Principal Component Analysis

Linear Least Squares Approximation

Pierre Alliez Inria Sophia Antipolis

Definition (point set case)

Given a point set $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{R}^d$, linear least squares fitting amounts to find the linear subspace of \mathbb{R}^d which **minimizes the sum of squared distances** from the points to their projection onto this linear sub-space.

Definition (point set case)

- This problem is equivalent to search for the linear sub-space which maximizes the variance of projected points, the latter being obtained by eigen decomposition of the covariance (scatter) matrix.
- Eigenvectors corresponding to large eigenvalues are the directions in which the data has strong component, or equivalently large variance. If eigenvalues are the same there is no preferable sub-space.

PCA – the general idea

PCA finds an orthogonal basis that best represents given data set.

• The sum of distances² from the x' axis is minimized.

PCA – the general idea

PCA finds an orthogonal basis that best represents given data set.

• PCA finds a best approximating plane (in terms of $\Sigma distances^2$)

Notations

• Denote our data points by $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in R^d$

The origin of the new axes

- The origin is zero-order approximation of our data set (a point)
- It will be the center of mass:

$$\mathbf{m} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

It can be shown that:

$$\mathbf{m} = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{x}\|^{2}$$

Scatter matrix

Denote
$$y_i = x_i - m$$
, $i = 1, 2, ..., n$
 $S = YY^T$

where Y is $d \times n$ matrix with \mathbf{y}_k as columns (k = 1, 2, ..., n)

$$S = \begin{pmatrix} y_{1}^{1} & y_{2}^{1} & \sqcup & y_{n}^{1} \\ y_{1}^{2} & y_{2}^{2} & y_{n}^{2} \\ M & M & M \\ y_{1}^{d} & y_{2}^{d} & \sqcup & y_{n}^{d} \end{pmatrix} \begin{pmatrix} y_{1}^{1} & y_{1}^{2} & \sqcup & y_{1}^{d} \\ y_{2}^{1} & y_{2}^{2} & \sqcup & y_{2}^{d} \\ M & & M \\ y_{n}^{1} & y_{n}^{2} & \sqcup & y_{n}^{d} \end{pmatrix} \\ \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \\ \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \\ \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \\ \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \\ \mathbf{Y} & \mathbf{Y}$$

Variance of projected points

- In a way, S measures variance (= scatterness) of the data in different directions.
- Let's look at a line L through the center of mass m, and project our points x_i onto it. The variance of the projected points x'_i is:

$$\operatorname{var}(L) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}'_{i} - \mathbf{m}||^{2}$$

Variance of projected points

Given a direction \mathbf{v} , $||\mathbf{v}|| = 1$, the projection of \mathbf{x}_i onto $L = \mathbf{m} + \mathbf{v}t$ is:

$$||\mathbf{x}'_i - \mathbf{m}|| = \langle \mathbf{v}, |\mathbf{x}_i - \mathbf{m} \rangle ||\mathbf{v}|| = \langle \mathbf{v}, |\mathbf{y}_i \rangle = \mathbf{v}^T \mathbf{y}_i$$

Variance of projected points

So,

$$\mathbf{var}(L) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}' - \mathbf{m}||^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^{\mathrm{T}} \mathbf{y}_{i})^{2} = \frac{1}{n} ||\mathbf{v}^{\mathrm{T}} Y||^{2} =$$
$$= \frac{1}{n} ||Y^{T} \mathbf{v}||^{2} = \frac{1}{n} \langle Y^{T} \mathbf{v}, Y^{\mathrm{T}} \mathbf{v} \rangle = \frac{1}{n} \mathbf{v}^{\mathrm{T}} Y Y^{T} \mathbf{v} = \frac{1}{n} \mathbf{v}^{\mathrm{T}} S \mathbf{v} = \frac{1}{n} \langle S \mathbf{v}, \mathbf{v} \rangle$$

$$\sum_{i=1}^{n} (\mathbf{v}^{T} \mathbf{y}_{i})^{2} = \sum_{i=1}^{n} \left(\begin{pmatrix} v^{1} & v^{2} & \bot & v^{d} \end{pmatrix} \begin{pmatrix} y_{i}^{1} \\ y_{i}^{2} \\ M \\ y_{i}^{d} \end{pmatrix} \right)^{2} = \left\| \begin{pmatrix} v^{1} & v^{2} & \bot & v^{d} \end{pmatrix} \begin{pmatrix} y_{1}^{1} & y_{2}^{1} & \bot & y_{n}^{1} \\ y_{1}^{2} & y_{2}^{2} & y_{n}^{2} \\ M & M & M \\ y_{1}^{d} & y_{2}^{d} & \bot & y_{n}^{d} \end{pmatrix} \right\|^{2} = \left\| \mathbf{v}^{T} \mathbf{Y} \right\|^{2}$$

11

Directions of maximal variance

- So, we have: $var(L) = \langle Sv, v \rangle$
- Theorem:

Let
$$f: \{\mathbf{v} \in \mathbb{R}^d \mid //\mathbf{v}//=1\} \rightarrow \mathbb{R}$$
,

 $f(\mathbf{v}) = \langle S\mathbf{v}, \mathbf{v} \rangle$ (and *S* is a symmetric matrix).

Then, the extrema of f are attained at the eigenvectors of S.

 So, eigenvectors of S are directions of maximal/minimal variance.

Summary so far

- We take the centered data points $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n \in R^d$
- Construct the scatter matrix $S = YY^T$
- S measures the variance of the data points
- Eigenvectors of *S* are directions of max/min variance.

Scatter matrix - eigendecomposition

- *S* is symmetric
- \Rightarrow S has eigendecomposition: $S = VAV^{T}$

The eigenvectors form orthogonal basis

Principal components

- Eigenvectors that correspond to big eigenvalues are the directions in which the data has strong components (= large variance).
- If the eigenvalues are more or less the same there is no preferable direction.

Principal components

- There's no preferable direction
- *S* looks like this:

$$\begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix}$$

Any vector is an eigenvector

- There is a clear preferable direction
- *S* looks like this:

$$V egin{pmatrix} \lambda & \ & \ & \mu \end{pmatrix} V^T$$

 μ is close to zero, much smaller than λ.

This line segment approximates the original data set

The projected data set approximates the original data set

For approximation

In general dimension d, the eigenvalues are sorted in descending order:

 $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$

- The eigenvectors are sorted accordingly.
- To get an approximation of dimension d' < d, we take the d' first eigenvectors and look at the subspace they span (d' = 1 is a line, d' = 2 is a plane...)</p>

For approximation

To get an approximating set, we project the original data points onto the chosen subspace:

$$\mathbf{x}_{i} = \mathbf{m} + \alpha_{1}\mathbf{v}_{1} + \alpha_{2}\mathbf{v}_{2} + \ldots + \alpha_{d}\mathbf{v}_{d} + \ldots + \alpha_{d}\mathbf{v}_{d}$$

Projection:

$$\mathbf{x}_{i}' = \mathbf{m} + \alpha_{1}\mathbf{v}_{1} + \alpha_{2}\mathbf{v}_{2} + \dots + \alpha_{d}\mathbf{v}_{d} + \mathbf{0}\mathbf{v}_{d+1} + \dots + \mathbf{0}\mathbf{v}_{d}$$

Optimality of approximation

The approximation is optimal in least-squares sense. It gives the minimal of:

$$\sum_{k=1}^{n} \left\| \mathbf{x}_{k} - \mathbf{x}_{k}^{\prime} \right\|^{2}$$

The projected points have maximal variance.

PCA on Point Sets

$$S = \begin{pmatrix} y_1^1 & y_2^1 & \sqcup & y_n^1 \\ y_1^2 & y_2^2 & & y_n^2 \\ M & M & M \\ y_1^d & y_2^d & \sqcup & y_n^d \end{pmatrix} \begin{pmatrix} y_1^1 & y_1^2 & \sqcup & y_1^d \\ y_1^1 & y_2^2 & \sqcup & y_2^d \\ M & & M \\ y_n^1 & y_n^d & \sqcup & y_n^d \end{pmatrix}$$

<u>demo</u>

PCA on Geometric Primitives?

Coordinate relative to center of mass