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Definition (point set case)

m Given a point set Xy, X,, ..., X, € R, linear least
squares fitting amounts to find the linear sub-
space of RY which minimizes the sum of
sqguared distances from the points to their
projection onto this linear sub-space.



Definition (point set case)

m This problem iIs equivalent to search for the
linear sub-space which maximizes the variance
of projected points, the latter being obtained by
eigen decomposition of the covariance (scatter)
matrix.

m Eigenvectors corresponding to large
eigenvalues are the directions in which the data
has strong component, or equivalently large
variance. If eigenvalues are the same there is no
preferable sub-space.



PCA — the general idea

m PCA finds an orthogonal basis that best represents given data set.

m The sum of distances? from the x’ axis is minimized.



PCA — the general idea

m PCA finds an orthogonal basis that best represents given data set.

3D point set

m PCA finds a best approximating plane (in terms of Xdistances?)



Notations

= Denote our data points by X, X,, ..., X. € R’
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The origin of the new axes

m The origin Is zero-order approximation of our
data set (a point)

m |t will be the center of mass:

m = %anxi
i—1

m |t can be shown that: o

m = argminZn:Hxi x|
X i=1




Scatter matrix

m Denote y,=x,—m, i=12 ..,n

S =YY'

where Y Is dxn matrix with y, as columns (x=1 2, ... n)
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Variance of projected points

m |n a way, S measures variance (= scatterness) of the data in different
directions.

m Let's look at a line L through the center of mass m, and project our
points x; onto it. The variance of the projected points x’; IS:

var(L) = > IIx; -m|f
=1

L

Original set Small variance Large variance



Variance of projected points

m Given a direction v, ||v|| = 1, the projection of x;
ontoL=m + vt Is:

Ix{—mll=<v, x,—m>[[v][=<v,y>=V'y,
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Variance of projected points

m SO,

var(L) = an -mf ——z(v V)P =LVTY | =

=LY'v|P=3<Y"v, Y'v>=ivTYY'v=1v'Sy=1<Sy, v>
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Directions of maximal variance

m So, we have: var(L) =<Sv, v>
m Theorem:
Let f:{veRY | ||V|]|=1} >R,
f (v) = <Sv, v> (and S is a symmetric matrix).

Then, the extrema of f are attained at the eigenvectors of S.

m S0, eigenvectors of S are directions of maximal/minimal
variance.
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Summary so far

We take the centered data points y,, Y., ..., Y, € R’
Construct the scatter matrix S = YY'

S measures the variance of the data points
Eigenvectors of S are directions of max/min variance.
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Scatter matrix - eigendecomposition

m SIS symmetric
= S has eigendecomposition: S =VAV'

T N —

The eigenvectors form
orthogonal basis
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Principal components

m Eigenvectors that correspond to big eigenvalues
are the directions in which the data has strong

components (= large variance).

m If the eigenvalues are more or less the same —
there Is no preferable direction.
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Principal components

© O

m There’s no preferable
direction

m S looks like this:

A
A

m  Any vector is an eigenvector

m There is a clear preferable
direction

m S looks like this:

V A !
y7;

m L is close to zero, much
smaller than .
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For approximation

This line segment approximates
the original data set

v

The projected data set
approximates the original data set
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For approximation

m In general dimension d, the eigenvalues are
sorted in descending order:

M >2 ... 2 A
m The eigenvectors are sorted accordingly.

m To get an approximation of dimension d’< d, we
take the d’ first eigenvectors and look at the
subspace they span (d’=1isaline,d’=2is a
plane...)

18



For approximation

m T0 get an approximating set, we project the
original data points onto the chosen subspace:

Xi =M+ o Vi + oV, ...t oV .. T ogVy
Projection:
XP=m+aqV,+ oV, +...+ o,V +0v,; +...+ 0-vy
S— 7

—~
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Optimality of approximation

m The approximation Is optimal in least-squares
sense. It gives the minimal of:

n
2 Ixe —x
k=1

m The projected points have maximal variance.
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Original set projection on arbitrary line projection on v, axis



PCA on Point Sets
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demos/pca_2d.exe

PCA on Geometric Primitives?
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