 else
23 possible ←− false

24 if possible then
25 tt ←− tt − ε


