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Sample Problems



Line Segment Intersection

•Theorem: Segments (p1,p2) and (p3,p4) 

intersect in their interior iff p1 and p2 are 

on different sides of the line p3p4 and p3

and p4 are on different sides of the line 

p1p2.

•This can be checked by computing the 

orientations of four triangles. Which ?

•Special cases:

p4

p2

p3

p1



Computing the Intersection
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Question: What is the meaning of other 

values of s and t ?

Solve (2D) linear vector equation for t and s:
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Nearest Neighbor

•Problem definition:

• Input: a set of points (sites) P in the 

plane and a query point q.

• Output: The point pP closest to q

among all points in P.

•Rules of the game:

• One point set, multiple queries

• Applications: 

• Store Locator

• Cellphones

P

qp



The Voronoi  Diagram

•Problem definition:

• Input: a set of points (sites) P in the 

plane.

• Output: A planar subdivision S into 

cells per site. The cell corresponding 

to pP contains all the points to which 

p is the closest.

S

P



Point Location

•Problem definition:

• Input: A partition S of the 

plane into cells and a query 

point p.

• Output:  The cell C  S containing p.

•Rules of the game:

• One partition, multiple 

queries

•Applications: 

• Nearest neighbor

• State locator

S

p

C



Point in Polygon

P

•Problem definition:

• Input: a polygon P in the plane and a 

query point p.

• Output: true if pP, else false.

•Rules of the game:

• One polygon, multiple 

queries

p



CH(S)

Convex Hull

S

•Problem definition:

• Input: a set of points S in the plane.

• Output: Minimal convex polygon 

containing S.



Shortest Path

•Problem definition:

• Input: Obstacles locations 

and query endpoints s and t.

• Output: the shortest path 

between s and t that 

avoids all obstacles.

•Rules of the game: One 

obstacle set, multiple queries.

•Application: Robotics.

s

t



P

Range Searching and Counting

•Problem definition:

• Input: A set of points P in the 

plane and a query rectangle R

• Output:  (report) The subset Q  P contained in R.

(count)  The size of Q.
R

Q

•Rules of the game:

• One point set, multiple queries.

•Application: Urban planning.



Visibility

P

•Problem definition:

• Input: a polygon P in the plane and a 

query point p.

• Output: Polygon Q  P, visible to p.

•Rules of the game:

• One polygon, multiple 

queries

•Applications: Security

p

Q



Ray Tracing



Polygons



Polygon Zoo

convex convex

concave non-simple

with hole



Point in Polygon

•Given a polygon P with n sides, 

and a point q, decide whether 

qP.

•Solution A: Count how many 

times a ray r originating at q

intersects P. Then qP iff this 

number is odd. 

•Complexity: O(n)

•Question: Are there special cases ?

P

q

r



Art Gallery Problem

•Given a polygon P, what is the 

minimal number of guards 

required to guard P, and what 

are their locations ?

p

q
p

R

•Given a simple polygon P, 

say that two points p and q

can see each other if the 

open segment pq lies entirely 

within P.

•A point guards a region R  P

if p sees all qR.



Observations

•The entire interior of a 

convex polygon is visible 

from any interior point.

•A star-shaped polygon 

requires only one guard 

located in its kernel.

convex

star-shaped

non star-shaped



Art Gallery Problem – Easy Upper Bound

•n-2 guards suffice:

• Subdivide the polygon into n-2 

triangles (triangulation)

• Place one guard in each triangle.

•Theorem: Any simple planar 

polygon with n vertices has a 

triangulation of size n-2.



Diagonals in Polygons

•A diagonal of a polygon P is a line segment 

connecting two vertices which lies entirely within 

P.

•Question: Why not connect v with the 

second leftmost vertex?

•Theorem: Any polygon with n>3 vertices has a 

diagonal, which may be found in O(n) time.

•Proof: Find the leftmost vertex v. Connect its 

two neighbors u and w. If this is not a diagonal 

there are other vertices inside the triangle uvw. 

Connect v with the vertex v’ furthest from the 

segment uw.
v

u

w

v’



O(n2) Polygon Triangulation

•Theorem: Every simple polygon with 

n vertices has a triangulation consisting 

of n-3 diagonals and n-2 triangles.

•Proof: By induction on n:

• Basis: A triangle (n=3) has a 

triangulation (itself) with no diagonals 

and one triangle.

• Induction: for a n+1 vertex polygon, 

construct a diagonal dividing the 

polygon into two polygons with n1 and 

n2 vertices such that n1+n2-2=n. 

Triangulate the two parts of the 

polygon. There are now n1-3+n2-3+1=n-

3 diagonals and n1-2+n2-2=n-2 

triangles. 



Graphs



A

B C

D

E

I

F

L

K

J

H

G

G = <V,E>

V = vertices = 

{A,B,C,D,E,F,G,H,I,J,K,L}

E = edges = 

{(A,B),(B,C),(C,D),(D,E),(E,F),(F,G),

(G,H),(H,A),(A,J),(A,G),(B,J),(K,F),

(C,L),(C,I),(D,I),(D,F),(F,I),(G,K),

(J,L),(J,K),(K,L),(L,I)}     

Vertex degree (valence) = number of edges incident on vertex.

deg(J) = 4, deg(H) = 2

k-regular graph = graph whose vertices all have degree k

A face of a graph is a cycle of vertices/edges which cannot be shortened.

F = faces = 

{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I),

(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G),(A,B,C,D,E,F,G,H)}

Graph Definitions



A graph is connected if there is a path of edges 

connecting every two vertices.

A graph is k-connected if between every two 

vertices  there are k edge-disjoint paths.

A graph G’=<V’,E’> is a subgraph of a graph 

G=<V,E> if V’ is a subset of V and E’ is the subset 

of E incident on V’. 

A connected component of a graph is a maximal 

connected subgraph.

A subset V’ of V is an independent set in 

G if the subgraph it induces does not contain 

any edges of E.

Connectivity



Graph Embedding

A graph is embedded in Rd if each vertex is 

assigned a position in Rd.

Embedding in R2 Embedding in R3



Planar Graphs

Planar Graph Planar Graph

Straight Line Plane Graph

A planar graph is a 

graph whose vertices 

and edges can be 

embedded in R2 such 

that its edges do not 

intersect.

Every planar graph 

can be drawn 

as a straight-line 

plane graph.



Triangulation

A triangulation is a straight line plane 

graph whose faces are all triangles.

A Delaunay triangulation of a set of

points is the unique set of triangles

such that such that the circumcircle of

any triangle does not contain any other 

point.

The Delaunay triangulation avoids long 

and skinny triangles.



Topology

Euler Formula

For a planar graph:

v+f-e = 2c-b

v = # vertices       c = # conn. comp.

f  = # faces           

e = # edges         b = # boundaries

v =12

f = 14

e = 25

c = 1

b = 1 



Convex Hull



CH(S)

Convexity and Convex Hull

•A set S is convex if any pair of points 

p,q  S satisfy pq  S.
p

q

non-convex

q

p

convex
•The convex hull of a set S is:

• The minimal convex set that contains S, i.e. 

any convex set C such that S  C satisfies 

CH(S) C.

• The intersection of all convex sets that 

contain S.

• The set of all convex combinations of piS, 

i.e. all points of the form:

S

p

q

non-convex

q

p

convex

1 1

, 0, 1
n n

i i i i

i i

p  
 

  



CH(S)

Convex Hulls – Some Facts

•The convex hull of a set is unique (up to 

colinearities).

•The boundary of the convex hull of a point set is 

a polygon on a subset of the points.

S



Convex Hull – Naive Algorithm

•Description: 

• For each pair of points construct its 

connecting segment and supporting line.

• Find all the segments whose supporting 

lines divide the plane into two halves, 

such that one half plane contains all the 

other points. 

• Construct the convex hull out of these 

segments. 

•Time complexity: 

• All pairs: 

• Check all points for each pair: O(n)

• Total: O(n3)

2( 1)
( ) ( ) ( )

2 2

n n n
O O O n

  
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Possible Pitfalls

•Degenerate cases – e.g. 3 collinear 

points. Might harm the correctness of 

the algorithm. Segments AB, BC and 

AC will all be included in the convex 

hull.

•Numerical problems – We might conclude 

that none of the three segments belongs to 

the convex hull.

A

B

C



Convex Hull – Graham’s Scan

•Algorithm:

• Sort the points according to their x

coordinates.

• Construct the upper boundary by scanning the 

points in the sorted order and performing 

only “right turns”.

• Construct the lower boundary (with “left 

turns”).

• Concatenate the two boundaries.

•Time Complexity: O(nlogn)

•May be implemented using a stack

•Question: How do we check for “right 

turn” ?



The Algorithm

•Sort the points in increasing order of x-coord: 

p1 ,.., pn.

•Push(S,p1); Push(S,p2);

•For i = 3 to n do

• While Size(S)  2 and Orient(pi,top(S),second(S))  0 

do   Pop(S);

• Push(S,pi);

•Print(S);



Graham’s Scan – Time Complexity

•Sorting – O(n log n)

•If Di is number of points popped on processing pi, 

•Each point is pushed on the stack only once.

•Once a point is popped – it cannot be popped 

again.

•Hence 

1 1

time ( 1)
n n

i i

i i

D n D
 
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1

n

i

i

D n

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Graham’s Scan– a Variant

•Algorithm:
• Find one point, p0, which must be on the 

convex hull.

• Sort the other points by the angle of the rays 
to them from p0.  

• Question: Is it necessary to compute the 
actual angles ?

• Construct the convex hull using one traversal 
of the points.

•Time Complexity: O(n log n)

•Question: What are the pros and cons of 
this algorithm relative to the previous ?



Convex Hull - Divide and Conquer

•Algorithm:
• Find a point with a median x

coordinate (time: O(n))

• Compute the convex hull of 
each half (recursive 
execution)

• Combine the two convex hulls 
by finding common tangents.

This can be done in O(n).

•Complexity: O(nlogn)



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents



Finding Common Tangents

To find lower tangent:

 Find a - the rightmost point of HA

 Find b – the leftmost point of HB

O(n)

 While ab is not a lower tangent for HA and HB, do:

 If ab is not a lower tangent to HA do a = a-1

 If ab is not a lower tangent to HB do b = b-1 



Output-Sensitive Convex Hull Gift Wrapping

•Algorithm:

• Find a point p1 on the convex hull (e.g. the 

lowest point).

• Rotate counterclockwise a line through p1

until it touches one of the other points 

(start from a horizontal orientation).

Question: How is this done ?

• Repeat the last step for the new point.

• Stop when p1 is reached again.

•Time Complexity: O(nh), where n is the input size and h is the 

output (hull) size.



General  Position

•When designing a geometric algorithm, we first make 

some simplifying assumptions, e.g.

• No 3 collinear points.

• No two points with the same x coordinate.

• etc. 

•Later, we consider the general case: 

• How should the algorithm react to degenerate cases ?  

• Will the correctness be preserved ? 

• Will the runtime remain the same ?



Lower Bound for Convex Hull

•A reduction from sorting 

to convex hull is: 

• Given n real values xi, 

generate n 2D points on the 

graph of a convex function, 

e.g. (xi,xi
2).

• Compute the (ordered) 

convex hull of the points.

• The order of the convex 

hull points is the numerical 

order of the xi.

•So CH=(nlgn)



Voronoi Diagram and Delaunay 

triangulation



Voronoi Diagram



Voronoi Diagram

 The collection of the non-empty Voronoi regions and their faces, 

together with their incidence relations, constitute a cell complex 

called the Voronoi diagram of E.

 The locus of points which are equidistant to two sites pi and pj is 

called a bisector, all bisectors being affine subspaces of IRd (lines 

in 2D).

demo



Voronoi Diagram

 A Voronoi cell of a site pi defined as the intersection of 

closed half-spaces bounded by bisectors. Implies: All 

Voronoi cells are convex.

demo



Voronoi Diagram

 Voronoi cells may be unbounded with unbounded 

bisectors. Happens when a site pi is on the boundary of 

the convex hull of E.

demo



Voronoi Diagram

 Voronoi cells have faces of different dimensions.

 In 2D, a face of dimension k is the intersection of 3 - k 

Voronoi cells. A Voronoi vertex is generically 

equidistant from three points, and a Voronoi edge is 

equidistant from two points.



Delaunay Triangulation

 Dual structure of the Voronoi diagram. 

 The Delaunay triangulation of a set of sites E is a 

simplicial complex such that k+1 points in E form a 

Delaunay simplex if their Voronoi cells have nonempty 

intersection

demo



Delaunay Triangulation

 The Delaunay triangulation of a point set E 

covers the convex hull of E.



Delaunay Triangulation

 canonical triangulation associated to any point 

set



Delaunay Triangulation: Local Property

 Empty circle: A triangulation T of a point set E such that any d-

simplex of T has a circumsphere that does not enclose any point of 

E is a Delaunay triangulation of E. Conversely, any k-simplex with 

vertices in E that can be circumscribed by a hypersphere that does 

not enclose any point of E is a face of the Delaunay triangulation 

of E.

demo



Delaunay Triangulation

 In 2D: « quality » triangulation

 Smallest triangle angle: The Delaunay triangulation 

of a point set E is the triangulation of E which 

maximizes the smallest angle.

 Even stronger: The triangulation of E whose angular

vector is maximal for the lexicographic order is the 

Delaunay triangulation of E.

good bad



Delaunay Triangulation

 Thales’ Theorem: Let C be a circle, and l a 

line intersecting C at points a and b. Let p, q, r

and s be points lying on the same side of l, 

where p and q are on C, r inside C and s outside 

C. Then:

q

apbarb  2

p

s

r

b

a

l

asbaqb 



Delaunay Triangulation

Improving a triangulation:

 In any convex quadrangle, an edge flip is 

possible. If this flip improves the triangulation 

locally, it also improves the global 

triangulation.

 If an edge flip improves the triangulation, the 

first edge is called illegal.



Delaunay Triangulation

Illegal edges:

 Lemma: An edge pq is illegal iff one of its opposite vertices is 

inside the circle defined by the other three vertices.

 Proof: By Thales’ theorem.

 Theorem: A Delaunay triangulation does not contain illegal edges.

 Corollary: A triangle is Delaunay iff the circle through its vertices 

is empty of other sites (the empty-circle condition).

 Corollary: The Delaunay triangulation is not unique if more than 

three sites are co-circular.

p

q



Delaunay Triangulation

 Duality on the paraboloid: Delaunay 

triangulation obtained by projecting the lower 

part of the convex hull.



Delaunay Triangulation

Project the 2D point set

onto the 3D paraboloid

z=x2+y2

Compute the 3D 

lower convex hull

z=x2+y2

Project the 3D facets

back to the plane.

z=x2+y2



Proof

 The intersection of a plane with 

the paraboloid is an ellipse 

whose projection to the plane is 

a circle.

 s lies within the circumcircle of 

p, q, r iff s’ lies on the lower side 

of the plane passing through p’, 

q’, r’.

 p, q, r  S form a Delaunay 

triangle iff p’, q’, r’ form a face 

of the convex hull of S’.

pq

r

r’

p’
q’

s

s’



Voronoi Diagram

 Given a set S of points in the 

plane, associate with each 

point p=(a,b)S the plane 

tangent to the paraboloid at p:

z = 2ax+2by-(a2+b2).

 VD(S) is the projection to the 

(x,y) plane of the 1-skeleton of 

the convex polyhedron formed 

from the intersection of the 

halfspaces above these planes. 

pq

p’q’



Delaunay Triangulation

An naïve O(n4) Construction Algorithm

 Repeat until impossible:

 Select a triple of sites.

 If the circle through them is empty of other sites, 

keep the triangle whose vertices are the triple.



The In-Circle Test

2 2 2( ) ( )x x y ya q a q r   

Theorem: If a,b,c,d form a CCW convex 

polygon, then d lies in the circle determined 

by a, b and c iff:
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Proof: We prove that equality holds if the points are co-circular.

There exists a center q and radius r such that:

and similarly for b, c, d:

So these four vectors are linearly dependent, hence their det vanishes.
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2 2 2

2 2

2 2

1

1
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Corollary: dcircle(a,b,c) iff bcircle(c,d,a) iff ccircle(d,a,b) iff acircle(b,c,d) 



Delaunay Triangulation

Another naive construction:

 Start with an arbitrary triangulation. Flip any illegal 

edge until no more exist.

 Requires proof that there are no local minima.

 Could take a long time to terminate.



O(nlogn) Delaunay Triangulation Algorithm

Incremental algorithm:

 Form bounding triangle which encloses 
all the sites.

 Add the sites one after another in 
random order and update triangulation.

 If the site is inside an existing triangle:

 Connect site to triangle vertices.

 Check if a 'flip' can be performed on one 
of the triangle edges. If so – check 
recursively the neighboring edges.

 If the site is on an existing edge:

 Replace edge with four new edges.

 Check if a 'flip' can be performed on one 
of the opposite edges. If so – check 
recursively the neighboring edges.



Flipping Edges

 A new vertex pr is added, causing the 

creation of edges.

 The legality of the edge pipj (with 

opposite vertex) pk is checked.

 If pipj is illegal, perform a flip, and 

recursively check edges pipk and pj

pk, the new edges opposite pr.

 Notice that the recursive call for pipk

cannot eliminate the edge pr pk.

 Note:  All edge flips replace edges 

opposite the new vertex by edges 

incident to it!

pi

pk

pr

pj



Flipping Edges - Example

pi

pk

pr

pj



Number of Flips

 Theorem: The expected number of edges flips 

made in the course of the algorithm (some of 

which also disappear later) is at most 6n.

 Proof: During insertion of vertex pi, ki new 

edges are created: 3 new initial edges, and ki-3 

due to flips.  

Backward analysis: E[ki] = the expected 

degree of pi after the insertion is complete = 6 

(Euler).



Algorithm Complexity

 Point location for every point:  O(log n) time.

 Flips:  (n) expected time in total (for all steps).

 Total expected time:  O(n log n).

 Space:  (n).

demo



3D Delaunay Triangulation





Constrained Delaunay triangulation



2D Constrained Delaunay Triangulation

 Definition 1 : Let (P, S) be a PSLG. The 

constrained triangulation T(P, S) is constrained 

Delaunay iff the circumcircle of any triangle t 

of T encloses no vertex visible from a point in 

the relative interior of t.



2D Constrained Delaunay Triangulation

 Definition 2 : Let (P, S) be a PSLG. The constrained 

triangulation T(P, S) is constrained Delaunay iff any 

edge e of T is either a segment of S or is constrained 

Delaunay.

 Simplex e constrained Delaunay with respect to the 

PSLG (P, S) iff: int(e)  S = 0

 There exists a circumcircle of e that encloses no vertex 

visible from a point in the relative interior of e.



Pseudo-dual: Bounded Voronoi Diagram 

constrained Bounded Voronoi 

diagram

“blind” triangles



2D Constrained Delaunay Triangulation

 Any PSLG (P, S) has a constrained Delaunay 

triangulation. If (P, S) has no degeneracy , this 

triangulation is unique.



Delaunay Filtering



Restricted Voronoi Diagram

 The Voronoi diagram restricted to a curve S, 

Vor|S(E), is the set of edges of Vor(E) that 

intersect S.

S



Restricted Delaunay Triangulation

 The restricted Delaunay 

triangulation restricted 

to a curve S is the set of 

edges of the Delaunay 

triangulation whose dual 

edges intersect S.

(2D)



Restricted Delaunay Triangulation

 The restricted Delaunay 

triangulation restricted to a 

surface S is the set of 

triangles of the Delaunay 

triangulation whose dual 

edges intersect S.


