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Definition (point set case)

 Given a point set x1, x2, …, xn  R
d
, linear least

squares fitting amounts to find the linear sub-

space of R
d

which minimizes the sum of

squared distances from the points to their

projection onto this linear sub-space.
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Definition (point set case)

 This problem is equivalent to search for the

linear sub-space which maximizes the variance

of projected points, the latter being obtained by

eigen decomposition of the covariance (scatter)

matrix.

 Eigenvectors corresponding to large

eigenvalues are the directions in which the data

has strong component, or equivalently large

variance. If eigenvalues are the same there is no

preferable sub-space.
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 PCA finds an orthogonal basis that best represents given data set.

 The sum of distances2 from the x’ axis is minimized.

PCA – the general idea
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PCA – the general idea

 PCA finds an orthogonal basis that best represents given data set.

 PCA finds a best approximating plane (in terms of distances2)

3D point set
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Notations

 Denote our data points by  x1, x2, …, xn  R
d
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 The origin is zero-order approximation of our 

data set (a point)

 It will be the center of mass:

 It can be shown that:

The origin of the new axes
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Scatter matrix

 Denote  yi = xi – m,     i = 1, 2, …, n

where Y is dn matrix with yk as columns (k = 1, 2, …, n)

T
S YY

1 1 1 1 2

1 2 1 1 1

2 2 2 1 2

1 2 2 2 2

1 2

1 2

d

n

d

n

d d d d

n n n n

y y y y y y

y y y y y y
S

y y y y y y

  
  
  
  
    
  

L L

L

M M M M M

L L

Y Y
T



9

Variance of projected points

 In a way, S measures variance (= scatterness) of the data in different 

directions.

 Let’s look at a line L through the center of mass m, and project our 

points xi onto it. The variance of the projected points x’i is:  

Original set Small variance Large variance
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Variance of projected points

 Given a direction v, ||v|| = 1, the projection of xi

onto L = m + vt is:
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Variance of projected points

 So,
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Directions of maximal variance

 So, we have:   var(L) = <Sv, v>

 Theorem: 

Let f : {v  R
d

|  ||v|| = 1}  R,  

f (v) = <Sv, v> (and S is a symmetric matrix).

Then, the extrema of f are attained at the eigenvectors of S.

 So, eigenvectors of S are directions of maximal/minimal 

variance.
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Summary so far

 We take the centered data points y1, y2, …, yn  R
d

 Construct the scatter matrix

 S measures the variance of the data points

 Eigenvectors of S are directions of max/min variance.
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Scatter matrix - eigendecomposition

 S is symmetric

 S has eigendecomposition:  S = VV
T

S = v2v1 vd
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Principal components

 Eigenvectors that correspond to big eigenvalues 

are the directions in which the data has strong 

components (= large variance).

 If the eigenvalues are more or less the same –

there is no preferable direction. 
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Principal components

 There’s no preferable 

direction

 S looks like this:

 Any vector is an eigenvector 














 There is a clear preferable 

direction

 S looks like this:

  is close to zero, much 
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For approximation
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For approximation

 In general dimension d, the eigenvalues are 

sorted in descending order:

1  2  …  d

 The eigenvectors are sorted accordingly.

 To get an approximation of dimension d’ < d, we 

take the d’ first eigenvectors and look at the 

subspace they span (d’ = 1 is a line, d’ = 2 is a 

plane…)
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For approximation

 To get an approximating set, we project the 

original data points onto the chosen subspace:

xi = m + 1v1 + 2v2 +…+ d’vd’ +…+dvd

Projection:

xi’ = m + 1v1 + 2v2 +…+ d’vd’ +0vd’+1+…+ 0 vd
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Optimality of approximation

 The approximation is optimal in least-squares 

sense. It gives the minimal of:

 The projected points have maximal variance.
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PCA on Point Sets
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PCA on Geometric Primitives?
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Coordinate relative to center of mass 


