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Abstract— Whereas some methods for plane extraction have
been proposed, this problem still remains an open issue due
to the complexity of the task. This paper especially focuses
on the extraction of points lying on a plane (such as the
ground and buildings walls) in sequences acquired by a central
omnidirectional camera. Our approach is based on the epipolar
constraint for planar scenes (i.e. homography) on a pair of
omnidirectional images to detect some interest points belonging
to a plane. Our main contribution is the introduction of a
new method, called “2-point algorithm for homography”, that
imposes some constraints on the homography using vanishing
point (VP) information. Compared to the widely used DLT
(4-point) algorithm, experiments on real data demonstrated
that the proposed “2-point algorithm for homography” is more
robust to noise and false matching, even when the plane to
extract is not dominant in the image. Finally, we show that our
system provides key clues for ground segmentation by GrabCut.

I. INTRODUCTION

Image segmentation is a key issue in computer vision.

Basically, segmentation aims to partition an image into

multiple regions and has been applied for various tasks

such as surveillance and object recognition. The goal of

this paper is to automatically segment/extract some (usually

sparse) feature points lying on a plane, such as the ground

and building walls, in omnidirectional images. Extracting

these planar points can be applied for Unmanned Aerial

Vehicles (UAV) landing, autonomous robot navigation

and 3D reconstruction for example. From these sparse

points, it is also possible to obtain a dense pixelwise

segmentation of the detected planes [1][2]. In this paper,

the expressions “plane extraction” and “plane segmentation”

are used equivalently and refer to the extraction of

these feature points. Independently of the vision system

(monocular/stereo, traditional/catadioptric, color/grayscale),

plane segmentation is a complicated problem for several

reasons: different textures, appearance or luminosity changes

(shadow). Most of the existing works for plane extraction

are dedicated to ground plane. Previous works can be

classified into 4 main categories.

The first category concerns the segmentation in a single

image using color and texture information and numerous

methods have been proposed [3][4]. These techniques are

usually easy to implement but require a color model of the
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ground and thus cannot be applied in varied environments

(indoor/outdoor, bright/dark).

The second category refers to epipolar geometry on

monocular image sequence. [5] estimates the homography

that leads to the highest number of point inliers by applying

RANSAC in an image pair. The plane associated to the

best homography is considered the ground plane. However

this kind of approaches assume that the ground plane (more

generally, the plane to extract) is the dominant plane in the

image. It usually leads to a sparse segmentation since only

point features of the ground are extracted. [6] computes the

dominant optical flow in an image sequence and all the points

verifying this flow are considered ground points. However it

assumes the ground is the largest region in the image and

the camera has a small displacement.

The third category is based on plane detection in 3D

data provided by a calibrated stereo camera system. After

reconstructing 3D points from a stereo camera system, [7]

applies Hough Transform to detect the dominant plane. [8]

performs RANSAC using three 3D points to compute the

best plane with respect to the number of points that are close

to the plane. However these two methods still assume that

the ground plane contains the largest number of features. At

the contrary, [9] uses an inertial measurement unit (IMU) in

order to highly constrain the plane orientation and therefore

extract the ground plane more efficiently. However this

method requires both a stereo camera and an IMU and, last

but not least, the knowledge of a point on the ground plane

which is usually manually selected.

The fourth and last category combines epipolar geometry

and color information. The method of [7] consists of two

steps. First, 3D points are reconstructed from a stereo camera

and the dominant plane is extracted. Since points of homoge-

neous regions cannot be reconstructed in 3D, the second step

segments the image using the ground points obtained during

the first step as seed points. However this method uses a

stereo camera and assumes the ground plane is dominant. At

the contrary, [10] first segments the image and then computes

homography to detect and merge the regions having coplanar

feature points. However it requires a significant number of

point features in each initially segmented regions.

It appears that the main limitations of robust existing

methods is that they use a calibrated stereo camera system

and/or assume the ground is the dominant plane in the image.

In this paper, we propose a new method that can overcome

these two important drawbacks. Our approach is based on

the epipolar constraint for planar scenes (i.e. homography)

on a pair of catadioptric/omnidirectional images to detect



some point features belonging to a plane (such as ground or

building walls). To robustly extract the plane when it is not

dominant in the image, we propose the 2-point algorithm

for homography which imposes some constraints on the

rotation and the normal vector using VP information. The

VPs are obtained by previous works on line extraction and

VP estimation [11]. Finally, the inliers belonging to the

ground plane can be extracted using robust estimators and

provide key clues for ground segmentation by GrabCut. This

approach has three important advantages. First, it does not

require a calibrated stereo camera system. Second, it extracts

only the planes verifying the normal provided by the VPs

and can robustly extract the ground plane. Third, despite the

extra cost of VP estimation, it can run in real-time thanks

to the lower number of required RANSAC iterations and a

prestage selection.

This paper is organized as follows. First, we introduce

omnidirectional vision and the equivalent sphere projection.

Then, we present our 2-point algorithm for homography and

robust estimation. Finally, we present some experimental

results on real omnidirectional images for ground plane

feature extraction and plane segmentation.

II. OMNIDIRECTIONAL VISION AND EQUIVALENT

SPHERE PROJECTION

Omnidirectional vision systems provide a much wider field

of view than traditional cameras, typically 360◦ (horizontal)

by 180◦ (vertical). Nowadays, several kinds of commercial

omnidirectional systems exists, such as Point Grey’s Lady-

bug camera (cf Fig 1.) or 0-360.com’s mirror. Among the

several advantages provided by omnidirectional vision, we

can especially cite the larger amount of information shared

between images and the handling of the traditional ambiguity

of rotation-translation inherent to traditional cameras.

It has been shown that the projection associated to central

omnidirectional cameras is equivalent to a sphere projection.

The sphere equivalence provides two important properties for

lines (cf [12] and Fig 2). First, a line segment in the world is

projected onto a great circle in the equivalent sphere space.

A great circle is a plane passing through the sphere center.

Second, the projections of parallel lines (i.e. a set of great

circles) intersect in 2 antipodal points.

In this paper, we focus on two kinds of omnidirectional

vision systems: camera clusters and catadioptric cameras. A

camera cluster is a group of synchronized cameras whose

pictures are stitched together to build a panoramic image. A

famous commercial system is the Ladybug camera by Point

Grey and its application to Google Street View [13]. [14][15]

considered the separate views acquired by the cameras. We

preferred working on the panoramic image since it permits to

avoid view discontinuities (e.g. the lines are not cut and the

features can be tracked along images). The sphere projection

is performed by a linear mapping between the 2D image

coordinate values (u, v) and the two spherical angles (α, β)
[16].

Catadioptric cameras are composed of a mirror, a lens and

a conventional camera. Geyer and Daniilidis have demon-

strated the equivalence for the single viewpoint catadioptric

system with a two-step projection via a unitary sphere cen-

tered on the focus of the mirror (the single viewpoint) [12].

In order to apply the equivalence, it is necessary to know the

intrinsic parameters of the camera and some additional mirror

parameters which can be estimated by calibration [17].

Fig. 1. Examples of omnidirectional views obtained by Point Grey’s
Ladybug camera. These images are part of the Google Street View data
which is copyrighted by Google.

Fig. 2. Equivalent sphere projection: a world line (L1) is projected onto a
great circle (C1) in the sphere and the projection of parallel lines (L1 and
L2) intersect in 2 antipodal points (I1 and I2).

III. PROPOSED METHOD FOR AUTOMATIC GROUND

FEATURES EXTRACTION

This section aims to answer the following question: how

to automatically and robustly extract features on a plane

(such as the ground plane or building walls)? An intuitive

and widely used method consists in estimating the dominant

plane by homography and considering the inliers of the

RANSAC procedure as ground features. However it assumes

the dominant plane in the image is the ground, which might

not be true in practice. Our approach for homography esti-

mation uses vanishing point information in order to constrain

the rotation and the ground normal vector. It permits to

efficiently extract ground features and also avoid the problem

of virtual/tilted plane. First, we introduce the notations used



in the paper and recall homography for calibrated omni-

directional vision. Then we present our proposed 2-point

algorithm for homography.

A. Homography in the equivalent sphere

Let Pw be a world point whose coordinates are

(xw, yw, zw)T in the coordinate frame of the first cam-

era. It is projected onto the associated sphere at Ps =
(x, y, z)T = λ(xw , yw, zw)T where λ = 1/

√
x2

w + y2
w + z2

w.

Subsequently, Pw is represented by (x′

w , y′

w, z′w)T in the

coordinate frame of the second camera. It is similarly pro-

jected onto the associated sphere at P ′

s = (x′, y′, z′)T =
λ′(x′

w, y′

w, z′w)T . Ps and P ′

s are referred as correspond-

ing spherical points. In [18], homography for traditional

perspective cameras has been extended towards calibrated

omnidirectional vision and defined as follows:

P ′

s =
λ′

λ
HPs where H = R +

T

d
NT (1)

where R and T respectively correspond to the rotation and

the translation between the two images, N is the unit normal

vector of the plane and d is the distance from the center of

the sphere to the plane. In the following, we note T̃ = T/d.

The most widely used method to compute H is the 4-

point algorithm [19][18] (equivalently called DLT in the

following). Given 4 point correspondences, DLT computes H
by solving an eigenvector problem, using SVD for example.

B. The 2-point Algorithm for Homography

This section aims to estimate T̃ assuming that R and N
are known (section IV will discuss how to obtain them). To

deal with scale problem, eq (1) is converted to:

P ′

s × HPs = 0 (2)

Using the decomposition of H and mathematical manipula-

tions, eq (2) can be re-written as:

P ′

s × T̃ = −

P ′

s × RPs

NT Ps

(3)

For easier derivations, the previous equation is noted as:

u × T̃ = v with u = P ′

s and v = −

P ′

s × RPs

NT Ps

(4)

The system (4) is composed of 3 equations but only two

of them are independent. Thus each point correspondence

provides two equations. Since T̃ has 3 DOF, it can be

estimated by only 2 point correspondences. By expanding

eq (4) for each ith correspondence, we get:
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factoring with respect to T̃ (keeping only 2 equations), we
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After stacking two matrices Ai and Bi into A and B, T̃ can

be easily computed by pseudo-inverse:

T̃ = (AT A)−1AT B (6)

C. Robust Estimation

The quality of the 2-point algorithm depends on the

accuracy of R and N . In the following, we study how to

handle their noisy estimations.

Accurate a priori Information

The experiment section on synthesized data will confirm the

intuition that the 2-point algorithm is more robust to data

noise than DLT up to a certain level of noise on R and N . It

means that 2-point algorithm is preferred when R and N can

be precisely estimated. It typically occurs for VP estimation

with omnidirectional images and for robotic applications

when navigation sensors like gyroscope or compass are

used (gravity obtained by these sensors provides the ground

normal).

Robust estimator must be used to remove outliers, i.e.

false correspondences or correspondences of points not on

the ground plane. In our program, the 2-point algorithm is

included in RANSAC framework. [19] defines the theoretical

minimum number of samples that is required to ensure that

at least one sample is free from outliers and an example

is depicted in Table I. Compared to the traditional 4-point

DLT algorithm, it clearly shows that the 2-point algorithm

decreases the theoretical complexity of RANSAC, especially

when the percentage of outliers is high. Finally, we apply

DLT on the best set of inliers, in order to handle the noisy

estimation of R and N and also refine the motion estimation.

sample
size proportion of outliers ǫ in %

s 5 10 20 25 30 40 50

2 2 3 5 6 7 11 17

4 3 5 9 13 17 34 72

TABLE I

THE NUMBER OF SAMPLES REQUIRED TO ENSURE, WITH A

PROBABILITY p = 0.99, THAT AT LEAST ONE SAMPLE HAS NO OUTLIERS

FOR A GIVEN NUMBER s OF MINIMAL POINTS AND A PROPORTION OF

OUTLIERS ǫ. s = 2POINTS REFERS TO OUR APPROACH AND s = 4POINTS

REFERS TO THE 4-POINT DLT ALGORITHM. FROM [19] P119.

Noisy a priori Information

In the case, R and N are not precisely estimated, it is im-

portant to note that they still provide important information.

In our approach (referred as relaxed RANSAC), we consider

that the noisy estimates can correctly reject the gross outliers,

and to deal with noise, we use an inlier threshold relatively

large (in our experiments, 5 pixels for image resolution

1280 × 960). This technique permits to keep the RANSAC

speed advantage of the 2-point algorithm.

IV. REAL-TIME ROTATION AND VP ESTIMATION

Several interesting methods have been proposed to esti-

mate the rotation in traditional and omnidirectional images



(readers are invited to refer to [11] for a recent review).

Among the existing methods, the line-based approach is the

fastest and is selected in our framework. It usually must

face 2 issues: first, extracting the lines in the image from

edge map, second, clustering the lines to their associated

(unknown) vanishing points (VP). In the following, we

present our framework to face these 2 issues.

A. Line Extraction and Rotation Estimation

For line detection, we apply [20] which is an extension

of the polygonal approximation in sphere space. For self-

containment, we explain the main idea of this method. This

algorithm starts by detecting edges in the image and building

chains of connected edge pixels. Then these chains are

projected on the sphere. If a chain verifies the great circle

constraint, it is considered a line. Otherwise, it is cut into

2 sub-chains and the procedure iterates until a sub-chain

is considered a line or its length is too small. Because of

possible edge discontinuity, a line might be decomposed into

more than one chain. Therefore a merging step is applied

to gather the several sub-chains of a single line and then

combine all the gathered data points for accurate line fitting

by least-square minimization. This algorithm has 2 important

advantages: it can be applied to any central camera (e.g.

catadioptric and omnidirectional) and is fast.

For line clustering, the most simple approach is based

on the Hough transform [21][22]: the line segments are

mapped onto great circles in a histogram representing the

sphere surface. VPs are detected as peaks in the histogram,

corresponding to areas where several great circles intersect.

However this approach might not provide accurate VPs and

suffers from the classic defects of the Hough transform such

as the importance of parameter sampling and also an expen-

sive computation. In urban scenes, 2 or 3 dominant directions

usually exist and the fact that these dominant VPs are

orthogonal is often used to constrain the VP estimation (the

Manhattan constraint) [23][24][25]. This Hough transform

cannot enforce orthogonality of VPs. In [11], we proposed

a method that is fast and can impose VP orthogonality. It is

based on a top-down approach: a set of rotations (obtained

by motion model or heuristic) is considered and the most

consistent rotation is selected.

Some experimental results for line extraction and VP

estimation are shown in Fig 3 for Google Street Street View

omnidirectional images and in the second row of Fig 8 for

our catadioptric sequences.

B. Constraints Provided by the Vanishing Points

Rotation and Plane Normal

The VP estimation method provides the K vanishing points

(and the plane normal N ) and also the relative rotation

R between 2 frames, which permits to apply the 2-point

algorithm (cf eq (3)). To extract the vertical VP among the

3 VPs, many methods are possible. For example, one may

simply choose the one with the highest z coordinate (i.e.

the “most vertical” one). Sky detection in outdoor images

can also be used, like in [26]. A third method is to simply

Fig. 3. Line and vanishing points extraction by the proposed algorithm
on a Google Street View sequence (same images as Fig 1). Each conic
corresponds to a detected line and all parallel lines have the same color.
The conics have been enlarged for a better visualization. Additional results
are presented in the attached video.

manually select the vertical VP in the first frame and then

track it during the sequence. One may comment that the

vertical VP might not be directly observed in the images.

If we assume the vertical direction is orthogonal to the

ground, which is generally the case in urban environments,

the vertical VP can be simply computed by cross-product

of the 2 horizontal VPs. Typical results of VP extraction

using the proposed method are displayed in Fig 8.

Horizon

The RANSAC procedure is usually applied to all the features

of the image. We present a method for greatly reducing both

the number of features to test and the proportion of outliers

and thus accelerating the RANSAC. It is based on the idea

that the ground features lie below the horizon. Therefore, as

depicted by Fig 4(a), any ground features Ps in the equivalent

sphere must verify the (necessary but not sufficient) condition

Ps · N < 0 where N is the ground normal obtained from

VPs. Thus we apply the RANSAC procedure only to the

points verifying this horizon constraint. Figure 4 depicts the

projection of the horizon in a catadioptric image using the

ground normal vector and the associated mask to remove the

points that do not lie below the horizon.

V. EXPERIMENTAL RESULTS

This section presents experimental results of ground fea-

ture extraction by the VP-constrained homography and then

ground plane segmentation. We processed two kinds of

omnidirectional images: acquired by a catadioptric system

and a camera cluster. The catadioptric system is composed of

a paraboloid mirror manufactured by Panosmart and a Sony

DFW-SX910 camera. The image resolution is 1280x960. The



Fig. 4. Left: the normal vector N of the horizon plane in the equivalent
sphere is similar to the normal vector of the horizon plane in the world.
Right: projection of the horizon from the ground normal vector provided
by the vertical VP for horizon constraint.

catadioptric system is calibrated using the toolbox based on

[17]. The camera cluster is Point Grey’s Ladybug camera.

It is composed of six 1024x768 color cameras with small

overlap of their field of view. Five cameras are positioned

in a horizontal ring to capture side-view images, and one

is located on the top to take top-view images. Calibration

information is provided by Point Grey and contains all the

intrinsic and relative extrinsic parameters of all six cameras.

The advanced Point Grey acquisition program is able to

build a panoramic image, in real-time, by stitching the 6

images using the calibration information. The panoramic

image size is 1664x832. [14][15] considered the separate

images and projected the points on the equivalent sphere by

multiplying the inverse calibration matrix and the inverse

rotation matrix in each camera. On the contrary, we worked

on the panoramic image and performed a linear mapping

onto the sphere[16], as explained in section II.

A. Synthesized Data

To analyze the dependency of our 2-point algorithm to data

noise, we synthesized 1000 catadioptric images composed of

100 matching points and we have applied to their coordinates

a gaussian noise. In a first series of experiments, the ground

truth rotation was directly used for the computation of T
by the 2-point algorithm. To simulate the fact that the

rotation cannot be perfectly estimated from the images, we

have performed a second series of experiments where the 3

rotation angles have been corrupted by a gaussian noise of

mean=0 and an increasing std=[0◦, . . . , 2◦]. For comparison,

we have also applied the 4-point algorithm to compute the

homography matrix. Figure 5 depicts the mean error in

degrees for the estimation of the translation direction. As the

4-point algorithm and the 2-point algorithm with true rotation

do not depend on the rotation noise, their error is constant.

It can be noticed that the error of the 2-point algorithm

with noised rotation linearly increases with the level of

rotation noise. It also shows that the 2-point algorithm is

more efficient than the 4-point algorithm when the rotation

is corrupted up to a certain level of noise, especially when

the noise of data points increases. It is a very important

result because it demonstrates that the constraint provided

by accurate a priori motion estimation and the fact that

only 2 points are required permits to obtain a more robust

estimation.

Fig. 5. Comparison of mean error in degrees (y axis) for the estimation
of the translation direction on synthesized catadioptric images by the 4-
point and the proposed 2-point algorithms, with respect to rotation noise
(mean=0 and increasing std on x-axis). Data points have been noised by a
gaussian distribution of mean=0 and std=1 pixel (left figure) and 3 pixels
(right figure).

B. Real Catadioptric Videos

VP extraction

As discussed in section IV, we respectively applied [20]

and [11] for line extraction and rotation estimation. This

procedure runs in about 10-15ms per frame. Examples of

VP extraction obtained by our proposed method in real

catadioptric images are displayed in Fig 8 (2nd row) and

6.

Figure 6 shows a typical example of motion estimation on

a Google Street View sequence obtained from the estimation

of rotation and car holonomic constraints. Given the rotation

obtained by the VPs, the car position at time t, noted

(px(t), py(t)), can be estimated by holonomic constraints:

px(t) = px(t − 1) + dt ∗ cos(θt + ∆θt
/2) (7)

py(t) = py(t − 1) + dt ∗ sin(θt + ∆θt/2) (8)

where dt is the distance traveled between t − 1 and t, θt

is the rotation at time t and ∆θt
= θt − θt−1. Initially

px(t) = py(t) = 0. In our case, since the distance dt is

known only up-to-scale, we set dt = 1 for every t (i.e.

constant velocity). This sequence contains about 1000

frames and covers around 900 meters. This kind of motion

estimation technique (rotation + holonomic constraints)

provides only a rough trajectory estimation. For example,

since d = 1 it explains some non-overlapping streets.

However it permits to (1) interpret and verify the estimated

rotation angles more easily and also (2) reflects the path

structure. For example, we can note that the estimated

trajectory contains orthogonal and parallel parts, which

corresponds to the structure of the scene. Therefore the

estimated VPs can be safely inserted in the proposed 2-point

algorithm for homography.

Ground features extraction

From the VPs, we obtain the ground normal and compute

back the relative rotation. Feature points have been extracted

and matched by SIFT algorithm [27]. To deal with outliers,

we performed robust estimation and we present the results

obtained by the relaxed RANSAC of the 2-point algorithm

(cf section III-C). The first row of Figure 8 depicts the inliers

and outliers obtained by the traditional DLT. It shows that

DLT often classifies points wrongly and detects a virtual



Fig. 6. Motion estimation (top) on a part of a Google Street View sequence
from the estimation of rotation and car holonomic constraints. The ground
truth trajectory provided by Google is displayed in (bottom).

Fig. 7. Comparison of execution time in ms for the 2-point algorithms
(with and without VP estimation) and DLT algorithm using the minimum
number of theoretical RANSAC iterations for 50% outliers (best seen in
color).

plane. On the contrary, our proposed framework (2nd and 3rd

rows) manages to successfully extract the ground features,

which demonstrates the robustness of our approach. Fig 7

compares the execution time of the relaxed RANSAC for

the 2-point algorithm (noted 2ptRR) and the RANSAC for

the traditional 4-point algorithm (noted 4ptRR). In average,

2ptRR runs a little bit slower than 4ptRR for this sequence.

However 2ptRR still runs in real time and provides much

more robust results than 4ptRR. Data analysis has shown that

2ptRR is faster than 4ptRR when the number of features is

high, because of the time consuming RANSAC iterations.

Finally, it is worthwhile to note that the 2ptRR without

the rotation estimation step is extremely fast (about 5ms in

average). It could represent an interesting tool for robotic

platforms equipped with IMU or gyroscope for example.

Readers are invited to refer to the attached video and the

authors’ website for additional results.

C. Segmentation

GrabCut is an efficient technique to segment some objects

or regions in an image (cf [2] for details). In the original

Grabcut paper, the user only provides an “incomplete la-

beling” (rectangle around the foreground region) to indicate

a background region and no extra information is needed

to specify the foreground region. To obtain better results,

additional user editing could indicate definitely foreground or

background regions. In our framework, all these user inputs

are given automatically. To substitute the incomplete user-

labeling, a mask is calculated from the horizon constraint (cf

Fig 4). This mask is similar with the rectangle of the grabcut:

the outside area is definitely true background (i.e. not ground

plane) and the inside area might contain background and

foreground ). For the additional user editing inside the mask,

our framework uses the inliers of the 2-point algorithm as

data definitively foreground (i.e. ground plane). Even if the

inliers seem relatively sparse, experiments have shown that

it is often enough for Grabcut framework. Segmentation

results are depicted in the 4th row of Fig 8. The entire

parking plane is correctly segmented. The main difference

with true segmentation is that the persons or a very small

part of building/car can be partially mislabeled. If needed,

Grabcut could be easily replaced by an another seed-based

segmentation method and additional constraints (e.g. color

histograms) could be incorporated. Our contribution is to

provide features on a plane, not an entire segmented plane.

However, the results by the current method are still very

satisfying.

VI. CONCLUSION

This paper faced the problem of automatic plane

extraction in omnidirectional videos. We developed an

original complete framework that provides robust results

and runs in real-time. Our main contribution is the so-called

2-point algorithm for homography. The key idea is to

impose some constraints on the homography based on VP

information. Experiments on real data have demonstrated

that the widely used DLT algorithm often suffers from the

virtual plane problem and also fails to extract a plane when

it is not the dominant one in the image. On the contrary,

our proposed 2-point algorithm for homography manages

to filter out the planes from VP information and robustly

extract ground features during the experiments. Finally, we

have also shown that the inliers obtained by our framework

provide key clues for ground segmentation by GrabCut.
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