Shape Reconstruction

Pierre Alliez Inria

Ínría_

Outline

- Sensors
- Problem statement
- Computational Geometry
 - Convex hull, Voronoi/Delaunay, alpha-shapes

nría

SENSORS

(nría_

Laser scanning

Ínría

Car-based Laser

Ínría_

Airborne Lidar

Ínría

Multi-View Stereo (MVS)

Ínría

Depth Sensors

(nría_

PROBLEM STATEMENT

(nría_

Reconstruction Problem

- <u>Input</u>: point set *P* sampled over a surface *S*:
 - Non-uniform sampling
 - With holes
 - With uncertainty (noise)

point set

Output: surface

Approximation of *S* in terms of topology and geometry

Desired:

- Watertight
- Intersection free

reconstruction

surface

Ill-posed Problem

Many candidate surfaces for the reconstruction problem!

Ill-posed Problem

Many candidate surfaces for the reconstruction problem! How to pick?

Priors

Smooth

Piecewise Smooth

"Simple"

Ínría_

Surface Smoothness Priors

Local fitting No control away from data Solution by interpolation Global Smoothness

Global: linear, eigen, graph cut, ... Robustness to missing data

Sharp near features Smooth away from features

Ínría

Domain-Specific Priors

Ínría

Warm-up

Smooth

Piecewise Smooth

"Simple"

CONVEX HULL

(nría_

Convex Hull

(nría_

VORONOI / DELAUNAY

Ínría

Voronoi Diagram

Let $\mathcal{E} = {\mathbf{p_1}, \ldots, \mathbf{p_n}}$ be a set of points (so-called sites) in \mathbb{R}^d . We associate to each site $\mathbf{p_i}$ its Voronoi region $V(\mathbf{p_i})$ such that:

$$V(\mathbf{p}_{\mathbf{i}}) = \{ \mathbf{x} \in \mathbb{R}^{d} : \|\mathbf{x} - \mathbf{p}_{\mathbf{i}}\| \le \|\mathbf{x} - \mathbf{p}_{\mathbf{j}}\|, \forall j \le n \}.$$

Delaunay Triangulation

Dual structure of the Voronoi diagram.

The Delaunay triangulation of a set of sites E is a simplicial complex such that k+1 points in E form a Delaunay simplex if their Voronoi cells have nonempty intersection

Delaunay-based

Key idea: assuming dense enough sampling, reconstructed triangles are Delaunay triangles.

First define

Medial axis Local feature size Epsilon-sampling

nnía

Alpha-Shapes [Edelsbrunner, Kirkpatrick, Seidel]

Segments: point pairs that can be touched by an empty disc of radius alpha.

Alpha-Shapes

- In 2D: family of piecewise linear simple curves constructed from a point set P.
- Subcomplex of the Delaunay triangulation of P.
- Generalization of the concept of the convex hull.

Alpha-Shapes

 $\alpha = 0$ Alpha controls the desired level of detail.

 $\alpha = \infty$

Ínría

Ínría

MEDIAL AXIS

(nría_

For a shape (curve/surface) a *Medial Ball* is a circle/sphere that only meets the shape tangentially, in at least two points.

For a shape (curve/surface) a *Medial Ball* is a circle/sphere that only meets the shape tangentially, in at least two points.

The centers of all such balls make up the *medial axis/skeleton*.

Ínría

Ínría_

(nría_

<u>Observation*</u>:

For a reasonable point sample, the medial axis is wellsampled by the Voronoi vertices.

*In 3D, this is only true for a subset of the Voronoi vertices - the poles.

Voronoi & Medial Axis

(nría_

Local Feature Size

Ínría_

Epsilon-Sampling

Ínría

Crust [Amenta et al. 1998]

If we consider the Delaunay Triangulation of a point set, the shape boundary can be described as a subset of the Delaunay edges.

- Q: How do we determine which edges to keep?
- A: Two types of edges:
 - 1. Those connecting adjacent points on the boundary
 - 2. Those traversing the shape.

Discard those that traverse.

Crust [Amenta et al. 1998]

Observation:

Edges that traverse cross the medial axis.

Although we don't know the axis, we can sample it with the Voronoi vertices.

Edges that traverse must

be near the Voronoi vertices.

Crust [Amenta et al.]

Ínría

Delaunay Triangulation

(nría_

Delaunay Triangulation & Voronoi Diagram

(nría_

(nría_

Refined Delaunay Triangulation

Ínría_

(nría_

Ínría_

Crust (variant)

<u>Algorithm</u>:

- 1. Compute the Delaunay triangulation.
- 2. Compute the Voronoi vertices
- Keep all edges for which there is a circle that contains the edge but no Voronoi vertices.

